4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
43 * FIXME: remove all knowledge of the buffer layer from the core VM
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
114 struct radix_tree_node *node;
120 VM_BUG_ON(!PageLocked(page));
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125 mapping->nrshadows++;
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
143 /* Clear tree tags for the removed page */
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
155 workingset_node_shadows_inc(node);
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
161 * Track node that only contains shadow entries.
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
179 void __delete_from_page_cache(struct page *page, void *shadow)
181 struct address_space *mapping = page->mapping;
183 trace_mm_filemap_delete_from_page_cache(page);
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
192 cleancache_invalidate_page(mapping, page);
194 page_cache_tree_delete(mapping, page, shadow);
196 page->mapping = NULL;
197 /* Leave page->index set: truncation lookup relies upon it */
199 __dec_zone_page_state(page, NR_FILE_PAGES);
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
202 BUG_ON(page_mapped(page));
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
225 void delete_from_page_cache(struct page *page)
227 struct address_space *mapping = page->mapping;
228 void (*freepage)(struct page *);
230 BUG_ON(!PageLocked(page));
232 freepage = mapping->a_ops->freepage;
233 spin_lock_irq(&mapping->tree_lock);
234 __delete_from_page_cache(page, NULL);
235 spin_unlock_irq(&mapping->tree_lock);
236 mem_cgroup_uncharge_cache_page(page);
240 page_cache_release(page);
242 EXPORT_SYMBOL(delete_from_page_cache);
244 static int sleep_on_page(void *word)
250 static int sleep_on_page_killable(void *word)
253 return fatal_signal_pending(current) ? -EINTR : 0;
256 static int filemap_check_errors(struct address_space *mapping)
259 /* Check for outstanding write errors */
260 if (test_bit(AS_ENOSPC, &mapping->flags) &&
261 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
263 if (test_bit(AS_EIO, &mapping->flags) &&
264 test_and_clear_bit(AS_EIO, &mapping->flags))
270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271 * @mapping: address space structure to write
272 * @start: offset in bytes where the range starts
273 * @end: offset in bytes where the range ends (inclusive)
274 * @sync_mode: enable synchronous operation
276 * Start writeback against all of a mapping's dirty pages that lie
277 * within the byte offsets <start, end> inclusive.
279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280 * opposed to a regular memory cleansing writeback. The difference between
281 * these two operations is that if a dirty page/buffer is encountered, it must
282 * be waited upon, and not just skipped over.
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285 loff_t end, int sync_mode)
288 struct writeback_control wbc = {
289 .sync_mode = sync_mode,
290 .nr_to_write = LONG_MAX,
291 .range_start = start,
295 if (!mapping_cap_writeback_dirty(mapping))
298 ret = do_writepages(mapping, &wbc);
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
308 int filemap_fdatawrite(struct address_space *mapping)
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312 EXPORT_SYMBOL(filemap_fdatawrite);
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
328 int filemap_flush(struct address_space *mapping)
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332 EXPORT_SYMBOL(filemap_flush);
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
352 if (end_byte < start_byte)
355 pagevec_init(&pvec, 0);
356 while ((index <= end) &&
357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 PAGECACHE_TAG_WRITEBACK,
359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
362 for (i = 0; i < nr_pages; i++) {
363 struct page *page = pvec.pages[i];
365 /* until radix tree lookup accepts end_index */
366 if (page->index > end)
369 wait_on_page_writeback(page);
370 if (TestClearPageError(page))
373 pagevec_release(&pvec);
377 ret2 = filemap_check_errors(mapping);
383 EXPORT_SYMBOL(filemap_fdatawait_range);
386 * filemap_fdatawait - wait for all under-writeback pages to complete
387 * @mapping: address space structure to wait for
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
392 int filemap_fdatawait(struct address_space *mapping)
394 loff_t i_size = i_size_read(mapping->host);
399 return filemap_fdatawait_range(mapping, 0, i_size - 1);
401 EXPORT_SYMBOL(filemap_fdatawait);
403 int filemap_write_and_wait(struct address_space *mapping)
407 if (mapping->nrpages) {
408 err = filemap_fdatawrite(mapping);
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
416 int err2 = filemap_fdatawait(mapping);
421 err = filemap_check_errors(mapping);
425 EXPORT_SYMBOL(filemap_write_and_wait);
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
433 * Write out and wait upon file offsets lstart->lend, inclusive.
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
438 int filemap_write_and_wait_range(struct address_space *mapping,
439 loff_t lstart, loff_t lend)
443 if (mapping->nrpages) {
444 err = __filemap_fdatawrite_range(mapping, lstart, lend,
446 /* See comment of filemap_write_and_wait() */
448 int err2 = filemap_fdatawait_range(mapping,
454 err = filemap_check_errors(mapping);
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
479 VM_BUG_ON_PAGE(!PageLocked(old), old);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping, new);
483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
485 struct address_space *mapping = old->mapping;
486 void (*freepage)(struct page *);
488 pgoff_t offset = old->index;
489 freepage = mapping->a_ops->freepage;
492 new->mapping = mapping;
495 spin_lock_irq(&mapping->tree_lock);
496 __delete_from_page_cache(old, NULL);
497 error = radix_tree_insert(&mapping->page_tree, offset, new);
500 __inc_zone_page_state(new, NR_FILE_PAGES);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
504 /* mem_cgroup codes must not be called under tree_lock */
505 mem_cgroup_replace_page_cache(old, new);
506 radix_tree_preload_end();
509 page_cache_release(old);
514 EXPORT_SYMBOL_GPL(replace_page_cache_page);
516 static int page_cache_tree_insert(struct address_space *mapping,
517 struct page *page, void **shadowp)
519 struct radix_tree_node *node;
523 error = __radix_tree_create(&mapping->page_tree, page->index,
530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 if (!radix_tree_exceptional_entry(p))
535 mapping->nrshadows--;
537 workingset_node_shadows_dec(node);
539 radix_tree_replace_slot(slot, page);
542 workingset_node_pages_inc(node);
544 * Don't track node that contains actual pages.
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
551 if (!list_empty(&node->private_list))
552 list_lru_del(&workingset_shadow_nodes,
553 &node->private_list);
558 static int __add_to_page_cache_locked(struct page *page,
559 struct address_space *mapping,
560 pgoff_t offset, gfp_t gfp_mask,
565 VM_BUG_ON_PAGE(!PageLocked(page), page);
566 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
568 error = mem_cgroup_charge_file(page, current->mm,
569 gfp_mask & GFP_RECLAIM_MASK);
573 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
575 mem_cgroup_uncharge_cache_page(page);
579 page_cache_get(page);
580 page->mapping = mapping;
581 page->index = offset;
583 spin_lock_irq(&mapping->tree_lock);
584 error = page_cache_tree_insert(mapping, page, shadowp);
585 radix_tree_preload_end();
588 __inc_zone_page_state(page, NR_FILE_PAGES);
589 spin_unlock_irq(&mapping->tree_lock);
590 trace_mm_filemap_add_to_page_cache(page);
593 page->mapping = NULL;
594 /* Leave page->index set: truncation relies upon it */
595 spin_unlock_irq(&mapping->tree_lock);
596 mem_cgroup_uncharge_cache_page(page);
597 page_cache_release(page);
602 * add_to_page_cache_locked - add a locked page to the pagecache
604 * @mapping: the page's address_space
605 * @offset: page index
606 * @gfp_mask: page allocation mode
608 * This function is used to add a page to the pagecache. It must be locked.
