1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Derived from original vfio:
7 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/aperture.h>
14 #include <linux/device.h>
15 #include <linux/eventfd.h>
16 #include <linux/file.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/pci.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/uaccess.h>
27 #include <linux/vgaarb.h>
28 #include <linux/nospec.h>
29 #include <linux/sched/mm.h>
30 #if IS_ENABLED(CONFIG_EEH)
34 #include "vfio_pci_priv.h"
37 #define DRIVER_DESC "core driver for VFIO based PCI devices"
39 static bool nointxmask;
40 static bool disable_vga;
41 static bool disable_idle_d3;
43 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */
44 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
45 static LIST_HEAD(vfio_pci_sriov_pfs);
47 struct vfio_pci_dummy_resource {
48 struct resource resource;
50 struct list_head res_next;
53 struct vfio_pci_vf_token {
59 struct vfio_pci_mmap_vma {
60 struct vm_area_struct *vma;
61 struct list_head vma_next;
64 static inline bool vfio_vga_disabled(void)
66 #ifdef CONFIG_VFIO_PCI_VGA
74 * Our VGA arbiter participation is limited since we don't know anything
75 * about the device itself. However, if the device is the only VGA device
76 * downstream of a bridge and VFIO VGA support is disabled, then we can
77 * safely return legacy VGA IO and memory as not decoded since the user
78 * has no way to get to it and routing can be disabled externally at the
81 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
83 struct pci_dev *tmp = NULL;
84 unsigned char max_busnr;
87 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
88 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
89 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
91 max_busnr = pci_bus_max_busnr(pdev->bus);
92 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
94 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
96 pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
97 pci_is_root_bus(tmp->bus))
100 if (tmp->bus->number >= pdev->bus->number &&
101 tmp->bus->number <= max_busnr) {
103 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
111 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
113 struct resource *res;
115 struct vfio_pci_dummy_resource *dummy_res;
117 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
118 int bar = i + PCI_STD_RESOURCES;
120 res = &vdev->pdev->resource[bar];
122 if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
125 if (!(res->flags & IORESOURCE_MEM))
129 * The PCI core shouldn't set up a resource with a
130 * type but zero size. But there may be bugs that
131 * cause us to do that.
133 if (!resource_size(res))
136 if (resource_size(res) >= PAGE_SIZE) {
137 vdev->bar_mmap_supported[bar] = true;
141 if (!(res->start & ~PAGE_MASK)) {
143 * Add a dummy resource to reserve the remainder
144 * of the exclusive page in case that hot-add
145 * device's bar is assigned into it.
148 kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
149 if (dummy_res == NULL)
152 dummy_res->resource.name = "vfio sub-page reserved";
153 dummy_res->resource.start = res->end + 1;
154 dummy_res->resource.end = res->start + PAGE_SIZE - 1;
155 dummy_res->resource.flags = res->flags;
156 if (request_resource(res->parent,
157 &dummy_res->resource)) {
161 dummy_res->index = bar;
162 list_add(&dummy_res->res_next,
163 &vdev->dummy_resources_list);
164 vdev->bar_mmap_supported[bar] = true;
168 * Here we don't handle the case when the BAR is not page
169 * aligned because we can't expect the BAR will be
170 * assigned into the same location in a page in guest
171 * when we passthrough the BAR. And it's hard to access
172 * this BAR in userspace because we have no way to get
173 * the BAR's location in a page.
176 vdev->bar_mmap_supported[bar] = false;
180 struct vfio_pci_group_info;
181 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
182 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
183 struct vfio_pci_group_info *groups);
186 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
187 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
188 * If a device implements the former but not the latter we would typically
189 * expect broken_intx_masking be set and require an exclusive interrupt.
190 * However since we do have control of the device's ability to assert INTx,
191 * we can instead pretend that the device does not implement INTx, virtualizing
192 * the pin register to report zero and maintaining DisINTx set on the host.
194 static bool vfio_pci_nointx(struct pci_dev *pdev)
196 switch (pdev->vendor) {
197 case PCI_VENDOR_ID_INTEL:
198 switch (pdev->device) {
199 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
202 case 0x1580 ... 0x1581:
203 case 0x1583 ... 0x158b:
204 case 0x37d0 ... 0x37d2:
216 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
218 struct pci_dev *pdev = vdev->pdev;
224 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
226 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
230 * pci_set_power_state() wrapper handling devices which perform a soft reset on
231 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev,
232 * restore when returned to D0. Saved separately from pci_saved_state for use
233 * by PM capability emulation and separately from pci_dev internal saved state
234 * to avoid it being overwritten and consumed around other resets.
236 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
238 struct pci_dev *pdev = vdev->pdev;
239 bool needs_restore = false, needs_save = false;
242 /* Prevent changing power state for PFs with VFs enabled */
243 if (pci_num_vf(pdev) && state > PCI_D0)
246 if (vdev->needs_pm_restore) {
247 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
248 pci_save_state(pdev);
252 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
253 needs_restore = true;
256 ret = pci_set_power_state(pdev, state);
259 /* D3 might be unsupported via quirk, skip unless in D3 */
260 if (needs_save && pdev->current_state >= PCI_D3hot) {
262 * The current PCI state will be saved locally in
263 * 'pm_save' during the D3hot transition. When the
264 * device state is changed to D0 again with the current
265 * function, then pci_store_saved_state() will restore
266 * the state and will free the memory pointed by
267 * 'pm_save'. There are few cases where the PCI power
268 * state can be changed to D0 without the involvement
269 * of the driver. For these cases, free the earlier
270 * allocated memory first before overwriting 'pm_save'
271 * to prevent the memory leak.
273 kfree(vdev->pm_save);
274 vdev->pm_save = pci_store_saved_state(pdev);
275 } else if (needs_restore) {
276 pci_load_and_free_saved_state(pdev, &vdev->pm_save);
277 pci_restore_state(pdev);
284 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
285 struct eventfd_ctx *efdctx)
288 * The vdev power related flags are protected with 'memory_lock'
291 vfio_pci_zap_and_down_write_memory_lock(vdev);
292 if (vdev->pm_runtime_engaged) {
293 up_write(&vdev->memory_lock);
297 vdev->pm_runtime_engaged = true;
298 vdev->pm_wake_eventfd_ctx = efdctx;
299 pm_runtime_put_noidle(&vdev->pdev->dev);
300 up_write(&vdev->memory_lock);
305 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
306 void __user *arg, size_t argsz)
308 struct vfio_pci_core_device *vdev =
309 container_of(device, struct vfio_pci_core_device, vdev);
312 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
317 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
318 * will be decremented. The pm_runtime_put() will be invoked again
319 * while returning from the ioctl and then the device can go into
320 * runtime suspended state.
