1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/nvme.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/wait.h>
18 #include <linux/inet.h>
19 #include <asm/unaligned.h>
21 #include <rdma/ib_verbs.h>
22 #include <rdma/rdma_cm.h>
24 #include <rdma/ib_cm.h>
26 #include <linux/nvme-rdma.h>
30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
33 #define NVMET_RDMA_MAX_INLINE_SGE 4
34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
36 /* Assume mpsmin == device_page_size == 4KB */
37 #define NVMET_RDMA_MAX_MDTS 8
38 #define NVMET_RDMA_MAX_METADATA_MDTS 5
40 struct nvmet_rdma_srq;
42 struct nvmet_rdma_cmd {
43 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
46 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
47 struct nvme_command *nvme_cmd;
48 struct nvmet_rdma_queue *queue;
49 struct nvmet_rdma_srq *nsrq;
53 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
54 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
57 struct nvmet_rdma_rsp {
58 struct ib_sge send_sge;
59 struct ib_cqe send_cqe;
60 struct ib_send_wr send_wr;
62 struct nvmet_rdma_cmd *cmd;
63 struct nvmet_rdma_queue *queue;
65 struct ib_cqe read_cqe;
66 struct ib_cqe write_cqe;
67 struct rdma_rw_ctx rw;
76 struct list_head wait_list;
77 struct list_head free_list;
80 enum nvmet_rdma_queue_state {
81 NVMET_RDMA_Q_CONNECTING,
83 NVMET_RDMA_Q_DISCONNECTING,
86 struct nvmet_rdma_queue {
87 struct rdma_cm_id *cm_id;
89 struct nvmet_port *port;
92 struct nvmet_rdma_device *dev;
93 struct nvmet_rdma_srq *nsrq;
94 spinlock_t state_lock;
95 enum nvmet_rdma_queue_state state;
96 struct nvmet_cq nvme_cq;
97 struct nvmet_sq nvme_sq;
99 struct nvmet_rdma_rsp *rsps;
100 struct list_head free_rsps;
101 spinlock_t rsps_lock;
102 struct nvmet_rdma_cmd *cmds;
104 struct work_struct release_work;
105 struct list_head rsp_wait_list;
106 struct list_head rsp_wr_wait_list;
107 spinlock_t rsp_wr_wait_lock;
115 struct list_head queue_list;
118 struct nvmet_rdma_port {
119 struct nvmet_port *nport;
120 struct sockaddr_storage addr;
121 struct rdma_cm_id *cm_id;
122 struct delayed_work repair_work;
125 struct nvmet_rdma_srq {
127 struct nvmet_rdma_cmd *cmds;
128 struct nvmet_rdma_device *ndev;
131 struct nvmet_rdma_device {
132 struct ib_device *device;
134 struct nvmet_rdma_srq **srqs;
138 struct list_head entry;
139 int inline_data_size;
140 int inline_page_count;
143 static bool nvmet_rdma_use_srq;
144 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
145 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
147 static int srq_size_set(const char *val, const struct kernel_param *kp);
148 static const struct kernel_param_ops srq_size_ops = {
150 .get = param_get_int,
153 static int nvmet_rdma_srq_size = 1024;
154 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
155 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
157 static DEFINE_IDA(nvmet_rdma_queue_ida);
158 static LIST_HEAD(nvmet_rdma_queue_list);
159 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
161 static LIST_HEAD(device_list);
162 static DEFINE_MUTEX(device_list_mutex);
164 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
165 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
169 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
170 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
171 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
172 struct nvmet_rdma_rsp *r);
173 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
174 struct nvmet_rdma_rsp *r);
176 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
178 static int srq_size_set(const char *val, const struct kernel_param *kp)
182 ret = kstrtoint(val, 10, &n);
183 if (ret != 0 || n < 256)
186 return param_set_int(val, kp);
189 static int num_pages(int len)
191 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
194 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
196 return nvme_is_write(rsp->req.cmd) &&
197 rsp->req.transfer_len &&
198 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
201 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
203 return !nvme_is_write(rsp->req.cmd) &&
204 rsp->req.transfer_len &&
205 !rsp->req.cqe->status &&
206 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
209 static inline struct nvmet_rdma_rsp *
210 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
212 struct nvmet_rdma_rsp *rsp;
215 spin_lock_irqsave(&queue->rsps_lock, flags);
216 rsp = list_first_entry_or_null(&queue->free_rsps,
217 struct nvmet_rdma_rsp, free_list);
219 list_del(&rsp->free_list);
220 spin_unlock_irqrestore(&queue->rsps_lock, flags);
222 if (unlikely(!rsp)) {
225 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
228 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
