2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/gfp.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/sched.h>
27 #include <linux/swap.h>
28 #include <linux/uio.h>
29 #include <linux/writeback.h>
30 #include <linux/aio.h>
33 #include <asm/uaccess.h>
45 * ntfs_file_open - called when an inode is about to be opened
46 * @vi: inode to be opened
47 * @filp: file structure describing the inode
49 * Limit file size to the page cache limit on architectures where unsigned long
50 * is 32-bits. This is the most we can do for now without overflowing the page
51 * cache page index. Doing it this way means we don't run into problems because
52 * of existing too large files. It would be better to allow the user to read
53 * the beginning of the file but I doubt very much anyone is going to hit this
54 * check on a 32-bit architecture, so there is no point in adding the extra
55 * complexity required to support this.
57 * On 64-bit architectures, the check is hopefully optimized away by the
60 * After the check passes, just call generic_file_open() to do its work.
62 static int ntfs_file_open(struct inode *vi, struct file *filp)
64 if (sizeof(unsigned long) < 8) {
65 if (i_size_read(vi) > MAX_LFS_FILESIZE)
68 return generic_file_open(vi, filp);
74 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
75 * @ni: ntfs inode of the attribute to extend
76 * @new_init_size: requested new initialized size in bytes
77 * @cached_page: store any allocated but unused page here
78 * @lru_pvec: lru-buffering pagevec of the caller
80 * Extend the initialized size of an attribute described by the ntfs inode @ni
81 * to @new_init_size bytes. This involves zeroing any non-sparse space between
82 * the old initialized size and @new_init_size both in the page cache and on
83 * disk (if relevant complete pages are already uptodate in the page cache then
84 * these are simply marked dirty).
86 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
87 * in the resident attribute case, it is tied to the initialized size and, in
88 * the non-resident attribute case, it may not fall below the initialized size.
90 * Note that if the attribute is resident, we do not need to touch the page
91 * cache at all. This is because if the page cache page is not uptodate we
92 * bring it uptodate later, when doing the write to the mft record since we
93 * then already have the page mapped. And if the page is uptodate, the
94 * non-initialized region will already have been zeroed when the page was
95 * brought uptodate and the region may in fact already have been overwritten
96 * with new data via mmap() based writes, so we cannot just zero it. And since
97 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
98 * is unspecified, we choose not to do zeroing and thus we do not need to touch
99 * the page at all. For a more detailed explanation see ntfs_truncate() in
102 * Return 0 on success and -errno on error. In the case that an error is
103 * encountered it is possible that the initialized size will already have been
104 * incremented some way towards @new_init_size but it is guaranteed that if
105 * this is the case, the necessary zeroing will also have happened and that all
106 * metadata is self-consistent.
108 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
109 * held by the caller.
111 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
115 pgoff_t index, end_index;
117 struct inode *vi = VFS_I(ni);
119 MFT_RECORD *m = NULL;
121 ntfs_attr_search_ctx *ctx = NULL;
122 struct address_space *mapping;
123 struct page *page = NULL;
128 read_lock_irqsave(&ni->size_lock, flags);
129 old_init_size = ni->initialized_size;
130 old_i_size = i_size_read(vi);
131 BUG_ON(new_init_size > ni->allocated_size);
132 read_unlock_irqrestore(&ni->size_lock, flags);
133 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
134 "old_initialized_size 0x%llx, "
135 "new_initialized_size 0x%llx, i_size 0x%llx.",
136 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
137 (unsigned long long)old_init_size,
138 (unsigned long long)new_init_size, old_i_size);
142 base_ni = ni->ext.base_ntfs_ino;
143 /* Use goto to reduce indentation and we need the label below anyway. */
144 if (NInoNonResident(ni))
145 goto do_non_resident_extend;
146 BUG_ON(old_init_size != old_i_size);
147 m = map_mft_record(base_ni);
153 ctx = ntfs_attr_get_search_ctx(base_ni, m);
154 if (unlikely(!ctx)) {
158 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
159 CASE_SENSITIVE, 0, NULL, 0, ctx);
167 BUG_ON(a->non_resident);
168 /* The total length of the attribute value. */
169 attr_len = le32_to_cpu(a->data.resident.value_length);
170 BUG_ON(old_i_size != (loff_t)attr_len);
172 * Do the zeroing in the mft record and update the attribute size in
175 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
176 memset(kattr + attr_len, 0, new_init_size - attr_len);
177 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
178 /* Finally, update the sizes in the vfs and ntfs inodes. */
179 write_lock_irqsave(&ni->size_lock, flags);
180 i_size_write(vi, new_init_size);
181 ni->initialized_size = new_init_size;
182 write_unlock_irqrestore(&ni->size_lock, flags);
184 do_non_resident_extend:
186 * If the new initialized size @new_init_size exceeds the current file
187 * size (vfs inode->i_size), we need to extend the file size to the
188 * new initialized size.
190 if (new_init_size > old_i_size) {
191 m = map_mft_record(base_ni);
197 ctx = ntfs_attr_get_search_ctx(base_ni, m);
198 if (unlikely(!ctx)) {
202 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
203 CASE_SENSITIVE, 0, NULL, 0, ctx);
211 BUG_ON(!a->non_resident);
212 BUG_ON(old_i_size != (loff_t)
213 sle64_to_cpu(a->data.non_resident.data_size));
214 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
215 flush_dcache_mft_record_page(ctx->ntfs_ino);
216 mark_mft_record_dirty(ctx->ntfs_ino);
217 /* Update the file size in the vfs inode. */
218 i_size_write(vi, new_init_size);
219 ntfs_attr_put_search_ctx(ctx);
221 unmap_mft_record(base_ni);
224 mapping = vi->i_mapping;
225 index = old_init_size >> PAGE_CACHE_SHIFT;
226 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
229 * Read the page. If the page is not present, this will zero
230 * the uninitialized regions for us.
232 page = read_mapping_page(mapping, index, NULL);
237 if (unlikely(PageError(page))) {
238 page_cache_release(page);
243 * Update the initialized size in the ntfs inode. This is
244 * enough to make ntfs_writepage() work.
246 write_lock_irqsave(&ni->size_lock, flags);
247 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
248 if (ni->initialized_size > new_init_size)
249 ni->initialized_size = new_init_size;
250 write_unlock_irqrestore(&ni->size_lock, flags);
251 /* Set the page dirty so it gets written out. */
252 set_page_dirty(page);
253 page_cache_release(page);
255 * Play nice with the vm and the rest of the system. This is
256 * very much needed as we can potentially be modifying the
257 * initialised size from a very small value to a really huge
259 * f = open(somefile, O_TRUNC);
260 * truncate(f, 10GiB);
263 * And this would mean we would be marking dirty hundreds of
264 * thousands of pages or as in the above example more than
265 * two and a half million pages!
267 * TODO: For sparse pages could optimize this workload by using
268 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
269 * would be set in readpage for sparse pages and here we would
270 * not need to mark dirty any pages which have this bit set.