609 * This function does not add the page to the LRU. The caller must do that.
611 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612 pgoff_t offset, gfp_t gfp_mask)
614 return __add_to_page_cache_locked(page, mapping, offset,
617 EXPORT_SYMBOL(add_to_page_cache_locked);
619 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
620 pgoff_t offset, gfp_t gfp_mask)
625 __set_page_locked(page);
626 ret = __add_to_page_cache_locked(page, mapping, offset,
629 __clear_page_locked(page);
632 * The page might have been evicted from cache only
633 * recently, in which case it should be activated like
634 * any other repeatedly accessed page.
636 if (shadow && workingset_refault(shadow)) {
638 workingset_activation(page);
640 ClearPageActive(page);
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
648 struct page *__page_cache_alloc(gfp_t gfp)
653 if (cpuset_do_page_mem_spread()) {
654 unsigned int cpuset_mems_cookie;
656 cpuset_mems_cookie = read_mems_allowed_begin();
657 n = cpuset_mem_spread_node();
658 page = alloc_pages_exact_node(n, gfp, 0);
659 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
663 return alloc_pages(gfp, 0);
665 EXPORT_SYMBOL(__page_cache_alloc);
669 * In order to wait for pages to become available there must be
670 * waitqueues associated with pages. By using a hash table of
671 * waitqueues where the bucket discipline is to maintain all
672 * waiters on the same queue and wake all when any of the pages
673 * become available, and for the woken contexts to check to be
674 * sure the appropriate page became available, this saves space
675 * at a cost of "thundering herd" phenomena during rare hash
678 static wait_queue_head_t *page_waitqueue(struct page *page)
680 const struct zone *zone = page_zone(page);
682 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
685 static inline void wake_up_page(struct page *page, int bit)
687 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
690 void wait_on_page_bit(struct page *page, int bit_nr)
692 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
694 if (test_bit(bit_nr, &page->flags))
695 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
696 TASK_UNINTERRUPTIBLE);
698 EXPORT_SYMBOL(wait_on_page_bit);
700 int wait_on_page_bit_killable(struct page *page, int bit_nr)
702 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
704 if (!test_bit(bit_nr, &page->flags))
707 return __wait_on_bit(page_waitqueue(page), &wait,
708 sleep_on_page_killable, TASK_KILLABLE);
712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713 * @page: Page defining the wait queue of interest
714 * @waiter: Waiter to add to the queue
716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
718 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
720 wait_queue_head_t *q = page_waitqueue(page);
723 spin_lock_irqsave(&q->lock, flags);
724 __add_wait_queue(q, waiter);
725 spin_unlock_irqrestore(&q->lock, flags);
727 EXPORT_SYMBOL_GPL(add_page_wait_queue);
730 * unlock_page - unlock a locked page
733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735 * mechananism between PageLocked pages and PageWriteback pages is shared.
736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
738 * The mb is necessary to enforce ordering between the clear_bit and the read
739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
741 void unlock_page(struct page *page)
743 VM_BUG_ON_PAGE(!PageLocked(page), page);
744 clear_bit_unlock(PG_locked, &page->flags);
745 smp_mb__after_atomic();
746 wake_up_page(page, PG_locked);
748 EXPORT_SYMBOL(unlock_page);
751 * end_page_writeback - end writeback against a page
754 void end_page_writeback(struct page *page)
756 if (TestClearPageReclaim(page))
757 rotate_reclaimable_page(page);
759 if (!test_clear_page_writeback(page))
762 smp_mb__after_atomic();
763 wake_up_page(page, PG_writeback);
765 EXPORT_SYMBOL(end_page_writeback);
768 * After completing I/O on a page, call this routine to update the page
769 * flags appropriately
771 void page_endio(struct page *page, int rw, int err)
775 SetPageUptodate(page);
777 ClearPageUptodate(page);
781 } else { /* rw == WRITE */
785 mapping_set_error(page->mapping, err);
787 end_page_writeback(page);
790 EXPORT_SYMBOL_GPL(page_endio);
793 * __lock_page - get a lock on the page, assuming we need to sleep to get it
794 * @page: the page to lock
796 void __lock_page(struct page *page)
798 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
800 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
801 TASK_UNINTERRUPTIBLE);
803 EXPORT_SYMBOL(__lock_page);
805 int __lock_page_killable(struct page *page)
807 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
809 return __wait_on_bit_lock(page_waitqueue(page), &wait,
810 sleep_on_page_killable, TASK_KILLABLE);
812 EXPORT_SYMBOL_GPL(__lock_page_killable);
814 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
817 if (flags & FAULT_FLAG_ALLOW_RETRY) {
819 * CAUTION! In this case, mmap_sem is not released
820 * even though return 0.
822 if (flags & FAULT_FLAG_RETRY_NOWAIT)
825 up_read(&mm->mmap_sem);
826 if (flags & FAULT_FLAG_KILLABLE)
827 wait_on_page_locked_killable(page);
829 wait_on_page_locked(page);
832 if (flags & FAULT_FLAG_KILLABLE) {
835 ret = __lock_page_killable(page);
837 up_read(&mm->mmap_sem);
847 * page_cache_next_hole - find the next hole (not-present entry)
850 * @max_scan: maximum range to search
852 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
853 * lowest indexed hole.
855 * Returns: the index of the hole if found, otherwise returns an index
856 * outside of the set specified (in which case 'return - index >=
857 * max_scan' will be true). In rare cases of index wrap-around, 0 will
860 * page_cache_next_hole may be called under rcu_read_lock. However,
861 * like radix_tree_gang_lookup, this will not atomically search a
862 * snapshot of the tree at a single point in time. For example, if a
863 * hole is created at index 5, then subsequently a hole is created at
864 * index 10, page_cache_next_hole covering both indexes may return 10
865 * if called under rcu_read_lock.
867 pgoff_t page_cache_next_hole(struct address_space *mapping,
868 pgoff_t index, unsigned long max_scan)
872 for (i = 0; i < max_scan; i++) {
875 page = radix_tree_lookup(&mapping->page_tree, index);
876 if (!page || radix_tree_exceptional_entry(page))
885 EXPORT_SYMBOL(page_cache_next_hole);
888 * page_cache_prev_hole - find the prev hole (not-present entry)
891 * @max_scan: maximum range to search
893 * Search backwards in the range [max(index-max_scan+1, 0), index] for
896 * Returns: the index of the hole if found, otherwise returns an index
897 * outside of the set specified (in which case 'index - return >=
898 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
901 * page_cache_prev_hole may be called under rcu_read_lock. However,
902 * like radix_tree_gang_lookup, this will not atomically search a
903 * snapshot of the tree at a single point in time. For example, if a
904 * hole is created at index 10, then subsequently a hole is created at
905 * index 5, page_cache_prev_hole covering both indexes may return 5 if
906 * called under rcu_read_lock.