234 rsp->allocated = true;
241 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
245 if (unlikely(rsp->allocated)) {
246 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
251 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
252 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
253 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
256 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
257 struct nvmet_rdma_cmd *c)
259 struct scatterlist *sg;
263 if (!ndev->inline_data_size)
269 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
271 ib_dma_unmap_page(ndev->device, sge->addr,
272 sge->length, DMA_FROM_DEVICE);
274 __free_page(sg_page(sg));
278 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
279 struct nvmet_rdma_cmd *c)
281 struct scatterlist *sg;
287 if (!ndev->inline_data_size)
291 sg_init_table(sg, ndev->inline_page_count);
293 len = ndev->inline_data_size;
295 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
296 pg = alloc_page(GFP_KERNEL);
299 sg_assign_page(sg, pg);
300 sge->addr = ib_dma_map_page(ndev->device,
301 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
302 if (ib_dma_mapping_error(ndev->device, sge->addr))
304 sge->length = min_t(int, len, PAGE_SIZE);
305 sge->lkey = ndev->pd->local_dma_lkey;
311 for (; i >= 0; i--, sg--, sge--) {
313 ib_dma_unmap_page(ndev->device, sge->addr,
314 sge->length, DMA_FROM_DEVICE);
316 __free_page(sg_page(sg));
321 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
322 struct nvmet_rdma_cmd *c, bool admin)
324 /* NVMe command / RDMA RECV */
325 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
329 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
330 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
331 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
334 c->sge[0].length = sizeof(*c->nvme_cmd);
335 c->sge[0].lkey = ndev->pd->local_dma_lkey;
337 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
340 c->cqe.done = nvmet_rdma_recv_done;
342 c->wr.wr_cqe = &c->cqe;
343 c->wr.sg_list = c->sge;
344 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
349 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
350 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
358 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
359 struct nvmet_rdma_cmd *c, bool admin)
362 nvmet_rdma_free_inline_pages(ndev, c);
363 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
364 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
368 static struct nvmet_rdma_cmd *
369 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
370 int nr_cmds, bool admin)
372 struct nvmet_rdma_cmd *cmds;
373 int ret = -EINVAL, i;
375 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
379 for (i = 0; i < nr_cmds; i++) {
380 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
389 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
395 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
396 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
400 for (i = 0; i < nr_cmds; i++)
401 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
405 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
406 struct nvmet_rdma_rsp *r)
408 /* NVMe CQE / RDMA SEND */
409 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
413 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
414 sizeof(*r->req.cqe), DMA_TO_DEVICE);
415 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
418 if (ib_dma_pci_p2p_dma_supported(ndev->device))
419 r->req.p2p_client = &ndev->device->dev;
420 r->send_sge.length = sizeof(*r->req.cqe);
421 r->send_sge.lkey = ndev->pd->local_dma_lkey;
423 r->send_cqe.done = nvmet_rdma_send_done;
425 r->send_wr.wr_cqe = &r->send_cqe;
426 r->send_wr.sg_list = &r->send_sge;
427 r->send_wr.num_sge = 1;
428 r->send_wr.send_flags = IB_SEND_SIGNALED;
430 /* Data In / RDMA READ */
431 r->read_cqe.done = nvmet_rdma_read_data_done;
432 /* Data Out / RDMA WRITE */
433 r->write_cqe.done = nvmet_rdma_write_data_done;
443 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
444 struct nvmet_rdma_rsp *r)
446 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
447 sizeof(*r->req.cqe), DMA_TO_DEVICE);
452 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
454 struct nvmet_rdma_device *ndev = queue->dev;
455 int nr_rsps = queue->recv_queue_size * 2;
456 int ret = -EINVAL, i;
458 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
463 for (i = 0; i < nr_rsps; i++) {
464 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
466 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
470 list_add_tail(&rsp->free_list, &queue->free_rsps);
477 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
479 list_del(&rsp->free_list);
