2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
49 struct list_head node;
50 struct hv_vmbus_device_id id;
53 static struct acpi_device *hv_acpi_dev;
55 static struct completion probe_event;
57 static int hyperv_cpuhp_online;
59 static void *hv_panic_page;
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
66 regs = current_pt_regs();
68 hyperv_report_panic(regs, val);
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
75 struct die_args *die = (struct die_args *)args;
76 struct pt_regs *regs = die->regs;
78 hyperv_report_panic(regs, val);
82 static struct notifier_block hyperv_die_block = {
83 .notifier_call = hyperv_die_event,
85 static struct notifier_block hyperv_panic_block = {
86 .notifier_call = hyperv_panic_event,
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
94 static int vmbus_exists(void)
96 if (hv_acpi_dev == NULL)
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
112 return (u8)channel->offermsg.monitorid / 32;
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
117 return (u8)channel->offermsg.monitorid % 32;
120 static u32 channel_pending(const struct vmbus_channel *channel,
121 const struct hv_monitor_page *monitor_page)
123 u8 monitor_group = channel_monitor_group(channel);
125 return monitor_page->trigger_group[monitor_group].pending;
128 static u32 channel_latency(const struct vmbus_channel *channel,
129 const struct hv_monitor_page *monitor_page)
131 u8 monitor_group = channel_monitor_group(channel);
132 u8 monitor_offset = channel_monitor_offset(channel);
134 return monitor_page->latency[monitor_group][monitor_offset];
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 struct hv_monitor_page *monitor_page)
140 u8 monitor_group = channel_monitor_group(channel);
141 u8 monitor_offset = channel_monitor_offset(channel);
142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
148 struct hv_device *hv_dev = device_to_hv_device(dev);
150 if (!hv_dev->channel)
152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
154 static DEVICE_ATTR_RO(id);
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
159 struct hv_device *hv_dev = device_to_hv_device(dev);
161 if (!hv_dev->channel)
163 return sprintf(buf, "%d\n", hv_dev->channel->state);
165 static DEVICE_ATTR_RO(state);
167 static ssize_t monitor_id_show(struct device *dev,
168 struct device_attribute *dev_attr, char *buf)
170 struct hv_device *hv_dev = device_to_hv_device(dev);
172 if (!hv_dev->channel)
174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
176 static DEVICE_ATTR_RO(monitor_id);
178 static ssize_t class_id_show(struct device *dev,
179 struct device_attribute *dev_attr, char *buf)
181 struct hv_device *hv_dev = device_to_hv_device(dev);
183 if (!hv_dev->channel)
185 return sprintf(buf, "{%pUl}\n",
186 hv_dev->channel->offermsg.offer.if_type.b);
188 static DEVICE_ATTR_RO(class_id);
190 static ssize_t device_id_show(struct device *dev,
191 struct device_attribute *dev_attr, char *buf)
193 struct hv_device *hv_dev = device_to_hv_device(dev);
195 if (!hv_dev->channel)
197 return sprintf(buf, "{%pUl}\n",
198 hv_dev->channel->offermsg.offer.if_instance.b);
200 static DEVICE_ATTR_RO(device_id);
202 static ssize_t modalias_show(struct device *dev,
203 struct device_attribute *dev_attr, char *buf)
205 struct hv_device *hv_dev = device_to_hv_device(dev);
206 char alias_name[VMBUS_ALIAS_LEN + 1];
208 print_alias_name(hv_dev, alias_name);
209 return sprintf(buf, "vmbus:%s\n", alias_name);
211 static DEVICE_ATTR_RO(modalias);
214 static ssize_t numa_node_show(struct device *dev,
215 struct device_attribute *attr, char *buf)
217 struct hv_device *hv_dev = device_to_hv_device(dev);
219 if (!hv_dev->channel)
222 return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
224 static DEVICE_ATTR_RO(numa_node);
227 static ssize_t server_monitor_pending_show(struct device *dev,
228 struct device_attribute *dev_attr,
231 struct hv_device *hv_dev = device_to_hv_device(dev);
233 if (!hv_dev->channel)
235 return sprintf(buf, "%d\n",
236 channel_pending(hv_dev->channel,
237 vmbus_connection.monitor_pages[1]));
239 static DEVICE_ATTR_RO(server_monitor_pending);
241 static ssize_t client_monitor_pending_show(struct device *dev,
242 struct device_attribute *dev_attr,
245 struct hv_device *hv_dev = device_to_hv_device(dev);
247 if (!hv_dev->channel)
249 return sprintf(buf, "%d\n",
250 channel_pending(hv_dev->channel,
251 vmbus_connection.monitor_pages[1]));
253 static DEVICE_ATTR_RO(client_monitor_pending);
255 static ssize_t server_monitor_latency_show(struct device *dev,
256 struct device_attribute *dev_attr,
259 struct hv_device *hv_dev = device_to_hv_device(dev);
261 if (!hv_dev->channel)
263 return sprintf(buf, "%d\n",
264 channel_latency(hv_dev->channel,
265 vmbus_connection.monitor_pages[0]));
267 static DEVICE_ATTR_RO(server_monitor_latency);