908 pgoff_t page_cache_prev_hole(struct address_space *mapping,
909 pgoff_t index, unsigned long max_scan)
913 for (i = 0; i < max_scan; i++) {
916 page = radix_tree_lookup(&mapping->page_tree, index);
917 if (!page || radix_tree_exceptional_entry(page))
920 if (index == ULONG_MAX)
926 EXPORT_SYMBOL(page_cache_prev_hole);
929 * find_get_entry - find and get a page cache entry
930 * @mapping: the address_space to search
931 * @offset: the page cache index
933 * Looks up the page cache slot at @mapping & @offset. If there is a
934 * page cache page, it is returned with an increased refcount.
936 * If the slot holds a shadow entry of a previously evicted page, or a
937 * swap entry from shmem/tmpfs, it is returned.
939 * Otherwise, %NULL is returned.
941 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
949 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
951 page = radix_tree_deref_slot(pagep);
954 if (radix_tree_exception(page)) {
955 if (radix_tree_deref_retry(page))
958 * A shadow entry of a recently evicted page,
959 * or a swap entry from shmem/tmpfs. Return
960 * it without attempting to raise page count.
964 if (!page_cache_get_speculative(page))
968 * Has the page moved?
969 * This is part of the lockless pagecache protocol. See
970 * include/linux/pagemap.h for details.
972 if (unlikely(page != *pagep)) {
973 page_cache_release(page);
982 EXPORT_SYMBOL(find_get_entry);
985 * find_lock_entry - locate, pin and lock a page cache entry
986 * @mapping: the address_space to search
987 * @offset: the page cache index
989 * Looks up the page cache slot at @mapping & @offset. If there is a
990 * page cache page, it is returned locked and with an increased
993 * If the slot holds a shadow entry of a previously evicted page, or a
994 * swap entry from shmem/tmpfs, it is returned.
996 * Otherwise, %NULL is returned.
998 * find_lock_entry() may sleep.
1000 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1005 page = find_get_entry(mapping, offset);
1006 if (page && !radix_tree_exception(page)) {
1008 /* Has the page been truncated? */
1009 if (unlikely(page->mapping != mapping)) {
1011 page_cache_release(page);
1014 VM_BUG_ON_PAGE(page->index != offset, page);
1018 EXPORT_SYMBOL(find_lock_entry);
1021 * pagecache_get_page - find and get a page reference
1022 * @mapping: the address_space to search
1023 * @offset: the page index
1024 * @fgp_flags: PCG flags
1025 * @gfp_mask: gfp mask to use if a page is to be allocated
1027 * Looks up the page cache slot at @mapping & @offset.
1029 * PCG flags modify how the page is returned
1031 * FGP_ACCESSED: the page will be marked accessed
1032 * FGP_LOCK: Page is return locked
1033 * FGP_CREAT: If page is not present then a new page is allocated using
1034 * @gfp_mask and added to the page cache and the VM's LRU
1035 * list. The page is returned locked and with an increased
1036 * refcount. Otherwise, %NULL is returned.
1038 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1039 * if the GFP flags specified for FGP_CREAT are atomic.
1041 * If there is a page cache page, it is returned with an increased refcount.
1043 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1044 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1049 page = find_get_entry(mapping, offset);
1050 if (radix_tree_exceptional_entry(page))
1055 if (fgp_flags & FGP_LOCK) {
1056 if (fgp_flags & FGP_NOWAIT) {
1057 if (!trylock_page(page)) {
1058 page_cache_release(page);
1065 /* Has the page been truncated? */
1066 if (unlikely(page->mapping != mapping)) {
1068 page_cache_release(page);
1071 VM_BUG_ON_PAGE(page->index != offset, page);
1074 if (page && (fgp_flags & FGP_ACCESSED))
1075 mark_page_accessed(page);
1078 if (!page && (fgp_flags & FGP_CREAT)) {
1080 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1081 cache_gfp_mask |= __GFP_WRITE;
1082 if (fgp_flags & FGP_NOFS) {
1083 cache_gfp_mask &= ~__GFP_FS;
1084 radix_gfp_mask &= ~__GFP_FS;
1087 page = __page_cache_alloc(cache_gfp_mask);
1091 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1092 fgp_flags |= FGP_LOCK;
1094 /* Init accessed so avoit atomic mark_page_accessed later */
1095 if (fgp_flags & FGP_ACCESSED)
1096 init_page_accessed(page);
1098 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1099 if (unlikely(err)) {
1100 page_cache_release(page);
1109 EXPORT_SYMBOL(pagecache_get_page);
1112 * find_get_entries - gang pagecache lookup
1113 * @mapping: The address_space to search
1114 * @start: The starting page cache index
1115 * @nr_entries: The maximum number of entries
1116 * @entries: Where the resulting entries are placed
1117 * @indices: The cache indices corresponding to the entries in @entries
1119 * find_get_entries() will search for and return a group of up to
1120 * @nr_entries entries in the mapping. The entries are placed at
1121 * @entries. find_get_entries() takes a reference against any actual
1124 * The search returns a group of mapping-contiguous page cache entries
1125 * with ascending indexes. There may be holes in the indices due to
1126 * not-present pages.
1128 * Any shadow entries of evicted pages, or swap entries from
1129 * shmem/tmpfs, are included in the returned array.
1131 * find_get_entries() returns the number of pages and shadow entries
1134 unsigned find_get_entries(struct address_space *mapping,
1135 pgoff_t start, unsigned int nr_entries,
1136 struct page **entries, pgoff_t *indices)
1139 unsigned int ret = 0;
1140 struct radix_tree_iter iter;
1147 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1150 page = radix_tree_deref_slot(slot);
1151 if (unlikely(!page))
1153 if (radix_tree_exception(page)) {
1154 if (radix_tree_deref_retry(page))
1157 * A shadow entry of a recently evicted page,
1158 * or a swap entry from shmem/tmpfs. Return
1159 * it without attempting to raise page count.
1163 if (!page_cache_get_speculative(page))
1166 /* Has the page moved? */
1167 if (unlikely(page != *slot)) {
1168 page_cache_release(page);
1172 indices[ret] = iter.index;
1173 entries[ret] = page;
1174 if (++ret == nr_entries)
1182 * find_get_pages - gang pagecache lookup
1183 * @mapping: The address_space to search
1184 * @start: The starting page index
1185 * @nr_pages: The maximum number of pages
1186 * @pages: Where the resulting pages are placed
1188 * find_get_pages() will search for and return a group of up to
1189 * @nr_pages pages in the mapping. The pages are placed at @pages.