322 return vfio_pci_runtime_pm_entry(vdev, NULL);
325 static int vfio_pci_core_pm_entry_with_wakeup(
326 struct vfio_device *device, u32 flags,
327 struct vfio_device_low_power_entry_with_wakeup __user *arg,
330 struct vfio_pci_core_device *vdev =
331 container_of(device, struct vfio_pci_core_device, vdev);
332 struct vfio_device_low_power_entry_with_wakeup entry;
333 struct eventfd_ctx *efdctx;
336 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
341 if (copy_from_user(&entry, arg, sizeof(entry)))
344 if (entry.wakeup_eventfd < 0)
347 efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
349 return PTR_ERR(efdctx);
351 ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
353 eventfd_ctx_put(efdctx);
358 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
360 if (vdev->pm_runtime_engaged) {
361 vdev->pm_runtime_engaged = false;
362 pm_runtime_get_noresume(&vdev->pdev->dev);
364 if (vdev->pm_wake_eventfd_ctx) {
365 eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
366 vdev->pm_wake_eventfd_ctx = NULL;
371 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
374 * The vdev power related flags are protected with 'memory_lock'
377 down_write(&vdev->memory_lock);
378 __vfio_pci_runtime_pm_exit(vdev);
379 up_write(&vdev->memory_lock);
382 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
383 void __user *arg, size_t argsz)
385 struct vfio_pci_core_device *vdev =
386 container_of(device, struct vfio_pci_core_device, vdev);
389 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
394 * The device is always in the active state here due to pm wrappers
395 * around ioctls. If the device had entered a low power state and
396 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
397 * already signaled the eventfd and exited low power mode itself.
398 * pm_runtime_engaged protects the redundant call here.
400 vfio_pci_runtime_pm_exit(vdev);
405 static int vfio_pci_core_runtime_suspend(struct device *dev)
407 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
409 down_write(&vdev->memory_lock);
411 * The user can move the device into D3hot state before invoking
412 * power management IOCTL. Move the device into D0 state here and then
413 * the pci-driver core runtime PM suspend function will move the device
414 * into the low power state. Also, for the devices which have
415 * NoSoftRst-, it will help in restoring the original state
416 * (saved locally in 'vdev->pm_save').
418 vfio_pci_set_power_state(vdev, PCI_D0);
419 up_write(&vdev->memory_lock);
422 * If INTx is enabled, then mask INTx before going into the runtime
423 * suspended state and unmask the same in the runtime resume.
424 * If INTx has already been masked by the user, then
425 * vfio_pci_intx_mask() will return false and in that case, INTx
426 * should not be unmasked in the runtime resume.
428 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
429 vfio_pci_intx_mask(vdev));
434 static int vfio_pci_core_runtime_resume(struct device *dev)
436 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
439 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
442 down_write(&vdev->memory_lock);
443 if (vdev->pm_wake_eventfd_ctx) {
444 eventfd_signal(vdev->pm_wake_eventfd_ctx, 1);
445 __vfio_pci_runtime_pm_exit(vdev);
447 up_write(&vdev->memory_lock);
449 if (vdev->pm_intx_masked)
450 vfio_pci_intx_unmask(vdev);
454 #endif /* CONFIG_PM */
457 * The pci-driver core runtime PM routines always save the device state
458 * before going into suspended state. If the device is going into low power
459 * state with only with runtime PM ops, then no explicit handling is needed
460 * for the devices which have NoSoftRst-.
462 static const struct dev_pm_ops vfio_pci_core_pm_ops = {
463 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
464 vfio_pci_core_runtime_resume,
468 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
470 struct pci_dev *pdev = vdev->pdev;
475 if (!disable_idle_d3) {
476 ret = pm_runtime_resume_and_get(&pdev->dev);
481 /* Don't allow our initial saved state to include busmaster */
482 pci_clear_master(pdev);
484 ret = pci_enable_device(pdev);
488 /* If reset fails because of the device lock, fail this path entirely */
489 ret = pci_try_reset_function(pdev);
491 goto out_disable_device;
493 vdev->reset_works = !ret;
494 pci_save_state(pdev);
495 vdev->pci_saved_state = pci_store_saved_state(pdev);
496 if (!vdev->pci_saved_state)
497 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
499 if (likely(!nointxmask)) {
500 if (vfio_pci_nointx(pdev)) {
501 pci_info(pdev, "Masking broken INTx support\n");
505 vdev->pci_2_3 = pci_intx_mask_supported(pdev);
508 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
509 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
510 cmd &= ~PCI_COMMAND_INTX_DISABLE;
511 pci_write_config_word(pdev, PCI_COMMAND, cmd);
514 ret = vfio_pci_zdev_open_device(vdev);
518 ret = vfio_config_init(vdev);
522 msix_pos = pdev->msix_cap;
527 pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
528 pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
530 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
531 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
532 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
533 vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev);
535 vdev->msix_bar = 0xFF;
536 vdev->has_dyn_msix = false;
539 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
540 vdev->has_vga = true;
546 vfio_pci_zdev_close_device(vdev);
548 kfree(vdev->pci_saved_state);
549 vdev->pci_saved_state = NULL;
551 pci_disable_device(pdev);
553 if (!disable_idle_d3)
554 pm_runtime_put(&pdev->dev);
557 EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
559 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
561 struct pci_dev *pdev = vdev->pdev;
562 struct vfio_pci_dummy_resource *dummy_res, *tmp;
563 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
566 /* For needs_reset */
567 lockdep_assert_held(&vdev->vdev.dev_set->lock);
570 * This function can be invoked while the power state is non-D0.
571 * This non-D0 power state can be with or without runtime PM.
572 * vfio_pci_runtime_pm_exit() will internally increment the usage
573 * count corresponding to pm_runtime_put() called during low power
574 * feature entry and then pm_runtime_resume() will wake up the device,
575 * if the device has already gone into the suspended state. Otherwise,
576 * the vfio_pci_set_power_state() will change the device power state
579 vfio_pci_runtime_pm_exit(vdev);
580 pm_runtime_resume(&pdev->dev);
583 * This function calls __pci_reset_function_locked() which internally
584 * can use pci_pm_reset() for the function reset. pci_pm_reset() will
585 * fail if the power state is non-D0. Also, for the devices which
586 * have NoSoftRst-, the reset function can cause the PCI config space
587 * reset without restoring the original state (saved locally in
590 vfio_pci_set_power_state(vdev, PCI_D0);
592 /* Stop the device from further DMA */
593 pci_clear_master(pdev);
595 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
596 VFIO_IRQ_SET_ACTION_TRIGGER,
597 vdev->irq_type, 0, 0, NULL);
599 /* Device closed, don't need mutex here */
600 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
601 &vdev->ioeventfds_list, next) {
602 vfio_virqfd_disable(&ioeventfd->virqfd);
603 list_del(&ioeventfd->next);
606 vdev->ioeventfds_nr = 0;
608 vdev->virq_disabled = false;
610 for (i = 0; i < vdev->num_regions; i++)
611 vdev->region[i].ops->release(vdev, &vdev->region[i]);
613 vdev->num_regions = 0;
615 vdev->region = NULL; /* don't krealloc a freed pointer */
617 vfio_config_free(vdev);
619 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
620 bar = i + PCI_STD_RESOURCES;
621 if (!vdev->barmap[bar])
623 pci_iounmap(pdev, vdev->barmap[bar]);
624 pci_release_selected_regions(pdev, 1 << bar);
625 vdev->barmap[bar] = NULL;
628 list_for_each_entry_safe(dummy_res, tmp,
629 &vdev->dummy_resources_list, res_next) {
630 list_del(&dummy_res->res_next);
631 release_resource(&dummy_res->resource);
635 vdev->needs_reset = true;
637 vfio_pci_zdev_close_device(vdev);
640 * If we have saved state, restore it. If we can reset the device,
641 * even better. Resetting with current state seems better than
642 * nothing, but saving and restoring current state without reset
645 if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
646 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
648 if (!vdev->reset_works)
651 pci_save_state(pdev);
655 * Disable INTx and MSI, presumably to avoid spurious interrupts
656 * during reset. Stolen from pci_reset_function()
658 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
661 * Try to get the locks ourselves to prevent a deadlock. The
662 * success of this is dependent on being able to lock the device,
663 * which is not always possible.