480 nvmet_rdma_free_rsp(ndev, rsp);
487 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
489 struct nvmet_rdma_device *ndev = queue->dev;
490 int i, nr_rsps = queue->recv_queue_size * 2;
492 for (i = 0; i < nr_rsps; i++) {
493 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
495 list_del(&rsp->free_list);
496 nvmet_rdma_free_rsp(ndev, rsp);
501 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
502 struct nvmet_rdma_cmd *cmd)
506 ib_dma_sync_single_for_device(ndev->device,
507 cmd->sge[0].addr, cmd->sge[0].length,
511 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
513 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
516 pr_err("post_recv cmd failed\n");
521 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
523 spin_lock(&queue->rsp_wr_wait_lock);
524 while (!list_empty(&queue->rsp_wr_wait_list)) {
525 struct nvmet_rdma_rsp *rsp;
528 rsp = list_entry(queue->rsp_wr_wait_list.next,
529 struct nvmet_rdma_rsp, wait_list);
530 list_del(&rsp->wait_list);
532 spin_unlock(&queue->rsp_wr_wait_lock);
533 ret = nvmet_rdma_execute_command(rsp);
534 spin_lock(&queue->rsp_wr_wait_lock);
537 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
541 spin_unlock(&queue->rsp_wr_wait_lock);
544 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
546 struct ib_mr_status mr_status;
550 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
552 pr_err("ib_check_mr_status failed, ret %d\n", ret);
553 return NVME_SC_INVALID_PI;
556 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
557 switch (mr_status.sig_err.err_type) {
558 case IB_SIG_BAD_GUARD:
559 status = NVME_SC_GUARD_CHECK;
561 case IB_SIG_BAD_REFTAG:
562 status = NVME_SC_REFTAG_CHECK;
564 case IB_SIG_BAD_APPTAG:
565 status = NVME_SC_APPTAG_CHECK;
568 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
569 mr_status.sig_err.err_type,
570 mr_status.sig_err.expected,
571 mr_status.sig_err.actual);
577 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
578 struct nvme_command *cmd, struct ib_sig_domain *domain,
579 u16 control, u8 pi_type)
581 domain->sig_type = IB_SIG_TYPE_T10_DIF;
582 domain->sig.dif.bg_type = IB_T10DIF_CRC;
583 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
584 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
585 if (control & NVME_RW_PRINFO_PRCHK_REF)
586 domain->sig.dif.ref_remap = true;
588 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
589 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
590 domain->sig.dif.app_escape = true;
591 if (pi_type == NVME_NS_DPS_PI_TYPE3)
592 domain->sig.dif.ref_escape = true;
595 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
596 struct ib_sig_attrs *sig_attrs)
598 struct nvme_command *cmd = req->cmd;
599 u16 control = le16_to_cpu(cmd->rw.control);
600 u8 pi_type = req->ns->pi_type;
601 struct blk_integrity *bi;
603 bi = bdev_get_integrity(req->ns->bdev);
605 memset(sig_attrs, 0, sizeof(*sig_attrs));
607 if (control & NVME_RW_PRINFO_PRACT) {
608 /* for WRITE_INSERT/READ_STRIP no wire domain */
609 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
610 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
612 /* Clear the PRACT bit since HCA will generate/verify the PI */
613 control &= ~NVME_RW_PRINFO_PRACT;
614 cmd->rw.control = cpu_to_le16(control);
615 /* PI is added by the HW */
616 req->transfer_len += req->metadata_len;
618 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
619 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
621 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
625 if (control & NVME_RW_PRINFO_PRCHK_REF)
626 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
627 if (control & NVME_RW_PRINFO_PRCHK_GUARD)
628 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
629 if (control & NVME_RW_PRINFO_PRCHK_APP)
630 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
633 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
634 struct ib_sig_attrs *sig_attrs)
636 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
637 struct nvmet_req *req = &rsp->req;
640 if (req->metadata_len)
641 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
642 cm_id->port_num, req->sg, req->sg_cnt,
643 req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
644 addr, key, nvmet_data_dir(req));
646 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
647 req->sg, req->sg_cnt, 0, addr, key,
648 nvmet_data_dir(req));
653 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
655 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
656 struct nvmet_req *req = &rsp->req;
658 if (req->metadata_len)
659 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
660 cm_id->port_num, req->sg, req->sg_cnt,
661 req->metadata_sg, req->metadata_sg_cnt,
