]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_kms.c
Merge branch 'md-fixes' of https://git.kernel.org/pub/scm/linux/kernel/git/song/md...
[linux.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/clk.h>
15 #include <linux/sort.h>
16
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_atomic_helper.h>
19 #include <drm/drm_crtc.h>
20 #include <drm/drm_fourcc.h>
21 #include <drm/drm_gem_framebuffer_helper.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "vc4_drv.h"
26 #include "vc4_regs.h"
27
28 struct vc4_ctm_state {
29         struct drm_private_state base;
30         struct drm_color_ctm *ctm;
31         int fifo;
32 };
33
34 static struct vc4_ctm_state *
35 to_vc4_ctm_state(const struct drm_private_state *priv)
36 {
37         return container_of(priv, struct vc4_ctm_state, base);
38 }
39
40 struct vc4_load_tracker_state {
41         struct drm_private_state base;
42         u64 hvs_load;
43         u64 membus_load;
44 };
45
46 static struct vc4_load_tracker_state *
47 to_vc4_load_tracker_state(const struct drm_private_state *priv)
48 {
49         return container_of(priv, struct vc4_load_tracker_state, base);
50 }
51
52 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
53                                                struct drm_private_obj *manager)
54 {
55         struct drm_device *dev = state->dev;
56         struct vc4_dev *vc4 = to_vc4_dev(dev);
57         struct drm_private_state *priv_state;
58         int ret;
59
60         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
61         if (ret)
62                 return ERR_PTR(ret);
63
64         priv_state = drm_atomic_get_private_obj_state(state, manager);
65         if (IS_ERR(priv_state))
66                 return ERR_CAST(priv_state);
67
68         return to_vc4_ctm_state(priv_state);
69 }
70
71 static struct drm_private_state *
72 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
73 {
74         struct vc4_ctm_state *state;
75
76         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
77         if (!state)
78                 return NULL;
79
80         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
81
82         return &state->base;
83 }
84
85 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
86                                   struct drm_private_state *state)
87 {
88         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
89
90         kfree(ctm_state);
91 }
92
93 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
94         .atomic_duplicate_state = vc4_ctm_duplicate_state,
95         .atomic_destroy_state = vc4_ctm_destroy_state,
96 };
97
98 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
99 {
100         struct vc4_dev *vc4 = to_vc4_dev(dev);
101
102         drm_atomic_private_obj_fini(&vc4->ctm_manager);
103 }
104
105 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
106 {
107         struct vc4_ctm_state *ctm_state;
108
109         drm_modeset_lock_init(&vc4->ctm_state_lock);
110
111         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
112         if (!ctm_state)
113                 return -ENOMEM;
114
115         drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
116                                     &vc4_ctm_state_funcs);
117
118         return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
119 }
120
121 /* Converts a DRM S31.32 value to the HW S0.9 format. */
122 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
123 {
124         u16 r;
125
126         /* Sign bit. */
127         r = in & BIT_ULL(63) ? BIT(9) : 0;
128
129         if ((in & GENMASK_ULL(62, 32)) > 0) {
130                 /* We have zero integer bits so we can only saturate here. */
131                 r |= GENMASK(8, 0);
132         } else {
133                 /* Otherwise take the 9 most important fractional bits. */
134                 r |= (in >> 23) & GENMASK(8, 0);
135         }
136
137         return r;
138 }
139
140 static void
141 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
142 {
143         struct vc4_hvs *hvs = vc4->hvs;
144         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
145         struct drm_color_ctm *ctm = ctm_state->ctm;
146
147         if (ctm_state->fifo) {
148                 HVS_WRITE(SCALER_OLEDCOEF2,
149                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
150                                         SCALER_OLEDCOEF2_R_TO_R) |
151                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
152                                         SCALER_OLEDCOEF2_R_TO_G) |
153                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
154                                         SCALER_OLEDCOEF2_R_TO_B));
155                 HVS_WRITE(SCALER_OLEDCOEF1,
156                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
157                                         SCALER_OLEDCOEF1_G_TO_R) |
158                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
159                                         SCALER_OLEDCOEF1_G_TO_G) |
160                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
161                                         SCALER_OLEDCOEF1_G_TO_B));
162                 HVS_WRITE(SCALER_OLEDCOEF0,
163                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