269 static ssize_t client_monitor_latency_show(struct device *dev,
270 struct device_attribute *dev_attr,
273 struct hv_device *hv_dev = device_to_hv_device(dev);
275 if (!hv_dev->channel)
277 return sprintf(buf, "%d\n",
278 channel_latency(hv_dev->channel,
279 vmbus_connection.monitor_pages[1]));
281 static DEVICE_ATTR_RO(client_monitor_latency);
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 struct device_attribute *dev_attr,
287 struct hv_device *hv_dev = device_to_hv_device(dev);
289 if (!hv_dev->channel)
291 return sprintf(buf, "%d\n",
292 channel_conn_id(hv_dev->channel,
293 vmbus_connection.monitor_pages[0]));
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 struct device_attribute *dev_attr,
301 struct hv_device *hv_dev = device_to_hv_device(dev);
303 if (!hv_dev->channel)
305 return sprintf(buf, "%d\n",
306 channel_conn_id(hv_dev->channel,
307 vmbus_connection.monitor_pages[1]));
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
311 static ssize_t out_intr_mask_show(struct device *dev,
312 struct device_attribute *dev_attr, char *buf)
314 struct hv_device *hv_dev = device_to_hv_device(dev);
315 struct hv_ring_buffer_debug_info outbound;
317 if (!hv_dev->channel)
319 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
320 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
322 static DEVICE_ATTR_RO(out_intr_mask);
324 static ssize_t out_read_index_show(struct device *dev,
325 struct device_attribute *dev_attr, char *buf)
327 struct hv_device *hv_dev = device_to_hv_device(dev);
328 struct hv_ring_buffer_debug_info outbound;
330 if (!hv_dev->channel)
332 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333 return sprintf(buf, "%d\n", outbound.current_read_index);
335 static DEVICE_ATTR_RO(out_read_index);
337 static ssize_t out_write_index_show(struct device *dev,
338 struct device_attribute *dev_attr,
341 struct hv_device *hv_dev = device_to_hv_device(dev);
342 struct hv_ring_buffer_debug_info outbound;
344 if (!hv_dev->channel)
346 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347 return sprintf(buf, "%d\n", outbound.current_write_index);
349 static DEVICE_ATTR_RO(out_write_index);
351 static ssize_t out_read_bytes_avail_show(struct device *dev,
352 struct device_attribute *dev_attr,
355 struct hv_device *hv_dev = device_to_hv_device(dev);
356 struct hv_ring_buffer_debug_info outbound;
358 if (!hv_dev->channel)
360 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
363 static DEVICE_ATTR_RO(out_read_bytes_avail);
365 static ssize_t out_write_bytes_avail_show(struct device *dev,
366 struct device_attribute *dev_attr,
369 struct hv_device *hv_dev = device_to_hv_device(dev);
370 struct hv_ring_buffer_debug_info outbound;
372 if (!hv_dev->channel)
374 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
375 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
377 static DEVICE_ATTR_RO(out_write_bytes_avail);
379 static ssize_t in_intr_mask_show(struct device *dev,
380 struct device_attribute *dev_attr, char *buf)
382 struct hv_device *hv_dev = device_to_hv_device(dev);
383 struct hv_ring_buffer_debug_info inbound;
385 if (!hv_dev->channel)
387 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
388 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
390 static DEVICE_ATTR_RO(in_intr_mask);
392 static ssize_t in_read_index_show(struct device *dev,
393 struct device_attribute *dev_attr, char *buf)
395 struct hv_device *hv_dev = device_to_hv_device(dev);
396 struct hv_ring_buffer_debug_info inbound;
398 if (!hv_dev->channel)
400 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
401 return sprintf(buf, "%d\n", inbound.current_read_index);
403 static DEVICE_ATTR_RO(in_read_index);
405 static ssize_t in_write_index_show(struct device *dev,
406 struct device_attribute *dev_attr, char *buf)
408 struct hv_device *hv_dev = device_to_hv_device(dev);
409 struct hv_ring_buffer_debug_info inbound;
411 if (!hv_dev->channel)
413 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414 return sprintf(buf, "%d\n", inbound.current_write_index);
416 static DEVICE_ATTR_RO(in_write_index);
418 static ssize_t in_read_bytes_avail_show(struct device *dev,
419 struct device_attribute *dev_attr,
422 struct hv_device *hv_dev = device_to_hv_device(dev);
423 struct hv_ring_buffer_debug_info inbound;
425 if (!hv_dev->channel)
427 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
430 static DEVICE_ATTR_RO(in_read_bytes_avail);
432 static ssize_t in_write_bytes_avail_show(struct device *dev,
433 struct device_attribute *dev_attr,
436 struct hv_device *hv_dev = device_to_hv_device(dev);
437 struct hv_ring_buffer_debug_info inbound;
439 if (!hv_dev->channel)
441 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
444 static DEVICE_ATTR_RO(in_write_bytes_avail);
446 static ssize_t channel_vp_mapping_show(struct device *dev,
447 struct device_attribute *dev_attr,