1190 * find_get_pages() takes a reference against the returned pages.
1192 * The search returns a group of mapping-contiguous pages with ascending
1193 * indexes. There may be holes in the indices due to not-present pages.
1195 * find_get_pages() returns the number of pages which were found.
1197 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1198 unsigned int nr_pages, struct page **pages)
1200 struct radix_tree_iter iter;
1204 if (unlikely(!nr_pages))
1209 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1212 page = radix_tree_deref_slot(slot);
1213 if (unlikely(!page))
1216 if (radix_tree_exception(page)) {
1217 if (radix_tree_deref_retry(page)) {
1219 * Transient condition which can only trigger
1220 * when entry at index 0 moves out of or back
1221 * to root: none yet gotten, safe to restart.
1223 WARN_ON(iter.index);
1227 * A shadow entry of a recently evicted page,
1228 * or a swap entry from shmem/tmpfs. Skip
1234 if (!page_cache_get_speculative(page))
1237 /* Has the page moved? */
1238 if (unlikely(page != *slot)) {
1239 page_cache_release(page);
1244 if (++ret == nr_pages)
1253 * find_get_pages_contig - gang contiguous pagecache lookup
1254 * @mapping: The address_space to search
1255 * @index: The starting page index
1256 * @nr_pages: The maximum number of pages
1257 * @pages: Where the resulting pages are placed
1259 * find_get_pages_contig() works exactly like find_get_pages(), except
1260 * that the returned number of pages are guaranteed to be contiguous.
1262 * find_get_pages_contig() returns the number of pages which were found.
1264 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1265 unsigned int nr_pages, struct page **pages)
1267 struct radix_tree_iter iter;
1269 unsigned int ret = 0;
1271 if (unlikely(!nr_pages))
1276 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1279 page = radix_tree_deref_slot(slot);
1280 /* The hole, there no reason to continue */
1281 if (unlikely(!page))
1284 if (radix_tree_exception(page)) {
1285 if (radix_tree_deref_retry(page)) {
1287 * Transient condition which can only trigger
1288 * when entry at index 0 moves out of or back
1289 * to root: none yet gotten, safe to restart.
1294 * A shadow entry of a recently evicted page,
1295 * or a swap entry from shmem/tmpfs. Stop
1296 * looking for contiguous pages.
1301 if (!page_cache_get_speculative(page))
1304 /* Has the page moved? */
1305 if (unlikely(page != *slot)) {
1306 page_cache_release(page);
1311 * must check mapping and index after taking the ref.
1312 * otherwise we can get both false positives and false
1313 * negatives, which is just confusing to the caller.
1315 if (page->mapping == NULL || page->index != iter.index) {
1316 page_cache_release(page);
1321 if (++ret == nr_pages)
1327 EXPORT_SYMBOL(find_get_pages_contig);
1330 * find_get_pages_tag - find and return pages that match @tag
1331 * @mapping: the address_space to search
1332 * @index: the starting page index
1333 * @tag: the tag index
1334 * @nr_pages: the maximum number of pages
1335 * @pages: where the resulting pages are placed
1337 * Like find_get_pages, except we only return pages which are tagged with
1338 * @tag. We update @index to index the next page for the traversal.
1340 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1341 int tag, unsigned int nr_pages, struct page **pages)
1343 struct radix_tree_iter iter;
1347 if (unlikely(!nr_pages))
1352 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1353 &iter, *index, tag) {
1356 page = radix_tree_deref_slot(slot);
1357 if (unlikely(!page))
1360 if (radix_tree_exception(page)) {
1361 if (radix_tree_deref_retry(page)) {
1363 * Transient condition which can only trigger
1364 * when entry at index 0 moves out of or back
1365 * to root: none yet gotten, safe to restart.
1370 * A shadow entry of a recently evicted page.
1372 * Those entries should never be tagged, but
1373 * this tree walk is lockless and the tags are
1374 * looked up in bulk, one radix tree node at a
1375 * time, so there is a sizable window for page
1376 * reclaim to evict a page we saw tagged.
1383 if (!page_cache_get_speculative(page))
1386 /* Has the page moved? */
1387 if (unlikely(page != *slot)) {
1388 page_cache_release(page);
1393 if (++ret == nr_pages)
1400 *index = pages[ret - 1]->index + 1;
1404 EXPORT_SYMBOL(find_get_pages_tag);
1407 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1408 * a _large_ part of the i/o request. Imagine the worst scenario:
1410 * ---R__________________________________________B__________
1411 * ^ reading here ^ bad block(assume 4k)
1413 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1414 * => failing the whole request => read(R) => read(R+1) =>
1415 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1416 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1417 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1419 * It is going insane. Fix it by quickly scaling down the readahead size.
1421 static void shrink_readahead_size_eio(struct file *filp,
1422 struct file_ra_state *ra)
1428 * do_generic_file_read - generic file read routine
1429 * @filp: the file to read
1430 * @ppos: current file position
1431 * @iter: data destination
1432 * @written: already copied
1434 * This is a generic file read routine, and uses the
1435 * mapping->a_ops->readpage() function for the actual low-level stuff.
1437 * This is really ugly. But the goto's actually try to clarify some
1438 * of the logic when it comes to error handling etc.
1440 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1441 struct iov_iter *iter, ssize_t written)
1443 struct address_space *mapping = filp->f_mapping;
1444 struct inode *inode = mapping->host;
1445 struct file_ra_state *ra = &filp->f_ra;
1449 unsigned long offset; /* offset into pagecache page */
1450 unsigned int prev_offset;
1453 index = *ppos >> PAGE_CACHE_SHIFT;
1454 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1455 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1456 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1457 offset = *ppos & ~PAGE_CACHE_MASK;
1463 unsigned long nr, ret;
1467 page = find_get_page(mapping, index);
1469 page_cache_sync_readahead(mapping,
1471 index, last_index - index);
1472 page = find_get_page(mapping, index);
1473 if (unlikely(page == NULL))
1474 goto no_cached_page;
1476 if (PageReadahead(page)) {
1477 page_cache_async_readahead(mapping,
1479 index, last_index - index);
1481 if (!PageUptodate(page)) {
1482 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1483 !mapping->a_ops->is_partially_uptodate)
1484 goto page_not_up_to_date;
1485 if (!trylock_page(page))
1486 goto page_not_up_to_date;
1487 /* Did it get truncated before we got the lock? */
1489 goto page_not_up_to_date_locked;
1490 if (!mapping->a_ops->is_partially_uptodate(page,
1491 offset, iter->count))
1492 goto page_not_up_to_date_locked;
1497 * i_size must be checked after we know the page is Uptodate.
1499 * Checking i_size after the check allows us to calculate
1500 * the correct value for "nr", which means the zero-filled
1501 * part of the page is not copied back to userspace (unless
1502 * another truncate extends the file - this is desired though).