164                                         SCALER_OLEDCOEF0_B_TO_R) |
165                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
166                                         SCALER_OLEDCOEF0_B_TO_G) |
167                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
168                                         SCALER_OLEDCOEF0_B_TO_B));
169         }
170
171         HVS_WRITE(SCALER_OLEDOFFS,
172                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
173 }
174
175 struct vc4_hvs_state *
176 vc4_hvs_get_new_global_state(const struct drm_atomic_state *state)
177 {
178         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
179         struct drm_private_state *priv_state;
180
181         priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
182         if (!priv_state)
183                 return ERR_PTR(-EINVAL);
184
185         return to_vc4_hvs_state(priv_state);
186 }
187
188 struct vc4_hvs_state *
189 vc4_hvs_get_old_global_state(const struct drm_atomic_state *state)
190 {
191         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
192         struct drm_private_state *priv_state;
193
194         priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
195         if (!priv_state)
196                 return ERR_PTR(-EINVAL);
197
198         return to_vc4_hvs_state(priv_state);
199 }
200
201 struct vc4_hvs_state *
202 vc4_hvs_get_global_state(struct drm_atomic_state *state)
203 {
204         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
205         struct drm_private_state *priv_state;
206
207         priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
208         if (IS_ERR(priv_state))
209                 return ERR_CAST(priv_state);
210
211         return to_vc4_hvs_state(priv_state);
212 }
213
214 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
215                                      struct drm_atomic_state *state)
216 {
217         struct vc4_hvs *hvs = vc4->hvs;
218         struct drm_crtc_state *crtc_state;
219         struct drm_crtc *crtc;
220         unsigned int i;
221
222         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
223                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
224                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
225                 u32 dispctrl;
226                 u32 dsp3_mux;
227
228                 if (!crtc_state->active)
229                         continue;
230
231                 if (vc4_state->assigned_channel != 2)
232                         continue;
233
234                 /*
235                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
236                  * FIFO X'.
237                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
238                  *
239                  * DSP3 is connected to FIFO2 unless the transposer is
240                  * enabled. In this case, FIFO 2 is directly accessed by the
241                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
242                  * route.
243                  */
244                 if (vc4_crtc->feeds_txp)
245                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
246                 else
247                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
248
249                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
250                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
251                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
252         }
253 }
254
255 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
256                                      struct drm_atomic_state *state)
257 {
258         struct vc4_hvs *hvs = vc4->hvs;
259         struct drm_crtc_state *crtc_state;
260         struct drm_crtc *crtc;
261         unsigned char mux;
262         unsigned int i;
263         u32 reg;
264
265         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
266                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
267                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
268                 unsigned int channel = vc4_state->assigned_channel;
269
270                 if (!vc4_state->update_muxing)
271                         continue;
272
273                 switch (vc4_crtc->data->hvs_output) {
274                 case 2:
275                         drm_WARN_ON(&vc4->base,
276                                     VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
277                                                   SCALER_DISPCTRL_DSP3_MUX) == channel);
278
279                         mux = (channel == 2) ? 0 : 1;
280                         reg = HVS_READ(SCALER_DISPECTRL);
281                         HVS_WRITE(SCALER_DISPECTRL,
282                                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
283                                   VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
284                         break;
285
286                 case 3:
287                         if (channel == VC4_HVS_CHANNEL_DISABLED)
288                                 mux = 3;
289                         else
290                                 mux = channel;
291
292                         reg = HVS_READ(SCALER_DISPCTRL);
