1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
74 #include <uapi/linux/wait.h>
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
82 * The default value should be high enough to not crash a system that randomly
83 * crashes its kernel from time to time, but low enough to at least not permit
84 * overflowing 32-bit refcounts or the ldsem writer count.
86 static unsigned int oops_limit = 10000;
89 static struct ctl_table kern_exit_table[] = {
91 .procname = "oops_limit",
93 .maxlen = sizeof(oops_limit),
95 .proc_handler = proc_douintvec,
100 static __init int kernel_exit_sysctls_init(void)
102 register_sysctl_init("kernel", kern_exit_table);
105 late_initcall(kernel_exit_sysctls_init);
108 static atomic_t oops_count = ATOMIC_INIT(0);
111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
114 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
119 static __init int kernel_exit_sysfs_init(void)
121 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
124 late_initcall(kernel_exit_sysfs_init);
127 static void __unhash_process(struct task_struct *p, bool group_dead)
130 detach_pid(p, PIDTYPE_PID);
132 detach_pid(p, PIDTYPE_TGID);
133 detach_pid(p, PIDTYPE_PGID);
134 detach_pid(p, PIDTYPE_SID);
136 list_del_rcu(&p->tasks);
137 list_del_init(&p->sibling);
138 __this_cpu_dec(process_counts);
140 list_del_rcu(&p->thread_node);
144 * This function expects the tasklist_lock write-locked.
146 static void __exit_signal(struct task_struct *tsk)
148 struct signal_struct *sig = tsk->signal;
149 bool group_dead = thread_group_leader(tsk);
150 struct sighand_struct *sighand;
151 struct tty_struct *tty;
154 sighand = rcu_dereference_check(tsk->sighand,
155 lockdep_tasklist_lock_is_held());
156 spin_lock(&sighand->siglock);
158 #ifdef CONFIG_POSIX_TIMERS
159 posix_cpu_timers_exit(tsk);
161 posix_cpu_timers_exit_group(tsk);
169 * If there is any task waiting for the group exit
172 if (sig->notify_count > 0 && !--sig->notify_count)
173 wake_up_process(sig->group_exec_task);
175 if (tsk == sig->curr_target)
176 sig->curr_target = next_thread(tsk);
179 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
180 sizeof(unsigned long long));
183 * Accumulate here the counters for all threads as they die. We could
184 * skip the group leader because it is the last user of signal_struct,
185 * but we want to avoid the race with thread_group_cputime() which can
186 * see the empty ->thread_head list.
188 task_cputime(tsk, &utime, &stime);
189 write_seqlock(&sig->stats_lock);
192 sig->gtime += task_gtime(tsk);
193 sig->min_flt += tsk->min_flt;
194 sig->maj_flt += tsk->maj_flt;
195 sig->nvcsw += tsk->nvcsw;
196 sig->nivcsw += tsk->nivcsw;
197 sig->inblock += task_io_get_inblock(tsk);
198 sig->oublock += task_io_get_oublock(tsk);
199 task_io_accounting_add(&sig->ioac, &tsk->ioac);
200 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
202 __unhash_process(tsk, group_dead);
203 write_sequnlock(&sig->stats_lock);
206 * Do this under ->siglock, we can race with another thread
207 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
209 flush_sigqueue(&tsk->pending);
211 spin_unlock(&sighand->siglock);
213 __cleanup_sighand(sighand);
214 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
216 flush_sigqueue(&sig->shared_pending);
221 static void delayed_put_task_struct(struct rcu_head *rhp)
223 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
225 kprobe_flush_task(tsk);
226 rethook_flush_task(tsk);
227 perf_event_delayed_put(tsk);
228 trace_sched_process_free(tsk);
229 put_task_struct(tsk);
232 void put_task_struct_rcu_user(struct task_struct *task)
234 if (refcount_dec_and_test(&task->rcu_users))
235 call_rcu(&task->rcu, delayed_put_task_struct);
238 void __weak release_thread(struct task_struct *dead_task)
242 void release_task(struct task_struct *p)
244 struct task_struct *leader;
245 struct pid *thread_pid;
248 /* don't need to get the RCU readlock here - the process is dead and
249 * can't be modifying its own credentials. But shut RCU-lockdep up */
251 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
256 write_lock_irq(&tasklist_lock);
257 ptrace_release_task(p);
258 thread_pid = get_pid(p->thread_pid);
262 * If we are the last non-leader member of the thread
263 * group, and the leader is zombie, then notify the
264 * group leader's parent process. (if it wants notification.)
267 leader = p->group_leader;
268 if (leader != p && thread_group_empty(leader)
269 && leader->exit_state == EXIT_ZOMBIE) {
271 * If we were the last child thread and the leader has
272 * exited already, and the leader's parent ignores SIGCHLD,
273 * then we are the one who should release the leader.