664 * We can not use the "try" reset interface here, which will
665 * overwrite the previously restored configuration information.
667 if (vdev->reset_works && pci_dev_trylock(pdev)) {
668 if (!__pci_reset_function_locked(pdev))
669 vdev->needs_reset = false;
670 pci_dev_unlock(pdev);
673 pci_restore_state(pdev);
675 pci_disable_device(pdev);
677 vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
679 /* Put the pm-runtime usage counter acquired during enable */
680 if (!disable_idle_d3)
681 pm_runtime_put(&pdev->dev);
683 EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
685 void vfio_pci_core_close_device(struct vfio_device *core_vdev)
687 struct vfio_pci_core_device *vdev =
688 container_of(core_vdev, struct vfio_pci_core_device, vdev);
690 if (vdev->sriov_pf_core_dev) {
691 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
692 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
693 vdev->sriov_pf_core_dev->vf_token->users--;
694 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
696 #if IS_ENABLED(CONFIG_EEH)
697 eeh_dev_release(vdev->pdev);
699 vfio_pci_core_disable(vdev);
701 mutex_lock(&vdev->igate);
702 if (vdev->err_trigger) {
703 eventfd_ctx_put(vdev->err_trigger);
704 vdev->err_trigger = NULL;
706 if (vdev->req_trigger) {
707 eventfd_ctx_put(vdev->req_trigger);
708 vdev->req_trigger = NULL;
710 mutex_unlock(&vdev->igate);
712 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
714 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
716 vfio_pci_probe_mmaps(vdev);
717 #if IS_ENABLED(CONFIG_EEH)
718 eeh_dev_open(vdev->pdev);
721 if (vdev->sriov_pf_core_dev) {
722 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
723 vdev->sriov_pf_core_dev->vf_token->users++;
724 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
727 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
729 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
731 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
734 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
735 vdev->nointx || vdev->pdev->is_virtfn)
738 pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
741 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
745 pos = vdev->pdev->msi_cap;
747 pci_read_config_word(vdev->pdev,
748 pos + PCI_MSI_FLAGS, &flags);
749 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
751 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
755 pos = vdev->pdev->msix_cap;
757 pci_read_config_word(vdev->pdev,
758 pos + PCI_MSIX_FLAGS, &flags);
760 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
762 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
763 if (pci_is_pcie(vdev->pdev))
765 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
772 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
778 struct vfio_pci_fill_info {
781 struct vfio_pci_dependent_device *devices;
784 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
786 struct vfio_pci_fill_info *fill = data;
787 struct iommu_group *iommu_group;
789 if (fill->cur == fill->max)
790 return -EAGAIN; /* Something changed, try again */
792 iommu_group = iommu_group_get(&pdev->dev);
794 return -EPERM; /* Cannot reset non-isolated devices */
796 fill->devices[fill->cur].group_id = iommu_group_id(iommu_group);
797 fill->devices[fill->cur].segment = pci_domain_nr(pdev->bus);
798 fill->devices[fill->cur].bus = pdev->bus->number;
799 fill->devices[fill->cur].devfn = pdev->devfn;
801 iommu_group_put(iommu_group);
805 struct vfio_pci_group_info {
810 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
812 for (; pdev; pdev = pdev->bus->self)
813 if (pdev->bus == slot->bus)
814 return (pdev->slot == slot);
818 struct vfio_pci_walk_info {
819 int (*fn)(struct pci_dev *pdev, void *data);
821 struct pci_dev *pdev;
826 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
828 struct vfio_pci_walk_info *walk = data;
830 if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
831 walk->ret = walk->fn(pdev, walk->data);
836 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
837 int (*fn)(struct pci_dev *,
838 void *data), void *data,
841 struct vfio_pci_walk_info walk = {
842 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
845 pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
850 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
851 struct vfio_info_cap *caps)
853 struct vfio_info_cap_header header = {
854 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
858 return vfio_info_add_capability(caps, &header, sizeof(header));
861 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
862 unsigned int type, unsigned int subtype,
863 const struct vfio_pci_regops *ops,
864 size_t size, u32 flags, void *data)
866 struct vfio_pci_region *region;
868 region = krealloc(vdev->region,
869 (vdev->num_regions + 1) * sizeof(*region),
874 vdev->region = region;
875 vdev->region[vdev->num_regions].type = type;
876 vdev->region[vdev->num_regions].subtype = subtype;
877 vdev->region[vdev->num_regions].ops = ops;
878 vdev->region[vdev->num_regions].size = size;
879 vdev->region[vdev->num_regions].flags = flags;
880 vdev->region[vdev->num_regions].data = data;
886 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
888 static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
889 struct vfio_info_cap *caps)
891 struct vfio_device_info_cap_pci_atomic_comp cap = {
892 .header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
895 struct pci_dev *pdev = pci_physfn(vdev->pdev);
898 pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2);
900 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
901 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
902 cap.flags |= VFIO_PCI_ATOMIC_COMP32;
904 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
905 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
906 cap.flags |= VFIO_PCI_ATOMIC_COMP64;
908 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
909 !pci_enable_atomic_ops_to_root(pdev,
910 PCI_EXP_DEVCAP2_ATOMIC_COMP128))
911 cap.flags |= VFIO_PCI_ATOMIC_COMP128;
916 return vfio_info_add_capability(caps, &cap.header, sizeof(cap));
919 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
920 struct vfio_device_info __user *arg)
922 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
923 struct vfio_device_info info;
924 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
928 /* For backward compatibility, cannot require this */
929 capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
931 if (copy_from_user(&info, arg, minsz))
934 if (info.argsz < minsz)
937 if (info.argsz >= capsz) {
942 info.flags = VFIO_DEVICE_FLAGS_PCI;
944 if (vdev->reset_works)
945 info.flags |= VFIO_DEVICE_FLAGS_RESET;
947 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
948 info.num_irqs = VFIO_PCI_NUM_IRQS;
950 ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
951 if (ret && ret != -ENODEV) {
953 "Failed to setup zPCI info capabilities\n");
957 ret = vfio_pci_info_atomic_cap(vdev, &caps);
958 if (ret && ret != -ENODEV) {
960 "Failed to setup AtomicOps info capability\n");
965 info.flags |= VFIO_DEVICE_FLAGS_CAPS;
966 if (info.argsz < sizeof(info) + caps.size) {
967 info.argsz = sizeof(info) + caps.size;
969 vfio_info_cap_shift(&caps, sizeof(info));
970 if (copy_to_user(arg + 1, caps.buf, caps.size)) {
974 info.cap_offset = sizeof(*arg);
980 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
983 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
984 struct vfio_region_info __user *arg)
986 unsigned long minsz = offsetofend(struct vfio_region_info, offset);
987 struct pci_dev *pdev = vdev->pdev;
988 struct vfio_region_info info;
989 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