293                         HVS_WRITE(SCALER_DISPCTRL,
294                                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
295                                   VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
296                         break;
297
298                 case 4:
299                         if (channel == VC4_HVS_CHANNEL_DISABLED)
300                                 mux = 3;
301                         else
302                                 mux = channel;
303
304                         reg = HVS_READ(SCALER_DISPEOLN);
305                         HVS_WRITE(SCALER_DISPEOLN,
306                                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
307                                   VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
308
309                         break;
310
311                 case 5:
312                         if (channel == VC4_HVS_CHANNEL_DISABLED)
313                                 mux = 3;
314                         else
315                                 mux = channel;
316
317                         reg = HVS_READ(SCALER_DISPDITHER);
318                         HVS_WRITE(SCALER_DISPDITHER,
319                                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
320                                   VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
321                         break;
322
323                 default:
324                         break;
325                 }
326         }
327 }
328
329 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
330 {
331         struct drm_device *dev = state->dev;
332         struct vc4_dev *vc4 = to_vc4_dev(dev);
333         struct vc4_hvs *hvs = vc4->hvs;
334         struct drm_crtc_state *new_crtc_state;
335         struct vc4_hvs_state *new_hvs_state;
336         struct drm_crtc *crtc;
337         struct vc4_hvs_state *old_hvs_state;
338         unsigned int channel;
339         int i;
340
341         old_hvs_state = vc4_hvs_get_old_global_state(state);
342         if (WARN_ON(IS_ERR(old_hvs_state)))
343                 return;
344
345         new_hvs_state = vc4_hvs_get_new_global_state(state);
346         if (WARN_ON(IS_ERR(new_hvs_state)))
347                 return;
348
349         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
350                 struct vc4_crtc_state *vc4_crtc_state;
351
352                 if (!new_crtc_state->commit)
353                         continue;
354
355                 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
356                 vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
357         }
358
359         for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
360                 struct drm_crtc_commit *commit;
361                 int ret;
362
363                 if (!old_hvs_state->fifo_state[channel].in_use)
364                         continue;
365
366                 commit = old_hvs_state->fifo_state[channel].pending_commit;
367                 if (!commit)
368                         continue;
369
370                 ret = drm_crtc_commit_wait(commit);
371                 if (ret)
372                         drm_err(dev, "Timed out waiting for commit\n");
373
374                 drm_crtc_commit_put(commit);
375                 old_hvs_state->fifo_state[channel].pending_commit = NULL;
376         }
377
378         if (vc4->is_vc5) {
379                 unsigned long state_rate = max(old_hvs_state->core_clock_rate,
380                                                new_hvs_state->core_clock_rate);
381                 unsigned long core_rate = clamp_t(unsigned long, state_rate,
382                                                   500000000, hvs->max_core_rate);
383
384                 drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
385
386                 /*
387                  * Do a temporary request on the core clock during the
388                  * modeset.
389                  */
390                 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
391         }
392
393         drm_atomic_helper_commit_modeset_disables(dev, state);
394
395         vc4_ctm_commit(vc4, state);
396
397         if (vc4->is_vc5)
398                 vc5_hvs_pv_muxing_commit(vc4, state);
399         else
400                 vc4_hvs_pv_muxing_commit(vc4, state);
401
402         drm_atomic_helper_commit_planes(dev, state,
403                                         DRM_PLANE_COMMIT_ACTIVE_ONLY);
404
405         drm_atomic_helper_commit_modeset_enables(dev, state);
406
407         drm_atomic_helper_fake_vblank(state);
408
409         drm_atomic_helper_commit_hw_done(state);
410
411         drm_atomic_helper_wait_for_flip_done(dev, state);
412
413         drm_atomic_helper_cleanup_planes(dev, state);
414
415         if (vc4->is_vc5) {
416                 unsigned long core_rate = min_t(unsigned long,
417                                                 hvs->max_core_rate,
418                                                 new_hvs_state->core_clock_rate);
419
420                 drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);
421
422                 /*
423                  * Request a clock rate based on the current HVS
424                  * requirements.