271 * The only caveat is that we have to clear the bit everywhere
272 * where we allocate any clusters that lie in the page or that
275 * TODO: An even greater optimization would be for us to only
276 * call readpage() on pages which are not in sparse regions as
277 * determined from the runlist. This would greatly reduce the
278 * number of pages we read and make dirty in the case of sparse
281 balance_dirty_pages_ratelimited(mapping);
283 } while (++index < end_index);
284 read_lock_irqsave(&ni->size_lock, flags);
285 BUG_ON(ni->initialized_size != new_init_size);
286 read_unlock_irqrestore(&ni->size_lock, flags);
287 /* Now bring in sync the initialized_size in the mft record. */
288 m = map_mft_record(base_ni);
294 ctx = ntfs_attr_get_search_ctx(base_ni, m);
295 if (unlikely(!ctx)) {
299 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
300 CASE_SENSITIVE, 0, NULL, 0, ctx);
308 BUG_ON(!a->non_resident);
309 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
311 flush_dcache_mft_record_page(ctx->ntfs_ino);
312 mark_mft_record_dirty(ctx->ntfs_ino);
314 ntfs_attr_put_search_ctx(ctx);
316 unmap_mft_record(base_ni);
317 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
318 (unsigned long long)new_init_size, i_size_read(vi));
321 write_lock_irqsave(&ni->size_lock, flags);
322 ni->initialized_size = old_init_size;
323 write_unlock_irqrestore(&ni->size_lock, flags);
326 ntfs_attr_put_search_ctx(ctx);
328 unmap_mft_record(base_ni);
329 ntfs_debug("Failed. Returning error code %i.", err);
334 * ntfs_fault_in_pages_readable -
336 * Fault a number of userspace pages into pagetables.
338 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
339 * with more than two userspace pages as well as handling the single page case
342 * If you find this difficult to understand, then think of the while loop being
343 * the following code, except that we do without the integer variable ret:
346 * ret = __get_user(c, uaddr);
347 * uaddr += PAGE_SIZE;
348 * } while (!ret && uaddr < end);
350 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
351 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
352 * this is only a read and not a write, and since it is still in the same page,
353 * it should not matter and this makes the code much simpler.
355 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
358 const char __user *end;
361 /* Set @end to the first byte outside the last page we care about. */
362 end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
364 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
369 * ntfs_fault_in_pages_readable_iovec -
371 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
373 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
374 size_t iov_ofs, int bytes)
377 const char __user *buf;
380 buf = iov->iov_base + iov_ofs;
381 len = iov->iov_len - iov_ofs;
384 ntfs_fault_in_pages_readable(buf, len);
392 * __ntfs_grab_cache_pages - obtain a number of locked pages
393 * @mapping: address space mapping from which to obtain page cache pages
394 * @index: starting index in @mapping at which to begin obtaining pages
395 * @nr_pages: number of page cache pages to obtain
396 * @pages: array of pages in which to return the obtained page cache pages
397 * @cached_page: allocated but as yet unused page
398 * @lru_pvec: lru-buffering pagevec of caller
400 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
401 * starting at index @index.
403 * If a page is newly created, add it to lru list
405 * Note, the page locks are obtained in ascending page index order.
407 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
408 pgoff_t index, const unsigned nr_pages, struct page **pages,
409 struct page **cached_page)
416 pages[nr] = find_lock_page(mapping, index);
419 *cached_page = page_cache_alloc(mapping);
420 if (unlikely(!*cached_page)) {
425 err = add_to_page_cache_lru(*cached_page, mapping, index,
432 pages[nr] = *cached_page;
437 } while (nr < nr_pages);
442 unlock_page(pages[--nr]);
443 page_cache_release(pages[nr]);
448 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
452 bh->b_end_io = end_buffer_read_sync;
453 return submit_bh(READ, bh);
457 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
458 * @pages: array of destination pages
459 * @nr_pages: number of pages in @pages
460 * @pos: byte position in file at which the write begins
461 * @bytes: number of bytes to be written
463 * This is called for non-resident attributes from ntfs_file_buffered_write()
464 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
465 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
466 * data has not yet been copied into the @pages.
468 * Need to fill any holes with actual clusters, allocate buffers if necessary,
469 * ensure all the buffers are mapped, and bring uptodate any buffers that are
470 * only partially being written to.
472 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
473 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
474 * the same cluster and that they are the entirety of that cluster, and that
475 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
477 * i_size is not to be modified yet.
479 * Return 0 on success or -errno on error.
481 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
482 unsigned nr_pages, s64 pos, size_t bytes)
484 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
486 s64 bh_pos, vcn_len, end, initialized_size;
490 ntfs_inode *ni, *base_ni = NULL;
492 runlist_element *rl, *rl2;
493 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
494 ntfs_attr_search_ctx *ctx = NULL;
495 MFT_RECORD *m = NULL;
496 ATTR_RECORD *a = NULL;
498 u32 attr_rec_len = 0;
499 unsigned blocksize, u;
501 bool rl_write_locked, was_hole, is_retry;
502 unsigned char blocksize_bits;
505 u8 mft_attr_mapped:1;
508 } status = { 0, 0, 0, 0 };
513 vi = pages[0]->mapping->host;
516 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
517 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
518 vi->i_ino, ni->type, pages[0]->index, nr_pages,
519 (long long)pos, bytes);
520 blocksize = vol->sb->s_blocksize;
521 blocksize_bits = vol->sb->s_blocksize_bits;
527 * create_empty_buffers() will create uptodate/dirty buffers if
528 * the page is uptodate/dirty.
530 if (!page_has_buffers(page)) {
531 create_empty_buffers(page, blocksize, 0);
532 if (unlikely(!page_has_buffers(page)))
535 } while (++u < nr_pages);
536 rl_write_locked = false;
543 cpos = pos >> vol->cluster_size_bits;
545 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
547 * Loop over each page and for each page over each buffer. Use goto to
548 * reduce indentation.
553 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
554 bh = head = page_buffers(page);
560 /* Clear buffer_new on all buffers to reinitialise state. */
562 clear_buffer_new(bh);
563 bh_end = bh_pos + blocksize;
564 bh_cpos = bh_pos >> vol->cluster_size_bits;
565 bh_cofs = bh_pos & vol->cluster_size_mask;
566 if (buffer_mapped(bh)) {
568 * The buffer is already mapped. If it is uptodate,
571 if (buffer_uptodate(bh))
574 * The buffer is not uptodate. If the page is uptodate
575 * set the buffer uptodate and otherwise ignore it.
577 if (PageUptodate(page)) {
578 set_buffer_uptodate(bh);
582 * Neither the page nor the buffer are uptodate. If
583 * the buffer is only partially being written to, we
584 * need to read it in before the write, i.e. now.
586 if ((bh_pos < pos && bh_end > pos) ||
587 (bh_pos < end && bh_end > end)) {
589 * If the buffer is fully or partially within
590 * the initialized size, do an actual read.
591 * Otherwise, simply zero the buffer.
593 read_lock_irqsave(&ni->size_lock, flags);
594 initialized_size = ni->initialized_size;
595 read_unlock_irqrestore(&ni->size_lock, flags);
596 if (bh_pos < initialized_size) {
597 ntfs_submit_bh_for_read(bh);
600 zero_user(page, bh_offset(bh),
602 set_buffer_uptodate(bh);
607 /* Unmapped buffer. Need to map it. */
608 bh->b_bdev = vol->sb->s_bdev;
610 * If the current buffer is in the same clusters as the map
611 * cache, there is no need to check the runlist again. The
612 * map cache is made up of @vcn, which is the first cached file
613 * cluster, @vcn_len which is the number of cached file
614 * clusters, @lcn is the device cluster corresponding to @vcn,
615 * and @lcn_block is the block number corresponding to @lcn.