450 struct hv_device *hv_dev = device_to_hv_device(dev);
451 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
453 int buf_size = PAGE_SIZE, n_written, tot_written;
454 struct list_head *cur;
459 tot_written = snprintf(buf, buf_size, "%u:%u\n",
460 channel->offermsg.child_relid, channel->target_cpu);
462 spin_lock_irqsave(&channel->lock, flags);
464 list_for_each(cur, &channel->sc_list) {
465 if (tot_written >= buf_size - 1)
468 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
469 n_written = scnprintf(buf + tot_written,
470 buf_size - tot_written,
472 cur_sc->offermsg.child_relid,
474 tot_written += n_written;
477 spin_unlock_irqrestore(&channel->lock, flags);
481 static DEVICE_ATTR_RO(channel_vp_mapping);
483 static ssize_t vendor_show(struct device *dev,
484 struct device_attribute *dev_attr,
487 struct hv_device *hv_dev = device_to_hv_device(dev);
488 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
490 static DEVICE_ATTR_RO(vendor);
492 static ssize_t device_show(struct device *dev,
493 struct device_attribute *dev_attr,
496 struct hv_device *hv_dev = device_to_hv_device(dev);
497 return sprintf(buf, "0x%x\n", hv_dev->device_id);
499 static DEVICE_ATTR_RO(device);
501 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
502 static struct attribute *vmbus_dev_attrs[] = {
504 &dev_attr_state.attr,
505 &dev_attr_monitor_id.attr,
506 &dev_attr_class_id.attr,
507 &dev_attr_device_id.attr,
508 &dev_attr_modalias.attr,
510 &dev_attr_numa_node.attr,
512 &dev_attr_server_monitor_pending.attr,
513 &dev_attr_client_monitor_pending.attr,
514 &dev_attr_server_monitor_latency.attr,
515 &dev_attr_client_monitor_latency.attr,
516 &dev_attr_server_monitor_conn_id.attr,
517 &dev_attr_client_monitor_conn_id.attr,
518 &dev_attr_out_intr_mask.attr,
519 &dev_attr_out_read_index.attr,
520 &dev_attr_out_write_index.attr,
521 &dev_attr_out_read_bytes_avail.attr,
522 &dev_attr_out_write_bytes_avail.attr,
523 &dev_attr_in_intr_mask.attr,
524 &dev_attr_in_read_index.attr,
525 &dev_attr_in_write_index.attr,
526 &dev_attr_in_read_bytes_avail.attr,
527 &dev_attr_in_write_bytes_avail.attr,
528 &dev_attr_channel_vp_mapping.attr,
529 &dev_attr_vendor.attr,
530 &dev_attr_device.attr,
533 ATTRIBUTE_GROUPS(vmbus_dev);
536 * vmbus_uevent - add uevent for our device
538 * This routine is invoked when a device is added or removed on the vmbus to
539 * generate a uevent to udev in the userspace. The udev will then look at its
540 * rule and the uevent generated here to load the appropriate driver
542 * The alias string will be of the form vmbus:guid where guid is the string
543 * representation of the device guid (each byte of the guid will be
544 * represented with two hex characters.
546 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
548 struct hv_device *dev = device_to_hv_device(device);
550 char alias_name[VMBUS_ALIAS_LEN + 1];
552 print_alias_name(dev, alias_name);
553 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
557 static const uuid_le null_guid;
559 static inline bool is_null_guid(const uuid_le *guid)
561 if (uuid_le_cmp(*guid, null_guid))
567 * Return a matching hv_vmbus_device_id pointer.
568 * If there is no match, return NULL.
570 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
573 const struct hv_vmbus_device_id *id = NULL;
574 struct vmbus_dynid *dynid;
576 /* Look at the dynamic ids first, before the static ones */
577 spin_lock(&drv->dynids.lock);
578 list_for_each_entry(dynid, &drv->dynids.list, node) {
579 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
584 spin_unlock(&drv->dynids.lock);
591 return NULL; /* empty device table */
593 for (; !is_null_guid(&id->guid); id++)
594 if (!uuid_le_cmp(id->guid, *guid))
600 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
601 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
603 struct vmbus_dynid *dynid;
605 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
609 dynid->id.guid = *guid;
611 spin_lock(&drv->dynids.lock);
612 list_add_tail(&dynid->node, &drv->dynids.list);
613 spin_unlock(&drv->dynids.lock);
615 return driver_attach(&drv->driver);
618 static void vmbus_free_dynids(struct hv_driver *drv)
620 struct vmbus_dynid *dynid, *n;
622 spin_lock(&drv->dynids.lock);
623 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
624 list_del(&dynid->node);
627 spin_unlock(&drv->dynids.lock);
631 * store_new_id - sysfs frontend to vmbus_add_dynid()
633 * Allow GUIDs to be added to an existing driver via sysfs.
635 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
638 struct hv_driver *drv = drv_to_hv_drv(driver);
642 retval = uuid_le_to_bin(buf, &guid);
646 if (hv_vmbus_get_id(drv, &guid))
649 retval = vmbus_add_dynid(drv, &guid);
654 static DRIVER_ATTR_WO(new_id);
657 * store_remove_id - remove a PCI device ID from this driver
659 * Removes a dynamic pci device ID to this driver.