425                  */
426                 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
427
428                 drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
429                         clk_get_rate(hvs->core_clk));
430         }
431 }
432
433 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
434 {
435         struct drm_crtc_state *crtc_state;
436         struct vc4_hvs_state *hvs_state;
437         struct drm_crtc *crtc;
438         unsigned int i;
439
440         hvs_state = vc4_hvs_get_new_global_state(state);
441         if (WARN_ON(IS_ERR(hvs_state)))
442                 return PTR_ERR(hvs_state);
443
444         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
445                 struct vc4_crtc_state *vc4_crtc_state =
446                         to_vc4_crtc_state(crtc_state);
447                 unsigned int channel =
448                         vc4_crtc_state->assigned_channel;
449
450                 if (channel == VC4_HVS_CHANNEL_DISABLED)
451                         continue;
452
453                 if (!hvs_state->fifo_state[channel].in_use)
454                         continue;
455
456                 hvs_state->fifo_state[channel].pending_commit =
457                         drm_crtc_commit_get(crtc_state->commit);
458         }
459
460         return 0;
461 }
462
463 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
464                                              struct drm_file *file_priv,
465                                              const struct drm_mode_fb_cmd2 *mode_cmd)
466 {
467         struct vc4_dev *vc4 = to_vc4_dev(dev);
468         struct drm_mode_fb_cmd2 mode_cmd_local;
469
470         if (WARN_ON_ONCE(vc4->is_vc5))
471                 return ERR_PTR(-ENODEV);
472
473         /* If the user didn't specify a modifier, use the
474          * vc4_set_tiling_ioctl() state for the BO.
475          */
476         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
477                 struct drm_gem_object *gem_obj;
478                 struct vc4_bo *bo;
479
480                 gem_obj = drm_gem_object_lookup(file_priv,
481                                                 mode_cmd->handles[0]);
482                 if (!gem_obj) {
483                         DRM_DEBUG("Failed to look up GEM BO %d\n",
484                                   mode_cmd->handles[0]);
485                         return ERR_PTR(-ENOENT);
486                 }
487                 bo = to_vc4_bo(gem_obj);
488
489                 mode_cmd_local = *mode_cmd;
490
491                 if (bo->t_format) {
492                         mode_cmd_local.modifier[0] =
493                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
494                 } else {
495                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
496                 }
497
498                 drm_gem_object_put(gem_obj);
499
500                 mode_cmd = &mode_cmd_local;
501         }
502
503         return drm_gem_fb_create(dev, file_priv, mode_cmd);
504 }
505
506 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
507  * at a time and the HW only supports S0.9 scalars. To account for the latter,
508  * we don't allow userland to set a CTM that we have no hope of approximating.
509  */
510 static int
511 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
512 {
513         struct vc4_dev *vc4 = to_vc4_dev(dev);
514         struct vc4_ctm_state *ctm_state = NULL;
515         struct drm_crtc *crtc;
516         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
517         struct drm_color_ctm *ctm;
518         int i;
519
520         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
521                 /* CTM is being disabled. */
522                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
523                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
524                         if (IS_ERR(ctm_state))
525                                 return PTR_ERR(ctm_state);
526                         ctm_state->fifo = 0;
527                 }
528         }
529
530         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
531                 if (new_crtc_state->ctm == old_crtc_state->ctm)
532                         continue;
533
534                 if (!ctm_state) {
535                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
536                         if (IS_ERR(ctm_state))
537                                 return PTR_ERR(ctm_state);
538                 }
539
540                 /* CTM is being enabled or the matrix changed. */
541                 if (new_crtc_state->ctm) {
542                         struct vc4_crtc_state *vc4_crtc_state =
543                                 to_vc4_crtc_state(new_crtc_state);
544
545                         /* fifo is 1-based since 0 disables CTM. */
546                         int fifo = vc4_crtc_state->assigned_channel + 1;
547
548                         /* Check userland isn't trying to turn on CTM for more
549                          * than one CRTC at a time.
550                          */
551                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
552                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
553                                 return -EINVAL;
554                         }
555
556                         /* Check we can approximate the specified CTM.
557                          * We disallow scalars |c| > 1.0 since the HW has
558                          * no integer bits.