617 cdelta = bh_cpos - vcn;
618 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
621 bh->b_blocknr = lcn_block +
622 (cdelta << (vol->cluster_size_bits -
624 (bh_cofs >> blocksize_bits);
625 set_buffer_mapped(bh);
627 * If the page is uptodate so is the buffer. If the
628 * buffer is fully outside the write, we ignore it if
629 * it was already allocated and we mark it dirty so it
630 * gets written out if we allocated it. On the other
631 * hand, if we allocated the buffer but we are not
632 * marking it dirty we set buffer_new so we can do
635 if (PageUptodate(page)) {
636 if (!buffer_uptodate(bh))
637 set_buffer_uptodate(bh);
638 if (unlikely(was_hole)) {
639 /* We allocated the buffer. */
640 unmap_underlying_metadata(bh->b_bdev,
642 if (bh_end <= pos || bh_pos >= end)
643 mark_buffer_dirty(bh);
649 /* Page is _not_ uptodate. */
650 if (likely(!was_hole)) {
652 * Buffer was already allocated. If it is not
653 * uptodate and is only partially being written
654 * to, we need to read it in before the write,
657 if (!buffer_uptodate(bh) && bh_pos < end &&
662 * If the buffer is fully or partially
663 * within the initialized size, do an
664 * actual read. Otherwise, simply zero
667 read_lock_irqsave(&ni->size_lock,
669 initialized_size = ni->initialized_size;
670 read_unlock_irqrestore(&ni->size_lock,
672 if (bh_pos < initialized_size) {
673 ntfs_submit_bh_for_read(bh);
676 zero_user(page, bh_offset(bh),
678 set_buffer_uptodate(bh);
683 /* We allocated the buffer. */
684 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
686 * If the buffer is fully outside the write, zero it,
687 * set it uptodate, and mark it dirty so it gets
688 * written out. If it is partially being written to,
689 * zero region surrounding the write but leave it to
690 * commit write to do anything else. Finally, if the
691 * buffer is fully being overwritten, do nothing.
693 if (bh_end <= pos || bh_pos >= end) {
694 if (!buffer_uptodate(bh)) {
695 zero_user(page, bh_offset(bh),
697 set_buffer_uptodate(bh);
699 mark_buffer_dirty(bh);
703 if (!buffer_uptodate(bh) &&
704 (bh_pos < pos || bh_end > end)) {
708 kaddr = kmap_atomic(page);
710 pofs = bh_pos & ~PAGE_CACHE_MASK;
711 memset(kaddr + pofs, 0, pos - bh_pos);
714 pofs = end & ~PAGE_CACHE_MASK;
715 memset(kaddr + pofs, 0, bh_end - end);
717 kunmap_atomic(kaddr);
718 flush_dcache_page(page);
723 * Slow path: this is the first buffer in the cluster. If it
724 * is outside allocated size and is not uptodate, zero it and
727 read_lock_irqsave(&ni->size_lock, flags);
728 initialized_size = ni->allocated_size;
729 read_unlock_irqrestore(&ni->size_lock, flags);
730 if (bh_pos > initialized_size) {
731 if (PageUptodate(page)) {
732 if (!buffer_uptodate(bh))
733 set_buffer_uptodate(bh);
734 } else if (!buffer_uptodate(bh)) {
735 zero_user(page, bh_offset(bh), blocksize);
736 set_buffer_uptodate(bh);
742 down_read(&ni->runlist.lock);
746 if (likely(rl != NULL)) {
747 /* Seek to element containing target cluster. */
748 while (rl->length && rl[1].vcn <= bh_cpos)
750 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
751 if (likely(lcn >= 0)) {
753 * Successful remap, setup the map cache and
754 * use that to deal with the buffer.
758 vcn_len = rl[1].vcn - vcn;
759 lcn_block = lcn << (vol->cluster_size_bits -
763 * If the number of remaining clusters touched
764 * by the write is smaller or equal to the
765 * number of cached clusters, unlock the
766 * runlist as the map cache will be used from
769 if (likely(vcn + vcn_len >= cend)) {
770 if (rl_write_locked) {
771 up_write(&ni->runlist.lock);
772 rl_write_locked = false;
774 up_read(&ni->runlist.lock);
777 goto map_buffer_cached;
780 lcn = LCN_RL_NOT_MAPPED;
782 * If it is not a hole and not out of bounds, the runlist is
783 * probably unmapped so try to map it now.
785 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
786 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
787 /* Attempt to map runlist. */
788 if (!rl_write_locked) {
790 * We need the runlist locked for
791 * writing, so if it is locked for
792 * reading relock it now and retry in
793 * case it changed whilst we dropped
796 up_read(&ni->runlist.lock);
797 down_write(&ni->runlist.lock);
798 rl_write_locked = true;
801 err = ntfs_map_runlist_nolock(ni, bh_cpos,
808 * If @vcn is out of bounds, pretend @lcn is
809 * LCN_ENOENT. As long as the buffer is out
810 * of bounds this will work fine.
812 if (err == -ENOENT) {
815 goto rl_not_mapped_enoent;
819 /* Failed to map the buffer, even after retrying. */
821 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
822 "attribute type 0x%x, vcn 0x%llx, "
823 "vcn offset 0x%x, because its "
824 "location on disk could not be "
825 "determined%s (error code %i).",
826 ni->mft_no, ni->type,
827 (unsigned long long)bh_cpos,
829 vol->cluster_size_mask,
830 is_retry ? " even after retrying" : "",
834 rl_not_mapped_enoent:
836 * The buffer is in a hole or out of bounds. We need to fill
837 * the hole, unless the buffer is in a cluster which is not
838 * touched by the write, in which case we just leave the buffer
839 * unmapped. This can only happen when the cluster size is
840 * less than the page cache size.
842 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
843 bh_cend = (bh_end + vol->cluster_size - 1) >>
844 vol->cluster_size_bits;
845 if ((bh_cend <= cpos || bh_cpos >= cend)) {
848 * If the buffer is uptodate we skip it. If it
849 * is not but the page is uptodate, we can set
850 * the buffer uptodate. If the page is not
851 * uptodate, we can clear the buffer and set it
852 * uptodate. Whether this is worthwhile is
853 * debatable and this could be removed.
855 if (PageUptodate(page)) {
856 if (!buffer_uptodate(bh))
857 set_buffer_uptodate(bh);
858 } else if (!buffer_uptodate(bh)) {
859 zero_user(page, bh_offset(bh),
861 set_buffer_uptodate(bh);
867 * Out of bounds buffer is invalid if it was not really out of
870 BUG_ON(lcn != LCN_HOLE);
872 * We need the runlist locked for writing, so if it is locked
873 * for reading relock it now and retry in case it changed
874 * whilst we dropped the lock.