992 if (copy_from_user(&info, arg, minsz))
995 if (info.argsz < minsz)
998 switch (info.index) {
999 case VFIO_PCI_CONFIG_REGION_INDEX:
1000 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1001 info.size = pdev->cfg_size;
1002 info.flags = VFIO_REGION_INFO_FLAG_READ |
1003 VFIO_REGION_INFO_FLAG_WRITE;
1005 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1006 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1007 info.size = pci_resource_len(pdev, info.index);
1013 info.flags = VFIO_REGION_INFO_FLAG_READ |
1014 VFIO_REGION_INFO_FLAG_WRITE;
1015 if (vdev->bar_mmap_supported[info.index]) {
1016 info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
1017 if (info.index == vdev->msix_bar) {
1018 ret = msix_mmappable_cap(vdev, &caps);
1025 case VFIO_PCI_ROM_REGION_INDEX: {
1030 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1033 /* Report the BAR size, not the ROM size */
1034 info.size = pci_resource_len(pdev, info.index);
1036 /* Shadow ROMs appear as PCI option ROMs */
1037 if (pdev->resource[PCI_ROM_RESOURCE].flags &
1038 IORESOURCE_ROM_SHADOW)
1039 info.size = 0x20000;
1045 * Is it really there? Enable memory decode for implicit access
1048 cmd = vfio_pci_memory_lock_and_enable(vdev);
1049 io = pci_map_rom(pdev, &size);
1051 info.flags = VFIO_REGION_INFO_FLAG_READ;
1052 pci_unmap_rom(pdev, io);
1056 vfio_pci_memory_unlock_and_restore(vdev, cmd);
1060 case VFIO_PCI_VGA_REGION_INDEX:
1064 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1065 info.size = 0xc0000;
1066 info.flags = VFIO_REGION_INFO_FLAG_READ |
1067 VFIO_REGION_INFO_FLAG_WRITE;
1071 struct vfio_region_info_cap_type cap_type = {
1072 .header.id = VFIO_REGION_INFO_CAP_TYPE,
1076 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1078 info.index = array_index_nospec(
1079 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
1081 i = info.index - VFIO_PCI_NUM_REGIONS;
1083 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1084 info.size = vdev->region[i].size;
1085 info.flags = vdev->region[i].flags;
1087 cap_type.type = vdev->region[i].type;
1088 cap_type.subtype = vdev->region[i].subtype;
1090 ret = vfio_info_add_capability(&caps, &cap_type.header,
1095 if (vdev->region[i].ops->add_capability) {
1096 ret = vdev->region[i].ops->add_capability(
1097 vdev, &vdev->region[i], &caps);
1105 info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1106 if (info.argsz < sizeof(info) + caps.size) {
1107 info.argsz = sizeof(info) + caps.size;
1108 info.cap_offset = 0;
1110 vfio_info_cap_shift(&caps, sizeof(info));
1111 if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1115 info.cap_offset = sizeof(*arg);
1121 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1124 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
1125 struct vfio_irq_info __user *arg)
1127 unsigned long minsz = offsetofend(struct vfio_irq_info, count);
1128 struct vfio_irq_info info;
1130 if (copy_from_user(&info, arg, minsz))
1133 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1136 switch (info.index) {
1137 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
1138 case VFIO_PCI_REQ_IRQ_INDEX:
1140 case VFIO_PCI_ERR_IRQ_INDEX:
1141 if (pci_is_pcie(vdev->pdev))
1148 info.flags = VFIO_IRQ_INFO_EVENTFD;
1150 info.count = vfio_pci_get_irq_count(vdev, info.index);
1152 if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1154 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
1155 else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
1156 info.flags |= VFIO_IRQ_INFO_NORESIZE;
1158 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1161 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
1162 struct vfio_irq_set __user *arg)
1164 unsigned long minsz = offsetofend(struct vfio_irq_set, count);
1165 struct vfio_irq_set hdr;
1168 size_t data_size = 0;
1170 if (copy_from_user(&hdr, arg, minsz))
1173 max = vfio_pci_get_irq_count(vdev, hdr.index);
1175 ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
1181 data = memdup_user(&arg->data, data_size);
1183 return PTR_ERR(data);
1186 mutex_lock(&vdev->igate);
1188 ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
1191 mutex_unlock(&vdev->igate);
1197 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
1202 if (!vdev->reset_works)
1205 vfio_pci_zap_and_down_write_memory_lock(vdev);
1208 * This function can be invoked while the power state is non-D0. If
1209 * pci_try_reset_function() has been called while the power state is
1210 * non-D0, then pci_try_reset_function() will internally set the power
1211 * state to D0 without vfio driver involvement. For the devices which
1212 * have NoSoftRst-, the reset function can cause the PCI config space
1213 * reset without restoring the original state (saved locally in
1216 vfio_pci_set_power_state(vdev, PCI_D0);
1218 ret = pci_try_reset_function(vdev->pdev);
1219 up_write(&vdev->memory_lock);
1224 static int vfio_pci_ioctl_get_pci_hot_reset_info(
1225 struct vfio_pci_core_device *vdev,
1226 struct vfio_pci_hot_reset_info __user *arg)
1228 unsigned long minsz =
1229 offsetofend(struct vfio_pci_hot_reset_info, count);
1230 struct vfio_pci_hot_reset_info hdr;
1231 struct vfio_pci_fill_info fill = { 0 };
1232 struct vfio_pci_dependent_device *devices = NULL;
1236 if (copy_from_user(&hdr, arg, minsz))
1239 if (hdr.argsz < minsz)
1244 /* Can we do a slot or bus reset or neither? */
1245 if (!pci_probe_reset_slot(vdev->pdev->slot))
1247 else if (pci_probe_reset_bus(vdev->pdev->bus))
1250 /* How many devices are affected? */
1251 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1256 WARN_ON(!fill.max); /* Should always be at least one */
1259 * If there's enough space, fill it now, otherwise return -ENOSPC and
1260 * the number of devices affected.
1262 if (hdr.argsz < sizeof(hdr) + (fill.max * sizeof(*devices))) {
1264 hdr.count = fill.max;
1265 goto reset_info_exit;
1268 devices = kcalloc(fill.max, sizeof(*devices), GFP_KERNEL);
1272 fill.devices = devices;
1274 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
1278 * If a device was removed between counting and filling, we may come up
1279 * short of fill.max. If a device was added, we'll have a return of
1283 hdr.count = fill.cur;
1286 if (copy_to_user(arg, &hdr, minsz))
1290 if (copy_to_user(&arg->devices, devices,
1291 hdr.count * sizeof(*devices)))
1299 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
1300 struct vfio_pci_hot_reset __user *arg)
1302 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
1303 struct vfio_pci_hot_reset hdr;
1305 struct file **files;
1306 struct vfio_pci_group_info info;
1308 int file_idx, count = 0, ret = 0;
1310 if (copy_from_user(&hdr, arg, minsz))
1313 if (hdr.argsz < minsz || hdr.flags)
1316 /* Can we do a slot or bus reset or neither? */
1317 if (!pci_probe_reset_slot(vdev->pdev->slot))
1319 else if (pci_probe_reset_bus(vdev->pdev->bus))
1323 * We can't let userspace give us an arbitrarily large buffer to copy,
1324 * so verify how many we think there could be. Note groups can have
1325 * multiple devices so one group per device is the max.
1327 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1332 /* Somewhere between 1 and count is OK */
1333 if (!hdr.count || hdr.count > count)
1336 group_fds = kcalloc(hdr.count, sizeof(*group_fds), GFP_KERNEL);
1337 files = kcalloc(hdr.count, sizeof(*files), GFP_KERNEL);
1338 if (!group_fds || !files) {
1344 if (copy_from_user(group_fds, arg->group_fds,
1345 hdr.count * sizeof(*group_fds))) {
1352 * For each group_fd, get the group through the vfio external user
1353 * interface and store the group and iommu ID. This ensures the group
1354 * is held across the reset.
