1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
152 #include <linux/module.h>
153 #include <linux/moduleparam.h>
154 #include <linux/kernel.h>
155 #include <linux/types.h>
156 #include <linux/sched.h>
157 #include <linux/slab.h>
158 #include <linux/delay.h>
159 #include <linux/init.h>
160 #include <linux/pci.h>
161 #include <linux/dma-mapping.h>
162 #include <linux/dmapool.h>
163 #include <linux/netdevice.h>
164 #include <linux/etherdevice.h>
165 #include <linux/mii.h>
166 #include <linux/if_vlan.h>
167 #include <linux/skbuff.h>
168 #include <linux/ethtool.h>
169 #include <linux/string.h>
170 #include <linux/firmware.h>
171 #include <linux/rtnetlink.h>
172 #include <asm/unaligned.h>
175 #define DRV_NAME "e100"
176 #define DRV_EXT "-NAPI"
177 #define DRV_VERSION "3.5.24-k2"DRV_EXT
178 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
179 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
181 #define E100_WATCHDOG_PERIOD (2 * HZ)
182 #define E100_NAPI_WEIGHT 16
184 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
185 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
186 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
188 MODULE_DESCRIPTION(DRV_DESCRIPTION);
189 MODULE_AUTHOR(DRV_COPYRIGHT);
190 MODULE_LICENSE("GPL");
191 MODULE_VERSION(DRV_VERSION);
192 MODULE_FIRMWARE(FIRMWARE_D101M);
193 MODULE_FIRMWARE(FIRMWARE_D101S);
194 MODULE_FIRMWARE(FIRMWARE_D102E);
196 static int debug = 3;
197 static int eeprom_bad_csum_allow = 0;
198 static int use_io = 0;
199 module_param(debug, int, 0);
200 module_param(eeprom_bad_csum_allow, int, 0);
201 module_param(use_io, int, 0);
202 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
203 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
204 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
206 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
207 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
208 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
209 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
210 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
211 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
212 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
213 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
214 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
218 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
219 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
224 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
225 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
232 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
233 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
234 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
240 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
241 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
242 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
245 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
246 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
247 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
248 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
249 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
250 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
251 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
254 MODULE_DEVICE_TABLE(pci, e100_id_table);
257 mac_82557_D100_A = 0,
258 mac_82557_D100_B = 1,
259 mac_82557_D100_C = 2,
260 mac_82558_D101_A4 = 4,
261 mac_82558_D101_B0 = 5,
265 mac_82550_D102_C = 13,
273 phy_100a = 0x000003E0,
274 phy_100c = 0x035002A8,
275 phy_82555_tx = 0x015002A8,
276 phy_nsc_tx = 0x5C002000,
277 phy_82562_et = 0x033002A8,
278 phy_82562_em = 0x032002A8,
279 phy_82562_ek = 0x031002A8,
280 phy_82562_eh = 0x017002A8,
281 phy_82552_v = 0xd061004d,
282 phy_unknown = 0xFFFFFFFF,
285 /* CSR (Control/Status Registers) */
311 RU_UNINITIALIZED = -1,
315 stat_ack_not_ours = 0x00,
316 stat_ack_sw_gen = 0x04,
318 stat_ack_cu_idle = 0x20,
319 stat_ack_frame_rx = 0x40,
320 stat_ack_cu_cmd_done = 0x80,
321 stat_ack_not_present = 0xFF,
322 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
323 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
327 irq_mask_none = 0x00,
335 ruc_load_base = 0x06,
338 cuc_dump_addr = 0x40,
339 cuc_dump_stats = 0x50,
340 cuc_load_base = 0x60,
341 cuc_dump_reset = 0x70,
345 cuc_dump_complete = 0x0000A005,
346 cuc_dump_reset_complete = 0x0000A007,
350 software_reset = 0x0000,
352 selective_reset = 0x0002,
355 enum eeprom_ctrl_lo {
363 mdi_write = 0x04000000,
364 mdi_read = 0x08000000,
365 mdi_ready = 0x10000000,
375 enum eeprom_offsets {
376 eeprom_cnfg_mdix = 0x03,
377 eeprom_phy_iface = 0x06,
379 eeprom_config_asf = 0x0D,
380 eeprom_smbus_addr = 0x90,
383 enum eeprom_cnfg_mdix {
384 eeprom_mdix_enabled = 0x0080,
387 enum eeprom_phy_iface {
400 eeprom_id_wol = 0x0020,
403 enum eeprom_config_asf {
409 cb_complete = 0x8000,
438 struct rx *next, *prev;
443 #if defined(__BIG_ENDIAN_BITFIELD)
449 /*0*/ u8 X(byte_count:6, pad0:2);
450 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
451 /*2*/ u8 adaptive_ifs;
452 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
453 term_write_cache_line:1), pad3:4);
454 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
455 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
456 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
457 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
458 rx_discard_overruns:1), rx_save_bad_frames:1);
459 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
460 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
462 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
463 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
464 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
465 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
467 /*11*/ u8 X(linear_priority:3, pad11:5);
468 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
469 /*13*/ u8 ip_addr_lo;
470 /*14*/ u8 ip_addr_hi;
471 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
472 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
473 pad15_2:1), crs_or_cdt:1);
474 /*16*/ u8 fc_delay_lo;
475 /*17*/ u8 fc_delay_hi;
476 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
477 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
478 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
479 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
480 full_duplex_force:1), full_duplex_pin:1);
481 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
482 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
483 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
487 #define E100_MAX_MULTICAST_ADDRS 64
490 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
493 /* Important: keep total struct u32-aligned */
494 #define UCODE_SIZE 134
501 __le32 ucode[UCODE_SIZE];
502 struct config config;
515 __le32 dump_buffer_addr;
517 struct cb *next, *prev;
523 lb_none = 0, lb_mac = 1, lb_phy = 3,
527 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
528 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
529 tx_multiple_collisions, tx_total_collisions;
530 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
531 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
532 rx_short_frame_errors;
533 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
534 __le16 xmt_tco_frames, rcv_tco_frames;
554 struct param_range rfds;
555 struct param_range cbs;
559 /* Begin: frequently used values: keep adjacent for cache effect */
560 u32 msg_enable ____cacheline_aligned;
561 struct net_device *netdev;
562 struct pci_dev *pdev;
563 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
565 struct rx *rxs ____cacheline_aligned;
566 struct rx *rx_to_use;
567 struct rx *rx_to_clean;
568 struct rfd blank_rfd;
569 enum ru_state ru_running;
571 spinlock_t cb_lock ____cacheline_aligned;
573 struct csr __iomem *csr;
574 enum scb_cmd_lo cuc_cmd;
575 unsigned int cbs_avail;
576 struct napi_struct napi;
578 struct cb *cb_to_use;
579 struct cb *cb_to_send;
580 struct cb *cb_to_clean;
582 /* End: frequently used values: keep adjacent for cache effect */
586 promiscuous = (1 << 1),
587 multicast_all = (1 << 2),
588 wol_magic = (1 << 3),
589 ich_10h_workaround = (1 << 4),
590 } flags ____cacheline_aligned;
594 struct params params;
595 struct timer_list watchdog;
596 struct timer_list blink_timer;
597 struct mii_if_info mii;
598 struct work_struct tx_timeout_task;
599 enum loopback loopback;
604 struct pci_pool *cbs_pool;
605 dma_addr_t cbs_dma_addr;
611 u32 tx_single_collisions;
612 u32 tx_multiple_collisions;
617 u32 rx_fc_unsupported;
619 u32 rx_over_length_errors;
624 spinlock_t mdio_lock;
625 const struct firmware *fw;
628 static inline void e100_write_flush(struct nic *nic)
630 /* Flush previous PCI writes through intermediate bridges
631 * by doing a benign read */
632 (void)ioread8(&nic->csr->scb.status);
635 static void e100_enable_irq(struct nic *nic)
639 spin_lock_irqsave(&nic->cmd_lock, flags);
640 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
641 e100_write_flush(nic);
642 spin_unlock_irqrestore(&nic->cmd_lock, flags);
645 static void e100_disable_irq(struct nic *nic)
649 spin_lock_irqsave(&nic->cmd_lock, flags);
650 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
651 e100_write_flush(nic);
652 spin_unlock_irqrestore(&nic->cmd_lock, flags);
655 static void e100_hw_reset(struct nic *nic)
657 /* Put CU and RU into idle with a selective reset to get
658 * device off of PCI bus */
659 iowrite32(selective_reset, &nic->csr->port);
660 e100_write_flush(nic); udelay(20);
662 /* Now fully reset device */
663 iowrite32(software_reset, &nic->csr->port);
664 e100_write_flush(nic); udelay(20);
666 /* Mask off our interrupt line - it's unmasked after reset */
667 e100_disable_irq(nic);
670 static int e100_self_test(struct nic *nic)
672 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
674 /* Passing the self-test is a pretty good indication
675 * that the device can DMA to/from host memory */
677 nic->mem->selftest.signature = 0;
678 nic->mem->selftest.result = 0xFFFFFFFF;
680 iowrite32(selftest | dma_addr, &nic->csr->port);
681 e100_write_flush(nic);
682 /* Wait 10 msec for self-test to complete */
685 /* Interrupts are enabled after self-test */
686 e100_disable_irq(nic);
688 /* Check results of self-test */
689 if (nic->mem->selftest.result != 0) {
690 netif_err(nic, hw, nic->netdev,
691 "Self-test failed: result=0x%08X\n",
692 nic->mem->selftest.result);
695 if (nic->mem->selftest.signature == 0) {
696 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
703 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
705 u32 cmd_addr_data[3];
709 /* Three cmds: write/erase enable, write data, write/erase disable */
710 cmd_addr_data[0] = op_ewen << (addr_len - 2);
711 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
713 cmd_addr_data[2] = op_ewds << (addr_len - 2);
715 /* Bit-bang cmds to write word to eeprom */
716 for (j = 0; j < 3; j++) {
719 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
720 e100_write_flush(nic); udelay(4);
722 for (i = 31; i >= 0; i--) {
723 ctrl = (cmd_addr_data[j] & (1 << i)) ?