877 if (!rl_write_locked) {
878 up_read(&ni->runlist.lock);
879 down_write(&ni->runlist.lock);
880 rl_write_locked = true;
883 /* Find the previous last allocated cluster. */
884 BUG_ON(rl->lcn != LCN_HOLE);
887 while (--rl2 >= ni->runlist.rl) {
889 lcn = rl2->lcn + rl2->length;
893 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
897 ntfs_debug("Failed to allocate cluster, error code %i.",
902 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
907 if (ntfs_cluster_free_from_rl(vol, rl2)) {
908 ntfs_error(vol->sb, "Failed to release "
909 "allocated cluster in error "
910 "code path. Run chkdsk to "
911 "recover the lost cluster.");
918 status.runlist_merged = 1;
919 ntfs_debug("Allocated cluster, lcn 0x%llx.",
920 (unsigned long long)lcn);
921 /* Map and lock the mft record and get the attribute record. */
925 base_ni = ni->ext.base_ntfs_ino;
926 m = map_mft_record(base_ni);
931 ctx = ntfs_attr_get_search_ctx(base_ni, m);
932 if (unlikely(!ctx)) {
934 unmap_mft_record(base_ni);
937 status.mft_attr_mapped = 1;
938 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
939 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
948 * Find the runlist element with which the attribute extent
949 * starts. Note, we cannot use the _attr_ version because we
950 * have mapped the mft record. That is ok because we know the
951 * runlist fragment must be mapped already to have ever gotten
952 * here, so we can just use the _rl_ version.
954 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
955 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
957 BUG_ON(!rl2->length);
958 BUG_ON(rl2->lcn < LCN_HOLE);
959 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
961 * If @highest_vcn is zero, calculate the real highest_vcn
962 * (which can really be zero).
965 highest_vcn = (sle64_to_cpu(
966 a->data.non_resident.allocated_size) >>
967 vol->cluster_size_bits) - 1;
969 * Determine the size of the mapping pairs array for the new
970 * extent, i.e. the old extent with the hole filled.
972 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
974 if (unlikely(mp_size <= 0)) {
975 if (!(err = mp_size))
977 ntfs_debug("Failed to get size for mapping pairs "
978 "array, error code %i.", err);
982 * Resize the attribute record to fit the new mapping pairs
985 attr_rec_len = le32_to_cpu(a->length);
986 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
987 a->data.non_resident.mapping_pairs_offset));
989 BUG_ON(err != -ENOSPC);
990 // TODO: Deal with this by using the current attribute
991 // and fill it with as much of the mapping pairs
992 // array as possible. Then loop over each attribute
993 // extent rewriting the mapping pairs arrays as we go
994 // along and if when we reach the end we have not
995 // enough space, try to resize the last attribute
996 // extent and if even that fails, add a new attribute
998 // We could also try to resize at each step in the hope
999 // that we will not need to rewrite every single extent.
1000 // Note, we may need to decompress some extents to fill
1001 // the runlist as we are walking the extents...
1002 ntfs_error(vol->sb, "Not enough space in the mft "
1003 "record for the extended attribute "
1004 "record. This case is not "
1005 "implemented yet.");
1009 status.mp_rebuilt = 1;
1011 * Generate the mapping pairs array directly into the attribute
1014 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1015 a->data.non_resident.mapping_pairs_offset),
1016 mp_size, rl2, vcn, highest_vcn, NULL);
1017 if (unlikely(err)) {
1018 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1019 "attribute type 0x%x, because building "
1020 "the mapping pairs failed with error "
1021 "code %i.", vi->i_ino,
1022 (unsigned)le32_to_cpu(ni->type), err);
1026 /* Update the highest_vcn but only if it was not set. */
1027 if (unlikely(!a->data.non_resident.highest_vcn))
1028 a->data.non_resident.highest_vcn =
1029 cpu_to_sle64(highest_vcn);
1031 * If the attribute is sparse/compressed, update the compressed
1032 * size in the ntfs_inode structure and the attribute record.
1034 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1036 * If we are not in the first attribute extent, switch
1037 * to it, but first ensure the changes will make it to
1040 if (a->data.non_resident.lowest_vcn) {
1041 flush_dcache_mft_record_page(ctx->ntfs_ino);
1042 mark_mft_record_dirty(ctx->ntfs_ino);
1043 ntfs_attr_reinit_search_ctx(ctx);
1044 err = ntfs_attr_lookup(ni->type, ni->name,
1045 ni->name_len, CASE_SENSITIVE,
1047 if (unlikely(err)) {
1048 status.attr_switched = 1;
1051 /* @m is not used any more so do not set it. */
1054 write_lock_irqsave(&ni->size_lock, flags);
1055 ni->itype.compressed.size += vol->cluster_size;
1056 a->data.non_resident.compressed_size =
1057 cpu_to_sle64(ni->itype.compressed.size);
1058 write_unlock_irqrestore(&ni->size_lock, flags);
1060 /* Ensure the changes make it to disk. */
1061 flush_dcache_mft_record_page(ctx->ntfs_ino);
1062 mark_mft_record_dirty(ctx->ntfs_ino);
1063 ntfs_attr_put_search_ctx(ctx);
1064 unmap_mft_record(base_ni);
1065 /* Successfully filled the hole. */
1066 status.runlist_merged = 0;
1067 status.mft_attr_mapped = 0;
1068 status.mp_rebuilt = 0;
1069 /* Setup the map cache and use that to deal with the buffer. */
1073 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1076 * If the number of remaining clusters in the @pages is smaller
1077 * or equal to the number of cached clusters, unlock the
1078 * runlist as the map cache will be used from now on.
1080 if (likely(vcn + vcn_len >= cend)) {
1081 up_write(&ni->runlist.lock);
1082 rl_write_locked = false;
1085 goto map_buffer_cached;
1086 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1087 /* If there are no errors, do the next page. */
1088 if (likely(!err && ++u < nr_pages))
1090 /* If there are no errors, release the runlist lock if we took it. */
1092 if (unlikely(rl_write_locked)) {
1093 up_write(&ni->runlist.lock);
1094 rl_write_locked = false;
1095 } else if (unlikely(rl))
1096 up_read(&ni->runlist.lock);
1099 /* If we issued read requests, let them complete. */
1100 read_lock_irqsave(&ni->size_lock, flags);
1101 initialized_size = ni->initialized_size;
1102 read_unlock_irqrestore(&ni->size_lock, flags);
1103 while (wait_bh > wait) {
1106 if (likely(buffer_uptodate(bh))) {
1108 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1111 * If the buffer overflows the initialized size, need
1112 * to zero the overflowing region.
1114 if (unlikely(bh_pos + blocksize > initialized_size)) {
1117 if (likely(bh_pos < initialized_size))
1118 ofs = initialized_size - bh_pos;
1119 zero_user_segment(page, bh_offset(bh) + ofs,
1122 } else /* if (unlikely(!buffer_uptodate(bh))) */
1126 /* Clear buffer_new on all buffers. */
1129 bh = head = page_buffers(pages[u]);
1132 clear_buffer_new(bh);
1133 } while ((bh = bh->b_this_page) != head);
1134 } while (++u < nr_pages);
1135 ntfs_debug("Done.");
1138 if (status.attr_switched) {
1139 /* Get back to the attribute extent we modified. */
1140 ntfs_attr_reinit_search_ctx(ctx);
1141 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1142 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1143 ntfs_error(vol->sb, "Failed to find required "
1144 "attribute extent of attribute in "
1145 "error code path. Run chkdsk to "
1147 write_lock_irqsave(&ni->size_lock, flags);
1148 ni->itype.compressed.size += vol->cluster_size;
1149 write_unlock_irqrestore(&ni->size_lock, flags);
1150 flush_dcache_mft_record_page(ctx->ntfs_ino);
1151 mark_mft_record_dirty(ctx->ntfs_ino);
1153 * The only thing that is now wrong is the compressed
1154 * size of the base attribute extent which chkdsk
1155 * should be able to fix.