1505 isize = i_size_read(inode);
1506 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1507 if (unlikely(!isize || index > end_index)) {
1508 page_cache_release(page);
1512 /* nr is the maximum number of bytes to copy from this page */
1513 nr = PAGE_CACHE_SIZE;
1514 if (index == end_index) {
1515 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1517 page_cache_release(page);
1523 /* If users can be writing to this page using arbitrary
1524 * virtual addresses, take care about potential aliasing
1525 * before reading the page on the kernel side.
1527 if (mapping_writably_mapped(mapping))
1528 flush_dcache_page(page);
1531 * When a sequential read accesses a page several times,
1532 * only mark it as accessed the first time.
1534 if (prev_index != index || offset != prev_offset)
1535 mark_page_accessed(page);
1539 * Ok, we have the page, and it's up-to-date, so
1540 * now we can copy it to user space...
1543 ret = copy_page_to_iter(page, offset, nr, iter);
1545 index += offset >> PAGE_CACHE_SHIFT;
1546 offset &= ~PAGE_CACHE_MASK;
1547 prev_offset = offset;
1549 page_cache_release(page);
1551 if (!iov_iter_count(iter))
1559 page_not_up_to_date:
1560 /* Get exclusive access to the page ... */
1561 error = lock_page_killable(page);
1562 if (unlikely(error))
1563 goto readpage_error;
1565 page_not_up_to_date_locked:
1566 /* Did it get truncated before we got the lock? */
1567 if (!page->mapping) {
1569 page_cache_release(page);
1573 /* Did somebody else fill it already? */
1574 if (PageUptodate(page)) {
1581 * A previous I/O error may have been due to temporary
1582 * failures, eg. multipath errors.
1583 * PG_error will be set again if readpage fails.
1585 ClearPageError(page);
1586 /* Start the actual read. The read will unlock the page. */
1587 error = mapping->a_ops->readpage(filp, page);
1589 if (unlikely(error)) {
1590 if (error == AOP_TRUNCATED_PAGE) {
1591 page_cache_release(page);
1595 goto readpage_error;
1598 if (!PageUptodate(page)) {
1599 error = lock_page_killable(page);
1600 if (unlikely(error))
1601 goto readpage_error;
1602 if (!PageUptodate(page)) {
1603 if (page->mapping == NULL) {
1605 * invalidate_mapping_pages got it
1608 page_cache_release(page);
1612 shrink_readahead_size_eio(filp, ra);
1614 goto readpage_error;
1622 /* UHHUH! A synchronous read error occurred. Report it */
1623 page_cache_release(page);
1628 * Ok, it wasn't cached, so we need to create a new
1631 page = page_cache_alloc_cold(mapping);
1636 error = add_to_page_cache_lru(page, mapping,
1639 page_cache_release(page);
1640 if (error == -EEXIST) {
1650 ra->prev_pos = prev_index;
1651 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1652 ra->prev_pos |= prev_offset;
1654 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1655 file_accessed(filp);
1656 return written ? written : error;
1660 * Performs necessary checks before doing a write
1661 * @iov: io vector request
1662 * @nr_segs: number of segments in the iovec
1663 * @count: number of bytes to write
1664 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1666 * Adjust number of segments and amount of bytes to write (nr_segs should be
1667 * properly initialized first). Returns appropriate error code that caller
1668 * should return or zero in case that write should be allowed.
1670 int generic_segment_checks(const struct iovec *iov,
1671 unsigned long *nr_segs, size_t *count, int access_flags)
1675 for (seg = 0; seg < *nr_segs; seg++) {
1676 const struct iovec *iv = &iov[seg];
1679 * If any segment has a negative length, or the cumulative
1680 * length ever wraps negative then return -EINVAL.
1683 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1685 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1690 cnt -= iv->iov_len; /* This segment is no good */
1696 EXPORT_SYMBOL(generic_segment_checks);
1699 * generic_file_aio_read - generic filesystem read routine
1700 * @iocb: kernel I/O control block
1701 * @iov: io vector request
1702 * @nr_segs: number of segments in the iovec
1703 * @pos: current file position
1705 * This is the "read()" routine for all filesystems
1706 * that can use the page cache directly.
1709 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1710 unsigned long nr_segs, loff_t pos)
1712 struct file *filp = iocb->ki_filp;
1715 loff_t *ppos = &iocb->ki_pos;
1719 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1722 iov_iter_init(&i, iov, nr_segs, count, 0);
1724 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1725 if (filp->f_flags & O_DIRECT) {
1727 struct address_space *mapping;
1728 struct inode *inode;
1730 mapping = filp->f_mapping;
1731 inode = mapping->host;
1733 goto out; /* skip atime */
1734 size = i_size_read(inode);
1735 retval = filemap_write_and_wait_range(mapping, pos,
1736 pos + iov_length(iov, nr_segs) - 1);
1738 retval = mapping->a_ops->direct_IO(READ, iocb,
1742 *ppos = pos + retval;
1745 * If we did a short DIO read we need to skip the
1746 * section of the iov that we've already read data into.
1748 iov_iter_advance(&i, retval);
1752 * Btrfs can have a short DIO read if we encounter
1753 * compressed extents, so if there was an error, or if
1754 * we've already read everything we wanted to, or if
1755 * there was a short read because we hit EOF, go ahead
1756 * and return. Otherwise fallthrough to buffered io for
1757 * the rest of the read.
1759 if (retval < 0 || !count || *ppos >= size) {
1760 file_accessed(filp);
1765 retval = do_generic_file_read(filp, ppos, &i, retval);
1769 EXPORT_SYMBOL(generic_file_aio_read);
1773 * page_cache_read - adds requested page to the page cache if not already there
1774 * @file: file to read
1775 * @offset: page index
1777 * This adds the requested page to the page cache if it isn't already there,
1778 * and schedules an I/O to read in its contents from disk.
1780 static int page_cache_read(struct file *file, pgoff_t offset)
1782 struct address_space *mapping = file->f_mapping;
1787 page = page_cache_alloc_cold(mapping);
1791 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1793 ret = mapping->a_ops->readpage(file, page);
1794 else if (ret == -EEXIST)
1795 ret = 0; /* losing race to add is OK */
1797 page_cache_release(page);
1799 } while (ret == AOP_TRUNCATED_PAGE);
1804 #define MMAP_LOTSAMISS (100)
1807 * Synchronous readahead happens when we don't even find
1808 * a page in the page cache at all.
1810 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1811 struct file_ra_state *ra,
1815 unsigned long ra_pages;
1816 struct address_space *mapping = file->f_mapping;
1818 /* If we don't want any read-ahead, don't bother */
1819 if (vma->vm_flags & VM_RAND_READ)
1824 if (vma->vm_flags & VM_SEQ_READ) {
1825 page_cache_sync_readahead(mapping, ra, file, offset,
1830 /* Avoid banging the cache line if not needed */
1831 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1835 * Do we miss much more than hit in this file? If so,
1836 * stop bothering with read-ahead. It will only hurt.