725 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
726 e100_write_flush(nic); udelay(4);
728 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
729 e100_write_flush(nic); udelay(4);
731 /* Wait 10 msec for cmd to complete */
735 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
736 e100_write_flush(nic); udelay(4);
740 /* General technique stolen from the eepro100 driver - very clever */
741 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
748 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
751 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
752 e100_write_flush(nic); udelay(4);
754 /* Bit-bang to read word from eeprom */
755 for (i = 31; i >= 0; i--) {
756 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
757 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
758 e100_write_flush(nic); udelay(4);
760 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
761 e100_write_flush(nic); udelay(4);
763 /* Eeprom drives a dummy zero to EEDO after receiving
764 * complete address. Use this to adjust addr_len. */
765 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
766 if (!(ctrl & eedo) && i > 16) {
767 *addr_len -= (i - 16);
771 data = (data << 1) | (ctrl & eedo ? 1 : 0);
775 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
776 e100_write_flush(nic); udelay(4);
778 return cpu_to_le16(data);
781 /* Load entire EEPROM image into driver cache and validate checksum */
782 static int e100_eeprom_load(struct nic *nic)
784 u16 addr, addr_len = 8, checksum = 0;
786 /* Try reading with an 8-bit addr len to discover actual addr len */
787 e100_eeprom_read(nic, &addr_len, 0);
788 nic->eeprom_wc = 1 << addr_len;
790 for (addr = 0; addr < nic->eeprom_wc; addr++) {
791 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
792 if (addr < nic->eeprom_wc - 1)
793 checksum += le16_to_cpu(nic->eeprom[addr]);
796 /* The checksum, stored in the last word, is calculated such that
797 * the sum of words should be 0xBABA */
798 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
799 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
800 if (!eeprom_bad_csum_allow)
807 /* Save (portion of) driver EEPROM cache to device and update checksum */
808 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
810 u16 addr, addr_len = 8, checksum = 0;
812 /* Try reading with an 8-bit addr len to discover actual addr len */
813 e100_eeprom_read(nic, &addr_len, 0);
814 nic->eeprom_wc = 1 << addr_len;
816 if (start + count >= nic->eeprom_wc)
819 for (addr = start; addr < start + count; addr++)
820 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
822 /* The checksum, stored in the last word, is calculated such that
823 * the sum of words should be 0xBABA */
824 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
825 checksum += le16_to_cpu(nic->eeprom[addr]);
826 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
827 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
828 nic->eeprom[nic->eeprom_wc - 1]);
833 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
834 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
835 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
841 spin_lock_irqsave(&nic->cmd_lock, flags);
843 /* Previous command is accepted when SCB clears */
844 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
845 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
848 if (unlikely(i > E100_WAIT_SCB_FAST))
851 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
856 if (unlikely(cmd != cuc_resume))
857 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
858 iowrite8(cmd, &nic->csr->scb.cmd_lo);
861 spin_unlock_irqrestore(&nic->cmd_lock, flags);
866 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
867 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
873 spin_lock_irqsave(&nic->cb_lock, flags);
875 if (unlikely(!nic->cbs_avail)) {
881 nic->cb_to_use = cb->next;
885 if (unlikely(!nic->cbs_avail))
888 cb_prepare(nic, cb, skb);
890 /* Order is important otherwise we'll be in a race with h/w:
891 * set S-bit in current first, then clear S-bit in previous. */
892 cb->command |= cpu_to_le16(cb_s);
894 cb->prev->command &= cpu_to_le16(~cb_s);
896 while (nic->cb_to_send != nic->cb_to_use) {
897 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
898 nic->cb_to_send->dma_addr))) {
899 /* Ok, here's where things get sticky. It's
900 * possible that we can't schedule the command
901 * because the controller is too busy, so
902 * let's just queue the command and try again
903 * when another command is scheduled. */
904 if (err == -ENOSPC) {
906 schedule_work(&nic->tx_timeout_task);
910 nic->cuc_cmd = cuc_resume;
911 nic->cb_to_send = nic->cb_to_send->next;
916 spin_unlock_irqrestore(&nic->cb_lock, flags);
921 static int mdio_read(struct net_device *netdev, int addr, int reg)
923 struct nic *nic = netdev_priv(netdev);
924 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
927 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
929 struct nic *nic = netdev_priv(netdev);
931 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
934 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
935 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
943 * Stratus87247: we shouldn't be writing the MDI control
944 * register until the Ready bit shows True. Also, since
945 * manipulation of the MDI control registers is a multi-step
946 * procedure it should be done under lock.
948 spin_lock_irqsave(&nic->mdio_lock, flags);
949 for (i = 100; i; --i) {
950 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
955 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
956 spin_unlock_irqrestore(&nic->mdio_lock, flags);
957 return 0; /* No way to indicate timeout error */
959 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
961 for (i = 0; i < 100; i++) {
963 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
966 spin_unlock_irqrestore(&nic->mdio_lock, flags);
967 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
968 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
969 dir == mdi_read ? "READ" : "WRITE",
970 addr, reg, data, data_out);
971 return (u16)data_out;
974 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
975 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
981 if ((reg == MII_BMCR) && (dir == mdi_write)) {
982 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
983 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
987 * Workaround Si issue where sometimes the part will not
988 * autoneg to 100Mbps even when advertised.
990 if (advert & ADVERTISE_100FULL)
991 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
992 else if (advert & ADVERTISE_100HALF)
993 data |= BMCR_SPEED100;
996 return mdio_ctrl_hw(nic, addr, dir, reg, data);
999 /* Fully software-emulated mdio_ctrl() function for cards without
1000 * MII-compliant PHYs.
1001 * For now, this is mainly geared towards 80c24 support; in case of further
1002 * requirements for other types (i82503, ...?) either extend this mechanism
1003 * or split it, whichever is cleaner.
1005 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1011 /* might need to allocate a netdev_priv'ed register array eventually
1012 * to be able to record state changes, but for now
1013 * some fully hardcoded register handling ought to be ok I guess. */
1015 if (dir == mdi_read) {
1018 /* Auto-negotiation, right? */
1019 return BMCR_ANENABLE |
1022 return BMSR_LSTATUS /* for mii_link_ok() */ |
1026 /* 80c24 is a "combo card" PHY, right? */
1027 return ADVERTISE_10HALF |
1030 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1031 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1032 dir == mdi_read ? "READ" : "WRITE",
1039 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041 dir == mdi_read ? "READ" : "WRITE",
1047 static inline int e100_phy_supports_mii(struct nic *nic)
1049 /* for now, just check it by comparing whether we
1050 are using MII software emulation.