1161 status.attr_switched = 0;
1165 * If the runlist has been modified, need to restore it by punching a
1166 * hole into it and we then need to deallocate the on-disk cluster as
1167 * well. Note, we only modify the runlist if we are able to generate a
1168 * new mapping pairs array, i.e. only when the mapped attribute extent
1171 if (status.runlist_merged && !status.attr_switched) {
1172 BUG_ON(!rl_write_locked);
1173 /* Make the file cluster we allocated sparse in the runlist. */
1174 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1175 ntfs_error(vol->sb, "Failed to punch hole into "
1176 "attribute runlist in error code "
1177 "path. Run chkdsk to recover the "
1180 } else /* if (success) */ {
1181 status.runlist_merged = 0;
1183 * Deallocate the on-disk cluster we allocated but only
1184 * if we succeeded in punching its vcn out of the
1187 down_write(&vol->lcnbmp_lock);
1188 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1189 ntfs_error(vol->sb, "Failed to release "
1190 "allocated cluster in error "
1191 "code path. Run chkdsk to "
1192 "recover the lost cluster.");
1195 up_write(&vol->lcnbmp_lock);
1199 * Resize the attribute record to its old size and rebuild the mapping
1200 * pairs array. Note, we only can do this if the runlist has been
1201 * restored to its old state which also implies that the mapped
1202 * attribute extent is not switched.
1204 if (status.mp_rebuilt && !status.runlist_merged) {
1205 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1206 ntfs_error(vol->sb, "Failed to restore attribute "
1207 "record in error code path. Run "
1208 "chkdsk to recover.");
1210 } else /* if (success) */ {
1211 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1212 le16_to_cpu(a->data.non_resident.
1213 mapping_pairs_offset), attr_rec_len -
1214 le16_to_cpu(a->data.non_resident.
1215 mapping_pairs_offset), ni->runlist.rl,
1216 vcn, highest_vcn, NULL)) {
1217 ntfs_error(vol->sb, "Failed to restore "
1218 "mapping pairs array in error "
1219 "code path. Run chkdsk to "
1223 flush_dcache_mft_record_page(ctx->ntfs_ino);
1224 mark_mft_record_dirty(ctx->ntfs_ino);
1227 /* Release the mft record and the attribute. */
1228 if (status.mft_attr_mapped) {
1229 ntfs_attr_put_search_ctx(ctx);
1230 unmap_mft_record(base_ni);
1232 /* Release the runlist lock. */
1233 if (rl_write_locked)
1234 up_write(&ni->runlist.lock);
1236 up_read(&ni->runlist.lock);
1238 * Zero out any newly allocated blocks to avoid exposing stale data.
1239 * If BH_New is set, we know that the block was newly allocated above
1240 * and that it has not been fully zeroed and marked dirty yet.
1244 end = bh_cpos << vol->cluster_size_bits;
1247 bh = head = page_buffers(page);
1249 if (u == nr_pages &&
1250 ((s64)page->index << PAGE_CACHE_SHIFT) +
1251 bh_offset(bh) >= end)
1253 if (!buffer_new(bh))
1255 clear_buffer_new(bh);
1256 if (!buffer_uptodate(bh)) {
1257 if (PageUptodate(page))
1258 set_buffer_uptodate(bh);
1260 zero_user(page, bh_offset(bh),
1262 set_buffer_uptodate(bh);
1265 mark_buffer_dirty(bh);
1266 } while ((bh = bh->b_this_page) != head);
1267 } while (++u <= nr_pages);
1268 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1273 * Copy as much as we can into the pages and return the number of bytes which
1274 * were successfully copied. If a fault is encountered then clear the pages
1275 * out to (ofs + bytes) and return the number of bytes which were copied.
1277 static inline size_t ntfs_copy_from_user(struct page **pages,
1278 unsigned nr_pages, unsigned ofs, const char __user *buf,
1281 struct page **last_page = pages + nr_pages;
1288 len = PAGE_CACHE_SIZE - ofs;
1291 addr = kmap_atomic(*pages);
1292 left = __copy_from_user_inatomic(addr + ofs, buf, len);
1293 kunmap_atomic(addr);
1294 if (unlikely(left)) {
1295 /* Do it the slow way. */
1296 addr = kmap(*pages);
1297 left = __copy_from_user(addr + ofs, buf, len);
1308 } while (++pages < last_page);
1312 total += len - left;
1313 /* Zero the rest of the target like __copy_from_user(). */
1314 while (++pages < last_page) {
1318 len = PAGE_CACHE_SIZE;
1321 zero_user(*pages, 0, len);
1326 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1327 const struct iovec *iov, size_t iov_ofs, size_t bytes)
1332 const char __user *buf = iov->iov_base + iov_ofs;
1336 len = iov->iov_len - iov_ofs;
1339 left = __copy_from_user_inatomic(vaddr, buf, len);
1343 if (unlikely(left)) {
1355 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1356 size_t *iov_ofsp, size_t bytes)
1358 const struct iovec *iov = *iovp;
1359 size_t iov_ofs = *iov_ofsp;
1364 len = iov->iov_len - iov_ofs;
1369 if (iov->iov_len == iov_ofs) {
1375 *iov_ofsp = iov_ofs;
1379 * This has the same side-effects and return value as ntfs_copy_from_user().
1380 * The difference is that on a fault we need to memset the remainder of the
1381 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1382 * single-segment behaviour.
1384 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1385 * atomic and when not atomic. This is ok because it calls
1386 * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
1387 * fact, the only difference between __copy_from_user_inatomic() and
1388 * __copy_from_user() is that the latter calls might_sleep() and the former
1389 * should not zero the tail of the buffer on error. And on many architectures
1390 * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1391 * makes no difference at all on those architectures.
1393 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1394 unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1395 size_t *iov_ofs, size_t bytes)
1397 struct page **last_page = pages + nr_pages;
1399 size_t copied, len, total = 0;
1402 len = PAGE_CACHE_SIZE - ofs;
1405 addr = kmap_atomic(*pages);
1406 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1407 *iov, *iov_ofs, len);
1408 kunmap_atomic(addr);
1409 if (unlikely(copied != len)) {
1410 /* Do it the slow way. */
1411 addr = kmap(*pages);
1412 copied = __ntfs_copy_from_user_iovec_inatomic(addr +
1413 ofs, *iov, *iov_ofs, len);
1414 if (unlikely(copied != len))
1419 ntfs_set_next_iovec(iov, iov_ofs, len);
1424 } while (++pages < last_page);
1428 BUG_ON(copied > len);
1429 /* Zero the rest of the target like __copy_from_user(). */
1430 memset(addr + ofs + copied, 0, len - copied);
1433 ntfs_set_next_iovec(iov, iov_ofs, copied);
1434 while (++pages < last_page) {
1438 len = PAGE_CACHE_SIZE;
1441 zero_user(*pages, 0, len);
1446 static inline void ntfs_flush_dcache_pages(struct page **pages,
1451 * Warning: Do not do the decrement at the same time as the call to
1452 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1453 * decrement never happens so the loop never terminates.