559                          */
560                         ctm = new_crtc_state->ctm->data;
561                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
562                                 u64 val = ctm->matrix[i];
563
564                                 val &= ~BIT_ULL(63);
565                                 if (val > BIT_ULL(32))
566                                         return -EINVAL;
567                         }
568
569                         ctm_state->fifo = fifo;
570                         ctm_state->ctm = ctm;
571                 }
572         }
573
574         return 0;
575 }
576
577 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
578 {
579         struct drm_plane_state *old_plane_state, *new_plane_state;
580         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
581         struct vc4_load_tracker_state *load_state;
582         struct drm_private_state *priv_state;
583         struct drm_plane *plane;
584         int i;
585
586         priv_state = drm_atomic_get_private_obj_state(state,
587                                                       &vc4->load_tracker);
588         if (IS_ERR(priv_state))
589                 return PTR_ERR(priv_state);
590
591         load_state = to_vc4_load_tracker_state(priv_state);
592         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
593                                        new_plane_state, i) {
594                 struct vc4_plane_state *vc4_plane_state;
595
596                 if (old_plane_state->fb && old_plane_state->crtc) {
597                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
598                         load_state->membus_load -= vc4_plane_state->membus_load;
599                         load_state->hvs_load -= vc4_plane_state->hvs_load;
600                 }
601
602                 if (new_plane_state->fb && new_plane_state->crtc) {
603                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
604                         load_state->membus_load += vc4_plane_state->membus_load;
605                         load_state->hvs_load += vc4_plane_state->hvs_load;
606                 }
607         }
608
609         /* Don't check the load when the tracker is disabled. */
610         if (!vc4->load_tracker_enabled)
611                 return 0;
612
613         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
614          * the system work when other blocks are accessing the memory.
615          */
616         if (load_state->membus_load > SZ_1G + SZ_512M)
617                 return -ENOSPC;
618
619         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
620          * consider the maximum number of cycles is 240M.
621          */
622         if (load_state->hvs_load > 240000000ULL)
623                 return -ENOSPC;
624
625         return 0;
626 }
627
628 static struct drm_private_state *
629 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
630 {
631         struct vc4_load_tracker_state *state;
632
633         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
634         if (!state)
635                 return NULL;
636
637         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
638
639         return &state->base;
640 }
641
642 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
643                                            struct drm_private_state *state)
644 {
645         struct vc4_load_tracker_state *load_state;
646
647         load_state = to_vc4_load_tracker_state(state);
648         kfree(load_state);
649 }
650
651 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
652         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
653         .atomic_destroy_state = vc4_load_tracker_destroy_state,
654 };
655
656 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
657 {
658         struct vc4_dev *vc4 = to_vc4_dev(dev);
659
660         drm_atomic_private_obj_fini(&vc4->load_tracker);
661 }
662
663 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
664 {
665         struct vc4_load_tracker_state *load_state;
666
667         load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
668         if (!load_state)
669                 return -ENOMEM;
670
671         drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
672                                     &load_state->base,
673                                     &vc4_load_tracker_state_funcs);
674
675         return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
676 }
677
678 static struct drm_private_state *
679 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
680 {
681         struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
682         struct vc4_hvs_state *state;
683         unsigned int i;
684
685         state = kzalloc(sizeof(*state), GFP_KERNEL);
686         if (!state)
687                 return NULL;
688
689         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
690
691         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
692                 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
693                 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
694         }
695
696         state->core_clock_rate = old_state->core_clock_rate;
697
698         return &state->base;
699 }
700
701 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
702                                            struct drm_private_state *state)
703 {
704         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
705         unsigned int i;
706
707         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
708                 if (!hvs_state->fifo_state[i].pending_commit)
709                         continue;
710
711                 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
712         }
713
714         kfree(hvs_state);
715 }
716
717 static void vc4_hvs_channels_print_state(struct drm_printer *p,
718                                          const struct drm_private_state *state)
719 {
720         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
721         unsigned int i;
722
723         drm_printf(p, "HVS State\n");
724         drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
725
726         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
727                 drm_printf(p, "\tChannel %d\n", i);
728                 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
729                 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
730         }
731 }
732
733 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
734         .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
735         .atomic_destroy_state = vc4_hvs_channels_destroy_state,
736         .atomic_print_state = vc4_hvs_channels_print_state,
737 };
738
739 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
740 {
741         struct vc4_dev *vc4 = to_vc4_dev(dev);
742
743         drm_atomic_private_obj_fini(&vc4->hvs_channels);
744 }
745
746 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
747 {
748         struct vc4_hvs_state *state;
749
750         state = kzalloc(sizeof(*state), GFP_KERNEL);
751         if (!state)
752                 return -ENOMEM;
753
754         drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
755                                     &state->base,
756                                     &vc4_hvs_state_funcs);
757
758         return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
759 }
760
761 static int cmp_vc4_crtc_hvs_output(const void *a, const void *b)
762 {
763         const struct vc4_crtc *crtc_a =
764                 to_vc4_crtc(*(const struct drm_crtc **)a);
765         const struct vc4_crtc_data *data_a =
766                 vc4_crtc_to_vc4_crtc_data(crtc_a);
767         const struct vc4_crtc *crtc_b =
768                 to_vc4_crtc(*(const struct drm_crtc **)b);
769         const struct vc4_crtc_data *data_b =
770                 vc4_crtc_to_vc4_crtc_data(crtc_b);
771
772         return data_a->hvs_output - data_b->hvs_output;
773 }
774
775 /*
776  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
777  * the TXP (and therefore all the CRTCs found on that platform).