1052 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1055 static void e100_get_defaults(struct nic *nic)
1057 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1058 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1060 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1061 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1062 if (nic->mac == mac_unknown)
1063 nic->mac = mac_82557_D100_A;
1065 nic->params.rfds = rfds;
1066 nic->params.cbs = cbs;
1068 /* Quadwords to DMA into FIFO before starting frame transmit */
1069 nic->tx_threshold = 0xE0;
1071 /* no interrupt for every tx completion, delay = 256us if not 557 */
1072 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1073 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1075 /* Template for a freshly allocated RFD */
1076 nic->blank_rfd.command = 0;
1077 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1078 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1081 nic->mii.phy_id_mask = 0x1F;
1082 nic->mii.reg_num_mask = 0x1F;
1083 nic->mii.dev = nic->netdev;
1084 nic->mii.mdio_read = mdio_read;
1085 nic->mii.mdio_write = mdio_write;
1088 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1090 struct config *config = &cb->u.config;
1091 u8 *c = (u8 *)config;
1093 cb->command = cpu_to_le16(cb_config);
1095 memset(config, 0, sizeof(struct config));
1097 config->byte_count = 0x16; /* bytes in this struct */
1098 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1099 config->direct_rx_dma = 0x1; /* reserved */
1100 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1101 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1102 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1103 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1104 if (e100_phy_supports_mii(nic))
1105 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1106 config->pad10 = 0x6;
1107 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1108 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1109 config->ifs = 0x6; /* x16 = inter frame spacing */
1110 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1111 config->pad15_1 = 0x1;
1112 config->pad15_2 = 0x1;
1113 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1114 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1115 config->tx_padding = 0x1; /* 1=pad short frames */
1116 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1117 config->pad18 = 0x1;
1118 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1119 config->pad20_1 = 0x1F;
1120 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1121 config->pad21_1 = 0x5;
1123 config->adaptive_ifs = nic->adaptive_ifs;
1124 config->loopback = nic->loopback;
1126 if (nic->mii.force_media && nic->mii.full_duplex)
1127 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1129 if (nic->flags & promiscuous || nic->loopback) {
1130 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1131 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1132 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1135 if (nic->flags & multicast_all)
1136 config->multicast_all = 0x1; /* 1=accept, 0=no */
1138 /* disable WoL when up */
1139 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1140 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1142 if (nic->mac >= mac_82558_D101_A4) {
1143 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1144 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1145 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1146 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1147 if (nic->mac >= mac_82559_D101M) {
1148 config->tno_intr = 0x1; /* TCO stats enable */
1149 /* Enable TCO in extended config */
1150 if (nic->mac >= mac_82551_10) {
1151 config->byte_count = 0x20; /* extended bytes */
1152 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1155 config->standard_stat_counter = 0x0;
1159 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1160 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1161 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1162 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1163 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1164 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1165 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1166 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1167 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1170 /*************************************************************************
1171 * CPUSaver parameters
1173 * All CPUSaver parameters are 16-bit literals that are part of a
1174 * "move immediate value" instruction. By changing the value of
1175 * the literal in the instruction before the code is loaded, the
1176 * driver can change the algorithm.
1178 * INTDELAY - This loads the dead-man timer with its initial value.
1179 * When this timer expires the interrupt is asserted, and the
1180 * timer is reset each time a new packet is received. (see
1181 * BUNDLEMAX below to set the limit on number of chained packets)
1182 * The current default is 0x600 or 1536. Experiments show that
1183 * the value should probably stay within the 0x200 - 0x1000.
1186 * This sets the maximum number of frames that will be bundled. In
1187 * some situations, such as the TCP windowing algorithm, it may be
1188 * better to limit the growth of the bundle size than let it go as
1189 * high as it can, because that could cause too much added latency.
1190 * The default is six, because this is the number of packets in the
1191 * default TCP window size. A value of 1 would make CPUSaver indicate
1192 * an interrupt for every frame received. If you do not want to put
1193 * a limit on the bundle size, set this value to xFFFF.
1196 * This contains a bit-mask describing the minimum size frame that
1197 * will be bundled. The default masks the lower 7 bits, which means
1198 * that any frame less than 128 bytes in length will not be bundled,
1199 * but will instead immediately generate an interrupt. This does
1200 * not affect the current bundle in any way. Any frame that is 128
1201 * bytes or large will be bundled normally. This feature is meant
1202 * to provide immediate indication of ACK frames in a TCP environment.
1203 * Customers were seeing poor performance when a machine with CPUSaver
1204 * enabled was sending but not receiving. The delay introduced when
1205 * the ACKs were received was enough to reduce total throughput, because
1206 * the sender would sit idle until the ACK was finally seen.
1208 * The current default is 0xFF80, which masks out the lower 7 bits.
1209 * This means that any frame which is x7F (127) bytes or smaller
1210 * will cause an immediate interrupt. Because this value must be a
1211 * bit mask, there are only a few valid values that can be used. To
1212 * turn this feature off, the driver can write the value xFFFF to the
1213 * lower word of this instruction (in the same way that the other
1214 * parameters are used). Likewise, a value of 0xF800 (2047) would
1215 * cause an interrupt to be generated for every frame, because all
1216 * standard Ethernet frames are <= 2047 bytes in length.
1217 *************************************************************************/
1219 /* if you wish to disable the ucode functionality, while maintaining the
1220 * workarounds it provides, set the following defines to:
1225 #define BUNDLESMALL 1
1226 #define BUNDLEMAX (u16)6
1227 #define INTDELAY (u16)1536 /* 0x600 */
1229 /* Initialize firmware */
1230 static const struct firmware *e100_request_firmware(struct nic *nic)
1232 const char *fw_name;
1233 const struct firmware *fw = nic->fw;
1234 u8 timer, bundle, min_size;
1237 /* do not load u-code for ICH devices */
1238 if (nic->flags & ich)
1241 /* Search for ucode match against h/w revision */
1242 if (nic->mac == mac_82559_D101M)
1243 fw_name = FIRMWARE_D101M;
1244 else if (nic->mac == mac_82559_D101S)
1245 fw_name = FIRMWARE_D101S;
1246 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1247 fw_name = FIRMWARE_D102E;
1248 else /* No ucode on other devices */
1251 /* If the firmware has not previously been loaded, request a pointer
1252 * to it. If it was previously loaded, we are reinitializing the
1253 * adapter, possibly in a resume from hibernate, in which case
1254 * request_firmware() cannot be used.
1257 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1260 netif_err(nic, probe, nic->netdev,
1261 "Failed to load firmware \"%s\": %d\n",
1263 return ERR_PTR(err);
1266 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1267 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1268 if (fw->size != UCODE_SIZE * 4 + 3) {
1269 netif_err(nic, probe, nic->netdev,
1270 "Firmware \"%s\" has wrong size %zu\n",
1272 release_firmware(fw);
1273 return ERR_PTR(-EINVAL);
1276 /* Read timer, bundle and min_size from end of firmware blob */
1277 timer = fw->data[UCODE_SIZE * 4];
1278 bundle = fw->data[UCODE_SIZE * 4 + 1];
1279 min_size = fw->data[UCODE_SIZE * 4 + 2];
1281 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1282 min_size >= UCODE_SIZE) {
1283 netif_err(nic, probe, nic->netdev,
1284 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1285 fw_name, timer, bundle, min_size);
1286 release_firmware(fw);
1287 return ERR_PTR(-EINVAL);
1290 /* OK, firmware is validated and ready to use. Save a pointer
1291 * to it in the nic */
1296 static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1297 struct sk_buff *skb)
1299 const struct firmware *fw = (void *)skb;
1300 u8 timer, bundle, min_size;
1302 /* It's not a real skb; we just abused the fact that e100_exec_cb
1303 will pass it through to here... */
1306 /* firmware is stored as little endian already */
1307 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1309 /* Read timer, bundle and min_size from end of firmware blob */
1310 timer = fw->data[UCODE_SIZE * 4];
1311 bundle = fw->data[UCODE_SIZE * 4 + 1];
1312 min_size = fw->data[UCODE_SIZE * 4 + 2];
1314 /* Insert user-tunable settings in cb->u.ucode */
1315 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1316 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1317 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1318 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1319 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1320 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1322 cb->command = cpu_to_le16(cb_ucode | cb_el);
1325 static inline int e100_load_ucode_wait(struct nic *nic)
1327 const struct firmware *fw;
1328 int err = 0, counter = 50;
1329 struct cb *cb = nic->cb_to_clean;
1331 fw = e100_request_firmware(nic);
1332 /* If it's NULL, then no ucode is required */
1333 if (!fw || IS_ERR(fw))
1336 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1337 netif_err(nic, probe, nic->netdev,
1338 "ucode cmd failed with error %d\n", err);
1340 /* must restart cuc */
1341 nic->cuc_cmd = cuc_start;
1343 /* wait for completion */
1344 e100_write_flush(nic);
1347 /* wait for possibly (ouch) 500ms */
1348 while (!(cb->status & cpu_to_le16(cb_complete))) {
1350 if (!--counter) break;
1353 /* ack any interrupts, something could have been set */
1354 iowrite8(~0, &nic->csr->scb.stat_ack);
1356 /* if the command failed, or is not OK, notify and return */
1357 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1358 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1365 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1366 struct sk_buff *skb)
1368 cb->command = cpu_to_le16(cb_iaaddr);
1369 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1372 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1374 cb->command = cpu_to_le16(cb_dump);
1375 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1376 offsetof(struct mem, dump_buf));
1379 static int e100_phy_check_without_mii(struct nic *nic)
1384 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1387 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1388 case I82503: /* Non-MII PHY; UNTESTED! */
1389 case S80C24: /* Non-MII PHY; tested and working */
1390 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1391 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1392 * doesn't have a programming interface of any sort. The
1393 * media is sensed automatically based on how the link partner
1394 * is configured. This is, in essence, manual configuration.