1457 flush_dcache_page(pages[nr_pages]);
1458 } while (nr_pages > 0);
1462 * ntfs_commit_pages_after_non_resident_write - commit the received data
1463 * @pages: array of destination pages
1464 * @nr_pages: number of pages in @pages
1465 * @pos: byte position in file at which the write begins
1466 * @bytes: number of bytes to be written
1468 * See description of ntfs_commit_pages_after_write(), below.
1470 static inline int ntfs_commit_pages_after_non_resident_write(
1471 struct page **pages, const unsigned nr_pages,
1472 s64 pos, size_t bytes)
1474 s64 end, initialized_size;
1476 ntfs_inode *ni, *base_ni;
1477 struct buffer_head *bh, *head;
1478 ntfs_attr_search_ctx *ctx;
1481 unsigned long flags;
1482 unsigned blocksize, u;
1485 vi = pages[0]->mapping->host;
1487 blocksize = vi->i_sb->s_blocksize;
1496 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1497 bh = head = page_buffers(page);
1502 bh_end = bh_pos + blocksize;
1503 if (bh_end <= pos || bh_pos >= end) {
1504 if (!buffer_uptodate(bh))
1507 set_buffer_uptodate(bh);
1508 mark_buffer_dirty(bh);
1510 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1512 * If all buffers are now uptodate but the page is not, set the
1515 if (!partial && !PageUptodate(page))
1516 SetPageUptodate(page);
1517 } while (++u < nr_pages);
1519 * Finally, if we do not need to update initialized_size or i_size we
1522 read_lock_irqsave(&ni->size_lock, flags);
1523 initialized_size = ni->initialized_size;
1524 read_unlock_irqrestore(&ni->size_lock, flags);
1525 if (end <= initialized_size) {
1526 ntfs_debug("Done.");
1530 * Update initialized_size/i_size as appropriate, both in the inode and
1536 base_ni = ni->ext.base_ntfs_ino;
1537 /* Map, pin, and lock the mft record. */
1538 m = map_mft_record(base_ni);
1545 BUG_ON(!NInoNonResident(ni));
1546 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1547 if (unlikely(!ctx)) {
1551 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1552 CASE_SENSITIVE, 0, NULL, 0, ctx);
1553 if (unlikely(err)) {
1559 BUG_ON(!a->non_resident);
1560 write_lock_irqsave(&ni->size_lock, flags);
1561 BUG_ON(end > ni->allocated_size);
1562 ni->initialized_size = end;
1563 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1564 if (end > i_size_read(vi)) {
1565 i_size_write(vi, end);
1566 a->data.non_resident.data_size =
1567 a->data.non_resident.initialized_size;
1569 write_unlock_irqrestore(&ni->size_lock, flags);
1570 /* Mark the mft record dirty, so it gets written back. */
1571 flush_dcache_mft_record_page(ctx->ntfs_ino);
1572 mark_mft_record_dirty(ctx->ntfs_ino);
1573 ntfs_attr_put_search_ctx(ctx);
1574 unmap_mft_record(base_ni);
1575 ntfs_debug("Done.");
1579 ntfs_attr_put_search_ctx(ctx);
1581 unmap_mft_record(base_ni);
1582 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1585 NVolSetErrors(ni->vol);
1590 * ntfs_commit_pages_after_write - commit the received data
1591 * @pages: array of destination pages
1592 * @nr_pages: number of pages in @pages
1593 * @pos: byte position in file at which the write begins
1594 * @bytes: number of bytes to be written
1596 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1597 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1598 * locked but not kmap()ped. The source data has already been copied into the
1599 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1600 * the data was copied (for non-resident attributes only) and it returned
1603 * Need to set uptodate and mark dirty all buffers within the boundary of the
1604 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1606 * Setting the buffers dirty ensures that they get written out later when
1607 * ntfs_writepage() is invoked by the VM.
1609 * Finally, we need to update i_size and initialized_size as appropriate both
1610 * in the inode and the mft record.
1612 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1613 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1614 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1615 * that case, it also marks the inode dirty.
1617 * If things have gone as outlined in
1618 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1619 * content modifications here for non-resident attributes. For resident
1620 * attributes we need to do the uptodate bringing here which we combine with
1621 * the copying into the mft record which means we save one atomic kmap.
1623 * Return 0 on success or -errno on error.
1625 static int ntfs_commit_pages_after_write(struct page **pages,
1626 const unsigned nr_pages, s64 pos, size_t bytes)
1628 s64 end, initialized_size;
1631 ntfs_inode *ni, *base_ni;
1633 ntfs_attr_search_ctx *ctx;
1636 char *kattr, *kaddr;
1637 unsigned long flags;
1645 vi = page->mapping->host;
1647 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1648 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1649 vi->i_ino, ni->type, page->index, nr_pages,
1650 (long long)pos, bytes);
1651 if (NInoNonResident(ni))
1652 return ntfs_commit_pages_after_non_resident_write(pages,
1653 nr_pages, pos, bytes);
1654 BUG_ON(nr_pages > 1);
1656 * Attribute is resident, implying it is not compressed, encrypted, or
1662 base_ni = ni->ext.base_ntfs_ino;
1663 BUG_ON(NInoNonResident(ni));
1664 /* Map, pin, and lock the mft record. */
1665 m = map_mft_record(base_ni);
1672 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1673 if (unlikely(!ctx)) {
1677 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1678 CASE_SENSITIVE, 0, NULL, 0, ctx);
1679 if (unlikely(err)) {
1685 BUG_ON(a->non_resident);
1686 /* The total length of the attribute value. */
1687 attr_len = le32_to_cpu(a->data.resident.value_length);
1688 i_size = i_size_read(vi);
1689 BUG_ON(attr_len != i_size);
1690 BUG_ON(pos > attr_len);
1692 BUG_ON(end > le32_to_cpu(a->length) -
1693 le16_to_cpu(a->data.resident.value_offset));
1694 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1695 kaddr = kmap_atomic(page);
1696 /* Copy the received data from the page to the mft record. */
1697 memcpy(kattr + pos, kaddr + pos, bytes);
1698 /* Update the attribute length if necessary. */
1699 if (end > attr_len) {
1701 a->data.resident.value_length = cpu_to_le32(attr_len);
1704 * If the page is not uptodate, bring the out of bounds area(s)
1705 * uptodate by copying data from the mft record to the page.