1838 if (ra->mmap_miss > MMAP_LOTSAMISS)
1844 ra_pages = max_sane_readahead(ra->ra_pages);
1845 ra->start = max_t(long, 0, offset - ra_pages / 2);
1846 ra->size = ra_pages;
1847 ra->async_size = ra_pages / 4;
1848 ra_submit(ra, mapping, file);
1852 * Asynchronous readahead happens when we find the page and PG_readahead,
1853 * so we want to possibly extend the readahead further..
1855 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1856 struct file_ra_state *ra,
1861 struct address_space *mapping = file->f_mapping;
1863 /* If we don't want any read-ahead, don't bother */
1864 if (vma->vm_flags & VM_RAND_READ)
1866 if (ra->mmap_miss > 0)
1868 if (PageReadahead(page))
1869 page_cache_async_readahead(mapping, ra, file,
1870 page, offset, ra->ra_pages);
1874 * filemap_fault - read in file data for page fault handling
1875 * @vma: vma in which the fault was taken
1876 * @vmf: struct vm_fault containing details of the fault
1878 * filemap_fault() is invoked via the vma operations vector for a
1879 * mapped memory region to read in file data during a page fault.
1881 * The goto's are kind of ugly, but this streamlines the normal case of having
1882 * it in the page cache, and handles the special cases reasonably without
1883 * having a lot of duplicated code.
1885 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1888 struct file *file = vma->vm_file;
1889 struct address_space *mapping = file->f_mapping;
1890 struct file_ra_state *ra = &file->f_ra;
1891 struct inode *inode = mapping->host;
1892 pgoff_t offset = vmf->pgoff;
1897 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1898 if (offset >= size >> PAGE_CACHE_SHIFT)
1899 return VM_FAULT_SIGBUS;
1902 * Do we have something in the page cache already?
1904 page = find_get_page(mapping, offset);
1905 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1907 * We found the page, so try async readahead before
1908 * waiting for the lock.
1910 do_async_mmap_readahead(vma, ra, file, page, offset);
1912 /* No page in the page cache at all */
1913 do_sync_mmap_readahead(vma, ra, file, offset);
1914 count_vm_event(PGMAJFAULT);
1915 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1916 ret = VM_FAULT_MAJOR;
1918 page = find_get_page(mapping, offset);
1920 goto no_cached_page;
1923 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1924 page_cache_release(page);
1925 return ret | VM_FAULT_RETRY;
1928 /* Did it get truncated? */
1929 if (unlikely(page->mapping != mapping)) {
1934 VM_BUG_ON_PAGE(page->index != offset, page);
1937 * We have a locked page in the page cache, now we need to check
1938 * that it's up-to-date. If not, it is going to be due to an error.
1940 if (unlikely(!PageUptodate(page)))
1941 goto page_not_uptodate;
1944 * Found the page and have a reference on it.
1945 * We must recheck i_size under page lock.
1947 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1948 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1950 page_cache_release(page);
1951 return VM_FAULT_SIGBUS;
1955 return ret | VM_FAULT_LOCKED;
1959 * We're only likely to ever get here if MADV_RANDOM is in
1962 error = page_cache_read(file, offset);
1965 * The page we want has now been added to the page cache.
1966 * In the unlikely event that someone removed it in the
1967 * meantime, we'll just come back here and read it again.
1973 * An error return from page_cache_read can result if the
1974 * system is low on memory, or a problem occurs while trying
1977 if (error == -ENOMEM)
1978 return VM_FAULT_OOM;
1979 return VM_FAULT_SIGBUS;
1983 * Umm, take care of errors if the page isn't up-to-date.
1984 * Try to re-read it _once_. We do this synchronously,
1985 * because there really aren't any performance issues here
1986 * and we need to check for errors.
1988 ClearPageError(page);
1989 error = mapping->a_ops->readpage(file, page);
1991 wait_on_page_locked(page);
1992 if (!PageUptodate(page))
1995 page_cache_release(page);
1997 if (!error || error == AOP_TRUNCATED_PAGE)
2000 /* Things didn't work out. Return zero to tell the mm layer so. */
2001 shrink_readahead_size_eio(file, ra);
2002 return VM_FAULT_SIGBUS;
2004 EXPORT_SYMBOL(filemap_fault);
2006 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2008 struct radix_tree_iter iter;
2010 struct file *file = vma->vm_file;
2011 struct address_space *mapping = file->f_mapping;
2014 unsigned long address = (unsigned long) vmf->virtual_address;
2019 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2020 if (iter.index > vmf->max_pgoff)
2023 page = radix_tree_deref_slot(slot);
2024 if (unlikely(!page))
2026 if (radix_tree_exception(page)) {
2027 if (radix_tree_deref_retry(page))
2033 if (!page_cache_get_speculative(page))
2036 /* Has the page moved? */
2037 if (unlikely(page != *slot)) {
2038 page_cache_release(page);
2042 if (!PageUptodate(page) ||
2043 PageReadahead(page) ||
2046 if (!trylock_page(page))
2049 if (page->mapping != mapping || !PageUptodate(page))
2052 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2053 if (page->index >= size >> PAGE_CACHE_SHIFT)
2056 pte = vmf->pte + page->index - vmf->pgoff;
2057 if (!pte_none(*pte))
2060 if (file->f_ra.mmap_miss > 0)
2061 file->f_ra.mmap_miss--;
2062 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2063 do_set_pte(vma, addr, page, pte, false, false);
2069 page_cache_release(page);
2071 if (iter.index == vmf->max_pgoff)
2076 EXPORT_SYMBOL(filemap_map_pages);
2078 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2080 struct page *page = vmf->page;
2081 struct inode *inode = file_inode(vma->vm_file);
2082 int ret = VM_FAULT_LOCKED;
2084 sb_start_pagefault(inode->i_sb);
2085 file_update_time(vma->vm_file);
2087 if (page->mapping != inode->i_mapping) {
2089 ret = VM_FAULT_NOPAGE;
2093 * We mark the page dirty already here so that when freeze is in
2094 * progress, we are guaranteed that writeback during freezing will
2095 * see the dirty page and writeprotect it again.
2097 set_page_dirty(page);
2098 wait_for_stable_page(page);
2100 sb_end_pagefault(inode->i_sb);
2103 EXPORT_SYMBOL(filemap_page_mkwrite);
2105 const struct vm_operations_struct generic_file_vm_ops = {
2106 .fault = filemap_fault,
2107 .map_pages = filemap_map_pages,
2108 .page_mkwrite = filemap_page_mkwrite,
2109 .remap_pages = generic_file_remap_pages,
2112 /* This is used for a general mmap of a disk file */
2114 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2116 struct address_space *mapping = file->f_mapping;
2118 if (!mapping->a_ops->readpage)
2120 file_accessed(file);
2121 vma->vm_ops = &generic_file_vm_ops;
2126 * This is for filesystems which do not implement ->writepage.