1396 netif_info(nic, probe, nic->netdev,
1397 "found MII-less i82503 or 80c24 or other PHY\n");
1399 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1400 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1402 /* these might be needed for certain MII-less cards...
1403 * nic->flags |= ich;
1404 * nic->flags |= ich_10h_workaround; */
1415 #define NCONFIG_AUTO_SWITCH 0x0080
1416 #define MII_NSC_CONG MII_RESV1
1417 #define NSC_CONG_ENABLE 0x0100
1418 #define NSC_CONG_TXREADY 0x0400
1419 #define ADVERTISE_FC_SUPPORTED 0x0400
1420 static int e100_phy_init(struct nic *nic)
1422 struct net_device *netdev = nic->netdev;
1424 u16 bmcr, stat, id_lo, id_hi, cong;
1426 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1427 for (addr = 0; addr < 32; addr++) {
1428 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1429 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1430 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1431 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1432 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1436 /* uhoh, no PHY detected: check whether we seem to be some
1437 * weird, rare variant which is *known* to not have any MII.
1438 * But do this AFTER MII checking only, since this does
1439 * lookup of EEPROM values which may easily be unreliable. */
1440 if (e100_phy_check_without_mii(nic))
1441 return 0; /* simply return and hope for the best */
1443 /* for unknown cases log a fatal error */
1444 netif_err(nic, hw, nic->netdev,
1445 "Failed to locate any known PHY, aborting\n");
1449 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1450 "phy_addr = %d\n", nic->mii.phy_id);
1453 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1454 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1455 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1456 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1457 "phy ID = 0x%08X\n", nic->phy);
1459 /* Select the phy and isolate the rest */
1460 for (addr = 0; addr < 32; addr++) {
1461 if (addr != nic->mii.phy_id) {
1462 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1463 } else if (nic->phy != phy_82552_v) {
1464 bmcr = mdio_read(netdev, addr, MII_BMCR);
1465 mdio_write(netdev, addr, MII_BMCR,
1466 bmcr & ~BMCR_ISOLATE);
1470 * Workaround for 82552:
1471 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1472 * other phy_id's) using bmcr value from addr discovery loop above.
1474 if (nic->phy == phy_82552_v)
1475 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1476 bmcr & ~BMCR_ISOLATE);
1478 /* Handle National tx phys */
1479 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1480 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1481 /* Disable congestion control */
1482 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1483 cong |= NSC_CONG_TXREADY;
1484 cong &= ~NSC_CONG_ENABLE;
1485 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1488 if (nic->phy == phy_82552_v) {
1489 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1491 /* assign special tweaked mdio_ctrl() function */
1492 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1494 /* Workaround Si not advertising flow-control during autoneg */
1495 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1496 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1498 /* Reset for the above changes to take effect */
1499 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1501 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1502 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1503 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1504 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1505 /* enable/disable MDI/MDI-X auto-switching. */
1506 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1507 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1513 static int e100_hw_init(struct nic *nic)
1519 netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1520 if (!in_interrupt() && (err = e100_self_test(nic)))
1523 if ((err = e100_phy_init(nic)))
1525 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1527 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1529 if ((err = e100_load_ucode_wait(nic)))
1531 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1533 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1535 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1536 nic->dma_addr + offsetof(struct mem, stats))))
1538 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1541 e100_disable_irq(nic);
1546 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1548 struct net_device *netdev = nic->netdev;
1549 struct netdev_hw_addr *ha;
1550 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1552 cb->command = cpu_to_le16(cb_multi);
1553 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1555 netdev_for_each_mc_addr(ha, netdev) {
1558 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1563 static void e100_set_multicast_list(struct net_device *netdev)
1565 struct nic *nic = netdev_priv(netdev);
1567 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1568 "mc_count=%d, flags=0x%04X\n",
1569 netdev_mc_count(netdev), netdev->flags);
1571 if (netdev->flags & IFF_PROMISC)
1572 nic->flags |= promiscuous;
1574 nic->flags &= ~promiscuous;
1576 if (netdev->flags & IFF_ALLMULTI ||
1577 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1578 nic->flags |= multicast_all;
1580 nic->flags &= ~multicast_all;
1582 e100_exec_cb(nic, NULL, e100_configure);
1583 e100_exec_cb(nic, NULL, e100_multi);
1586 static void e100_update_stats(struct nic *nic)
1588 struct net_device *dev = nic->netdev;
1589 struct net_device_stats *ns = &dev->stats;
1590 struct stats *s = &nic->mem->stats;
1591 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1592 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1595 /* Device's stats reporting may take several microseconds to
1596 * complete, so we're always waiting for results of the
1597 * previous command. */
1599 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1601 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1602 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1603 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1604 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1605 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1606 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1607 ns->collisions += nic->tx_collisions;
1608 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1609 le32_to_cpu(s->tx_lost_crs);
1610 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1611 nic->rx_over_length_errors;
1612 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1613 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1614 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1615 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1616 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1617 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1618 le32_to_cpu(s->rx_alignment_errors) +
1619 le32_to_cpu(s->rx_short_frame_errors) +
1620 le32_to_cpu(s->rx_cdt_errors);
1621 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1622 nic->tx_single_collisions +=
1623 le32_to_cpu(s->tx_single_collisions);
1624 nic->tx_multiple_collisions +=
1625 le32_to_cpu(s->tx_multiple_collisions);
1626 if (nic->mac >= mac_82558_D101_A4) {
1627 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1628 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1629 nic->rx_fc_unsupported +=
1630 le32_to_cpu(s->fc_rcv_unsupported);
1631 if (nic->mac >= mac_82559_D101M) {
1632 nic->tx_tco_frames +=
1633 le16_to_cpu(s->xmt_tco_frames);
1634 nic->rx_tco_frames +=
1635 le16_to_cpu(s->rcv_tco_frames);
1641 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1642 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1643 "exec cuc_dump_reset failed\n");
1646 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1648 /* Adjust inter-frame-spacing (IFS) between two transmits if
1649 * we're getting collisions on a half-duplex connection. */
1651 if (duplex == DUPLEX_HALF) {
1652 u32 prev = nic->adaptive_ifs;
1653 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1655 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1656 (nic->tx_frames > min_frames)) {
1657 if (nic->adaptive_ifs < 60)
1658 nic->adaptive_ifs += 5;
1659 } else if (nic->tx_frames < min_frames) {
1660 if (nic->adaptive_ifs >= 5)
1661 nic->adaptive_ifs -= 5;
1663 if (nic->adaptive_ifs != prev)
1664 e100_exec_cb(nic, NULL, e100_configure);
1668 static void e100_watchdog(unsigned long data)
1670 struct nic *nic = (struct nic *)data;
1671 struct ethtool_cmd cmd;
1673 netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1674 "right now = %ld\n", jiffies);
1676 /* mii library handles link maintenance tasks */
1678 mii_ethtool_gset(&nic->mii, &cmd);
1680 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1681 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1682 cmd.speed == SPEED_100 ? 100 : 10,
1683 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1684 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1685 netdev_info(nic->netdev, "NIC Link is Down\n");
1688 mii_check_link(&nic->mii);
1690 /* Software generated interrupt to recover from (rare) Rx
1691 * allocation failure.