1707 if (!PageUptodate(page)) {
1709 memcpy(kaddr, kattr, pos);
1711 memcpy(kaddr + end, kattr + end, attr_len - end);
1712 /* Zero the region outside the end of the attribute value. */
1713 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1714 flush_dcache_page(page);
1715 SetPageUptodate(page);
1717 kunmap_atomic(kaddr);
1718 /* Update initialized_size/i_size if necessary. */
1719 read_lock_irqsave(&ni->size_lock, flags);
1720 initialized_size = ni->initialized_size;
1721 BUG_ON(end > ni->allocated_size);
1722 read_unlock_irqrestore(&ni->size_lock, flags);
1723 BUG_ON(initialized_size != i_size);
1724 if (end > initialized_size) {
1725 write_lock_irqsave(&ni->size_lock, flags);
1726 ni->initialized_size = end;
1727 i_size_write(vi, end);
1728 write_unlock_irqrestore(&ni->size_lock, flags);
1730 /* Mark the mft record dirty, so it gets written back. */
1731 flush_dcache_mft_record_page(ctx->ntfs_ino);
1732 mark_mft_record_dirty(ctx->ntfs_ino);
1733 ntfs_attr_put_search_ctx(ctx);
1734 unmap_mft_record(base_ni);
1735 ntfs_debug("Done.");
1738 if (err == -ENOMEM) {
1739 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1740 "commit the write.");
1741 if (PageUptodate(page)) {
1742 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1743 "dirty so the write will be retried "
1744 "later on by the VM.");
1746 * Put the page on mapping->dirty_pages, but leave its
1747 * buffers' dirty state as-is.
1749 __set_page_dirty_nobuffers(page);
1752 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1753 "data has been lost.");
1755 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1756 "with error %i.", err);
1757 NVolSetErrors(ni->vol);
1760 ntfs_attr_put_search_ctx(ctx);
1762 unmap_mft_record(base_ni);
1766 static void ntfs_write_failed(struct address_space *mapping, loff_t to)
1768 struct inode *inode = mapping->host;
1770 if (to > inode->i_size) {
1771 truncate_pagecache(inode, inode->i_size);
1772 ntfs_truncate_vfs(inode);
1777 * ntfs_file_buffered_write -
1779 * Locking: The vfs is holding ->i_mutex on the inode.
1781 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1782 const struct iovec *iov, unsigned long nr_segs,
1783 loff_t pos, loff_t *ppos, size_t count)
1785 struct file *file = iocb->ki_filp;
1786 struct address_space *mapping = file->f_mapping;
1787 struct inode *vi = mapping->host;
1788 ntfs_inode *ni = NTFS_I(vi);
1789 ntfs_volume *vol = ni->vol;
1790 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1791 struct page *cached_page = NULL;
1792 char __user *buf = NULL;
1796 unsigned long flags;
1797 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */
1798 ssize_t status, written;
1802 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1803 "pos 0x%llx, count 0x%lx.",
1804 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1805 (unsigned long long)pos, (unsigned long)count);
1806 if (unlikely(!count))
1808 BUG_ON(NInoMstProtected(ni));
1810 * If the attribute is not an index root and it is encrypted or
1811 * compressed, we cannot write to it yet. Note we need to check for
1812 * AT_INDEX_ALLOCATION since this is the type of both directory and
1815 if (ni->type != AT_INDEX_ALLOCATION) {
1816 /* If file is encrypted, deny access, just like NT4. */
1817 if (NInoEncrypted(ni)) {
1819 * Reminder for later: Encrypted files are _always_
1820 * non-resident so that the content can always be
1823 ntfs_debug("Denying write access to encrypted file.");
1826 if (NInoCompressed(ni)) {
1827 /* Only unnamed $DATA attribute can be compressed. */
1828 BUG_ON(ni->type != AT_DATA);
1829 BUG_ON(ni->name_len);
1831 * Reminder for later: If resident, the data is not
1832 * actually compressed. Only on the switch to non-
1833 * resident does compression kick in. This is in
1834 * contrast to encrypted files (see above).
1836 ntfs_error(vi->i_sb, "Writing to compressed files is "
1837 "not implemented yet. Sorry.");
1842 * If a previous ntfs_truncate() failed, repeat it and abort if it
1845 if (unlikely(NInoTruncateFailed(ni))) {
1847 err = ntfs_truncate(vi);
1848 if (err || NInoTruncateFailed(ni)) {
1851 ntfs_error(vol->sb, "Cannot perform write to inode "
1852 "0x%lx, attribute type 0x%x, because "
1853 "ntfs_truncate() failed (error code "
1855 (unsigned)le32_to_cpu(ni->type), err);
1859 /* The first byte after the write. */
1862 * If the write goes beyond the allocated size, extend the allocation
1863 * to cover the whole of the write, rounded up to the nearest cluster.
1865 read_lock_irqsave(&ni->size_lock, flags);
1866 ll = ni->allocated_size;
1867 read_unlock_irqrestore(&ni->size_lock, flags);
1869 /* Extend the allocation without changing the data size. */
1870 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1871 if (likely(ll >= 0)) {
1873 /* If the extension was partial truncate the write. */
1875 ntfs_debug("Truncating write to inode 0x%lx, "
1876 "attribute type 0x%x, because "
1877 "the allocation was only "
1878 "partially extended.",
1879 vi->i_ino, (unsigned)
1880 le32_to_cpu(ni->type));
1886 read_lock_irqsave(&ni->size_lock, flags);
1887 ll = ni->allocated_size;
1888 read_unlock_irqrestore(&ni->size_lock, flags);
1889 /* Perform a partial write if possible or fail. */
1891 ntfs_debug("Truncating write to inode 0x%lx, "
1892 "attribute type 0x%x, because "
1893 "extending the allocation "
1894 "failed (error code %i).",
1895 vi->i_ino, (unsigned)
1896 le32_to_cpu(ni->type), err);
1900 ntfs_error(vol->sb, "Cannot perform write to "
1901 "inode 0x%lx, attribute type "
1902 "0x%x, because extending the "
1903 "allocation failed (error "
1904 "code %i).", vi->i_ino,
1906 le32_to_cpu(ni->type), err);
1913 * If the write starts beyond the initialized size, extend it up to the
1914 * beginning of the write and initialize all non-sparse space between
1915 * the old initialized size and the new one. This automatically also
1916 * increments the vfs inode->i_size to keep it above or equal to the
1919 read_lock_irqsave(&ni->size_lock, flags);
1920 ll = ni->initialized_size;
1921 read_unlock_irqrestore(&ni->size_lock, flags);
1923 err = ntfs_attr_extend_initialized(ni, pos);
1925 ntfs_error(vol->sb, "Cannot perform write to inode "
1926 "0x%lx, attribute type 0x%x, because "
1927 "extending the initialized size "
1928 "failed (error code %i).", vi->i_ino,
1929 (unsigned)le32_to_cpu(ni->type), err);
1935 * Determine the number of pages per cluster for non-resident
1939 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1940 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1941 /* Finally, perform the actual write. */
1943 if (likely(nr_segs == 1))
1944 buf = iov->iov_base;
1947 pgoff_t idx, start_idx;
1948 unsigned ofs, do_pages, u;
1951 start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1952 ofs = pos & ~PAGE_CACHE_MASK;
1953 bytes = PAGE_CACHE_SIZE - ofs;
1956 vcn = pos >> vol->cluster_size_bits;
1957 if (vcn != last_vcn) {
1960 * Get the lcn of the vcn the write is in. If
1961 * it is a hole, need to lock down all pages in
1964 down_read(&ni->runlist.lock);
1965 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1966 vol->cluster_size_bits, false);
1967 up_read(&ni->runlist.lock);
1968 if (unlikely(lcn < LCN_HOLE)) {
1970 if (lcn == LCN_ENOMEM)
1973 ntfs_error(vol->sb, "Cannot "
1976 "attribute type 0x%x, "
1977 "because the attribute "
1979 vi->i_ino, (unsigned)
1980 le32_to_cpu(ni->type));
1983 if (lcn == LCN_HOLE) {
1984 start_idx = (pos & ~(s64)
1985 vol->cluster_size_mask)
1986 >> PAGE_CACHE_SHIFT;
1987 bytes = vol->cluster_size - (pos &
1988 vol->cluster_size_mask);
1989 do_pages = nr_pages;
1996 * Bring in the user page(s) that we will copy from _first_.