662 nvmet_data_dir(req));
664 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
665 req->sg, req->sg_cnt, nvmet_data_dir(req));
668 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
670 struct nvmet_rdma_queue *queue = rsp->queue;
672 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
675 nvmet_rdma_rw_ctx_destroy(rsp);
677 if (rsp->req.sg != rsp->cmd->inline_sg)
678 nvmet_req_free_sgls(&rsp->req);
680 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
681 nvmet_rdma_process_wr_wait_list(queue);
683 nvmet_rdma_put_rsp(rsp);
686 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
688 if (queue->nvme_sq.ctrl) {
689 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
692 * we didn't setup the controller yet in case
693 * of admin connect error, just disconnect and
696 nvmet_rdma_queue_disconnect(queue);
700 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
702 struct nvmet_rdma_rsp *rsp =
703 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
704 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
706 nvmet_rdma_release_rsp(rsp);
708 if (unlikely(wc->status != IB_WC_SUCCESS &&
709 wc->status != IB_WC_WR_FLUSH_ERR)) {
710 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
711 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
712 nvmet_rdma_error_comp(queue);
716 static void nvmet_rdma_queue_response(struct nvmet_req *req)
718 struct nvmet_rdma_rsp *rsp =
719 container_of(req, struct nvmet_rdma_rsp, req);
720 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
721 struct ib_send_wr *first_wr;
723 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
724 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
725 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
727 rsp->send_wr.opcode = IB_WR_SEND;
730 if (nvmet_rdma_need_data_out(rsp)) {
731 if (rsp->req.metadata_len)
732 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
733 cm_id->port_num, &rsp->write_cqe, NULL);
735 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
736 cm_id->port_num, NULL, &rsp->send_wr);
738 first_wr = &rsp->send_wr;
741 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
743 ib_dma_sync_single_for_device(rsp->queue->dev->device,
744 rsp->send_sge.addr, rsp->send_sge.length,
747 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
748 pr_err("sending cmd response failed\n");
749 nvmet_rdma_release_rsp(rsp);
753 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
755 struct nvmet_rdma_rsp *rsp =
756 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
757 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
760 WARN_ON(rsp->n_rdma <= 0);
761 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
764 if (unlikely(wc->status != IB_WC_SUCCESS)) {
765 nvmet_rdma_rw_ctx_destroy(rsp);
766 nvmet_req_uninit(&rsp->req);
767 nvmet_rdma_release_rsp(rsp);
768 if (wc->status != IB_WC_WR_FLUSH_ERR) {
769 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
770 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
771 nvmet_rdma_error_comp(queue);
776 if (rsp->req.metadata_len)
777 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
778 nvmet_rdma_rw_ctx_destroy(rsp);
780 if (unlikely(status))
781 nvmet_req_complete(&rsp->req, status);
783 rsp->req.execute(&rsp->req);
786 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
788 struct nvmet_rdma_rsp *rsp =
789 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
790 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
791 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
794 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
797 WARN_ON(rsp->n_rdma <= 0);
798 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
801 if (unlikely(wc->status != IB_WC_SUCCESS)) {
802 nvmet_rdma_rw_ctx_destroy(rsp);
803 nvmet_req_uninit(&rsp->req);
804 nvmet_rdma_release_rsp(rsp);
805 if (wc->status != IB_WC_WR_FLUSH_ERR) {
806 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
807 ib_wc_status_msg(wc->status), wc->status);
808 nvmet_rdma_error_comp(queue);
814 * Upon RDMA completion check the signature status
815 * - if succeeded send good NVMe response
816 * - if failed send bad NVMe response with appropriate error
818 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
819 if (unlikely(status))
820 rsp->req.cqe->status = cpu_to_le16(status << 1);
821 nvmet_rdma_rw_ctx_destroy(rsp);
823 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
824 pr_err("sending cmd response failed\n");
825 nvmet_rdma_release_rsp(rsp);
829 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
832 int sg_count = num_pages(len);
833 struct scatterlist *sg;
836 sg = rsp->cmd->inline_sg;
837 for (i = 0; i < sg_count; i++, sg++) {
838 if (i < sg_count - 1)