275 zap_leader = do_notify_parent(leader, leader->exit_signal);
277 leader->exit_state = EXIT_DEAD;
280 write_unlock_irq(&tasklist_lock);
281 seccomp_filter_release(p);
282 proc_flush_pid(thread_pid);
285 put_task_struct_rcu_user(p);
288 if (unlikely(zap_leader))
292 int rcuwait_wake_up(struct rcuwait *w)
295 struct task_struct *task;
300 * Order condition vs @task, such that everything prior to the load
301 * of @task is visible. This is the condition as to why the user called
302 * rcuwait_wake() in the first place. Pairs with set_current_state()
303 * barrier (A) in rcuwait_wait_event().
306 * [S] tsk = current [S] cond = true
312 task = rcu_dereference(w->task);
314 ret = wake_up_process(task);
319 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
322 * Determine if a process group is "orphaned", according to the POSIX
323 * definition in 2.2.2.52. Orphaned process groups are not to be affected
324 * by terminal-generated stop signals. Newly orphaned process groups are
325 * to receive a SIGHUP and a SIGCONT.
327 * "I ask you, have you ever known what it is to be an orphan?"
329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330 struct task_struct *ignored_task)
332 struct task_struct *p;
334 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335 if ((p == ignored_task) ||
336 (p->exit_state && thread_group_empty(p)) ||
337 is_global_init(p->real_parent))
340 if (task_pgrp(p->real_parent) != pgrp &&
341 task_session(p->real_parent) == task_session(p))
343 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
348 int is_current_pgrp_orphaned(void)
352 read_lock(&tasklist_lock);
353 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354 read_unlock(&tasklist_lock);
359 static bool has_stopped_jobs(struct pid *pgrp)
361 struct task_struct *p;
363 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364 if (p->signal->flags & SIGNAL_STOP_STOPPED)
366 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
372 * Check to see if any process groups have become orphaned as
373 * a result of our exiting, and if they have any stopped jobs,
374 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
379 struct pid *pgrp = task_pgrp(tsk);
380 struct task_struct *ignored_task = tsk;
383 /* exit: our father is in a different pgrp than
384 * we are and we were the only connection outside.
386 parent = tsk->real_parent;
388 /* reparent: our child is in a different pgrp than
389 * we are, and it was the only connection outside.
393 if (task_pgrp(parent) != pgrp &&
394 task_session(parent) == task_session(tsk) &&
395 will_become_orphaned_pgrp(pgrp, ignored_task) &&
396 has_stopped_jobs(pgrp)) {
397 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
402 static void coredump_task_exit(struct task_struct *tsk)
404 struct core_state *core_state;
407 * Serialize with any possible pending coredump.
408 * We must hold siglock around checking core_state
409 * and setting PF_POSTCOREDUMP. The core-inducing thread
410 * will increment ->nr_threads for each thread in the
411 * group without PF_POSTCOREDUMP set.
413 spin_lock_irq(&tsk->sighand->siglock);
414 tsk->flags |= PF_POSTCOREDUMP;
415 core_state = tsk->signal->core_state;
416 spin_unlock_irq(&tsk->sighand->siglock);
418 /* The vhost_worker does not particpate in coredumps */
420 ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
421 struct core_thread self;
424 if (self.task->flags & PF_SIGNALED)
425 self.next = xchg(&core_state->dumper.next, &self);
429 * Implies mb(), the result of xchg() must be visible
430 * to core_state->dumper.
432 if (atomic_dec_and_test(&core_state->nr_threads))
433 complete(&core_state->startup);
436 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
437 if (!self.task) /* see coredump_finish() */
441 __set_current_state(TASK_RUNNING);
447 * A task is exiting. If it owned this mm, find a new owner for the mm.
449 void mm_update_next_owner(struct mm_struct *mm)
451 struct task_struct *c, *g, *p = current;
455 * If the exiting or execing task is not the owner, it's
456 * someone else's problem.
461 * The current owner is exiting/execing and there are no other
462 * candidates. Do not leave the mm pointing to a possibly
463 * freed task structure.
465 if (atomic_read(&mm->mm_users) <= 1) {
466 WRITE_ONCE(mm->owner, NULL);
470 read_lock(&tasklist_lock);
472 * Search in the children
474 list_for_each_entry(c, &p->children, sibling) {
476 goto assign_new_owner;
480 * Search in the siblings
482 list_for_each_entry(c, &p->real_parent->children, sibling) {
484 goto assign_new_owner;
488 * Search through everything else, we should not get here often.
490 for_each_process(g) {
491 if (g->flags & PF_KTHREAD)
493 for_each_thread(g, c) {
495 goto assign_new_owner;
500 read_unlock(&tasklist_lock);
502 * We found no owner yet mm_users > 1: this implies that we are
503 * most likely racing with swapoff (try_to_unuse()) or /proc or
504 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
506 WRITE_ONCE(mm->owner, NULL);
513 * The task_lock protects c->mm from changing.
514 * We always want mm->owner->mm == mm
518 * Delay read_unlock() till we have the task_lock()
519 * to ensure that c does not slip away underneath us
521 read_unlock(&tasklist_lock);
527 WRITE_ONCE(mm->owner, c);
528 lru_gen_migrate_mm(mm);
532 #endif /* CONFIG_MEMCG */
535 * Turn us into a lazy TLB process if we
538 static void exit_mm(void)
540 struct mm_struct *mm = current->mm;
542 exit_mm_release(current, mm);
547 BUG_ON(mm != current->active_mm);
548 /* more a memory barrier than a real lock */
551 * When a thread stops operating on an address space, the loop
552 * in membarrier_private_expedited() may not observe that
553 * tsk->mm, and the loop in membarrier_global_expedited() may
554 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
555 * rq->membarrier_state, so those would not issue an IPI.