1356 for (file_idx = 0; file_idx < hdr.count; file_idx++) {
1357 struct file *file = fget(group_fds[file_idx]);
1364 /* Ensure the FD is a vfio group FD.*/
1365 if (!vfio_file_is_group(file)) {
1371 files[file_idx] = file;
1376 /* release reference to groups on error */
1378 goto hot_reset_release;
1380 info.count = hdr.count;
1383 ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info);
1386 for (file_idx--; file_idx >= 0; file_idx--)
1387 fput(files[file_idx]);
1393 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
1394 struct vfio_device_ioeventfd __user *arg)
1396 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
1397 struct vfio_device_ioeventfd ioeventfd;
1400 if (copy_from_user(&ioeventfd, arg, minsz))
1403 if (ioeventfd.argsz < minsz)
1406 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
1409 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
1411 if (hweight8(count) != 1 || ioeventfd.fd < -1)
1414 return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
1418 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
1421 struct vfio_pci_core_device *vdev =
1422 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1423 void __user *uarg = (void __user *)arg;
1426 case VFIO_DEVICE_GET_INFO:
1427 return vfio_pci_ioctl_get_info(vdev, uarg);
1428 case VFIO_DEVICE_GET_IRQ_INFO:
1429 return vfio_pci_ioctl_get_irq_info(vdev, uarg);
1430 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
1431 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
1432 case VFIO_DEVICE_GET_REGION_INFO:
1433 return vfio_pci_ioctl_get_region_info(vdev, uarg);
1434 case VFIO_DEVICE_IOEVENTFD:
1435 return vfio_pci_ioctl_ioeventfd(vdev, uarg);
1436 case VFIO_DEVICE_PCI_HOT_RESET:
1437 return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
1438 case VFIO_DEVICE_RESET:
1439 return vfio_pci_ioctl_reset(vdev, uarg);
1440 case VFIO_DEVICE_SET_IRQS:
1441 return vfio_pci_ioctl_set_irqs(vdev, uarg);
1446 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
1448 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
1449 uuid_t __user *arg, size_t argsz)
1451 struct vfio_pci_core_device *vdev =
1452 container_of(device, struct vfio_pci_core_device, vdev);
1456 if (!vdev->vf_token)
1459 * We do not support GET of the VF Token UUID as this could
1460 * expose the token of the previous device user.
1462 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
1467 if (copy_from_user(&uuid, arg, sizeof(uuid)))
1470 mutex_lock(&vdev->vf_token->lock);
1471 uuid_copy(&vdev->vf_token->uuid, &uuid);
1472 mutex_unlock(&vdev->vf_token->lock);
1476 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
1477 void __user *arg, size_t argsz)
1479 switch (flags & VFIO_DEVICE_FEATURE_MASK) {
1480 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
1481 return vfio_pci_core_pm_entry(device, flags, arg, argsz);
1482 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
1483 return vfio_pci_core_pm_entry_with_wakeup(device, flags,
1485 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
1486 return vfio_pci_core_pm_exit(device, flags, arg, argsz);
1487 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
1488 return vfio_pci_core_feature_token(device, flags, arg, argsz);
1493 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
1495 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1496 size_t count, loff_t *ppos, bool iswrite)
1498 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
1501 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1504 ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
1506 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
1512 case VFIO_PCI_CONFIG_REGION_INDEX:
1513 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
1516 case VFIO_PCI_ROM_REGION_INDEX:
1520 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
1523 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1524 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
1527 case VFIO_PCI_VGA_REGION_INDEX:
1528 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
1532 index -= VFIO_PCI_NUM_REGIONS;
1533 ret = vdev->region[index].ops->rw(vdev, buf,
1534 count, ppos, iswrite);
1538 pm_runtime_put(&vdev->pdev->dev);
1542 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
1543 size_t count, loff_t *ppos)
1545 struct vfio_pci_core_device *vdev =
1546 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1551 return vfio_pci_rw(vdev, buf, count, ppos, false);
1553 EXPORT_SYMBOL_GPL(vfio_pci_core_read);
1555 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
1556 size_t count, loff_t *ppos)
1558 struct vfio_pci_core_device *vdev =
1559 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1564 return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
1566 EXPORT_SYMBOL_GPL(vfio_pci_core_write);
1568 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
1569 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
1571 struct vfio_pci_mmap_vma *mmap_vma, *tmp;
1575 * vma_lock is nested under mmap_lock for vm_ops callback paths.
1576 * The memory_lock semaphore is used by both code paths calling
1577 * into this function to zap vmas and the vm_ops.fault callback
1578 * to protect the memory enable state of the device.
1580 * When zapping vmas we need to maintain the mmap_lock => vma_lock
1581 * ordering, which requires using vma_lock to walk vma_list to
1582 * acquire an mm, then dropping vma_lock to get the mmap_lock and
1583 * reacquiring vma_lock. This logic is derived from similar
1584 * requirements in uverbs_user_mmap_disassociate().
1586 * mmap_lock must always be the top-level lock when it is taken.
1587 * Therefore we can only hold the memory_lock write lock when
1588 * vma_list is empty, as we'd need to take mmap_lock to clear
1589 * entries. vma_list can only be guaranteed empty when holding
1590 * vma_lock, thus memory_lock is nested under vma_lock.
1592 * This enables the vm_ops.fault callback to acquire vma_lock,
1593 * followed by memory_lock read lock, while already holding
1594 * mmap_lock without risk of deadlock.
1597 struct mm_struct *mm = NULL;
1600 if (!mutex_trylock(&vdev->vma_lock))
1603 mutex_lock(&vdev->vma_lock);
1605 while (!list_empty(&vdev->vma_list)) {
1606 mmap_vma = list_first_entry(&vdev->vma_list,
1607 struct vfio_pci_mmap_vma,
1609 mm = mmap_vma->vma->vm_mm;
1610 if (mmget_not_zero(mm))
1613 list_del(&mmap_vma->vma_next);
1619 mutex_unlock(&vdev->vma_lock);
1622 if (!mmap_read_trylock(mm)) {
1630 if (!mutex_trylock(&vdev->vma_lock)) {
1631 mmap_read_unlock(mm);
1636 mutex_lock(&vdev->vma_lock);
1638 list_for_each_entry_safe(mmap_vma, tmp,
1639 &vdev->vma_list, vma_next) {
1640 struct vm_area_struct *vma = mmap_vma->vma;
1642 if (vma->vm_mm != mm)
1645 list_del(&mmap_vma->vma_next);
1648 zap_vma_ptes(vma, vma->vm_start,
1649 vma->vm_end - vma->vm_start);
1651 mutex_unlock(&vdev->vma_lock);
1652 mmap_read_unlock(mm);
1657 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
1659 vfio_pci_zap_and_vma_lock(vdev, false);
1660 down_write(&vdev->memory_lock);
1661 mutex_unlock(&vdev->vma_lock);
1664 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
1668 down_write(&vdev->memory_lock);
1669 pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
1670 if (!(cmd & PCI_COMMAND_MEMORY))
1671 pci_write_config_word(vdev->pdev, PCI_COMMAND,
1672 cmd | PCI_COMMAND_MEMORY);
1677 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
1679 pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
1680 up_write(&vdev->memory_lock);
1683 /* Caller holds vma_lock */
1684 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
1685 struct vm_area_struct *vma)
1687 struct vfio_pci_mmap_vma *mmap_vma;
1689 mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT);
1693 mmap_vma->vma = vma;
1694 list_add(&mmap_vma->vma_next, &vdev->vma_list);
1700 * Zap mmaps on open so that we can fault them in on access and therefore
1701 * our vma_list only tracks mappings accessed since last zap.