1692 * Unfortunately have to use a spinlock to not re-enable interrupts
1693 * accidentally, due to hardware that shares a register between the
1694 * interrupt mask bit and the SW Interrupt generation bit */
1695 spin_lock_irq(&nic->cmd_lock);
1696 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1697 e100_write_flush(nic);
1698 spin_unlock_irq(&nic->cmd_lock);
1700 e100_update_stats(nic);
1701 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1703 if (nic->mac <= mac_82557_D100_C)
1704 /* Issue a multicast command to workaround a 557 lock up */
1705 e100_set_multicast_list(nic->netdev);
1707 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1708 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1709 nic->flags |= ich_10h_workaround;
1711 nic->flags &= ~ich_10h_workaround;
1713 mod_timer(&nic->watchdog,
1714 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1717 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1718 struct sk_buff *skb)
1720 cb->command = nic->tx_command;
1721 /* interrupt every 16 packets regardless of delay */
1722 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1723 cb->command |= cpu_to_le16(cb_i);
1724 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1725 cb->u.tcb.tcb_byte_count = 0;
1726 cb->u.tcb.threshold = nic->tx_threshold;
1727 cb->u.tcb.tbd_count = 1;
1728 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1729 skb->data, skb->len, PCI_DMA_TODEVICE));
1730 /* check for mapping failure? */
1731 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1734 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1735 struct net_device *netdev)
1737 struct nic *nic = netdev_priv(netdev);
1740 if (nic->flags & ich_10h_workaround) {
1741 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1742 Issue a NOP command followed by a 1us delay before
1743 issuing the Tx command. */
1744 if (e100_exec_cmd(nic, cuc_nop, 0))
1745 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1746 "exec cuc_nop failed\n");
1750 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1754 /* We queued the skb, but now we're out of space. */
1755 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1756 "No space for CB\n");
1757 netif_stop_queue(netdev);
1760 /* This is a hard error - log it. */
1761 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1762 "Out of Tx resources, returning skb\n");
1763 netif_stop_queue(netdev);
1764 return NETDEV_TX_BUSY;
1767 return NETDEV_TX_OK;
1770 static int e100_tx_clean(struct nic *nic)
1772 struct net_device *dev = nic->netdev;
1776 spin_lock(&nic->cb_lock);
1778 /* Clean CBs marked complete */
1779 for (cb = nic->cb_to_clean;
1780 cb->status & cpu_to_le16(cb_complete);
1781 cb = nic->cb_to_clean = cb->next) {
1782 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1783 "cb[%d]->status = 0x%04X\n",
1784 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1787 if (likely(cb->skb != NULL)) {
1788 dev->stats.tx_packets++;
1789 dev->stats.tx_bytes += cb->skb->len;
1791 pci_unmap_single(nic->pdev,
1792 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1793 le16_to_cpu(cb->u.tcb.tbd.size),
1795 dev_kfree_skb_any(cb->skb);
1803 spin_unlock(&nic->cb_lock);
1805 /* Recover from running out of Tx resources in xmit_frame */
1806 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1807 netif_wake_queue(nic->netdev);
1812 static void e100_clean_cbs(struct nic *nic)
1815 while (nic->cbs_avail != nic->params.cbs.count) {
1816 struct cb *cb = nic->cb_to_clean;
1818 pci_unmap_single(nic->pdev,
1819 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1820 le16_to_cpu(cb->u.tcb.tbd.size),
1822 dev_kfree_skb(cb->skb);
1824 nic->cb_to_clean = nic->cb_to_clean->next;
1827 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1831 nic->cuc_cmd = cuc_start;
1832 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1836 static int e100_alloc_cbs(struct nic *nic)
1839 unsigned int i, count = nic->params.cbs.count;
1841 nic->cuc_cmd = cuc_start;
1842 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1845 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1846 &nic->cbs_dma_addr);
1849 memset(nic->cbs, 0, count * sizeof(struct cb));
1851 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1852 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1853 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1855 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1856 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1857 ((i+1) % count) * sizeof(struct cb));
1860 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1861 nic->cbs_avail = count;
1866 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1868 if (!nic->rxs) return;
1869 if (RU_SUSPENDED != nic->ru_running) return;
1871 /* handle init time starts */
1872 if (!rx) rx = nic->rxs;
1874 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1876 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1877 nic->ru_running = RU_RUNNING;
1881 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1882 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1884 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1887 /* Init, and map the RFD. */
1888 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1889 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1890 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1892 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1893 dev_kfree_skb_any(rx->skb);
1899 /* Link the RFD to end of RFA by linking previous RFD to
1900 * this one. We are safe to touch the previous RFD because
1901 * it is protected by the before last buffer's el bit being set */
1902 if (rx->prev->skb) {
1903 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1904 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1905 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1906 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1912 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1913 unsigned int *work_done, unsigned int work_to_do)
1915 struct net_device *dev = nic->netdev;
1916 struct sk_buff *skb = rx->skb;
1917 struct rfd *rfd = (struct rfd *)skb->data;
1918 u16 rfd_status, actual_size;
1920 if (unlikely(work_done && *work_done >= work_to_do))
1923 /* Need to sync before taking a peek at cb_complete bit */
1924 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1925 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1926 rfd_status = le16_to_cpu(rfd->status);
1928 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1929 "status=0x%04X\n", rfd_status);
1931 /* If data isn't ready, nothing to indicate */
1932 if (unlikely(!(rfd_status & cb_complete))) {
1933 /* If the next buffer has the el bit, but we think the receiver
1934 * is still running, check to see if it really stopped while
1935 * we had interrupts off.
1936 * This allows for a fast restart without re-enabling
1938 if ((le16_to_cpu(rfd->command) & cb_el) &&
1939 (RU_RUNNING == nic->ru_running))
1941 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1942 nic->ru_running = RU_SUSPENDED;
1943 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1945 PCI_DMA_FROMDEVICE);
1949 /* Get actual data size */
1950 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1951 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1952 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1955 pci_unmap_single(nic->pdev, rx->dma_addr,
1956 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1958 /* If this buffer has the el bit, but we think the receiver
1959 * is still running, check to see if it really stopped while
1960 * we had interrupts off.
1961 * This allows for a fast restart without re-enabling interrupts.
1962 * This can happen when the RU sees the size change but also sees
1963 * the el bit set. */
1964 if ((le16_to_cpu(rfd->command) & cb_el) &&
1965 (RU_RUNNING == nic->ru_running)) {
1967 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1968 nic->ru_running = RU_SUSPENDED;
1971 /* Pull off the RFD and put the actual data (minus eth hdr) */
1972 skb_reserve(skb, sizeof(struct rfd));
1973 skb_put(skb, actual_size);
1974 skb->protocol = eth_type_trans(skb, nic->netdev);
1976 if (unlikely(!(rfd_status & cb_ok))) {
1977 /* Don't indicate if hardware indicates errors */
1978 dev_kfree_skb_any(skb);
1979 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1980 /* Don't indicate oversized frames */
1981 nic->rx_over_length_errors++;
1982 dev_kfree_skb_any(skb);
1984 dev->stats.rx_packets++;
1985 dev->stats.rx_bytes += actual_size;
1986 netif_receive_skb(skb);
1996 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1997 unsigned int work_to_do)
2000 int restart_required = 0, err = 0;
2001 struct rx *old_before_last_rx, *new_before_last_rx;
2002 struct rfd *old_before_last_rfd, *new_before_last_rfd;
2004 /* Indicate newly arrived packets */
2005 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2006 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2007 /* Hit quota or no more to clean */
2008 if (-EAGAIN == err || -ENODATA == err)
2013 /* On EAGAIN, hit quota so have more work to do, restart once
2014 * cleanup is complete.
2015 * Else, are we already rnr? then pay attention!!! this ensures that
2016 * the state machine progression never allows a start with a
2017 * partially cleaned list, avoiding a race between hardware
2018 * and rx_to_clean when in NAPI mode */
2019 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2020 restart_required = 1;
2022 old_before_last_rx = nic->rx_to_use->prev->prev;
2023 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2025 /* Alloc new skbs to refill list */
2026 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2027 if (unlikely(e100_rx_alloc_skb(nic, rx)))
2028 break; /* Better luck next time (see watchdog) */
2031 new_before_last_rx = nic->rx_to_use->prev->prev;
2032 if (new_before_last_rx != old_before_last_rx) {
2033 /* Set the el-bit on the buffer that is before the last buffer.
2034 * This lets us update the next pointer on the last buffer
2035 * without worrying about hardware touching it.
2036 * We set the size to 0 to prevent hardware from touching this
2038 * When the hardware hits the before last buffer with el-bit
2039 * and size of 0, it will RNR interrupt, the RUS will go into
2040 * the No Resources state. It will not complete nor write to
2042 new_before_last_rfd =
2043 (struct rfd *)new_before_last_rx->skb->data;
2044 new_before_last_rfd->size = 0;
2045 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2046 pci_dma_sync_single_for_device(nic->pdev,
2047 new_before_last_rx->dma_addr, sizeof(struct rfd),
2048 PCI_DMA_BIDIRECTIONAL);
2050 /* Now that we have a new stopping point, we can clear the old
2051 * stopping point. We must sync twice to get the proper
2052 * ordering on the hardware side of things. */
2053 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2054 pci_dma_sync_single_for_device(nic->pdev,
2055 old_before_last_rx->dma_addr, sizeof(struct rfd),
2056 PCI_DMA_BIDIRECTIONAL);
2057 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
2058 pci_dma_sync_single_for_device(nic->pdev,
2059 old_before_last_rx->dma_addr, sizeof(struct rfd),
2060 PCI_DMA_BIDIRECTIONAL);
2063 if (restart_required) {
2065 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2066 e100_start_receiver(nic, nic->rx_to_clean);
2072 static void e100_rx_clean_list(struct nic *nic)
2075 unsigned int i, count = nic->params.rfds.count;
2077 nic->ru_running = RU_UNINITIALIZED;
2080 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2082 pci_unmap_single(nic->pdev, rx->dma_addr,
2083 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2084 dev_kfree_skb(rx->skb);
2091 nic->rx_to_use = nic->rx_to_clean = NULL;
2094 static int e100_rx_alloc_list(struct nic *nic)
2097 unsigned int i, count = nic->params.rfds.count;
2098 struct rfd *before_last;
2100 nic->rx_to_use = nic->rx_to_clean = NULL;
2101 nic->ru_running = RU_UNINITIALIZED;
2103 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2106 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2107 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2108 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2109 if (e100_rx_alloc_skb(nic, rx)) {
2110 e100_rx_clean_list(nic);
2114 /* Set the el-bit on the buffer that is before the last buffer.