556 * Membarrier requires a memory barrier after accessing
557 * user-space memory, before clearing tsk->mm or the
558 * rq->membarrier_state.
560 smp_mb__after_spinlock();
563 membarrier_update_current_mm(NULL);
564 enter_lazy_tlb(mm, current);
566 task_unlock(current);
567 mmap_read_unlock(mm);
568 mm_update_next_owner(mm);
570 if (test_thread_flag(TIF_MEMDIE))
574 static struct task_struct *find_alive_thread(struct task_struct *p)
576 struct task_struct *t;
578 for_each_thread(p, t) {
579 if (!(t->flags & PF_EXITING))
585 static struct task_struct *find_child_reaper(struct task_struct *father,
586 struct list_head *dead)
587 __releases(&tasklist_lock)
588 __acquires(&tasklist_lock)
590 struct pid_namespace *pid_ns = task_active_pid_ns(father);
591 struct task_struct *reaper = pid_ns->child_reaper;
592 struct task_struct *p, *n;
594 if (likely(reaper != father))
597 reaper = find_alive_thread(father);
599 pid_ns->child_reaper = reaper;
603 write_unlock_irq(&tasklist_lock);
605 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
606 list_del_init(&p->ptrace_entry);
610 zap_pid_ns_processes(pid_ns);
611 write_lock_irq(&tasklist_lock);
617 * When we die, we re-parent all our children, and try to:
618 * 1. give them to another thread in our thread group, if such a member exists
619 * 2. give it to the first ancestor process which prctl'd itself as a
620 * child_subreaper for its children (like a service manager)
621 * 3. give it to the init process (PID 1) in our pid namespace
623 static struct task_struct *find_new_reaper(struct task_struct *father,
624 struct task_struct *child_reaper)
626 struct task_struct *thread, *reaper;
628 thread = find_alive_thread(father);
632 if (father->signal->has_child_subreaper) {
633 unsigned int ns_level = task_pid(father)->level;
635 * Find the first ->is_child_subreaper ancestor in our pid_ns.
636 * We can't check reaper != child_reaper to ensure we do not
637 * cross the namespaces, the exiting parent could be injected
638 * by setns() + fork().
639 * We check pid->level, this is slightly more efficient than
640 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
642 for (reaper = father->real_parent;
643 task_pid(reaper)->level == ns_level;
644 reaper = reaper->real_parent) {
645 if (reaper == &init_task)
647 if (!reaper->signal->is_child_subreaper)
649 thread = find_alive_thread(reaper);
659 * Any that need to be release_task'd are put on the @dead list.
661 static void reparent_leader(struct task_struct *father, struct task_struct *p,
662 struct list_head *dead)
664 if (unlikely(p->exit_state == EXIT_DEAD))
667 /* We don't want people slaying init. */
668 p->exit_signal = SIGCHLD;
670 /* If it has exited notify the new parent about this child's death. */
672 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
673 if (do_notify_parent(p, p->exit_signal)) {
674 p->exit_state = EXIT_DEAD;
675 list_add(&p->ptrace_entry, dead);
679 kill_orphaned_pgrp(p, father);
683 * This does two things:
685 * A. Make init inherit all the child processes
686 * B. Check to see if any process groups have become orphaned
687 * as a result of our exiting, and if they have any stopped
688 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
690 static void forget_original_parent(struct task_struct *father,
691 struct list_head *dead)
693 struct task_struct *p, *t, *reaper;
695 if (unlikely(!list_empty(&father->ptraced)))
696 exit_ptrace(father, dead);
698 /* Can drop and reacquire tasklist_lock */
699 reaper = find_child_reaper(father, dead);
700 if (list_empty(&father->children))
703 reaper = find_new_reaper(father, reaper);
704 list_for_each_entry(p, &father->children, sibling) {
705 for_each_thread(p, t) {
706 RCU_INIT_POINTER(t->real_parent, reaper);
707 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
708 if (likely(!t->ptrace))
709 t->parent = t->real_parent;
710 if (t->pdeath_signal)
711 group_send_sig_info(t->pdeath_signal,
716 * If this is a threaded reparent there is no need to
717 * notify anyone anything has happened.
719 if (!same_thread_group(reaper, father))
720 reparent_leader(father, p, dead);
722 list_splice_tail_init(&father->children, &reaper->children);
726 * Send signals to all our closest relatives so that they know
727 * to properly mourn us..
729 static void exit_notify(struct task_struct *tsk, int group_dead)
732 struct task_struct *p, *n;
735 write_lock_irq(&tasklist_lock);
736 forget_original_parent(tsk, &dead);
739 kill_orphaned_pgrp(tsk->group_leader, NULL);
741 tsk->exit_state = EXIT_ZOMBIE;
742 if (unlikely(tsk->ptrace)) {
743 int sig = thread_group_leader(tsk) &&
744 thread_group_empty(tsk) &&
745 !ptrace_reparented(tsk) ?