1703 static void vfio_pci_mmap_open(struct vm_area_struct *vma)
1705 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1708 static void vfio_pci_mmap_close(struct vm_area_struct *vma)
1710 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1711 struct vfio_pci_mmap_vma *mmap_vma;
1713 mutex_lock(&vdev->vma_lock);
1714 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1715 if (mmap_vma->vma == vma) {
1716 list_del(&mmap_vma->vma_next);
1721 mutex_unlock(&vdev->vma_lock);
1724 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
1726 struct vm_area_struct *vma = vmf->vma;
1727 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1728 struct vfio_pci_mmap_vma *mmap_vma;
1729 vm_fault_t ret = VM_FAULT_NOPAGE;
1731 mutex_lock(&vdev->vma_lock);
1732 down_read(&vdev->memory_lock);
1735 * Memory region cannot be accessed if the low power feature is engaged
1736 * or memory access is disabled.
1738 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
1739 ret = VM_FAULT_SIGBUS;
1744 * We populate the whole vma on fault, so we need to test whether
1745 * the vma has already been mapped, such as for concurrent faults
1746 * to the same vma. io_remap_pfn_range() will trigger a BUG_ON if
1747 * we ask it to fill the same range again.
1749 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1750 if (mmap_vma->vma == vma)
1754 if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
1755 vma->vm_end - vma->vm_start,
1756 vma->vm_page_prot)) {
1757 ret = VM_FAULT_SIGBUS;
1758 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1762 if (__vfio_pci_add_vma(vdev, vma)) {
1764 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1768 up_read(&vdev->memory_lock);
1769 mutex_unlock(&vdev->vma_lock);
1773 static const struct vm_operations_struct vfio_pci_mmap_ops = {
1774 .open = vfio_pci_mmap_open,
1775 .close = vfio_pci_mmap_close,
1776 .fault = vfio_pci_mmap_fault,
1779 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
1781 struct vfio_pci_core_device *vdev =
1782 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1783 struct pci_dev *pdev = vdev->pdev;
1785 u64 phys_len, req_len, pgoff, req_start;
1788 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1790 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1792 if (vma->vm_end < vma->vm_start)
1794 if ((vma->vm_flags & VM_SHARED) == 0)
1796 if (index >= VFIO_PCI_NUM_REGIONS) {
1797 int regnum = index - VFIO_PCI_NUM_REGIONS;
1798 struct vfio_pci_region *region = vdev->region + regnum;
1800 if (region->ops && region->ops->mmap &&
1801 (region->flags & VFIO_REGION_INFO_FLAG_MMAP))
1802 return region->ops->mmap(vdev, region, vma);
1805 if (index >= VFIO_PCI_ROM_REGION_INDEX)
1807 if (!vdev->bar_mmap_supported[index])
1810 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
1811 req_len = vma->vm_end - vma->vm_start;
1812 pgoff = vma->vm_pgoff &
1813 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1814 req_start = pgoff << PAGE_SHIFT;
1816 if (req_start + req_len > phys_len)
1820 * Even though we don't make use of the barmap for the mmap,
1821 * we need to request the region and the barmap tracks that.
1823 if (!vdev->barmap[index]) {
1824 ret = pci_request_selected_regions(pdev,
1825 1 << index, "vfio-pci");
1829 vdev->barmap[index] = pci_iomap(pdev, index, 0);
1830 if (!vdev->barmap[index]) {
1831 pci_release_selected_regions(pdev, 1 << index);
1836 vma->vm_private_data = vdev;
1837 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1838 vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
1841 * See remap_pfn_range(), called from vfio_pci_fault() but we can't
1842 * change vm_flags within the fault handler. Set them now.
1844 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1845 vma->vm_ops = &vfio_pci_mmap_ops;
1849 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
1851 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
1853 struct vfio_pci_core_device *vdev =
1854 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1855 struct pci_dev *pdev = vdev->pdev;
1857 mutex_lock(&vdev->igate);
1859 if (vdev->req_trigger) {
1861 pci_notice_ratelimited(pdev,
1862 "Relaying device request to user (#%u)\n",
1864 eventfd_signal(vdev->req_trigger, 1);
1865 } else if (count == 0) {
1867 "No device request channel registered, blocked until released by user\n");
1870 mutex_unlock(&vdev->igate);
1872 EXPORT_SYMBOL_GPL(vfio_pci_core_request);
1874 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
1875 bool vf_token, uuid_t *uuid)
1878 * There's always some degree of trust or collaboration between SR-IOV
1879 * PF and VFs, even if just that the PF hosts the SR-IOV capability and
1880 * can disrupt VFs with a reset, but often the PF has more explicit
1881 * access to deny service to the VF or access data passed through the
1882 * VF. We therefore require an opt-in via a shared VF token (UUID) to
1883 * represent this trust. This both prevents that a VF driver might
1884 * assume the PF driver is a trusted, in-kernel driver, and also that
1885 * a PF driver might be replaced with a rogue driver, unknown to in-use
1888 * Therefore when presented with a VF, if the PF is a vfio device and
1889 * it is bound to the vfio-pci driver, the user needs to provide a VF
1890 * token to access the device, in the form of appending a vf_token to
1891 * the device name, for example:
1893 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
1895 * When presented with a PF which has VFs in use, the user must also
1896 * provide the current VF token to prove collaboration with existing
1897 * VF users. If VFs are not in use, the VF token provided for the PF
1898 * device will act to set the VF token.
1900 * If the VF token is provided but unused, an error is generated.
1902 if (vdev->pdev->is_virtfn) {
1903 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
1908 return 0; /* PF is not vfio-pci, no VF token */
1910 pci_info_ratelimited(vdev->pdev,
1911 "VF token incorrectly provided, PF not bound to vfio-pci\n");
1916 pci_info_ratelimited(vdev->pdev,
1917 "VF token required to access device\n");
1921 mutex_lock(&pf_vdev->vf_token->lock);
1922 match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
1923 mutex_unlock(&pf_vdev->vf_token->lock);
1926 pci_info_ratelimited(vdev->pdev,
1927 "Incorrect VF token provided for device\n");
1930 } else if (vdev->vf_token) {
1931 mutex_lock(&vdev->vf_token->lock);
1932 if (vdev->vf_token->users) {
1934 mutex_unlock(&vdev->vf_token->lock);
1935 pci_info_ratelimited(vdev->pdev,
1936 "VF token required to access device\n");
1940 if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
1941 mutex_unlock(&vdev->vf_token->lock);
1942 pci_info_ratelimited(vdev->pdev,
1943 "Incorrect VF token provided for device\n");
1946 } else if (vf_token) {
1947 uuid_copy(&vdev->vf_token->uuid, uuid);
1950 mutex_unlock(&vdev->vf_token->lock);
1951 } else if (vf_token) {
1952 pci_info_ratelimited(vdev->pdev,
1953 "VF token incorrectly provided, not a PF or VF\n");
1960 #define VF_TOKEN_ARG "vf_token="
1962 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
1964 struct vfio_pci_core_device *vdev =
1965 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1966 bool vf_token = false;
1970 if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
1971 return 0; /* No match */
1973 if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
1974 buf += strlen(pci_name(vdev->pdev));
1977 return 0; /* No match: non-whitespace after name */
1985 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
1986 strlen(VF_TOKEN_ARG))) {
1987 buf += strlen(VF_TOKEN_ARG);
1989 if (strlen(buf) < UUID_STRING_LEN)
1992 ret = uuid_parse(buf, &uuid);
1997 buf += UUID_STRING_LEN;
1999 /* Unknown/duplicate option */
2005 ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
2009 return 1; /* Match */
2011 EXPORT_SYMBOL_GPL(vfio_pci_core_match);
2013 static int vfio_pci_bus_notifier(struct notifier_block *nb,
2014 unsigned long action, void *data)
2016 struct vfio_pci_core_device *vdev = container_of(nb,
2017 struct vfio_pci_core_device, nb);
2018 struct device *dev = data;
2019 struct pci_dev *pdev = to_pci_dev(dev);
2020 struct pci_dev *physfn = pci_physfn(pdev);
2022 if (action == BUS_NOTIFY_ADD_DEVICE &&
2023 pdev->is_virtfn && physfn == vdev->pdev) {
2024 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
2026 pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
2027 vdev->vdev.ops->name);
2028 } else if (action == BUS_NOTIFY_BOUND_DRIVER &&
2029 pdev->is_virtfn && physfn == vdev->pdev) {
2030 struct pci_driver *drv = pci_dev_driver(pdev);
2032 if (drv && drv != pci_dev_driver(vdev->pdev))
2033 pci_warn(vdev->pdev,
2034 "VF %s bound to driver %s while PF bound to driver %s\n",
2035 pci_name(pdev), drv->name,
2036 pci_dev_driver(vdev->pdev)->name);
2042 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
2044 struct pci_dev *pdev = vdev->pdev;
2045 struct vfio_pci_core_device *cur;
2046 struct pci_dev *physfn;
2049 if (pdev->is_virtfn) {
2051 * If this VF was created by our vfio_pci_core_sriov_configure()
2052 * then we can find the PF vfio_pci_core_device now, and due to
2053 * the locking in pci_disable_sriov() it cannot change until
2054 * this VF device driver is removed.