661 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
664 struct hv_driver *drv = drv_to_hv_drv(driver);
665 struct vmbus_dynid *dynid, *n;
669 retval = uuid_le_to_bin(buf, &guid);
674 spin_lock(&drv->dynids.lock);
675 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
676 struct hv_vmbus_device_id *id = &dynid->id;
678 if (!uuid_le_cmp(id->guid, guid)) {
679 list_del(&dynid->node);
685 spin_unlock(&drv->dynids.lock);
689 static DRIVER_ATTR_WO(remove_id);
691 static struct attribute *vmbus_drv_attrs[] = {
692 &driver_attr_new_id.attr,
693 &driver_attr_remove_id.attr,
696 ATTRIBUTE_GROUPS(vmbus_drv);
700 * vmbus_match - Attempt to match the specified device to the specified driver
702 static int vmbus_match(struct device *device, struct device_driver *driver)
704 struct hv_driver *drv = drv_to_hv_drv(driver);
705 struct hv_device *hv_dev = device_to_hv_device(device);
707 /* The hv_sock driver handles all hv_sock offers. */
708 if (is_hvsock_channel(hv_dev->channel))
711 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
718 * vmbus_probe - Add the new vmbus's child device
720 static int vmbus_probe(struct device *child_device)
723 struct hv_driver *drv =
724 drv_to_hv_drv(child_device->driver);
725 struct hv_device *dev = device_to_hv_device(child_device);
726 const struct hv_vmbus_device_id *dev_id;
728 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
730 ret = drv->probe(dev, dev_id);
732 pr_err("probe failed for device %s (%d)\n",
733 dev_name(child_device), ret);
736 pr_err("probe not set for driver %s\n",
737 dev_name(child_device));
744 * vmbus_remove - Remove a vmbus device
746 static int vmbus_remove(struct device *child_device)
748 struct hv_driver *drv;
749 struct hv_device *dev = device_to_hv_device(child_device);
751 if (child_device->driver) {
752 drv = drv_to_hv_drv(child_device->driver);
762 * vmbus_shutdown - Shutdown a vmbus device
764 static void vmbus_shutdown(struct device *child_device)
766 struct hv_driver *drv;
767 struct hv_device *dev = device_to_hv_device(child_device);
770 /* The device may not be attached yet */
771 if (!child_device->driver)
774 drv = drv_to_hv_drv(child_device->driver);
782 * vmbus_device_release - Final callback release of the vmbus child device
784 static void vmbus_device_release(struct device *device)
786 struct hv_device *hv_dev = device_to_hv_device(device);
787 struct vmbus_channel *channel = hv_dev->channel;
789 mutex_lock(&vmbus_connection.channel_mutex);
790 hv_process_channel_removal(channel->offermsg.child_relid);
791 mutex_unlock(&vmbus_connection.channel_mutex);
796 /* The one and only one */
797 static struct bus_type hv_bus = {
799 .match = vmbus_match,
800 .shutdown = vmbus_shutdown,
801 .remove = vmbus_remove,
802 .probe = vmbus_probe,
803 .uevent = vmbus_uevent,
804 .dev_groups = vmbus_dev_groups,
805 .drv_groups = vmbus_drv_groups,
808 struct onmessage_work_context {
809 struct work_struct work;
810 struct hv_message msg;
813 static void vmbus_onmessage_work(struct work_struct *work)
815 struct onmessage_work_context *ctx;
817 /* Do not process messages if we're in DISCONNECTED state */
818 if (vmbus_connection.conn_state == DISCONNECTED)
821 ctx = container_of(work, struct onmessage_work_context,
823 vmbus_onmessage(&ctx->msg);
827 static void hv_process_timer_expiration(struct hv_message *msg,
828 struct hv_per_cpu_context *hv_cpu)
830 struct clock_event_device *dev = hv_cpu->clk_evt;
832 if (dev->event_handler)
833 dev->event_handler(dev);
835 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
838 void vmbus_on_msg_dpc(unsigned long data)
840 struct hv_per_cpu_context *hv_cpu = (void *)data;
841 void *page_addr = hv_cpu->synic_message_page;
842 struct hv_message *msg = (struct hv_message *)page_addr +
844 struct vmbus_channel_message_header *hdr;
845 const struct vmbus_channel_message_table_entry *entry;
846 struct onmessage_work_context *ctx;
847 u32 message_type = msg->header.message_type;
849 if (message_type == HVMSG_NONE)
853 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
855 trace_vmbus_on_msg_dpc(hdr);
857 if (hdr->msgtype >= CHANNELMSG_COUNT) {
858 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
862 entry = &channel_message_table[hdr->msgtype];
863 if (entry->handler_type == VMHT_BLOCKING) {
864 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
868 INIT_WORK(&ctx->work, vmbus_onmessage_work);
869 memcpy(&ctx->msg, msg, sizeof(*msg));
872 * The host can generate a rescind message while we
873 * may still be handling the original offer. We deal with
874 * this condition by ensuring the processing is done on the
877 switch (hdr->msgtype) {
878 case CHANNELMSG_RESCIND_CHANNELOFFER:
880 * If we are handling the rescind message;
881 * schedule the work on the global work queue.
883 schedule_work_on(vmbus_connection.connect_cpu,
887 case CHANNELMSG_OFFERCHANNEL:
888 atomic_inc(&vmbus_connection.offer_in_progress);
889 queue_work_on(vmbus_connection.connect_cpu,
890 vmbus_connection.work_queue,
895 queue_work(vmbus_connection.work_queue, &ctx->work);
898 entry->message_handler(hdr);
901 vmbus_signal_eom(msg, message_type);
906 * Direct callback for channels using other deferred processing
908 static void vmbus_channel_isr(struct vmbus_channel *channel)
910 void (*callback_fn)(void *);
912 callback_fn = READ_ONCE(channel->onchannel_callback);
913 if (likely(callback_fn != NULL))
914 (*callback_fn)(channel->channel_callback_context);
918 * Schedule all channels with events pending
920 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
922 unsigned long *recv_int_page;
925 if (vmbus_proto_version < VERSION_WIN8) {
926 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
927 recv_int_page = vmbus_connection.recv_int_page;
930 * When the host is win8 and beyond, the event page
931 * can be directly checked to get the id of the channel
932 * that has the interrupt pending.