746 tsk->exit_signal : SIGCHLD;
747 autoreap = do_notify_parent(tsk, sig);
748 } else if (thread_group_leader(tsk)) {
749 autoreap = thread_group_empty(tsk) &&
750 do_notify_parent(tsk, tsk->exit_signal);
756 tsk->exit_state = EXIT_DEAD;
757 list_add(&tsk->ptrace_entry, &dead);
760 /* mt-exec, de_thread() is waiting for group leader */
761 if (unlikely(tsk->signal->notify_count < 0))
762 wake_up_process(tsk->signal->group_exec_task);
763 write_unlock_irq(&tasklist_lock);
765 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
766 list_del_init(&p->ptrace_entry);
771 #ifdef CONFIG_DEBUG_STACK_USAGE
772 static void check_stack_usage(void)
774 static DEFINE_SPINLOCK(low_water_lock);
775 static int lowest_to_date = THREAD_SIZE;
778 free = stack_not_used(current);
780 if (free >= lowest_to_date)
783 spin_lock(&low_water_lock);
784 if (free < lowest_to_date) {
785 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
786 current->comm, task_pid_nr(current), free);
787 lowest_to_date = free;
789 spin_unlock(&low_water_lock);
792 static inline void check_stack_usage(void) {}
795 static void synchronize_group_exit(struct task_struct *tsk, long code)
797 struct sighand_struct *sighand = tsk->sighand;
798 struct signal_struct *signal = tsk->signal;
800 spin_lock_irq(&sighand->siglock);
801 signal->quick_threads--;
802 if ((signal->quick_threads == 0) &&
803 !(signal->flags & SIGNAL_GROUP_EXIT)) {
804 signal->flags = SIGNAL_GROUP_EXIT;
805 signal->group_exit_code = code;
806 signal->group_stop_count = 0;
808 spin_unlock_irq(&sighand->siglock);
811 void __noreturn do_exit(long code)
813 struct task_struct *tsk = current;
816 WARN_ON(irqs_disabled());
818 synchronize_group_exit(tsk, code);
823 kmsan_task_exit(tsk);
825 coredump_task_exit(tsk);
826 ptrace_event(PTRACE_EVENT_EXIT, code);
827 user_events_exit(tsk);
829 io_uring_files_cancel();
830 exit_signals(tsk); /* sets PF_EXITING */
832 acct_update_integrals(tsk);
833 group_dead = atomic_dec_and_test(&tsk->signal->live);
836 * If the last thread of global init has exited, panic
837 * immediately to get a useable coredump.
839 if (unlikely(is_global_init(tsk)))
840 panic("Attempted to kill init! exitcode=0x%08x\n",
841 tsk->signal->group_exit_code ?: (int)code);
843 #ifdef CONFIG_POSIX_TIMERS
844 hrtimer_cancel(&tsk->signal->real_timer);
848 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
850 acct_collect(code, group_dead);
855 tsk->exit_code = code;
856 taskstats_exit(tsk, group_dead);
862 trace_sched_process_exit(tsk);
869 disassociate_ctty(1);
870 exit_task_namespaces(tsk);
875 * Flush inherited counters to the parent - before the parent
876 * gets woken up by child-exit notifications.
878 * because of cgroup mode, must be called before cgroup_exit()
880 perf_event_exit_task(tsk);
882 sched_autogroup_exit_task(tsk);
886 * FIXME: do that only when needed, using sched_exit tracepoint
888 flush_ptrace_hw_breakpoint(tsk);
890 exit_tasks_rcu_start();
891 exit_notify(tsk, group_dead);
892 proc_exit_connector(tsk);
893 mpol_put_task_policy(tsk);
895 if (unlikely(current->pi_state_cache))
896 kfree(current->pi_state_cache);
899 * Make sure we are holding no locks:
901 debug_check_no_locks_held();
904 exit_io_context(tsk);
906 if (tsk->splice_pipe)
907 free_pipe_info(tsk->splice_pipe);
909 if (tsk->task_frag.page)
910 put_page(tsk->task_frag.page);
912 exit_task_stack_account(tsk);
917 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
919 exit_tasks_rcu_finish();
921 lockdep_free_task(tsk);
925 void __noreturn make_task_dead(int signr)
928 * Take the task off the cpu after something catastrophic has
931 * We can get here from a kernel oops, sometimes with preemption off.
932 * Start by checking for critical errors.
933 * Then fix up important state like USER_DS and preemption.
934 * Then do everything else.
936 struct task_struct *tsk = current;
939 if (unlikely(in_interrupt()))
940 panic("Aiee, killing interrupt handler!");
941 if (unlikely(!tsk->pid))
942 panic("Attempted to kill the idle task!");
944 if (unlikely(irqs_disabled())) {
945 pr_info("note: %s[%d] exited with irqs disabled\n",
946 current->comm, task_pid_nr(current));
949 if (unlikely(in_atomic())) {
950 pr_info("note: %s[%d] exited with preempt_count %d\n",
951 current->comm, task_pid_nr(current),
953 preempt_count_set(PREEMPT_ENABLED);
957 * Every time the system oopses, if the oops happens while a reference
958 * to an object was held, the reference leaks.