778  *
779  * The naive (and our initial) implementation would just iterate over
780  * all the active CRTCs, try to find a suitable FIFO, and then remove it
781  * from the pool of available FIFOs. However, there are a few corner
782  * cases that need to be considered:
783  *
784  * - When running in a dual-display setup (so with two CRTCs involved),
785  *   we can update the state of a single CRTC (for example by changing
786  *   its mode using xrandr under X11) without affecting the other. In
787  *   this case, the other CRTC wouldn't be in the state at all, so we
788  *   need to consider all the running CRTCs in the DRM device to assign
789  *   a FIFO, not just the one in the state.
790  *
791  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
792  *   enabled CRTCs to pull their CRTC state into the global state, since
793  *   a page flip would start considering their vblank to complete. Since
794  *   we don't have a guarantee that they are actually active, that
795  *   vblank might never happen, and shouldn't even be considered if we
796  *   want to do a page flip on a single CRTC. That can be tested by
797  *   doing a modetest -v first on HDMI1 and then on HDMI0.
798  *
799  * - Since we need the pixelvalve to be disabled and enabled back when
800  *   the FIFO is changed, we should keep the FIFO assigned for as long
801  *   as the CRTC is enabled, only considering it free again once that
802  *   CRTC has been disabled. This can be tested by booting X11 on a
803  *   single display, and changing the resolution down and then back up.
804  */
805 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
806                                       struct drm_atomic_state *state)
807 {
808         struct vc4_hvs_state *hvs_new_state;
809         struct drm_crtc **sorted_crtcs;
810         struct drm_crtc *crtc;
811         unsigned int unassigned_channels = 0;
812         unsigned int i;
813         int ret;
814
815         hvs_new_state = vc4_hvs_get_global_state(state);
816         if (IS_ERR(hvs_new_state))
817                 return PTR_ERR(hvs_new_state);
818
819         for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
820                 if (!hvs_new_state->fifo_state[i].in_use)
821                         unassigned_channels |= BIT(i);
822
823         /*
824          * The problem we have to solve here is that we have up to 7
825          * encoders, connected to up to 6 CRTCs.
826          *
827          * Those CRTCs, depending on the instance, can be routed to 1, 2
828          * or 3 HVS FIFOs, and we need to set the muxing between FIFOs and
829          * outputs in the HVS accordingly.
830          *
831          * It would be pretty hard to come up with an algorithm that
832          * would generically solve this. However, the current routing
833          * trees we support allow us to simplify a bit the problem.
834          *
835          * Indeed, with the current supported layouts, if we try to
836          * assign in the ascending crtc index order the FIFOs, we can't
837          * fall into the situation where an earlier CRTC that had
838          * multiple routes is assigned one that was the only option for
839          * a later CRTC.
840          *
841          * If the layout changes and doesn't give us that in the future,
842          * we will need to have something smarter, but it works so far.