934 void *page_addr = hv_cpu->synic_event_page;
935 union hv_synic_event_flags *event
936 = (union hv_synic_event_flags *)page_addr +
939 maxbits = HV_EVENT_FLAGS_COUNT;
940 recv_int_page = event->flags;
943 if (unlikely(!recv_int_page))
946 for_each_set_bit(relid, recv_int_page, maxbits) {
947 struct vmbus_channel *channel;
949 if (!sync_test_and_clear_bit(relid, recv_int_page))
952 /* Special case - vmbus channel protocol msg */
958 /* Find channel based on relid */
959 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
960 if (channel->offermsg.child_relid != relid)
963 if (channel->rescind)
966 trace_vmbus_chan_sched(channel);
968 ++channel->interrupts;
970 switch (channel->callback_mode) {
972 vmbus_channel_isr(channel);
975 case HV_CALL_BATCHED:
976 hv_begin_read(&channel->inbound);
979 tasklet_schedule(&channel->callback_event);
987 static void vmbus_isr(void)
989 struct hv_per_cpu_context *hv_cpu
990 = this_cpu_ptr(hv_context.cpu_context);
991 void *page_addr = hv_cpu->synic_event_page;
992 struct hv_message *msg;
993 union hv_synic_event_flags *event;
994 bool handled = false;
996 if (unlikely(page_addr == NULL))
999 event = (union hv_synic_event_flags *)page_addr +
1002 * Check for events before checking for messages. This is the order
1003 * in which events and messages are checked in Windows guests on
1004 * Hyper-V, and the Windows team suggested we do the same.
1007 if ((vmbus_proto_version == VERSION_WS2008) ||
1008 (vmbus_proto_version == VERSION_WIN7)) {
1010 /* Since we are a child, we only need to check bit 0 */
1011 if (sync_test_and_clear_bit(0, event->flags))
1015 * Our host is win8 or above. The signaling mechanism
1016 * has changed and we can directly look at the event page.
1017 * If bit n is set then we have an interrup on the channel
1024 vmbus_chan_sched(hv_cpu);
1026 page_addr = hv_cpu->synic_message_page;
1027 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1029 /* Check if there are actual msgs to be processed */
1030 if (msg->header.message_type != HVMSG_NONE) {
1031 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1032 hv_process_timer_expiration(msg, hv_cpu);
1034 tasklet_schedule(&hv_cpu->msg_dpc);
1037 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1041 * Boolean to control whether to report panic messages over Hyper-V.
1043 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1045 static int sysctl_record_panic_msg = 1;
1048 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1049 * buffer and call into Hyper-V to transfer the data.
1051 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1052 enum kmsg_dump_reason reason)
1054 size_t bytes_written;
1055 phys_addr_t panic_pa;
1057 /* We are only interested in panics. */
1058 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1061 panic_pa = virt_to_phys(hv_panic_page);
1064 * Write dump contents to the page. No need to synchronize; panic should
1065 * be single-threaded.
1067 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1070 hyperv_report_panic_msg(panic_pa, bytes_written);
1073 static struct kmsg_dumper hv_kmsg_dumper = {
1074 .dump = hv_kmsg_dump,
1077 static struct ctl_table_header *hv_ctl_table_hdr;
1082 * sysctl option to allow the user to control whether kmsg data should be
1083 * reported to Hyper-V on panic.
1085 static struct ctl_table hv_ctl_table[] = {
1087 .procname = "hyperv_record_panic_msg",
1088 .data = &sysctl_record_panic_msg,
1089 .maxlen = sizeof(int),
1091 .proc_handler = proc_dointvec_minmax,
1098 static struct ctl_table hv_root_table[] = {
1100 .procname = "kernel",
1102 .child = hv_ctl_table
1108 * vmbus_bus_init -Main vmbus driver initialization routine.
1111 * - initialize the vmbus driver context
1112 * - invoke the vmbus hv main init routine
1113 * - retrieve the channel offers
1115 static int vmbus_bus_init(void)
1119 /* Hypervisor initialization...setup hypercall page..etc */
1122 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1126 ret = bus_register(&hv_bus);
1130 hv_setup_vmbus_irq(vmbus_isr);
1132 ret = hv_synic_alloc();
1136 * Initialize the per-cpu interrupt state and
1137 * connect to the host.
1139 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1140 hv_synic_init, hv_synic_cleanup);
1143 hyperv_cpuhp_online = ret;
1145 ret = vmbus_connect();
1150 * Only register if the crash MSRs are available
1152 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1153 u64 hyperv_crash_ctl;
1155 * Sysctl registration is not fatal, since by default
1156 * reporting is enabled.
1158 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1159 if (!hv_ctl_table_hdr)
1160 pr_err("Hyper-V: sysctl table register error");
1163 * Register for panic kmsg callback only if the right
1164 * capability is supported by the hypervisor.