959 * If the oops doesn't also leak memory, repeated oopsing can cause
960 * reference counters to wrap around (if they're not using refcount_t).
961 * This means that repeated oopsing can make unexploitable-looking bugs
962 * exploitable through repeated oopsing.
963 * To make sure this can't happen, place an upper bound on how often the
964 * kernel may oops without panic().
966 limit = READ_ONCE(oops_limit);
967 if (atomic_inc_return(&oops_count) >= limit && limit)
968 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
971 * We're taking recursive faults here in make_task_dead. Safest is to just
972 * leave this task alone and wait for reboot.
974 if (unlikely(tsk->flags & PF_EXITING)) {
975 pr_alert("Fixing recursive fault but reboot is needed!\n");
976 futex_exit_recursive(tsk);
977 tsk->exit_state = EXIT_DEAD;
978 refcount_inc(&tsk->rcu_users);
985 SYSCALL_DEFINE1(exit, int, error_code)
987 do_exit((error_code&0xff)<<8);
991 * Take down every thread in the group. This is called by fatal signals
992 * as well as by sys_exit_group (below).
995 do_group_exit(int exit_code)
997 struct signal_struct *sig = current->signal;
999 if (sig->flags & SIGNAL_GROUP_EXIT)
1000 exit_code = sig->group_exit_code;
1001 else if (sig->group_exec_task)
1004 struct sighand_struct *const sighand = current->sighand;
1006 spin_lock_irq(&sighand->siglock);
1007 if (sig->flags & SIGNAL_GROUP_EXIT)
1008 /* Another thread got here before we took the lock. */
1009 exit_code = sig->group_exit_code;
1010 else if (sig->group_exec_task)
1013 sig->group_exit_code = exit_code;
1014 sig->flags = SIGNAL_GROUP_EXIT;
1015 zap_other_threads(current);
1017 spin_unlock_irq(&sighand->siglock);
1025 * this kills every thread in the thread group. Note that any externally
1026 * wait4()-ing process will get the correct exit code - even if this
1027 * thread is not the thread group leader.
1029 SYSCALL_DEFINE1(exit_group, int, error_code)
1031 do_group_exit((error_code & 0xff) << 8);
1036 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1038 return wo->wo_type == PIDTYPE_MAX ||
1039 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1043 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1045 if (!eligible_pid(wo, p))
1049 * Wait for all children (clone and not) if __WALL is set or
1050 * if it is traced by us.
1052 if (ptrace || (wo->wo_flags & __WALL))
1056 * Otherwise, wait for clone children *only* if __WCLONE is set;
1057 * otherwise, wait for non-clone children *only*.
1059 * Note: a "clone" child here is one that reports to its parent
1060 * using a signal other than SIGCHLD, or a non-leader thread which
1061 * we can only see if it is traced by us.
1063 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1070 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1071 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1072 * the lock and this task is uninteresting. If we return nonzero, we have
1073 * released the lock and the system call should return.
1075 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1078 pid_t pid = task_pid_vnr(p);
1079 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1080 struct waitid_info *infop;
1082 if (!likely(wo->wo_flags & WEXITED))
1085 if (unlikely(wo->wo_flags & WNOWAIT)) {
1086 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1087 ? p->signal->group_exit_code : p->exit_code;
1089 read_unlock(&tasklist_lock);
1090 sched_annotate_sleep();
1092 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1097 * Move the task's state to DEAD/TRACE, only one thread can do this.
1099 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1100 EXIT_TRACE : EXIT_DEAD;
1101 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1104 * We own this thread, nobody else can reap it.
1106 read_unlock(&tasklist_lock);
1107 sched_annotate_sleep();
1110 * Check thread_group_leader() to exclude the traced sub-threads.
1112 if (state == EXIT_DEAD && thread_group_leader(p)) {
1113 struct signal_struct *sig = p->signal;
1114 struct signal_struct *psig = current->signal;
1115 unsigned long maxrss;
1116 u64 tgutime, tgstime;
1119 * The resource counters for the group leader are in its
1120 * own task_struct. Those for dead threads in the group
1121 * are in its signal_struct, as are those for the child
1122 * processes it has previously reaped. All these
1123 * accumulate in the parent's signal_struct c* fields.
1125 * We don't bother to take a lock here to protect these
1126 * p->signal fields because the whole thread group is dead
1127 * and nobody can change them.
1129 * psig->stats_lock also protects us from our sub-threads
1130 * which can reap other children at the same time. Until
1131 * we change k_getrusage()-like users to rely on this lock
1132 * we have to take ->siglock as well.
1134 * We use thread_group_cputime_adjusted() to get times for
1135 * the thread group, which consolidates times for all threads
1136 * in the group including the group leader.