2056 physfn = pci_physfn(vdev->pdev);
2057 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2058 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
2059 if (cur->pdev == physfn) {
2060 vdev->sriov_pf_core_dev = cur;
2064 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2068 /* Not a SRIOV PF */
2069 if (!pdev->is_physfn)
2072 vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
2073 if (!vdev->vf_token)
2076 mutex_init(&vdev->vf_token->lock);
2077 uuid_gen(&vdev->vf_token->uuid);
2079 vdev->nb.notifier_call = vfio_pci_bus_notifier;
2080 ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
2082 kfree(vdev->vf_token);
2088 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
2090 if (!vdev->vf_token)
2093 bus_unregister_notifier(&pci_bus_type, &vdev->nb);
2094 WARN_ON(vdev->vf_token->users);
2095 mutex_destroy(&vdev->vf_token->lock);
2096 kfree(vdev->vf_token);
2099 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
2101 struct pci_dev *pdev = vdev->pdev;
2104 if (!vfio_pci_is_vga(pdev))
2107 ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
2111 ret = vga_client_register(pdev, vfio_pci_set_decode);
2114 vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
2118 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
2120 struct pci_dev *pdev = vdev->pdev;
2122 if (!vfio_pci_is_vga(pdev))
2124 vga_client_unregister(pdev);
2125 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
2126 VGA_RSRC_LEGACY_IO |
2127 VGA_RSRC_LEGACY_MEM);
2130 int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
2132 struct vfio_pci_core_device *vdev =
2133 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2135 vdev->pdev = to_pci_dev(core_vdev->dev);
2136 vdev->irq_type = VFIO_PCI_NUM_IRQS;
2137 mutex_init(&vdev->igate);
2138 spin_lock_init(&vdev->irqlock);
2139 mutex_init(&vdev->ioeventfds_lock);
2140 INIT_LIST_HEAD(&vdev->dummy_resources_list);
2141 INIT_LIST_HEAD(&vdev->ioeventfds_list);
2142 mutex_init(&vdev->vma_lock);
2143 INIT_LIST_HEAD(&vdev->vma_list);
2144 INIT_LIST_HEAD(&vdev->sriov_pfs_item);
2145 init_rwsem(&vdev->memory_lock);
2146 xa_init(&vdev->ctx);
2150 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
2152 void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
2154 struct vfio_pci_core_device *vdev =
2155 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2157 mutex_destroy(&vdev->igate);
2158 mutex_destroy(&vdev->ioeventfds_lock);
2159 mutex_destroy(&vdev->vma_lock);
2160 kfree(vdev->region);
2161 kfree(vdev->pm_save);
2163 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
2165 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
2167 struct pci_dev *pdev = vdev->pdev;
2168 struct device *dev = &pdev->dev;
2171 /* Drivers must set the vfio_pci_core_device to their drvdata */
2172 if (WARN_ON(vdev != dev_get_drvdata(dev)))
2175 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2178 if (vdev->vdev.mig_ops) {
2179 if (!(vdev->vdev.mig_ops->migration_get_state &&
2180 vdev->vdev.mig_ops->migration_set_state &&
2181 vdev->vdev.mig_ops->migration_get_data_size) ||
2182 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
2186 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
2187 vdev->vdev.log_ops->log_stop &&
2188 vdev->vdev.log_ops->log_read_and_clear))
2192 * Prevent binding to PFs with VFs enabled, the VFs might be in use
2193 * by the host or other users. We cannot capture the VFs if they
2194 * already exist, nor can we track VF users. Disabling SR-IOV here
2195 * would initiate removing the VFs, which would unbind the driver,
2196 * which is prone to blocking if that VF is also in use by vfio-pci.
2197 * Just reject these PFs and let the user sort it out.
2199 if (pci_num_vf(pdev)) {
2200 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
2204 if (pci_is_root_bus(pdev->bus)) {
2205 ret = vfio_assign_device_set(&vdev->vdev, vdev);
2206 } else if (!pci_probe_reset_slot(pdev->slot)) {
2207 ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
2210 * If there is no slot reset support for this device, the whole
2211 * bus needs to be grouped together to support bus-wide resets.
2213 ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
2218 ret = vfio_pci_vf_init(vdev);
2221 ret = vfio_pci_vga_init(vdev);
2225 vfio_pci_probe_power_state(vdev);
2228 * pci-core sets the device power state to an unknown value at
2229 * bootup and after being removed from a driver. The only
2230 * transition it allows from this unknown state is to D0, which
2231 * typically happens when a driver calls pci_enable_device().
2232 * We're not ready to enable the device yet, but we do want to
2233 * be able to get to D3. Therefore first do a D0 transition
2234 * before enabling runtime PM.
2236 vfio_pci_set_power_state(vdev, PCI_D0);
2238 dev->driver->pm = &vfio_pci_core_pm_ops;
2239 pm_runtime_allow(dev);
2240 if (!disable_idle_d3)
2241 pm_runtime_put(dev);
2243 ret = vfio_register_group_dev(&vdev->vdev);
2249 if (!disable_idle_d3)
2250 pm_runtime_get_noresume(dev);
2252 pm_runtime_forbid(dev);
2254 vfio_pci_vf_uninit(vdev);
2257 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
2259 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
2261 vfio_pci_core_sriov_configure(vdev, 0);
2263 vfio_unregister_group_dev(&vdev->vdev);
2265 vfio_pci_vf_uninit(vdev);
2266 vfio_pci_vga_uninit(vdev);
2268 if (!disable_idle_d3)
2269 pm_runtime_get_noresume(&vdev->pdev->dev);
2271 pm_runtime_forbid(&vdev->pdev->dev);
2273 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
2275 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
2276 pci_channel_state_t state)
2278 struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
2280 mutex_lock(&vdev->igate);
2282 if (vdev->err_trigger)
2283 eventfd_signal(vdev->err_trigger, 1);
2285 mutex_unlock(&vdev->igate);
2287 return PCI_ERS_RESULT_CAN_RECOVER;
2289 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
2291 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
2294 struct pci_dev *pdev = vdev->pdev;
2297 device_lock_assert(&pdev->dev);
2300 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2302 * The thread that adds the vdev to the list is the only thread
2303 * that gets to call pci_enable_sriov() and we will only allow
2304 * it to be called once without going through
2305 * pci_disable_sriov()
2307 if (!list_empty(&vdev->sriov_pfs_item)) {
2311 list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
2312 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2315 * The PF power state should always be higher than the VF power
2316 * state. The PF can be in low power state either with runtime
2317 * power management (when there is no user) or PCI_PM_CTRL
2318 * register write by the user. If PF is in the low power state,
2319 * then change the power state to D0 first before enabling
2320 * SR-IOV. Also, this function can be called at any time, and
2321 * userspace PCI_PM_CTRL write can race against this code path,
2322 * so protect the same with 'memory_lock'.