1166 hv_get_crash_ctl(hyperv_crash_ctl);
1167 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1168 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1169 if (hv_panic_page) {
1170 ret = kmsg_dump_register(&hv_kmsg_dumper);
1172 pr_err("Hyper-V: kmsg dump register "
1173 "error 0x%x\n", ret);
1175 pr_err("Hyper-V: panic message page memory "
1176 "allocation failed");
1179 register_die_notifier(&hyperv_die_block);
1180 atomic_notifier_chain_register(&panic_notifier_list,
1181 &hyperv_panic_block);
1184 vmbus_request_offers();
1189 cpuhp_remove_state(hyperv_cpuhp_online);
1192 hv_remove_vmbus_irq();
1194 bus_unregister(&hv_bus);
1195 free_page((unsigned long)hv_panic_page);
1196 unregister_sysctl_table(hv_ctl_table_hdr);
1197 hv_ctl_table_hdr = NULL;
1202 * __vmbus_child_driver_register() - Register a vmbus's driver
1203 * @hv_driver: Pointer to driver structure you want to register
1204 * @owner: owner module of the drv
1205 * @mod_name: module name string
1207 * Registers the given driver with Linux through the 'driver_register()' call
1208 * and sets up the hyper-v vmbus handling for this driver.
1209 * It will return the state of the 'driver_register()' call.
1212 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1216 pr_info("registering driver %s\n", hv_driver->name);
1218 ret = vmbus_exists();
1222 hv_driver->driver.name = hv_driver->name;
1223 hv_driver->driver.owner = owner;
1224 hv_driver->driver.mod_name = mod_name;
1225 hv_driver->driver.bus = &hv_bus;
1227 spin_lock_init(&hv_driver->dynids.lock);
1228 INIT_LIST_HEAD(&hv_driver->dynids.list);
1230 ret = driver_register(&hv_driver->driver);
1234 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1237 * vmbus_driver_unregister() - Unregister a vmbus's driver
1238 * @hv_driver: Pointer to driver structure you want to
1241 * Un-register the given driver that was previous registered with a call to
1242 * vmbus_driver_register()
1244 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1246 pr_info("unregistering driver %s\n", hv_driver->name);
1248 if (!vmbus_exists()) {
1249 driver_unregister(&hv_driver->driver);
1250 vmbus_free_dynids(hv_driver);
1253 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1257 * Called when last reference to channel is gone.
1259 static void vmbus_chan_release(struct kobject *kobj)
1261 struct vmbus_channel *channel
1262 = container_of(kobj, struct vmbus_channel, kobj);
1264 kfree_rcu(channel, rcu);
1267 struct vmbus_chan_attribute {
1268 struct attribute attr;
1269 ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1270 ssize_t (*store)(struct vmbus_channel *chan,
1271 const char *buf, size_t count);
1273 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1274 struct vmbus_chan_attribute chan_attr_##_name \
1275 = __ATTR(_name, _mode, _show, _store)
1276 #define VMBUS_CHAN_ATTR_RW(_name) \
1277 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1278 #define VMBUS_CHAN_ATTR_RO(_name) \
1279 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1280 #define VMBUS_CHAN_ATTR_WO(_name) \
1281 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1283 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1284 struct attribute *attr, char *buf)
1286 const struct vmbus_chan_attribute *attribute
1287 = container_of(attr, struct vmbus_chan_attribute, attr);
1288 const struct vmbus_channel *chan
1289 = container_of(kobj, struct vmbus_channel, kobj);
1291 if (!attribute->show)
1294 if (chan->state != CHANNEL_OPENED_STATE)
1297 return attribute->show(chan, buf);
1300 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1301 .show = vmbus_chan_attr_show,
1304 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1306 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1308 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1310 static VMBUS_CHAN_ATTR_RO(out_mask);
1312 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1314 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1316 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1318 static VMBUS_CHAN_ATTR_RO(in_mask);
1320 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1322 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1324 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1326 static VMBUS_CHAN_ATTR_RO(read_avail);
1328 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1330 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1332 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1334 static VMBUS_CHAN_ATTR_RO(write_avail);
1336 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1338 return sprintf(buf, "%u\n", channel->target_cpu);
1340 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1342 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1345 return sprintf(buf, "%d\n",
1346 channel_pending(channel,
1347 vmbus_connection.monitor_pages[1]));
1349 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1351 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1354 return sprintf(buf, "%d\n",
1355 channel_latency(channel,
1356 vmbus_connection.monitor_pages[1]));
1358 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1360 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1362 return sprintf(buf, "%llu\n", channel->interrupts);
1364 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1366 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1368 return sprintf(buf, "%llu\n", channel->sig_events);
1370 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1372 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1375 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1377 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1379 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1382 return sprintf(buf, "%u\n",
1383 channel->offermsg.offer.sub_channel_index);
1385 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1387 static struct attribute *vmbus_chan_attrs[] = {
1388 &chan_attr_out_mask.attr,
1389 &chan_attr_in_mask.attr,
1390 &chan_attr_read_avail.attr,
1391 &chan_attr_write_avail.attr,