843 sg->length = min_t(int, len, PAGE_SIZE - off);
849 rsp->req.sg = rsp->cmd->inline_sg;
850 rsp->req.sg_cnt = sg_count;
853 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
855 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
856 u64 off = le64_to_cpu(sgl->addr);
857 u32 len = le32_to_cpu(sgl->length);
859 if (!nvme_is_write(rsp->req.cmd)) {
861 offsetof(struct nvme_common_command, opcode);
862 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
865 if (off + len > rsp->queue->dev->inline_data_size) {
866 pr_err("invalid inline data offset!\n");
867 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
870 /* no data command? */
874 nvmet_rdma_use_inline_sg(rsp, len, off);
875 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
876 rsp->req.transfer_len += len;
880 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
881 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
883 u64 addr = le64_to_cpu(sgl->addr);
884 u32 key = get_unaligned_le32(sgl->key);
885 struct ib_sig_attrs sig_attrs;
888 rsp->req.transfer_len = get_unaligned_le24(sgl->length);
890 /* no data command? */
891 if (!rsp->req.transfer_len)
894 if (rsp->req.metadata_len)
895 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
897 ret = nvmet_req_alloc_sgls(&rsp->req);
898 if (unlikely(ret < 0))
901 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
902 if (unlikely(ret < 0))
907 rsp->invalidate_rkey = key;
908 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
914 rsp->req.transfer_len = 0;
915 return NVME_SC_INTERNAL;
918 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
920 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
922 switch (sgl->type >> 4) {
923 case NVME_SGL_FMT_DATA_DESC:
924 switch (sgl->type & 0xf) {
925 case NVME_SGL_FMT_OFFSET:
926 return nvmet_rdma_map_sgl_inline(rsp);
928 pr_err("invalid SGL subtype: %#x\n", sgl->type);
930 offsetof(struct nvme_common_command, dptr);
931 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
933 case NVME_KEY_SGL_FMT_DATA_DESC:
934 switch (sgl->type & 0xf) {
935 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
936 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
937 case NVME_SGL_FMT_ADDRESS:
938 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
940 pr_err("invalid SGL subtype: %#x\n", sgl->type);
942 offsetof(struct nvme_common_command, dptr);
943 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
946 pr_err("invalid SGL type: %#x\n", sgl->type);
947 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
948 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
952 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
954 struct nvmet_rdma_queue *queue = rsp->queue;
956 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
957 &queue->sq_wr_avail) < 0)) {
958 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
959 1 + rsp->n_rdma, queue->idx,
960 queue->nvme_sq.ctrl->cntlid);
961 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
965 if (nvmet_rdma_need_data_in(rsp)) {
966 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
967 queue->cm_id->port_num, &rsp->read_cqe, NULL))
968 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
970 rsp->req.execute(&rsp->req);
976 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
977 struct nvmet_rdma_rsp *cmd)
981 ib_dma_sync_single_for_cpu(queue->dev->device,
982 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
984 ib_dma_sync_single_for_cpu(queue->dev->device,
985 cmd->send_sge.addr, cmd->send_sge.length,
988 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
989 &queue->nvme_sq, &nvmet_rdma_ops))
992 status = nvmet_rdma_map_sgl(cmd);
996 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
997 spin_lock(&queue->rsp_wr_wait_lock);
998 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
999 spin_unlock(&queue->rsp_wr_wait_lock);
1005 nvmet_req_complete(&cmd->req, status);
1008 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1010 struct nvmet_rdma_cmd *cmd =
1011 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1012 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1013 struct nvmet_rdma_rsp *rsp;
1015 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1016 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1017 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1018 wc->wr_cqe, ib_wc_status_msg(wc->status),
1020 nvmet_rdma_error_comp(queue);
1025 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1026 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1027 nvmet_rdma_error_comp(queue);
1032 rsp = nvmet_rdma_get_rsp(queue);
1033 if (unlikely(!rsp)) {
1035 * we get here only under memory pressure,
1036 * silently drop and have the host retry
1037 * as we can't even fail it.