1138 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1139 spin_lock_irq(¤t->sighand->siglock);
1140 write_seqlock(&psig->stats_lock);
1141 psig->cutime += tgutime + sig->cutime;
1142 psig->cstime += tgstime + sig->cstime;
1143 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1145 p->min_flt + sig->min_flt + sig->cmin_flt;
1147 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1149 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1151 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1153 task_io_get_inblock(p) +
1154 sig->inblock + sig->cinblock;
1156 task_io_get_oublock(p) +
1157 sig->oublock + sig->coublock;
1158 maxrss = max(sig->maxrss, sig->cmaxrss);
1159 if (psig->cmaxrss < maxrss)
1160 psig->cmaxrss = maxrss;
1161 task_io_accounting_add(&psig->ioac, &p->ioac);
1162 task_io_accounting_add(&psig->ioac, &sig->ioac);
1163 write_sequnlock(&psig->stats_lock);
1164 spin_unlock_irq(¤t->sighand->siglock);
1168 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1169 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1170 ? p->signal->group_exit_code : p->exit_code;
1171 wo->wo_stat = status;
1173 if (state == EXIT_TRACE) {
1174 write_lock_irq(&tasklist_lock);
1175 /* We dropped tasklist, ptracer could die and untrace */
1178 /* If parent wants a zombie, don't release it now */
1179 state = EXIT_ZOMBIE;
1180 if (do_notify_parent(p, p->exit_signal))
1182 p->exit_state = state;
1183 write_unlock_irq(&tasklist_lock);
1185 if (state == EXIT_DEAD)
1189 infop = wo->wo_info;
1191 if ((status & 0x7f) == 0) {
1192 infop->cause = CLD_EXITED;
1193 infop->status = status >> 8;
1195 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1196 infop->status = status & 0x7f;
1205 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1208 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1209 return &p->exit_code;
1211 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1212 return &p->signal->group_exit_code;
1218 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1220 * @ptrace: is the wait for ptrace
1221 * @p: task to wait for
1223 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1226 * read_lock(&tasklist_lock), which is released if return value is
1227 * non-zero. Also, grabs and releases @p->sighand->siglock.
1230 * 0 if wait condition didn't exist and search for other wait conditions
1231 * should continue. Non-zero return, -errno on failure and @p's pid on
1232 * success, implies that tasklist_lock is released and wait condition
1233 * search should terminate.
1235 static int wait_task_stopped(struct wait_opts *wo,
1236 int ptrace, struct task_struct *p)
1238 struct waitid_info *infop;
1239 int exit_code, *p_code, why;
1240 uid_t uid = 0; /* unneeded, required by compiler */
1244 * Traditionally we see ptrace'd stopped tasks regardless of options.
1246 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1249 if (!task_stopped_code(p, ptrace))
1253 spin_lock_irq(&p->sighand->siglock);
1255 p_code = task_stopped_code(p, ptrace);
1256 if (unlikely(!p_code))
1259 exit_code = *p_code;
1263 if (!unlikely(wo->wo_flags & WNOWAIT))
1266 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1268 spin_unlock_irq(&p->sighand->siglock);
1273 * Now we are pretty sure this task is interesting.
1274 * Make sure it doesn't get reaped out from under us while we
1275 * give up the lock and then examine it below. We don't want to
1276 * keep holding onto the tasklist_lock while we call getrusage and
1277 * possibly take page faults for user memory.
1280 pid = task_pid_vnr(p);
1281 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1282 read_unlock(&tasklist_lock);
1283 sched_annotate_sleep();
1285 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1288 if (likely(!(wo->wo_flags & WNOWAIT)))
1289 wo->wo_stat = (exit_code << 8) | 0x7f;
1291 infop = wo->wo_info;
1294 infop->status = exit_code;
1302 * Handle do_wait work for one task in a live, non-stopped state.
1303 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1304 * the lock and this task is uninteresting. If we return nonzero, we have
1305 * released the lock and the system call should return.
1307 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1309 struct waitid_info *infop;
1313 if (!unlikely(wo->wo_flags & WCONTINUED))
1316 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1319 spin_lock_irq(&p->sighand->siglock);
1320 /* Re-check with the lock held. */
1321 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1322 spin_unlock_irq(&p->sighand->siglock);
1325 if (!unlikely(wo->wo_flags & WNOWAIT))
1326 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1327 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1328 spin_unlock_irq(&p->sighand->siglock);
1330 pid = task_pid_vnr(p);
1332 read_unlock(&tasklist_lock);
1333 sched_annotate_sleep();
1335 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1338 infop = wo->wo_info;
1340 wo->wo_stat = 0xffff;
1342 infop->cause = CLD_CONTINUED;
1345 infop->status = SIGCONT;
1351 * Consider @p for a wait by @parent.
1353 * -ECHILD should be in ->notask_error before the first call.
1354 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1355 * Returns zero if the search for a child should continue;
1356 * then ->notask_error is 0 if @p is an eligible child,
1359 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1360 struct task_struct *p)
1363 * We can race with wait_task_zombie() from another thread.
1364 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1365 * can't confuse the checks below.
1367 int exit_state = READ_ONCE(p->exit_state);
1370 if (unlikely(exit_state == EXIT_DEAD))
1373 ret = eligible_child(wo, ptrace, p);
1377 if (unlikely(exit_state == EXIT_TRACE)) {
1379 * ptrace == 0 means we are the natural parent. In this case
1380 * we should clear notask_error, debugger will notify us.