1392 &chan_attr_cpu.attr,
1393 &chan_attr_pending.attr,
1394 &chan_attr_latency.attr,
1395 &chan_attr_interrupts.attr,
1396 &chan_attr_events.attr,
1397 &chan_attr_monitor_id.attr,
1398 &chan_attr_subchannel_id.attr,
1402 static struct kobj_type vmbus_chan_ktype = {
1403 .sysfs_ops = &vmbus_chan_sysfs_ops,
1404 .release = vmbus_chan_release,
1405 .default_attrs = vmbus_chan_attrs,
1409 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1411 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1413 struct kobject *kobj = &channel->kobj;
1414 u32 relid = channel->offermsg.child_relid;
1417 kobj->kset = dev->channels_kset;
1418 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1423 kobject_uevent(kobj, KOBJ_ADD);
1429 * vmbus_device_create - Creates and registers a new child device
1432 struct hv_device *vmbus_device_create(const uuid_le *type,
1433 const uuid_le *instance,
1434 struct vmbus_channel *channel)
1436 struct hv_device *child_device_obj;
1438 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1439 if (!child_device_obj) {
1440 pr_err("Unable to allocate device object for child device\n");
1444 child_device_obj->channel = channel;
1445 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1446 memcpy(&child_device_obj->dev_instance, instance,
1448 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1451 return child_device_obj;
1455 * vmbus_device_register - Register the child device
1457 int vmbus_device_register(struct hv_device *child_device_obj)
1459 struct kobject *kobj = &child_device_obj->device.kobj;
1462 dev_set_name(&child_device_obj->device, "%pUl",
1463 child_device_obj->channel->offermsg.offer.if_instance.b);
1465 child_device_obj->device.bus = &hv_bus;
1466 child_device_obj->device.parent = &hv_acpi_dev->dev;
1467 child_device_obj->device.release = vmbus_device_release;
1470 * Register with the LDM. This will kick off the driver/device
1471 * binding...which will eventually call vmbus_match() and vmbus_probe()
1473 ret = device_register(&child_device_obj->device);
1475 pr_err("Unable to register child device\n");
1479 child_device_obj->channels_kset = kset_create_and_add("channels",
1481 if (!child_device_obj->channels_kset) {
1483 goto err_dev_unregister;
1486 ret = vmbus_add_channel_kobj(child_device_obj,
1487 child_device_obj->channel);
1489 pr_err("Unable to register primary channeln");
1490 goto err_kset_unregister;
1495 err_kset_unregister:
1496 kset_unregister(child_device_obj->channels_kset);
1499 device_unregister(&child_device_obj->device);
1504 * vmbus_device_unregister - Remove the specified child device
1507 void vmbus_device_unregister(struct hv_device *device_obj)
1509 pr_debug("child device %s unregistered\n",
1510 dev_name(&device_obj->device));
1512 kset_unregister(device_obj->channels_kset);
1515 * Kick off the process of unregistering the device.
1516 * This will call vmbus_remove() and eventually vmbus_device_release()
1518 device_unregister(&device_obj->device);
1523 * VMBUS is an acpi enumerated device. Get the information we
1526 #define VTPM_BASE_ADDRESS 0xfed40000
1527 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1529 resource_size_t start = 0;
1530 resource_size_t end = 0;
1531 struct resource *new_res;
1532 struct resource **old_res = &hyperv_mmio;
1533 struct resource **prev_res = NULL;
1535 switch (res->type) {
1538 * "Address" descriptors are for bus windows. Ignore
1539 * "memory" descriptors, which are for registers on
1542 case ACPI_RESOURCE_TYPE_ADDRESS32:
1543 start = res->data.address32.address.minimum;
1544 end = res->data.address32.address.maximum;
1547 case ACPI_RESOURCE_TYPE_ADDRESS64:
1548 start = res->data.address64.address.minimum;
1549 end = res->data.address64.address.maximum;
1553 /* Unused resource type */
1558 * Ignore ranges that are below 1MB, as they're not
1559 * necessary or useful here.
1564 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1566 return AE_NO_MEMORY;
1568 /* If this range overlaps the virtual TPM, truncate it. */
1569 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1570 end = VTPM_BASE_ADDRESS;
1572 new_res->name = "hyperv mmio";
1573 new_res->flags = IORESOURCE_MEM;
1574 new_res->start = start;
1578 * If two ranges are adjacent, merge them.
1586 if (((*old_res)->end + 1) == new_res->start) {
1587 (*old_res)->end = new_res->end;
1592 if ((*old_res)->start == new_res->end + 1) {
1593 (*old_res)->start = new_res->start;
1598 if ((*old_res)->start > new_res->end) {
1599 new_res->sibling = *old_res;
1601 (*prev_res)->sibling = new_res;
1607 old_res = &(*old_res)->sibling;
1614 static int vmbus_acpi_remove(struct acpi_device *device)
1616 struct resource *cur_res;
1617 struct resource *next_res;
1621 __release_region(hyperv_mmio, fb_mmio->start,
1622 resource_size(fb_mmio));
1626 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1627 next_res = cur_res->sibling;
1635 static void vmbus_reserve_fb(void)
1639 * Make a claim for the frame buffer in the resource tree under the
1640 * first node, which will be the one below 4GB. The length seems to
1641 * be underreported, particularly in a Generation 1 VM. So start out
1642 * reserving a larger area and make it smaller until it succeeds.
1645 if (screen_info.lfb_base) {
1646 if (efi_enabled(EFI_BOOT))
1647 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1649 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1651 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1652 fb_mmio = __request_region(hyperv_mmio,
1653 screen_info.lfb_base, size,
1660 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1661 * @new: If successful, supplied a pointer to the
1662 * allocated MMIO space.
1663 * @device_obj: Identifies the caller
1664 * @min: Minimum guest physical address of the
1666 * @max: Maximum guest physical address
1667 * @size: Size of the range to be allocated
1668 * @align: Alignment of the range to be allocated
1669 * @fb_overlap_ok: Whether this allocation can be allowed
1670 * to overlap the video frame buffer.