2324 ret = pm_runtime_resume_and_get(&pdev->dev);
2328 down_write(&vdev->memory_lock);
2329 vfio_pci_set_power_state(vdev, PCI_D0);
2330 ret = pci_enable_sriov(pdev, nr_virtfn);
2331 up_write(&vdev->memory_lock);
2333 pm_runtime_put(&pdev->dev);
2339 if (pci_num_vf(pdev)) {
2340 pci_disable_sriov(pdev);
2341 pm_runtime_put(&pdev->dev);
2345 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2346 list_del_init(&vdev->sriov_pfs_item);
2348 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2351 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
2353 const struct pci_error_handlers vfio_pci_core_err_handlers = {
2354 .error_detected = vfio_pci_core_aer_err_detected,
2356 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
2358 static bool vfio_dev_in_groups(struct vfio_pci_core_device *vdev,
2359 struct vfio_pci_group_info *groups)
2363 for (i = 0; i < groups->count; i++)
2364 if (vfio_file_has_dev(groups->files[i], &vdev->vdev))
2369 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
2371 struct vfio_device_set *dev_set = data;
2372 struct vfio_device *cur;
2374 list_for_each_entry(cur, &dev_set->device_list, dev_set_list)
2375 if (cur->dev == &pdev->dev)
2381 * vfio-core considers a group to be viable and will create a vfio_device even
2382 * if some devices are bound to drivers like pci-stub or pcieport. Here we
2383 * require all PCI devices to be inside our dev_set since that ensures they stay
2384 * put and that every driver controlling the device can co-ordinate with the
2387 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
2388 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
2390 static struct pci_dev *
2391 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
2393 struct pci_dev *pdev;
2395 lockdep_assert_held(&dev_set->lock);
2398 * By definition all PCI devices in the dev_set share the same PCI
2399 * reset, so any pci_dev will have the same outcomes for
2400 * pci_probe_reset_*() and pci_reset_bus().
2402 pdev = list_first_entry(&dev_set->device_list,
2403 struct vfio_pci_core_device,
2404 vdev.dev_set_list)->pdev;
2406 /* pci_reset_bus() is supported */
2407 if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
2410 if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
2412 !pci_probe_reset_slot(pdev->slot)))
2417 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
2419 struct vfio_pci_core_device *cur;
2422 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2423 ret = pm_runtime_resume_and_get(&cur->pdev->dev);
2431 list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
2433 pm_runtime_put(&cur->pdev->dev);
2439 * We need to get memory_lock for each device, but devices can share mmap_lock,
2440 * therefore we need to zap and hold the vma_lock for each device, and only then
2441 * get each memory_lock.
2443 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
2444 struct vfio_pci_group_info *groups)
2446 struct vfio_pci_core_device *cur_mem;
2447 struct vfio_pci_core_device *cur_vma;
2448 struct vfio_pci_core_device *cur;
2449 struct pci_dev *pdev;
2453 mutex_lock(&dev_set->lock);
2454 cur_mem = list_first_entry(&dev_set->device_list,
2455 struct vfio_pci_core_device,
2458 pdev = vfio_pci_dev_set_resettable(dev_set);
2465 * Some of the devices in the dev_set can be in the runtime suspended
2466 * state. Increment the usage count for all the devices in the dev_set
2467 * before reset and decrement the same after reset.
2469 ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
2473 list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
2475 * Test whether all the affected devices are contained by the
2476 * set of groups provided by the user.
2478 if (!vfio_dev_in_groups(cur_vma, groups)) {
2484 * Locking multiple devices is prone to deadlock, runaway and
2485 * unwind if we hit contention.
2487 if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) {
2494 list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
2495 if (!down_write_trylock(&cur_mem->memory_lock)) {
2499 mutex_unlock(&cur_mem->vma_lock);
2504 * The pci_reset_bus() will reset all the devices in the bus.
2505 * The power state can be non-D0 for some of the devices in the bus.
2506 * For these devices, the pci_reset_bus() will internally set
2507 * the power state to D0 without vfio driver involvement.
2508 * For the devices which have NoSoftRst-, the reset function can
2509 * cause the PCI config space reset without restoring the original
2510 * state (saved locally in 'vdev->pm_save').
2512 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2513 vfio_pci_set_power_state(cur, PCI_D0);
2515 ret = pci_reset_bus(pdev);
2518 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2524 up_write(&cur->memory_lock);
2526 mutex_unlock(&cur->vma_lock);
2529 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2530 pm_runtime_put(&cur->pdev->dev);
2532 mutex_unlock(&dev_set->lock);
2536 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
2538 struct vfio_pci_core_device *cur;
2539 bool needs_reset = false;
2541 /* No other VFIO device in the set can be open. */
2542 if (vfio_device_set_open_count(dev_set) > 1)
2545 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2546 needs_reset |= cur->needs_reset;
2551 * If a bus or slot reset is available for the provided dev_set and:
2552 * - All of the devices affected by that bus or slot reset are unused
2553 * - At least one of the affected devices is marked dirty via
2554 * needs_reset (such as by lack of FLR support)
2555 * Then attempt to perform that bus or slot reset.
2557 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
2559 struct vfio_pci_core_device *cur;
2560 struct pci_dev *pdev;
2561 bool reset_done = false;
2563 if (!vfio_pci_dev_set_needs_reset(dev_set))
2566 pdev = vfio_pci_dev_set_resettable(dev_set);
2571 * Some of the devices in the bus can be in the runtime suspended
2572 * state. Increment the usage count for all the devices in the dev_set
2573 * before reset and decrement the same after reset.
2575 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
2578 if (!pci_reset_bus(pdev))
2581 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2583 cur->needs_reset = false;
2585 if (!disable_idle_d3)
2586 pm_runtime_put(&cur->pdev->dev);
2590 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
2591 bool is_disable_idle_d3)
2593 nointxmask = is_nointxmask;
2594 disable_vga = is_disable_vga;
2595 disable_idle_d3 = is_disable_idle_d3;
2597 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
2599 static void vfio_pci_core_cleanup(void)
2601 vfio_pci_uninit_perm_bits();
2604 static int __init vfio_pci_core_init(void)
2606 /* Allocate shared config space permission data used by all devices */
2607 return vfio_pci_init_perm_bits();
2610 module_init(vfio_pci_core_init);
2611 module_exit(vfio_pci_core_cleanup);
2613 MODULE_LICENSE("GPL v2");
2614 MODULE_AUTHOR(DRIVER_AUTHOR);
2615 MODULE_DESCRIPTION(DRIVER_DESC);