2115 * This lets us update the next pointer on the last buffer without
2116 * worrying about hardware touching it.
2117 * We set the size to 0 to prevent hardware from touching this buffer.
2118 * When the hardware hits the before last buffer with el-bit and size
2119 * of 0, it will RNR interrupt, the RU will go into the No Resources
2120 * state. It will not complete nor write to this buffer. */
2121 rx = nic->rxs->prev->prev;
2122 before_last = (struct rfd *)rx->skb->data;
2123 before_last->command |= cpu_to_le16(cb_el);
2124 before_last->size = 0;
2125 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2126 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2128 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2129 nic->ru_running = RU_SUSPENDED;
2134 static irqreturn_t e100_intr(int irq, void *dev_id)
2136 struct net_device *netdev = dev_id;
2137 struct nic *nic = netdev_priv(netdev);
2138 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2140 netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2141 "stat_ack = 0x%02X\n", stat_ack);
2143 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
2144 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2147 /* Ack interrupt(s) */
2148 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2150 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2151 if (stat_ack & stat_ack_rnr)
2152 nic->ru_running = RU_SUSPENDED;
2154 if (likely(napi_schedule_prep(&nic->napi))) {
2155 e100_disable_irq(nic);
2156 __napi_schedule(&nic->napi);
2162 static int e100_poll(struct napi_struct *napi, int budget)
2164 struct nic *nic = container_of(napi, struct nic, napi);
2165 unsigned int work_done = 0;
2167 e100_rx_clean(nic, &work_done, budget);
2170 /* If budget not fully consumed, exit the polling mode */
2171 if (work_done < budget) {
2172 napi_complete(napi);
2173 e100_enable_irq(nic);
2179 #ifdef CONFIG_NET_POLL_CONTROLLER
2180 static void e100_netpoll(struct net_device *netdev)
2182 struct nic *nic = netdev_priv(netdev);
2184 e100_disable_irq(nic);
2185 e100_intr(nic->pdev->irq, netdev);
2187 e100_enable_irq(nic);
2191 static int e100_set_mac_address(struct net_device *netdev, void *p)
2193 struct nic *nic = netdev_priv(netdev);
2194 struct sockaddr *addr = p;
2196 if (!is_valid_ether_addr(addr->sa_data))
2197 return -EADDRNOTAVAIL;
2199 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2200 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2205 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2207 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2209 netdev->mtu = new_mtu;
2213 static int e100_asf(struct nic *nic)
2215 /* ASF can be enabled from eeprom */
2216 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2217 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2218 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2219 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2222 static int e100_up(struct nic *nic)
2226 if ((err = e100_rx_alloc_list(nic)))
2228 if ((err = e100_alloc_cbs(nic)))
2229 goto err_rx_clean_list;
2230 if ((err = e100_hw_init(nic)))
2232 e100_set_multicast_list(nic->netdev);
2233 e100_start_receiver(nic, NULL);
2234 mod_timer(&nic->watchdog, jiffies);
2235 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2236 nic->netdev->name, nic->netdev)))
2238 netif_wake_queue(nic->netdev);
2239 napi_enable(&nic->napi);
2240 /* enable ints _after_ enabling poll, preventing a race between
2241 * disable ints+schedule */
2242 e100_enable_irq(nic);
2246 del_timer_sync(&nic->watchdog);
2248 e100_clean_cbs(nic);
2250 e100_rx_clean_list(nic);
2254 static void e100_down(struct nic *nic)
2256 /* wait here for poll to complete */
2257 napi_disable(&nic->napi);
2258 netif_stop_queue(nic->netdev);
2260 free_irq(nic->pdev->irq, nic->netdev);
2261 del_timer_sync(&nic->watchdog);
2262 netif_carrier_off(nic->netdev);
2263 e100_clean_cbs(nic);
2264 e100_rx_clean_list(nic);
2267 static void e100_tx_timeout(struct net_device *netdev)
2269 struct nic *nic = netdev_priv(netdev);
2271 /* Reset outside of interrupt context, to avoid request_irq
2272 * in interrupt context */
2273 schedule_work(&nic->tx_timeout_task);
2276 static void e100_tx_timeout_task(struct work_struct *work)
2278 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2279 struct net_device *netdev = nic->netdev;
2281 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2282 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2285 if (netif_running(netdev)) {
2286 e100_down(netdev_priv(netdev));
2287 e100_up(netdev_priv(netdev));
2292 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2295 struct sk_buff *skb;
2297 /* Use driver resources to perform internal MAC or PHY
2298 * loopback test. A single packet is prepared and transmitted
2299 * in loopback mode, and the test passes if the received
2300 * packet compares byte-for-byte to the transmitted packet. */
2302 if ((err = e100_rx_alloc_list(nic)))
2304 if ((err = e100_alloc_cbs(nic)))
2307 /* ICH PHY loopback is broken so do MAC loopback instead */
2308 if (nic->flags & ich && loopback_mode == lb_phy)
2309 loopback_mode = lb_mac;
2311 nic->loopback = loopback_mode;
2312 if ((err = e100_hw_init(nic)))
2313 goto err_loopback_none;
2315 if (loopback_mode == lb_phy)
2316 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2319 e100_start_receiver(nic, NULL);
2321 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2323 goto err_loopback_none;
2325 skb_put(skb, ETH_DATA_LEN);
2326 memset(skb->data, 0xFF, ETH_DATA_LEN);
2327 e100_xmit_frame(skb, nic->netdev);
2331 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2332 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2334 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2335 skb->data, ETH_DATA_LEN))
2339 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2340 nic->loopback = lb_none;
2341 e100_clean_cbs(nic);
2344 e100_rx_clean_list(nic);
2348 #define MII_LED_CONTROL 0x1B
2349 #define E100_82552_LED_OVERRIDE 0x19
2350 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2351 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2352 static void e100_blink_led(unsigned long data)
2354 struct nic *nic = (struct nic *)data;
2361 u16 led_reg = MII_LED_CONTROL;
2363 if (nic->phy == phy_82552_v) {
2364 led_reg = E100_82552_LED_OVERRIDE;
2366 nic->leds = (nic->leds == E100_82552_LED_ON) ?