1672 * This function walks the resources granted to VMBus by the
1673 * _CRS object in the ACPI namespace underneath the parent
1674 * "bridge" whether that's a root PCI bus in the Generation 1
1675 * case or a Module Device in the Generation 2 case. It then
1676 * attempts to allocate from the global MMIO pool in a way that
1677 * matches the constraints supplied in these parameters and by
1680 * Return: 0 on success, -errno on failure
1682 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1683 resource_size_t min, resource_size_t max,
1684 resource_size_t size, resource_size_t align,
1687 struct resource *iter, *shadow;
1688 resource_size_t range_min, range_max, start;
1689 const char *dev_n = dev_name(&device_obj->device);
1693 down(&hyperv_mmio_lock);
1696 * If overlaps with frame buffers are allowed, then first attempt to
1697 * make the allocation from within the reserved region. Because it
1698 * is already reserved, no shadow allocation is necessary.
1700 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1701 !(max < fb_mmio->start)) {
1703 range_min = fb_mmio->start;
1704 range_max = fb_mmio->end;
1705 start = (range_min + align - 1) & ~(align - 1);
1706 for (; start + size - 1 <= range_max; start += align) {
1707 *new = request_mem_region_exclusive(start, size, dev_n);
1715 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1716 if ((iter->start >= max) || (iter->end <= min))
1719 range_min = iter->start;
1720 range_max = iter->end;
1721 start = (range_min + align - 1) & ~(align - 1);
1722 for (; start + size - 1 <= range_max; start += align) {
1723 shadow = __request_region(iter, start, size, NULL,
1728 *new = request_mem_region_exclusive(start, size, dev_n);
1730 shadow->name = (char *)*new;
1735 __release_region(iter, start, size);
1740 up(&hyperv_mmio_lock);
1743 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1746 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1747 * @start: Base address of region to release.
1748 * @size: Size of the range to be allocated
1750 * This function releases anything requested by
1751 * vmbus_mmio_allocate().
1753 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1755 struct resource *iter;
1757 down(&hyperv_mmio_lock);
1758 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1759 if ((iter->start >= start + size) || (iter->end <= start))
1762 __release_region(iter, start, size);
1764 release_mem_region(start, size);
1765 up(&hyperv_mmio_lock);
1768 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1770 static int vmbus_acpi_add(struct acpi_device *device)
1773 int ret_val = -ENODEV;
1774 struct acpi_device *ancestor;
1776 hv_acpi_dev = device;
1778 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1779 vmbus_walk_resources, NULL);
1781 if (ACPI_FAILURE(result))
1784 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1785 * firmware) is the VMOD that has the mmio ranges. Get that.
1787 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1788 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1789 vmbus_walk_resources, NULL);
1791 if (ACPI_FAILURE(result))
1801 complete(&probe_event);
1803 vmbus_acpi_remove(device);
1807 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1812 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1814 static struct acpi_driver vmbus_acpi_driver = {
1816 .ids = vmbus_acpi_device_ids,
1818 .add = vmbus_acpi_add,
1819 .remove = vmbus_acpi_remove,
1823 static void hv_kexec_handler(void)
1825 hv_synic_clockevents_cleanup();
1826 vmbus_initiate_unload(false);
1827 vmbus_connection.conn_state = DISCONNECTED;
1828 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1830 cpuhp_remove_state(hyperv_cpuhp_online);
1834 static void hv_crash_handler(struct pt_regs *regs)
1836 vmbus_initiate_unload(true);
1838 * In crash handler we can't schedule synic cleanup for all CPUs,
1839 * doing the cleanup for current CPU only. This should be sufficient
1842 vmbus_connection.conn_state = DISCONNECTED;
1843 hv_synic_cleanup(smp_processor_id());
1847 static int __init hv_acpi_init(void)
1851 if (!hv_is_hyperv_initialized())
1854 init_completion(&probe_event);
1857 * Get ACPI resources first.
1859 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1864 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1870 ret = vmbus_bus_init();
1874 hv_setup_kexec_handler(hv_kexec_handler);
1875 hv_setup_crash_handler(hv_crash_handler);
1880 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1885 static void __exit vmbus_exit(void)
1889 hv_remove_kexec_handler();
1890 hv_remove_crash_handler();
1891 vmbus_connection.conn_state = DISCONNECTED;
1892 hv_synic_clockevents_cleanup();
1894 hv_remove_vmbus_irq();
1895 for_each_online_cpu(cpu) {
1896 struct hv_per_cpu_context *hv_cpu
1897 = per_cpu_ptr(hv_context.cpu_context, cpu);
1899 tasklet_kill(&hv_cpu->msg_dpc);
1901 vmbus_free_channels();
1903 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1904 kmsg_dump_unregister(&hv_kmsg_dumper);
1905 unregister_die_notifier(&hyperv_die_block);
1906 atomic_notifier_chain_unregister(&panic_notifier_list,
1907 &hyperv_panic_block);
1910 free_page((unsigned long)hv_panic_page);
1911 unregister_sysctl_table(hv_ctl_table_hdr);
1912 hv_ctl_table_hdr = NULL;
1913 bus_unregister(&hv_bus);
1915 cpuhp_remove_state(hyperv_cpuhp_online);
1917 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1921 MODULE_LICENSE("GPL");
1923 subsys_initcall(hv_acpi_init);
1924 module_exit(vmbus_exit);