2128 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2130 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2132 return generic_file_mmap(file, vma);
2135 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2139 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2143 #endif /* CONFIG_MMU */
2145 EXPORT_SYMBOL(generic_file_mmap);
2146 EXPORT_SYMBOL(generic_file_readonly_mmap);
2148 static struct page *wait_on_page_read(struct page *page)
2150 if (!IS_ERR(page)) {
2151 wait_on_page_locked(page);
2152 if (!PageUptodate(page)) {
2153 page_cache_release(page);
2154 page = ERR_PTR(-EIO);
2160 static struct page *__read_cache_page(struct address_space *mapping,
2162 int (*filler)(void *, struct page *),
2169 page = find_get_page(mapping, index);
2171 page = __page_cache_alloc(gfp | __GFP_COLD);
2173 return ERR_PTR(-ENOMEM);
2174 err = add_to_page_cache_lru(page, mapping, index, gfp);
2175 if (unlikely(err)) {
2176 page_cache_release(page);
2179 /* Presumably ENOMEM for radix tree node */
2180 return ERR_PTR(err);
2182 err = filler(data, page);
2184 page_cache_release(page);
2185 page = ERR_PTR(err);
2187 page = wait_on_page_read(page);
2193 static struct page *do_read_cache_page(struct address_space *mapping,
2195 int (*filler)(void *, struct page *),
2204 page = __read_cache_page(mapping, index, filler, data, gfp);
2207 if (PageUptodate(page))
2211 if (!page->mapping) {
2213 page_cache_release(page);
2216 if (PageUptodate(page)) {
2220 err = filler(data, page);
2222 page_cache_release(page);
2223 return ERR_PTR(err);
2225 page = wait_on_page_read(page);
2230 mark_page_accessed(page);
2235 * read_cache_page - read into page cache, fill it if needed
2236 * @mapping: the page's address_space
2237 * @index: the page index
2238 * @filler: function to perform the read
2239 * @data: first arg to filler(data, page) function, often left as NULL
2241 * Read into the page cache. If a page already exists, and PageUptodate() is
2242 * not set, try to fill the page and wait for it to become unlocked.
2244 * If the page does not get brought uptodate, return -EIO.
2246 struct page *read_cache_page(struct address_space *mapping,
2248 int (*filler)(void *, struct page *),
2251 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2253 EXPORT_SYMBOL(read_cache_page);
2256 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2257 * @mapping: the page's address_space
2258 * @index: the page index
2259 * @gfp: the page allocator flags to use if allocating
2261 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2262 * any new page allocations done using the specified allocation flags.
2264 * If the page does not get brought uptodate, return -EIO.
2266 struct page *read_cache_page_gfp(struct address_space *mapping,
2270 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2272 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2274 EXPORT_SYMBOL(read_cache_page_gfp);
2277 * Performs necessary checks before doing a write
2279 * Can adjust writing position or amount of bytes to write.
2280 * Returns appropriate error code that caller should return or
2281 * zero in case that write should be allowed.
2283 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2285 struct inode *inode = file->f_mapping->host;
2286 unsigned long limit = rlimit(RLIMIT_FSIZE);
2288 if (unlikely(*pos < 0))
2292 /* FIXME: this is for backwards compatibility with 2.4 */
2293 if (file->f_flags & O_APPEND)
2294 *pos = i_size_read(inode);
2296 if (limit != RLIM_INFINITY) {
2297 if (*pos >= limit) {
2298 send_sig(SIGXFSZ, current, 0);
2301 if (*count > limit - (typeof(limit))*pos) {
2302 *count = limit - (typeof(limit))*pos;
2310 if (unlikely(*pos + *count > MAX_NON_LFS &&
2311 !(file->f_flags & O_LARGEFILE))) {
2312 if (*pos >= MAX_NON_LFS) {
2315 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2316 *count = MAX_NON_LFS - (unsigned long)*pos;
2321 * Are we about to exceed the fs block limit ?
2323 * If we have written data it becomes a short write. If we have
2324 * exceeded without writing data we send a signal and return EFBIG.
2325 * Linus frestrict idea will clean these up nicely..
2327 if (likely(!isblk)) {
2328 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2329 if (*count || *pos > inode->i_sb->s_maxbytes) {
2332 /* zero-length writes at ->s_maxbytes are OK */
2335 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2336 *count = inode->i_sb->s_maxbytes - *pos;
2340 if (bdev_read_only(I_BDEV(inode)))
2342 isize = i_size_read(inode);
2343 if (*pos >= isize) {
2344 if (*count || *pos > isize)
2348 if (*pos + *count > isize)
2349 *count = isize - *pos;
2356 EXPORT_SYMBOL(generic_write_checks);
2358 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2359 loff_t pos, unsigned len, unsigned flags,
2360 struct page **pagep, void **fsdata)
2362 const struct address_space_operations *aops = mapping->a_ops;
2364 return aops->write_begin(file, mapping, pos, len, flags,
2367 EXPORT_SYMBOL(pagecache_write_begin);
2369 int pagecache_write_end(struct file *file, struct address_space *mapping,
2370 loff_t pos, unsigned len, unsigned copied,
2371 struct page *page, void *fsdata)
2373 const struct address_space_operations *aops = mapping->a_ops;
2375 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2377 EXPORT_SYMBOL(pagecache_write_end);
2380 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2381 unsigned long *nr_segs, loff_t pos,
2382 size_t count, size_t ocount)
2384 struct file *file = iocb->ki_filp;
2385 struct address_space *mapping = file->f_mapping;
2386 struct inode *inode = mapping->host;
2391 if (count != ocount)
2392 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2394 write_len = iov_length(iov, *nr_segs);
2395 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2397 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2402 * After a write we want buffered reads to be sure to go to disk to get
2403 * the new data. We invalidate clean cached page from the region we're
2404 * about to write. We do this *before* the write so that we can return
2405 * without clobbering -EIOCBQUEUED from ->direct_IO().
2407 if (mapping->nrpages) {
2408 written = invalidate_inode_pages2_range(mapping,
2409 pos >> PAGE_CACHE_SHIFT, end);
2411 * If a page can not be invalidated, return 0 to fall back
2412 * to buffered write.
2415 if (written == -EBUSY)
2421 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2424 * Finally, try again to invalidate clean pages which might have been
2425 * cached by non-direct readahead, or faulted in by get_user_pages()
2426 * if the source of the write was an mmap'ed region of the file
2427 * we're writing. Either one is a pretty crazy thing to do,
2428 * so we don't support it 100%. If this invalidation
2429 * fails, tough, the write still worked...
2431 if (mapping->nrpages) {
2432 invalidate_inode_pages2_range(mapping,
2433 pos >> PAGE_CACHE_SHIFT, end);
2438 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2439 i_size_write(inode, pos);
2440 mark_inode_dirty(inode);
2447 EXPORT_SYMBOL(generic_file_direct_write);
2450 * Find or create a page at the given pagecache position. Return the locked
2451 * page. This function is specifically for buffered writes.