1382 if (likely(!ptrace))
1383 wo->notask_error = 0;
1387 if (likely(!ptrace) && unlikely(p->ptrace)) {
1389 * If it is traced by its real parent's group, just pretend
1390 * the caller is ptrace_do_wait() and reap this child if it
1393 * This also hides group stop state from real parent; otherwise
1394 * a single stop can be reported twice as group and ptrace stop.
1395 * If a ptracer wants to distinguish these two events for its
1396 * own children it should create a separate process which takes
1397 * the role of real parent.
1399 if (!ptrace_reparented(p))
1404 if (exit_state == EXIT_ZOMBIE) {
1405 /* we don't reap group leaders with subthreads */
1406 if (!delay_group_leader(p)) {
1408 * A zombie ptracee is only visible to its ptracer.
1409 * Notification and reaping will be cascaded to the
1410 * real parent when the ptracer detaches.
1412 if (unlikely(ptrace) || likely(!p->ptrace))
1413 return wait_task_zombie(wo, p);
1417 * Allow access to stopped/continued state via zombie by
1418 * falling through. Clearing of notask_error is complex.
1422 * If WEXITED is set, notask_error should naturally be
1423 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1424 * so, if there are live subthreads, there are events to
1425 * wait for. If all subthreads are dead, it's still safe
1426 * to clear - this function will be called again in finite
1427 * amount time once all the subthreads are released and
1428 * will then return without clearing.
1432 * Stopped state is per-task and thus can't change once the
1433 * target task dies. Only continued and exited can happen.
1434 * Clear notask_error if WCONTINUED | WEXITED.
1436 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1437 wo->notask_error = 0;
1440 * @p is alive and it's gonna stop, continue or exit, so
1441 * there always is something to wait for.
1443 wo->notask_error = 0;
1447 * Wait for stopped. Depending on @ptrace, different stopped state
1448 * is used and the two don't interact with each other.
1450 ret = wait_task_stopped(wo, ptrace, p);
1455 * Wait for continued. There's only one continued state and the
1456 * ptracer can consume it which can confuse the real parent. Don't
1457 * use WCONTINUED from ptracer. You don't need or want it.
1459 return wait_task_continued(wo, p);
1463 * Do the work of do_wait() for one thread in the group, @tsk.
1465 * -ECHILD should be in ->notask_error before the first call.
1466 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1467 * Returns zero if the search for a child should continue; then
1468 * ->notask_error is 0 if there were any eligible children,
1471 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1473 struct task_struct *p;
1475 list_for_each_entry(p, &tsk->children, sibling) {
1476 int ret = wait_consider_task(wo, 0, p);
1485 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1487 struct task_struct *p;
1489 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1490 int ret = wait_consider_task(wo, 1, p);
1499 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1501 if (!eligible_pid(wo, p))
1504 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1510 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1511 int sync, void *key)
1513 struct wait_opts *wo = container_of(wait, struct wait_opts,
1515 struct task_struct *p = key;
1517 if (pid_child_should_wake(wo, p))
1518 return default_wake_function(wait, mode, sync, key);
1523 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1525 __wake_up_sync_key(&parent->signal->wait_chldexit,
1526 TASK_INTERRUPTIBLE, p);
1529 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1530 struct task_struct *target)
1532 struct task_struct *parent =
1533 !ptrace ? target->real_parent : target->parent;
1535 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1536 same_thread_group(current, parent));
1540 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1541 * and tracee lists to find the target task.
1543 static int do_wait_pid(struct wait_opts *wo)
1546 struct task_struct *target;
1550 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1551 if (target && is_effectively_child(wo, ptrace, target)) {
1552 retval = wait_consider_task(wo, ptrace, target);
1558 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1559 if (target && target->ptrace &&
1560 is_effectively_child(wo, ptrace, target)) {
1561 retval = wait_consider_task(wo, ptrace, target);
1569 long __do_wait(struct wait_opts *wo)
1574 * If there is nothing that can match our criteria, just get out.