1039 nvmet_rdma_post_recv(queue->dev, cmd);
1045 rsp->req.cmd = cmd->nvme_cmd;
1046 rsp->req.port = queue->port;
1049 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1050 unsigned long flags;
1052 spin_lock_irqsave(&queue->state_lock, flags);
1053 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1054 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1056 nvmet_rdma_put_rsp(rsp);
1057 spin_unlock_irqrestore(&queue->state_lock, flags);
1061 nvmet_rdma_handle_command(queue, rsp);
1064 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1066 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1068 ib_destroy_srq(nsrq->srq);
1073 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1080 for (i = 0; i < ndev->srq_count; i++)
1081 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1086 static struct nvmet_rdma_srq *
1087 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1089 struct ib_srq_init_attr srq_attr = { NULL, };
1090 size_t srq_size = ndev->srq_size;
1091 struct nvmet_rdma_srq *nsrq;
1095 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1097 return ERR_PTR(-ENOMEM);
1099 srq_attr.attr.max_wr = srq_size;
1100 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1101 srq_attr.attr.srq_limit = 0;
1102 srq_attr.srq_type = IB_SRQT_BASIC;
1103 srq = ib_create_srq(ndev->pd, &srq_attr);
1109 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1110 if (IS_ERR(nsrq->cmds)) {
1111 ret = PTR_ERR(nsrq->cmds);
1112 goto out_destroy_srq;
1118 for (i = 0; i < srq_size; i++) {
1119 nsrq->cmds[i].nsrq = nsrq;
1120 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1128 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1130 ib_destroy_srq(srq);
1133 return ERR_PTR(ret);
1136 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1140 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1142 * If SRQs aren't supported we just go ahead and use normal
1143 * non-shared receive queues.
1145 pr_info("SRQ requested but not supported.\n");
1149 ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1150 nvmet_rdma_srq_size);
1151 ndev->srq_count = min(ndev->device->num_comp_vectors,
1152 ndev->device->attrs.max_srq);
1154 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1158 for (i = 0; i < ndev->srq_count; i++) {
1159 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1160 if (IS_ERR(ndev->srqs[i])) {
1161 ret = PTR_ERR(ndev->srqs[i]);
1170 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1175 static void nvmet_rdma_free_dev(struct kref *ref)
1177 struct nvmet_rdma_device *ndev =
1178 container_of(ref, struct nvmet_rdma_device, ref);
1180 mutex_lock(&device_list_mutex);
1181 list_del(&ndev->entry);
1182 mutex_unlock(&device_list_mutex);
1184 nvmet_rdma_destroy_srqs(ndev);
1185 ib_dealloc_pd(ndev->pd);
1190 static struct nvmet_rdma_device *
1191 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1193 struct nvmet_rdma_port *port = cm_id->context;
1194 struct nvmet_port *nport = port->nport;
1195 struct nvmet_rdma_device *ndev;
1196 int inline_page_count;
1197 int inline_sge_count;
1200 mutex_lock(&device_list_mutex);
1201 list_for_each_entry(ndev, &device_list, entry) {
1202 if (ndev->device->node_guid == cm_id->device->node_guid &&
1203 kref_get_unless_zero(&ndev->ref))
1207 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1211 inline_page_count = num_pages(nport->inline_data_size);
1212 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1213 cm_id->device->attrs.max_recv_sge) - 1;
1214 if (inline_page_count > inline_sge_count) {
1215 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1216 nport->inline_data_size, cm_id->device->name,
1217 inline_sge_count * PAGE_SIZE);
1218 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1219 inline_page_count = inline_sge_count;
1221 ndev->inline_data_size = nport->inline_data_size;
1222 ndev->inline_page_count = inline_page_count;
1224 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1225 IBK_INTEGRITY_HANDOVER)) {
1226 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1227 cm_id->device->name);
1228 nport->pi_enable = false;
1231 ndev->device = cm_id->device;
1232 kref_init(&ndev->ref);
1234 ndev->pd = ib_alloc_pd(ndev->device, 0);
1235 if (IS_ERR(ndev->pd))
1238 if (nvmet_rdma_use_srq) {
1239 ret = nvmet_rdma_init_srqs(ndev);
1244 list_add(&ndev->entry, &device_list);
1246 mutex_unlock(&device_list_mutex);
1247 pr_debug("added %s.\n", ndev->device->name);
1251 ib_dealloc_pd(ndev->pd);
1255 mutex_unlock(&device_list_mutex);
1259 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1261 struct ib_qp_init_attr qp_attr = { };
1262 struct nvmet_rdma_device *ndev = queue->dev;