2367 E100_82552_LED_OFF : E100_82552_LED_ON;
2369 nic->leds = (nic->leds & led_on) ? led_off :
2370 (nic->mac < mac_82559_D101M) ? led_on_557 :
2373 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
2374 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2377 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2379 struct nic *nic = netdev_priv(netdev);
2380 return mii_ethtool_gset(&nic->mii, cmd);
2383 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2385 struct nic *nic = netdev_priv(netdev);
2388 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2389 err = mii_ethtool_sset(&nic->mii, cmd);
2390 e100_exec_cb(nic, NULL, e100_configure);
2395 static void e100_get_drvinfo(struct net_device *netdev,
2396 struct ethtool_drvinfo *info)
2398 struct nic *nic = netdev_priv(netdev);
2399 strcpy(info->driver, DRV_NAME);
2400 strcpy(info->version, DRV_VERSION);
2401 strcpy(info->fw_version, "N/A");
2402 strcpy(info->bus_info, pci_name(nic->pdev));
2405 #define E100_PHY_REGS 0x1C
2406 static int e100_get_regs_len(struct net_device *netdev)
2408 struct nic *nic = netdev_priv(netdev);
2409 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2412 static void e100_get_regs(struct net_device *netdev,
2413 struct ethtool_regs *regs, void *p)
2415 struct nic *nic = netdev_priv(netdev);
2419 regs->version = (1 << 24) | nic->pdev->revision;
2420 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2421 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2422 ioread16(&nic->csr->scb.status);
2423 for (i = E100_PHY_REGS; i >= 0; i--)
2424 buff[1 + E100_PHY_REGS - i] =
2425 mdio_read(netdev, nic->mii.phy_id, i);
2426 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2427 e100_exec_cb(nic, NULL, e100_dump);
2429 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2430 sizeof(nic->mem->dump_buf));
2433 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2435 struct nic *nic = netdev_priv(netdev);
2436 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2437 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2440 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2442 struct nic *nic = netdev_priv(netdev);
2444 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2445 !device_can_wakeup(&nic->pdev->dev))
2449 nic->flags |= wol_magic;
2451 nic->flags &= ~wol_magic;
2453 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2455 e100_exec_cb(nic, NULL, e100_configure);
2460 static u32 e100_get_msglevel(struct net_device *netdev)
2462 struct nic *nic = netdev_priv(netdev);
2463 return nic->msg_enable;
2466 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2468 struct nic *nic = netdev_priv(netdev);
2469 nic->msg_enable = value;
2472 static int e100_nway_reset(struct net_device *netdev)
2474 struct nic *nic = netdev_priv(netdev);
2475 return mii_nway_restart(&nic->mii);
2478 static u32 e100_get_link(struct net_device *netdev)
2480 struct nic *nic = netdev_priv(netdev);
2481 return mii_link_ok(&nic->mii);
2484 static int e100_get_eeprom_len(struct net_device *netdev)
2486 struct nic *nic = netdev_priv(netdev);
2487 return nic->eeprom_wc << 1;
2490 #define E100_EEPROM_MAGIC 0x1234
2491 static int e100_get_eeprom(struct net_device *netdev,
2492 struct ethtool_eeprom *eeprom, u8 *bytes)
2494 struct nic *nic = netdev_priv(netdev);
2496 eeprom->magic = E100_EEPROM_MAGIC;
2497 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2502 static int e100_set_eeprom(struct net_device *netdev,
2503 struct ethtool_eeprom *eeprom, u8 *bytes)
2505 struct nic *nic = netdev_priv(netdev);
2507 if (eeprom->magic != E100_EEPROM_MAGIC)
2510 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2512 return e100_eeprom_save(nic, eeprom->offset >> 1,
2513 (eeprom->len >> 1) + 1);
2516 static void e100_get_ringparam(struct net_device *netdev,
2517 struct ethtool_ringparam *ring)
2519 struct nic *nic = netdev_priv(netdev);
2520 struct param_range *rfds = &nic->params.rfds;
2521 struct param_range *cbs = &nic->params.cbs;
2523 ring->rx_max_pending = rfds->max;
2524 ring->tx_max_pending = cbs->max;
2525 ring->rx_mini_max_pending = 0;
2526 ring->rx_jumbo_max_pending = 0;
2527 ring->rx_pending = rfds->count;
2528 ring->tx_pending = cbs->count;
2529 ring->rx_mini_pending = 0;
2530 ring->rx_jumbo_pending = 0;
2533 static int e100_set_ringparam(struct net_device *netdev,
2534 struct ethtool_ringparam *ring)
2536 struct nic *nic = netdev_priv(netdev);
2537 struct param_range *rfds = &nic->params.rfds;
2538 struct param_range *cbs = &nic->params.cbs;
2540 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2543 if (netif_running(netdev))
2545 rfds->count = max(ring->rx_pending, rfds->min);
2546 rfds->count = min(rfds->count, rfds->max);
2547 cbs->count = max(ring->tx_pending, cbs->min);
2548 cbs->count = min(cbs->count, cbs->max);
2549 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2550 rfds->count, cbs->count);
2551 if (netif_running(netdev))
2557 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2558 "Link test (on/offline)",
2559 "Eeprom test (on/offline)",
2560 "Self test (offline)",
2561 "Mac loopback (offline)",
2562 "Phy loopback (offline)",
2564 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2566 static void e100_diag_test(struct net_device *netdev,
2567 struct ethtool_test *test, u64 *data)
2569 struct ethtool_cmd cmd;
2570 struct nic *nic = netdev_priv(netdev);
2573 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2574 data[0] = !mii_link_ok(&nic->mii);
2575 data[1] = e100_eeprom_load(nic);
2576 if (test->flags & ETH_TEST_FL_OFFLINE) {
2578 /* save speed, duplex & autoneg settings */
2579 err = mii_ethtool_gset(&nic->mii, &cmd);
2581 if (netif_running(netdev))
2583 data[2] = e100_self_test(nic);
2584 data[3] = e100_loopback_test(nic, lb_mac);
2585 data[4] = e100_loopback_test(nic, lb_phy);
2587 /* restore speed, duplex & autoneg settings */
2588 err = mii_ethtool_sset(&nic->mii, &cmd);
2590 if (netif_running(netdev))
2593 for (i = 0; i < E100_TEST_LEN; i++)
2594 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2596 msleep_interruptible(4 * 1000);
2599 static int e100_phys_id(struct net_device *netdev, u32 data)
2601 struct nic *nic = netdev_priv(netdev);
2602 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2605 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2606 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2607 mod_timer(&nic->blink_timer, jiffies);
2608 msleep_interruptible(data * 1000);
2609 del_timer_sync(&nic->blink_timer);
2610 mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
2615 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2616 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2617 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2618 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2619 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2620 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2621 "tx_heartbeat_errors", "tx_window_errors",
2622 /* device-specific stats */
2623 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2624 "tx_flow_control_pause", "rx_flow_control_pause",
2625 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2627 #define E100_NET_STATS_LEN 21
2628 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2630 static int e100_get_sset_count(struct net_device *netdev, int sset)
2634 return E100_TEST_LEN;
2636 return E100_STATS_LEN;
2642 static void e100_get_ethtool_stats(struct net_device *netdev,
2643 struct ethtool_stats *stats, u64 *data)
2645 struct nic *nic = netdev_priv(netdev);
2648 for (i = 0; i < E100_NET_STATS_LEN; i++)
2649 data[i] = ((unsigned long *)&netdev->stats)[i];
2651 data[i++] = nic->tx_deferred;
2652 data[i++] = nic->tx_single_collisions;
2653 data[i++] = nic->tx_multiple_collisions;
2654 data[i++] = nic->tx_fc_pause;
2655 data[i++] = nic->rx_fc_pause;
2656 data[i++] = nic->rx_fc_unsupported;
2657 data[i++] = nic->tx_tco_frames;
2658 data[i++] = nic->rx_tco_frames;
2661 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2663 switch (stringset) {
2665 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2668 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2673 static const struct ethtool_ops e100_ethtool_ops = {
2674 .get_settings = e100_get_settings,
2675 .set_settings = e100_set_settings,
2676 .get_drvinfo = e100_get_drvinfo,
2677 .get_regs_len = e100_get_regs_len,
2678 .get_regs = e100_get_regs,
2679 .get_wol = e100_get_wol,
2680 .set_wol = e100_set_wol,
2681 .get_msglevel = e100_get_msglevel,
2682 .set_msglevel = e100_set_msglevel,
2683 .nway_reset = e100_nway_reset,
2684 .get_link = e100_get_link,
2685 .get_eeprom_len = e100_get_eeprom_len,
2686 .get_eeprom = e100_get_eeprom,
2687 .set_eeprom = e100_set_eeprom,
2688 .get_ringparam = e100_get_ringparam,
2689 .set_ringparam = e100_set_ringparam,
2690 .self_test = e100_diag_test,
2691 .get_strings = e100_get_strings,
2692 .phys_id = e100_phys_id,
2693 .get_ethtool_stats = e100_get_ethtool_stats,
2694 .get_sset_count = e100_get_sset_count,
2697 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2699 struct nic *nic = netdev_priv(netdev);
2701 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2704 static int e100_alloc(struct nic *nic)
2706 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2708 return nic->mem ? 0 : -ENOMEM;
2711 static void e100_free(struct nic *nic)
2714 pci_free_consistent(nic->pdev, sizeof(struct mem),
2715 nic->mem, nic->dma_addr);
2720 static int e100_open(struct net_device *netdev)
2722 struct nic *nic = netdev_priv(netdev);
2725 netif_carrier_off(netdev);