843          */
844         sorted_crtcs = kmalloc_array(dev->num_crtcs, sizeof(*sorted_crtcs), GFP_KERNEL);
845         if (!sorted_crtcs)
846                 return -ENOMEM;
847
848         i = 0;
849         drm_for_each_crtc(crtc, dev)
850                 sorted_crtcs[i++] = crtc;
851
852         sort(sorted_crtcs, i, sizeof(*sorted_crtcs), cmp_vc4_crtc_hvs_output, NULL);
853
854         for (i = 0; i < dev->num_crtcs; i++) {
855                 struct vc4_crtc_state *old_vc4_crtc_state, *new_vc4_crtc_state;
856                 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
857                 struct vc4_crtc *vc4_crtc;
858                 unsigned int matching_channels;
859                 unsigned int channel;
860
861                 crtc = sorted_crtcs[i];
862                 if (!crtc)
863                         continue;
864                 vc4_crtc = to_vc4_crtc(crtc);
865
866                 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
867                 if (!old_crtc_state)
868                         continue;
869                 old_vc4_crtc_state = to_vc4_crtc_state(old_crtc_state);
870
871                 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
872                 if (!new_crtc_state)
873                         continue;
874                 new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
875
876                 drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
877
878                 /* Nothing to do here, let's skip it */
879                 if (old_crtc_state->enable == new_crtc_state->enable) {
880                         if (new_crtc_state->enable)
881                                 drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
882                                         crtc->name, new_vc4_crtc_state->assigned_channel);
883                         else
884                                 drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
885
886                         continue;
887                 }
888
889                 /* Muxing will need to be modified, mark it as such */
890                 new_vc4_crtc_state->update_muxing = true;
891
892                 /* If we're disabling our CRTC, we put back our channel */
893                 if (!new_crtc_state->enable) {
894                         channel = old_vc4_crtc_state->assigned_channel;
895
896                         drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
897                                 crtc->name, channel);
898
899                         hvs_new_state->fifo_state[channel].in_use = false;
900                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
901                         continue;
902                 }
903
904                 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
905                 if (!matching_channels) {
906                         ret = -EINVAL;
907                         goto err_free_crtc_array;
908                 }
909
910                 channel = ffs(matching_channels) - 1;
911
912                 drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
913                 new_vc4_crtc_state->assigned_channel = channel;
914                 unassigned_channels &= ~BIT(channel);
915                 hvs_new_state->fifo_state[channel].in_use = true;
916         }
917
918         kfree(sorted_crtcs);
919         return 0;
920
921 err_free_crtc_array:
922         kfree(sorted_crtcs);
923         return ret;
924 }
925
926 static int
927 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
928 {
929         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
930         struct drm_private_state *priv_state;
931         struct vc4_hvs_state *hvs_new_state;
932         struct vc4_load_tracker_state *load_state;
933         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
934         struct drm_crtc *crtc;
935         unsigned int num_outputs;
936         unsigned long pixel_rate;
937         unsigned long cob_rate;
938         unsigned int i;
939
940         priv_state = drm_atomic_get_private_obj_state(state,
941                                                       &vc4->load_tracker);
942         if (IS_ERR(priv_state))
943                 return PTR_ERR(priv_state);
944
945         load_state = to_vc4_load_tracker_state(priv_state);
946
947         hvs_new_state = vc4_hvs_get_global_state(state);
948         if (IS_ERR(hvs_new_state))
949                 return PTR_ERR(hvs_new_state);
950
951         for_each_oldnew_crtc_in_state(state, crtc,
952                                       old_crtc_state,
953                                       new_crtc_state,
954                                       i) {
955                 if (old_crtc_state->active) {
956                         struct vc4_crtc_state *old_vc4_state =
957                                 to_vc4_crtc_state(old_crtc_state);