1263 int nr_cqe, ret, i, factor;
1266 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1268 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1270 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1271 queue->comp_vector, IB_POLL_WORKQUEUE);
1272 if (IS_ERR(queue->cq)) {
1273 ret = PTR_ERR(queue->cq);
1274 pr_err("failed to create CQ cqe= %d ret= %d\n",
1279 qp_attr.qp_context = queue;
1280 qp_attr.event_handler = nvmet_rdma_qp_event;
1281 qp_attr.send_cq = queue->cq;
1282 qp_attr.recv_cq = queue->cq;
1283 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1284 qp_attr.qp_type = IB_QPT_RC;
1286 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1287 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1288 1 << NVMET_RDMA_MAX_MDTS);
1289 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1290 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1291 ndev->device->attrs.max_send_sge);
1294 qp_attr.srq = queue->nsrq->srq;
1297 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1298 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1301 if (queue->port->pi_enable && queue->host_qid)
1302 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1304 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1306 pr_err("failed to create_qp ret= %d\n", ret);
1307 goto err_destroy_cq;
1309 queue->qp = queue->cm_id->qp;
1311 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1313 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1314 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1315 qp_attr.cap.max_send_wr, queue->cm_id);
1318 for (i = 0; i < queue->recv_queue_size; i++) {
1319 queue->cmds[i].queue = queue;
1320 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1322 goto err_destroy_qp;
1330 rdma_destroy_qp(queue->cm_id);
1332 ib_cq_pool_put(queue->cq, nr_cqe + 1);
1336 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1338 ib_drain_qp(queue->qp);
1340 rdma_destroy_id(queue->cm_id);
1341 ib_destroy_qp(queue->qp);
1342 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1343 queue->send_queue_size + 1);
1346 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1348 pr_debug("freeing queue %d\n", queue->idx);
1350 nvmet_sq_destroy(&queue->nvme_sq);
1352 nvmet_rdma_destroy_queue_ib(queue);
1354 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1355 queue->recv_queue_size,
1358 nvmet_rdma_free_rsps(queue);
1359 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1363 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1365 struct nvmet_rdma_queue *queue =
1366 container_of(w, struct nvmet_rdma_queue, release_work);
1367 struct nvmet_rdma_device *dev = queue->dev;
1369 nvmet_rdma_free_queue(queue);
1371 kref_put(&dev->ref, nvmet_rdma_free_dev);
1375 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1376 struct nvmet_rdma_queue *queue)
1378 struct nvme_rdma_cm_req *req;
1380 req = (struct nvme_rdma_cm_req *)conn->private_data;
1381 if (!req || conn->private_data_len == 0)
1382 return NVME_RDMA_CM_INVALID_LEN;
1384 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1385 return NVME_RDMA_CM_INVALID_RECFMT;
1387 queue->host_qid = le16_to_cpu(req->qid);
1390 * req->hsqsize corresponds to our recv queue size plus 1
1391 * req->hrqsize corresponds to our send queue size
1393 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1394 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1396 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1397 return NVME_RDMA_CM_INVALID_HSQSIZE;
1399 /* XXX: Should we enforce some kind of max for IO queues? */
1404 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1405 enum nvme_rdma_cm_status status)
1407 struct nvme_rdma_cm_rej rej;
1409 pr_debug("rejecting connect request: status %d (%s)\n",
1410 status, nvme_rdma_cm_msg(status));
1412 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1413 rej.sts = cpu_to_le16(status);
1415 return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1416 IB_CM_REJ_CONSUMER_DEFINED);
1419 static struct nvmet_rdma_queue *
1420 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1421 struct rdma_cm_id *cm_id,
1422 struct rdma_cm_event *event)
1424 struct nvmet_rdma_port *port = cm_id->context;
1425 struct nvmet_rdma_queue *queue;
1428 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1430 ret = NVME_RDMA_CM_NO_RSC;
1434 ret = nvmet_sq_init(&queue->nvme_sq);
1436 ret = NVME_RDMA_CM_NO_RSC;
1437 goto out_free_queue;
1440 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1442 goto out_destroy_sq;
1445 * Schedules the actual release because calling rdma_destroy_id from
1446 * inside a CM callback would trigger a deadlock. (great API design..)