2726 if ((err = e100_up(nic)))
2727 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2731 static int e100_close(struct net_device *netdev)
2733 e100_down(netdev_priv(netdev));
2737 static const struct net_device_ops e100_netdev_ops = {
2738 .ndo_open = e100_open,
2739 .ndo_stop = e100_close,
2740 .ndo_start_xmit = e100_xmit_frame,
2741 .ndo_validate_addr = eth_validate_addr,
2742 .ndo_set_multicast_list = e100_set_multicast_list,
2743 .ndo_set_mac_address = e100_set_mac_address,
2744 .ndo_change_mtu = e100_change_mtu,
2745 .ndo_do_ioctl = e100_do_ioctl,
2746 .ndo_tx_timeout = e100_tx_timeout,
2747 #ifdef CONFIG_NET_POLL_CONTROLLER
2748 .ndo_poll_controller = e100_netpoll,
2752 static int __devinit e100_probe(struct pci_dev *pdev,
2753 const struct pci_device_id *ent)
2755 struct net_device *netdev;
2759 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2760 if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2761 pr_err("Etherdev alloc failed, aborting\n");
2765 netdev->netdev_ops = &e100_netdev_ops;
2766 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2767 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2768 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2770 nic = netdev_priv(netdev);
2771 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2772 nic->netdev = netdev;
2774 nic->msg_enable = (1 << debug) - 1;
2775 nic->mdio_ctrl = mdio_ctrl_hw;
2776 pci_set_drvdata(pdev, netdev);
2778 if ((err = pci_enable_device(pdev))) {
2779 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2780 goto err_out_free_dev;
2783 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2784 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2786 goto err_out_disable_pdev;
2789 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2790 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2791 goto err_out_disable_pdev;
2794 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2795 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2796 goto err_out_free_res;
2799 SET_NETDEV_DEV(netdev, &pdev->dev);
2802 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2804 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2806 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2808 goto err_out_free_res;
2811 if (ent->driver_data)
2816 e100_get_defaults(nic);
2818 /* locks must be initialized before calling hw_reset */
2819 spin_lock_init(&nic->cb_lock);
2820 spin_lock_init(&nic->cmd_lock);
2821 spin_lock_init(&nic->mdio_lock);
2823 /* Reset the device before pci_set_master() in case device is in some
2824 * funky state and has an interrupt pending - hint: we don't have the
2825 * interrupt handler registered yet. */
2828 pci_set_master(pdev);
2830 init_timer(&nic->watchdog);
2831 nic->watchdog.function = e100_watchdog;
2832 nic->watchdog.data = (unsigned long)nic;
2833 init_timer(&nic->blink_timer);
2834 nic->blink_timer.function = e100_blink_led;
2835 nic->blink_timer.data = (unsigned long)nic;
2837 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2839 if ((err = e100_alloc(nic))) {
2840 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2841 goto err_out_iounmap;
2844 if ((err = e100_eeprom_load(nic)))
2849 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2850 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2851 if (!is_valid_ether_addr(netdev->perm_addr)) {
2852 if (!eeprom_bad_csum_allow) {
2853 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2857 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2861 /* Wol magic packet can be enabled from eeprom */
2862 if ((nic->mac >= mac_82558_D101_A4) &&
2863 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2864 nic->flags |= wol_magic;
2865 device_set_wakeup_enable(&pdev->dev, true);
2868 /* ack any pending wake events, disable PME */
2869 pci_pme_active(pdev, false);
2871 strcpy(netdev->name, "eth%d");
2872 if ((err = register_netdev(netdev))) {
2873 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2876 nic->cbs_pool = pci_pool_create(netdev->name,
2878 nic->params.cbs.max * sizeof(struct cb),
2881 netif_info(nic, probe, nic->netdev,
2882 "addr 0x%llx, irq %d, MAC addr %pM\n",
2883 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2884 pdev->irq, netdev->dev_addr);
2891 pci_iounmap(pdev, nic->csr);
2893 pci_release_regions(pdev);
2894 err_out_disable_pdev:
2895 pci_disable_device(pdev);
2897 pci_set_drvdata(pdev, NULL);
2898 free_netdev(netdev);
2902 static void __devexit e100_remove(struct pci_dev *pdev)
2904 struct net_device *netdev = pci_get_drvdata(pdev);
2907 struct nic *nic = netdev_priv(netdev);
2908 unregister_netdev(netdev);
2910 pci_iounmap(pdev, nic->csr);
2911 pci_pool_destroy(nic->cbs_pool);
2912 free_netdev(netdev);
2913 pci_release_regions(pdev);
2914 pci_disable_device(pdev);
2915 pci_set_drvdata(pdev, NULL);
2919 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2920 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2921 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2922 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2924 struct net_device *netdev = pci_get_drvdata(pdev);
2925 struct nic *nic = netdev_priv(netdev);
2927 if (netif_running(netdev))
2929 netif_device_detach(netdev);
2931 pci_save_state(pdev);
2933 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2934 /* enable reverse auto-negotiation */
2935 if (nic->phy == phy_82552_v) {
2936 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2937 E100_82552_SMARTSPEED);
2939 mdio_write(netdev, nic->mii.phy_id,
2940 E100_82552_SMARTSPEED, smartspeed |
2941 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2943 *enable_wake = true;
2945 *enable_wake = false;
2948 pci_disable_device(pdev);
2951 static int __e100_power_off(struct pci_dev *pdev, bool wake)
2954 return pci_prepare_to_sleep(pdev);
2956 pci_wake_from_d3(pdev, false);
2957 pci_set_power_state(pdev, PCI_D3hot);
2963 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2966 __e100_shutdown(pdev, &wake);
2967 return __e100_power_off(pdev, wake);
2970 static int e100_resume(struct pci_dev *pdev)
2972 struct net_device *netdev = pci_get_drvdata(pdev);
2973 struct nic *nic = netdev_priv(netdev);
2975 pci_set_power_state(pdev, PCI_D0);
2976 pci_restore_state(pdev);
2977 /* ack any pending wake events, disable PME */
2978 pci_enable_wake(pdev, 0, 0);
2980 /* disable reverse auto-negotiation */
2981 if (nic->phy == phy_82552_v) {
2982 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2983 E100_82552_SMARTSPEED);
2985 mdio_write(netdev, nic->mii.phy_id,
2986 E100_82552_SMARTSPEED,
2987 smartspeed & ~(E100_82552_REV_ANEG));
2990 netif_device_attach(netdev);
2991 if (netif_running(netdev))
2996 #endif /* CONFIG_PM */
2998 static void e100_shutdown(struct pci_dev *pdev)
3001 __e100_shutdown(pdev, &wake);
3002 if (system_state == SYSTEM_POWER_OFF)
3003 __e100_power_off(pdev, wake);
3006 /* ------------------ PCI Error Recovery infrastructure -------------- */
3008 * e100_io_error_detected - called when PCI error is detected.
3009 * @pdev: Pointer to PCI device
3010 * @state: The current pci connection state
3012 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3014 struct net_device *netdev = pci_get_drvdata(pdev);
3015 struct nic *nic = netdev_priv(netdev);
3017 netif_device_detach(netdev);
3019 if (state == pci_channel_io_perm_failure)
3020 return PCI_ERS_RESULT_DISCONNECT;
3022 if (netif_running(netdev))
3024 pci_disable_device(pdev);
3026 /* Request a slot reset. */
3027 return PCI_ERS_RESULT_NEED_RESET;
3031 * e100_io_slot_reset - called after the pci bus has been reset.
3032 * @pdev: Pointer to PCI device
3034 * Restart the card from scratch.
3036 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3038 struct net_device *netdev = pci_get_drvdata(pdev);
3039 struct nic *nic = netdev_priv(netdev);
3041 if (pci_enable_device(pdev)) {
3042 pr_err("Cannot re-enable PCI device after reset\n");
3043 return PCI_ERS_RESULT_DISCONNECT;
3045 pci_set_master(pdev);
3047 /* Only one device per card can do a reset */
3048 if (0 != PCI_FUNC(pdev->devfn))
3049 return PCI_ERS_RESULT_RECOVERED;
3053 return PCI_ERS_RESULT_RECOVERED;
3057 * e100_io_resume - resume normal operations
3058 * @pdev: Pointer to PCI device
3060 * Resume normal operations after an error recovery
3061 * sequence has been completed.
3063 static void e100_io_resume(struct pci_dev *pdev)
3065 struct net_device *netdev = pci_get_drvdata(pdev);
3066 struct nic *nic = netdev_priv(netdev);
3068 /* ack any pending wake events, disable PME */
3069 pci_enable_wake(pdev, 0, 0);
3071 netif_device_attach(netdev);
3072 if (netif_running(netdev)) {
3074 mod_timer(&nic->watchdog, jiffies);
3078 static struct pci_error_handlers e100_err_handler = {
3079 .error_detected = e100_io_error_detected,
3080 .slot_reset = e100_io_slot_reset,
3081 .resume = e100_io_resume,
3084 static struct pci_driver e100_driver = {
3086 .id_table = e100_id_table,
3087 .probe = e100_probe,
3088 .remove = __devexit_p(e100_remove),
3090 /* Power Management hooks */
3091 .suspend = e100_suspend,
3092 .resume = e100_resume,
3094 .shutdown = e100_shutdown,
3095 .err_handler = &e100_err_handler,
3098 static int __init e100_init_module(void)
3100 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3101 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3102 pr_info("%s\n", DRV_COPYRIGHT);
3104 return pci_register_driver(&e100_driver);
3107 static void __exit e100_cleanup_module(void)
3109 pci_unregister_driver(&e100_driver);
3112 module_init(e100_init_module);
3113 module_exit(e100_cleanup_module);