1575 * We will clear ->notask_error to zero if we see any child that
1576 * might later match our criteria, even if we are not able to reap
1579 wo->notask_error = -ECHILD;
1580 if ((wo->wo_type < PIDTYPE_MAX) &&
1581 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1584 read_lock(&tasklist_lock);
1586 if (wo->wo_type == PIDTYPE_PID) {
1587 retval = do_wait_pid(wo);
1591 struct task_struct *tsk = current;
1594 retval = do_wait_thread(wo, tsk);
1598 retval = ptrace_do_wait(wo, tsk);
1602 if (wo->wo_flags & __WNOTHREAD)
1604 } while_each_thread(current, tsk);
1606 read_unlock(&tasklist_lock);
1609 retval = wo->notask_error;
1610 if (!retval && !(wo->wo_flags & WNOHANG))
1611 return -ERESTARTSYS;
1616 static long do_wait(struct wait_opts *wo)
1620 trace_sched_process_wait(wo->wo_pid);
1622 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1623 wo->child_wait.private = current;
1624 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1627 set_current_state(TASK_INTERRUPTIBLE);
1628 retval = __do_wait(wo);
1629 if (retval != -ERESTARTSYS)
1631 if (signal_pending(current))
1636 __set_current_state(TASK_RUNNING);
1637 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1641 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1642 struct waitid_info *infop, int options,
1645 unsigned int f_flags = 0;
1646 struct pid *pid = NULL;
1649 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1650 __WNOTHREAD|__WCLONE|__WALL))
1652 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1664 pid = find_get_pid(upid);
1667 type = PIDTYPE_PGID;
1672 pid = find_get_pid(upid);
1674 pid = get_task_pid(current, PIDTYPE_PGID);
1681 pid = pidfd_get_pid(upid, &f_flags);
1683 return PTR_ERR(pid);
1692 wo->wo_flags = options;
1693 wo->wo_info = infop;
1695 if (f_flags & O_NONBLOCK)
1696 wo->wo_flags |= WNOHANG;
1701 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1702 int options, struct rusage *ru)
1704 struct wait_opts wo;
1707 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1712 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1719 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1720 infop, int, options, struct rusage __user *, ru)
1723 struct waitid_info info = {.status = 0};
1724 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1730 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1736 if (!user_write_access_begin(infop, sizeof(*infop)))
1739 unsafe_put_user(signo, &infop->si_signo, Efault);
1740 unsafe_put_user(0, &infop->si_errno, Efault);
1741 unsafe_put_user(info.cause, &infop->si_code, Efault);
1742 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1743 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1744 unsafe_put_user(info.status, &infop->si_status, Efault);
1745 user_write_access_end();
1748 user_write_access_end();
1752 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1755 struct wait_opts wo;
1756 struct pid *pid = NULL;
1760 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1761 __WNOTHREAD|__WCLONE|__WALL))
1764 /* -INT_MIN is not defined */
1765 if (upid == INT_MIN)
1770 else if (upid < 0) {
1771 type = PIDTYPE_PGID;
1772 pid = find_get_pid(-upid);
1773 } else if (upid == 0) {
1774 type = PIDTYPE_PGID;
1775 pid = get_task_pid(current, PIDTYPE_PGID);
1776 } else /* upid > 0 */ {
1778 pid = find_get_pid(upid);
1783 wo.wo_flags = options | WEXITED;
1789 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1795 int kernel_wait(pid_t pid, int *stat)
1797 struct wait_opts wo = {
1798 .wo_type = PIDTYPE_PID,
1799 .wo_pid = find_get_pid(pid),
1800 .wo_flags = WEXITED,
1805 if (ret > 0 && wo.wo_stat)
1811 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1812 int, options, struct rusage __user *, ru)
1815 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1818 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1824 #ifdef __ARCH_WANT_SYS_WAITPID
1827 * sys_waitpid() remains for compatibility. waitpid() should be
1828 * implemented by calling sys_wait4() from libc.a.
1830 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1832 return kernel_wait4(pid, stat_addr, options, NULL);
1837 #ifdef CONFIG_COMPAT
1838 COMPAT_SYSCALL_DEFINE4(wait4,
1840 compat_uint_t __user *, stat_addr,
1842 struct compat_rusage __user *, ru)
1845 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1847 if (ru && put_compat_rusage(&r, ru))
1853 COMPAT_SYSCALL_DEFINE5(waitid,
1854 int, which, compat_pid_t, pid,
1855 struct compat_siginfo __user *, infop, int, options,
1856 struct compat_rusage __user *, uru)
1859 struct waitid_info info = {.status = 0};
1860 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1866 /* kernel_waitid() overwrites everything in ru */
1867 if (COMPAT_USE_64BIT_TIME)
1868 err = copy_to_user(uru, &ru, sizeof(ru));
1870 err = put_compat_rusage(&ru, uru);
1879 if (!user_write_access_begin(infop, sizeof(*infop)))
1882 unsafe_put_user(signo, &infop->si_signo, Efault);
1883 unsafe_put_user(0, &infop->si_errno, Efault);
1884 unsafe_put_user(info.cause, &infop->si_code, Efault);
1885 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1886 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1887 unsafe_put_user(info.status, &infop->si_status, Efault);
1888 user_write_access_end();
1891 user_write_access_end();
1897 * thread_group_exited - check that a thread group has exited
1898 * @pid: tgid of thread group to be checked.
1900 * Test if the thread group represented by tgid has exited (all
1901 * threads are zombies, dead or completely gone).
1903 * Return: true if the thread group has exited. false otherwise.
1905 bool thread_group_exited(struct pid *pid)
1907 struct task_struct *task;
1911 task = pid_task(pid, PIDTYPE_PID);
1913 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1918 EXPORT_SYMBOL(thread_group_exited);
1921 * This needs to be __function_aligned as GCC implicitly makes any
1922 * implementation of abort() cold and drops alignment specified by
1923 * -falign-functions=N.
1925 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1927 __weak __function_aligned void abort(void)
1931 /* if that doesn't kill us, halt */
1932 panic("Oops failed to kill thread");
1934 EXPORT_SYMBOL(abort);