1997 * Otherwise there is a nasty deadlock on copying from the same
1998 * page(s) as we are writing to, without it/them being marked
1999 * up-to-date. Note, at present there is nothing to stop the
2000 * pages being swapped out between us bringing them into memory
2001 * and doing the actual copying.
2003 if (likely(nr_segs == 1))
2004 ntfs_fault_in_pages_readable(buf, bytes);
2006 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2007 /* Get and lock @do_pages starting at index @start_idx. */
2008 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2009 pages, &cached_page);
2010 if (unlikely(status))
2013 * For non-resident attributes, we need to fill any holes with
2014 * actual clusters and ensure all bufferes are mapped. We also
2015 * need to bring uptodate any buffers that are only partially
2018 if (NInoNonResident(ni)) {
2019 status = ntfs_prepare_pages_for_non_resident_write(
2020 pages, do_pages, pos, bytes);
2021 if (unlikely(status)) {
2025 unlock_page(pages[--do_pages]);
2026 page_cache_release(pages[do_pages]);
2029 * The write preparation may have instantiated
2030 * allocated space outside i_size. Trim this
2031 * off again. We can ignore any errors in this
2032 * case as we will just be waisting a bit of
2033 * allocated space, which is not a disaster.
2035 i_size = i_size_read(vi);
2036 if (pos + bytes > i_size) {
2037 ntfs_write_failed(mapping, pos + bytes);
2042 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2043 if (likely(nr_segs == 1)) {
2044 copied = ntfs_copy_from_user(pages + u, do_pages - u,
2048 copied = ntfs_copy_from_user_iovec(pages + u,
2049 do_pages - u, ofs, &iov, &iov_ofs,
2051 ntfs_flush_dcache_pages(pages + u, do_pages - u);
2052 status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2054 if (likely(!status)) {
2058 if (unlikely(copied != bytes))
2062 unlock_page(pages[--do_pages]);
2063 page_cache_release(pages[do_pages]);
2065 if (unlikely(status))
2067 balance_dirty_pages_ratelimited(mapping);
2073 page_cache_release(cached_page);
2074 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2075 written ? "written" : "status", (unsigned long)written,
2077 return written ? written : status;
2081 * ntfs_file_aio_write_nolock -
2083 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2084 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2086 struct file *file = iocb->ki_filp;
2087 struct address_space *mapping = file->f_mapping;
2088 struct inode *inode = mapping->host;
2090 size_t count; /* after file limit checks */
2091 ssize_t written, err;
2094 err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2098 /* We can write back this queue in page reclaim. */
2099 current->backing_dev_info = mapping->backing_dev_info;
2101 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2106 err = file_remove_suid(file);
2109 err = file_update_time(file);
2112 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2115 current->backing_dev_info = NULL;
2116 return written ? written : err;
2120 * ntfs_file_aio_write -
2122 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2123 unsigned long nr_segs, loff_t pos)
2125 struct file *file = iocb->ki_filp;
2126 struct address_space *mapping = file->f_mapping;
2127 struct inode *inode = mapping->host;
2130 BUG_ON(iocb->ki_pos != pos);
2132 mutex_lock(&inode->i_mutex);
2133 ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2134 mutex_unlock(&inode->i_mutex);
2136 int err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2144 * ntfs_file_fsync - sync a file to disk
2145 * @filp: file to be synced
2146 * @datasync: if non-zero only flush user data and not metadata
2148 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2149 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2151 * If @datasync is false, write the mft record and all associated extent mft
2152 * records as well as the $DATA attribute and then sync the block device.
2154 * If @datasync is true and the attribute is non-resident, we skip the writing
2155 * of the mft record and all associated extent mft records (this might still
2156 * happen due to the write_inode_now() call).
2158 * Also, if @datasync is true, we do not wait on the inode to be written out
2159 * but we always wait on the page cache pages to be written out.
2161 * Locking: Caller must hold i_mutex on the inode.
2163 * TODO: We should probably also write all attribute/index inodes associated
2164 * with this inode but since we have no simple way of getting to them we ignore
2165 * this problem for now.
2167 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
2170 struct inode *vi = filp->f_mapping->host;
2173 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2175 err = filemap_write_and_wait_range(vi->i_mapping, start, end);
2178 mutex_lock(&vi->i_mutex);
2180 BUG_ON(S_ISDIR(vi->i_mode));
2181 if (!datasync || !NInoNonResident(NTFS_I(vi)))
2182 ret = __ntfs_write_inode(vi, 1);
2183 write_inode_now(vi, !datasync);
2185 * NOTE: If we were to use mapping->private_list (see ext2 and
2186 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2187 * sync_mapping_buffers(vi->i_mapping).
2189 err = sync_blockdev(vi->i_sb->s_bdev);
2190 if (unlikely(err && !ret))
2193 ntfs_debug("Done.");
2195 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
2196 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2197 mutex_unlock(&vi->i_mutex);
2201 #endif /* NTFS_RW */
2203 const struct file_operations ntfs_file_ops = {
2204 .llseek = generic_file_llseek, /* Seek inside file. */
2205 .read = do_sync_read, /* Read from file. */
2206 .aio_read = generic_file_aio_read, /* Async read from file. */
2208 .write = do_sync_write, /* Write to file. */
2209 .aio_write = ntfs_file_aio_write, /* Async write to file. */
2210 /*.release = ,*/ /* Last file is closed. See
2212 ext2_release_file() for
2213 how to use this to discard
2214 preallocated space for
2215 write opened files. */
2216 .fsync = ntfs_file_fsync, /* Sync a file to disk. */
2217 /*.aio_fsync = ,*/ /* Sync all outstanding async
2220 #endif /* NTFS_RW */
2221 /*.ioctl = ,*/ /* Perform function on the
2222 mounted filesystem. */
2223 .mmap = generic_file_mmap, /* Mmap file. */
2224 .open = ntfs_file_open, /* Open file. */
2225 .splice_read = generic_file_splice_read /* Zero-copy data send with
2226 the data source being on
2227 the ntfs partition. We do
2228 not need to care about the
2229 data destination. */
2230 /*.sendpage = ,*/ /* Zero-copy data send with
2231 the data destination being
2232 on the ntfs partition. We
2233 do not need to care about
2237 const struct inode_operations ntfs_file_inode_ops = {
2239 .setattr = ntfs_setattr,
2240 #endif /* NTFS_RW */
2243 const struct file_operations ntfs_empty_file_ops = {};
2245 const struct inode_operations ntfs_empty_inode_ops = {};