2453 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2454 pgoff_t index, unsigned flags)
2457 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2459 if (flags & AOP_FLAG_NOFS)
2460 fgp_flags |= FGP_NOFS;
2462 page = pagecache_get_page(mapping, index, fgp_flags,
2463 mapping_gfp_mask(mapping),
2466 wait_for_stable_page(page);
2470 EXPORT_SYMBOL(grab_cache_page_write_begin);
2472 ssize_t generic_perform_write(struct file *file,
2473 struct iov_iter *i, loff_t pos)
2475 struct address_space *mapping = file->f_mapping;
2476 const struct address_space_operations *a_ops = mapping->a_ops;
2478 ssize_t written = 0;
2479 unsigned int flags = 0;
2482 * Copies from kernel address space cannot fail (NFSD is a big user).
2484 if (segment_eq(get_fs(), KERNEL_DS))
2485 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2489 unsigned long offset; /* Offset into pagecache page */
2490 unsigned long bytes; /* Bytes to write to page */
2491 size_t copied; /* Bytes copied from user */
2494 offset = (pos & (PAGE_CACHE_SIZE - 1));
2495 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2500 * Bring in the user page that we will copy from _first_.
2501 * Otherwise there's a nasty deadlock on copying from the
2502 * same page as we're writing to, without it being marked
2505 * Not only is this an optimisation, but it is also required
2506 * to check that the address is actually valid, when atomic
2507 * usercopies are used, below.
2509 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2514 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2516 if (unlikely(status < 0))
2519 if (mapping_writably_mapped(mapping))
2520 flush_dcache_page(page);
2522 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2523 flush_dcache_page(page);
2525 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2527 if (unlikely(status < 0))
2533 iov_iter_advance(i, copied);
2534 if (unlikely(copied == 0)) {
2536 * If we were unable to copy any data at all, we must
2537 * fall back to a single segment length write.
2539 * If we didn't fallback here, we could livelock
2540 * because not all segments in the iov can be copied at
2541 * once without a pagefault.
2543 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2544 iov_iter_single_seg_count(i));
2550 balance_dirty_pages_ratelimited(mapping);
2551 if (fatal_signal_pending(current)) {
2555 } while (iov_iter_count(i));
2557 return written ? written : status;
2559 EXPORT_SYMBOL(generic_perform_write);
2562 * __generic_file_aio_write - write data to a file
2563 * @iocb: IO state structure (file, offset, etc.)
2564 * @iov: vector with data to write
2565 * @nr_segs: number of segments in the vector
2567 * This function does all the work needed for actually writing data to a
2568 * file. It does all basic checks, removes SUID from the file, updates
2569 * modification times and calls proper subroutines depending on whether we
2570 * do direct IO or a standard buffered write.
2572 * It expects i_mutex to be grabbed unless we work on a block device or similar
2573 * object which does not need locking at all.
2575 * This function does *not* take care of syncing data in case of O_SYNC write.
2576 * A caller has to handle it. This is mainly due to the fact that we want to
2577 * avoid syncing under i_mutex.
2579 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2580 unsigned long nr_segs)
2582 struct file *file = iocb->ki_filp;
2583 struct address_space * mapping = file->f_mapping;
2584 size_t ocount; /* original count */
2585 size_t count; /* after file limit checks */
2586 struct inode *inode = mapping->host;
2587 loff_t pos = iocb->ki_pos;
2588 ssize_t written = 0;
2591 struct iov_iter from;
2594 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2600 /* We can write back this queue in page reclaim */
2601 current->backing_dev_info = mapping->backing_dev_info;
2602 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2609 err = file_remove_suid(file);
2613 err = file_update_time(file);
2617 iov_iter_init(&from, iov, nr_segs, count, 0);
2619 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2620 if (unlikely(file->f_flags & O_DIRECT)) {
2623 written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos,
2625 if (written < 0 || written == count)
2627 iov_iter_advance(&from, written);
2630 * direct-io write to a hole: fall through to buffered I/O
2631 * for completing the rest of the request.
2636 status = generic_perform_write(file, &from, pos);
2638 * If generic_perform_write() returned a synchronous error
2639 * then we want to return the number of bytes which were
2640 * direct-written, or the error code if that was zero. Note
2641 * that this differs from normal direct-io semantics, which
2642 * will return -EFOO even if some bytes were written.
2644 if (unlikely(status < 0) && !written) {
2648 iocb->ki_pos = pos + status;
2650 * We need to ensure that the page cache pages are written to
2651 * disk and invalidated to preserve the expected O_DIRECT
2654 endbyte = pos + status - 1;
2655 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2658 invalidate_mapping_pages(mapping,
2659 pos >> PAGE_CACHE_SHIFT,
2660 endbyte >> PAGE_CACHE_SHIFT);
2663 * We don't know how much we wrote, so just return
2664 * the number of bytes which were direct-written
2668 written = generic_perform_write(file, &from, pos);
2669 if (likely(written >= 0))
2670 iocb->ki_pos = pos + written;
2673 current->backing_dev_info = NULL;
2674 return written ? written : err;
2676 EXPORT_SYMBOL(__generic_file_aio_write);
2679 * generic_file_aio_write - write data to a file
2680 * @iocb: IO state structure
2681 * @iov: vector with data to write
2682 * @nr_segs: number of segments in the vector
2683 * @pos: position in file where to write
2685 * This is a wrapper around __generic_file_aio_write() to be used by most
2686 * filesystems. It takes care of syncing the file in case of O_SYNC file
2687 * and acquires i_mutex as needed.
2689 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2690 unsigned long nr_segs, loff_t pos)
2692 struct file *file = iocb->ki_filp;
2693 struct inode *inode = file->f_mapping->host;
2696 BUG_ON(iocb->ki_pos != pos);
2698 mutex_lock(&inode->i_mutex);
2699 ret = __generic_file_aio_write(iocb, iov, nr_segs);
2700 mutex_unlock(&inode->i_mutex);
2705 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2711 EXPORT_SYMBOL(generic_file_aio_write);
2714 * try_to_release_page() - release old fs-specific metadata on a page
2716 * @page: the page which the kernel is trying to free
2717 * @gfp_mask: memory allocation flags (and I/O mode)
2719 * The address_space is to try to release any data against the page
2720 * (presumably at page->private). If the release was successful, return `1'.
2721 * Otherwise return zero.
2723 * This may also be called if PG_fscache is set on a page, indicating that the
2724 * page is known to the local caching routines.
2726 * The @gfp_mask argument specifies whether I/O may be performed to release
2727 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2730 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2732 struct address_space * const mapping = page->mapping;
2734 BUG_ON(!PageLocked(page));
2735 if (PageWriteback(page))
2738 if (mapping && mapping->a_ops->releasepage)
2739 return mapping->a_ops->releasepage(page, gfp_mask);
2740 return try_to_free_buffers(page);
2743 EXPORT_SYMBOL(try_to_release_page);