958                         unsigned int channel = old_vc4_state->assigned_channel;
959
960                         hvs_new_state->fifo_state[channel].fifo_load = 0;
961                 }
962
963                 if (new_crtc_state->active) {
964                         struct vc4_crtc_state *new_vc4_state =
965                                 to_vc4_crtc_state(new_crtc_state);
966                         unsigned int channel = new_vc4_state->assigned_channel;
967
968                         hvs_new_state->fifo_state[channel].fifo_load =
969                                 new_vc4_state->hvs_load;
970                 }
971         }
972
973         cob_rate = 0;
974         num_outputs = 0;
975         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
976                 if (!hvs_new_state->fifo_state[i].in_use)
977                         continue;
978
979                 num_outputs++;
980                 cob_rate = max_t(unsigned long,
981                                  hvs_new_state->fifo_state[i].fifo_load,
982                                  cob_rate);
983         }
984
985         pixel_rate = load_state->hvs_load;
986         if (num_outputs > 1) {
987                 pixel_rate = (pixel_rate * 40) / 100;
988         } else {
989                 pixel_rate = (pixel_rate * 60) / 100;
990         }
991
992         hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
993
994         return 0;
995 }
996
997
998 static int
999 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
1000 {
1001         int ret;
1002
1003         ret = vc4_pv_muxing_atomic_check(dev, state);
1004         if (ret)
1005                 return ret;
1006
1007         ret = vc4_ctm_atomic_check(dev, state);
1008         if (ret < 0)
1009                 return ret;
1010
1011         ret = drm_atomic_helper_check(dev, state);
1012         if (ret)
1013                 return ret;
1014
1015         ret = vc4_load_tracker_atomic_check(state);
1016         if (ret)
1017                 return ret;
1018
1019         return vc4_core_clock_atomic_check(state);
1020 }
1021
1022 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
1023         .atomic_commit_setup    = vc4_atomic_commit_setup,
1024         .atomic_commit_tail     = vc4_atomic_commit_tail,
1025 };
1026
1027 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1028         .atomic_check = vc4_atomic_check,
1029         .atomic_commit = drm_atomic_helper_commit,
1030         .fb_create = vc4_fb_create,
1031 };
1032
1033 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1034         .atomic_check = vc4_atomic_check,
1035         .atomic_commit = drm_atomic_helper_commit,
1036         .fb_create = drm_gem_fb_create,
1037 };
1038
1039 int vc4_kms_load(struct drm_device *dev)
1040 {
1041         struct vc4_dev *vc4 = to_vc4_dev(dev);
1042         int ret;
1043
1044         /*
1045          * The limits enforced by the load tracker aren't relevant for
1046          * the BCM2711, but the load tracker computations are used for
1047          * the core clock rate calculation.
1048          */
1049         if (!vc4->is_vc5) {
1050                 /* Start with the load tracker enabled. Can be
1051                  * disabled through the debugfs load_tracker file.
1052                  */
1053                 vc4->load_tracker_enabled = true;
1054         }
1055
1056         /* Set support for vblank irq fast disable, before drm_vblank_init() */
1057         dev->vblank_disable_immediate = true;
1058
1059         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1060         if (ret < 0) {
1061                 dev_err(dev->dev, "failed to initialize vblank\n");
1062                 return ret;
1063         }
1064
1065         if (vc4->is_vc5) {
1066                 dev->mode_config.max_width = 7680;
1067                 dev->mode_config.max_height = 7680;
1068         } else {
1069                 dev->mode_config.max_width = 2048;
1070                 dev->mode_config.max_height = 2048;
1071         }
1072
1073         dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1074         dev->mode_config.helper_private = &vc4_mode_config_helpers;
1075         dev->mode_config.preferred_depth = 24;
1076         dev->mode_config.async_page_flip = true;
1077         dev->mode_config.normalize_zpos = true;
1078
1079         ret = vc4_ctm_obj_init(vc4);
1080         if (ret)
1081                 return ret;
1082
1083         ret = vc4_load_tracker_obj_init(vc4);
1084         if (ret)
1085                 return ret;
1086
1087         ret = vc4_hvs_channels_obj_init(vc4);
1088         if (ret)
1089                 return ret;
1090
1091         drm_mode_config_reset(dev);
1092
1093         drm_kms_helper_poll_init(dev);
1094
1095         return 0;
1096 }
This page took 0.097285 seconds and 4 git commands to generate.