1448 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1450 queue->cm_id = cm_id;
1451 queue->port = port->nport;
1453 spin_lock_init(&queue->state_lock);
1454 queue->state = NVMET_RDMA_Q_CONNECTING;
1455 INIT_LIST_HEAD(&queue->rsp_wait_list);
1456 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1457 spin_lock_init(&queue->rsp_wr_wait_lock);
1458 INIT_LIST_HEAD(&queue->free_rsps);
1459 spin_lock_init(&queue->rsps_lock);
1460 INIT_LIST_HEAD(&queue->queue_list);
1462 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
1463 if (queue->idx < 0) {
1464 ret = NVME_RDMA_CM_NO_RSC;
1465 goto out_destroy_sq;
1469 * Spread the io queues across completion vectors,
1470 * but still keep all admin queues on vector 0.
1472 queue->comp_vector = !queue->host_qid ? 0 :
1473 queue->idx % ndev->device->num_comp_vectors;
1476 ret = nvmet_rdma_alloc_rsps(queue);
1478 ret = NVME_RDMA_CM_NO_RSC;
1479 goto out_ida_remove;
1483 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1485 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1486 queue->recv_queue_size,
1488 if (IS_ERR(queue->cmds)) {
1489 ret = NVME_RDMA_CM_NO_RSC;
1490 goto out_free_responses;
1494 ret = nvmet_rdma_create_queue_ib(queue);
1496 pr_err("%s: creating RDMA queue failed (%d).\n",
1498 ret = NVME_RDMA_CM_NO_RSC;
1506 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1507 queue->recv_queue_size,
1511 nvmet_rdma_free_rsps(queue);
1513 ida_free(&nvmet_rdma_queue_ida, queue->idx);
1515 nvmet_sq_destroy(&queue->nvme_sq);
1519 nvmet_rdma_cm_reject(cm_id, ret);
1523 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1525 struct nvmet_rdma_queue *queue = priv;
1527 switch (event->event) {
1528 case IB_EVENT_COMM_EST:
1529 rdma_notify(queue->cm_id, event->event);
1531 case IB_EVENT_QP_LAST_WQE_REACHED:
1532 pr_debug("received last WQE reached event for queue=0x%p\n",
1536 pr_err("received IB QP event: %s (%d)\n",
1537 ib_event_msg(event->event), event->event);
1542 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1543 struct nvmet_rdma_queue *queue,
1544 struct rdma_conn_param *p)
1546 struct rdma_conn_param param = { };
1547 struct nvme_rdma_cm_rep priv = { };
1550 param.rnr_retry_count = 7;
1551 param.flow_control = 1;
1552 param.initiator_depth = min_t(u8, p->initiator_depth,
1553 queue->dev->device->attrs.max_qp_init_rd_atom);
1554 param.private_data = &priv;
1555 param.private_data_len = sizeof(priv);
1556 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1557 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1559 ret = rdma_accept(cm_id, ¶m);
1561 pr_err("rdma_accept failed (error code = %d)\n", ret);
1566 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1567 struct rdma_cm_event *event)
1569 struct nvmet_rdma_device *ndev;
1570 struct nvmet_rdma_queue *queue;
1573 ndev = nvmet_rdma_find_get_device(cm_id);
1575 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1576 return -ECONNREFUSED;
1579 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1585 if (queue->host_qid == 0) {
1586 /* Let inflight controller teardown complete */
1587 flush_workqueue(nvmet_wq);
1590 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1593 * Don't destroy the cm_id in free path, as we implicitly
1594 * destroy the cm_id here with non-zero ret code.
1596 queue->cm_id = NULL;
1600 mutex_lock(&nvmet_rdma_queue_mutex);
1601 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1602 mutex_unlock(&nvmet_rdma_queue_mutex);
1607 nvmet_rdma_free_queue(queue);
1609 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1614 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1616 unsigned long flags;
1618 spin_lock_irqsave(&queue->state_lock, flags);
1619 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1620 pr_warn("trying to establish a connected queue\n");
1623 queue->state = NVMET_RDMA_Q_LIVE;
1625 while (!list_empty(&queue->rsp_wait_list)) {
1626 struct nvmet_rdma_rsp *cmd;
1628 cmd = list_first_entry(&queue->rsp_wait_list,
1629 struct nvmet_rdma_rsp, wait_list);
1630 list_del(&cmd->wait_list);
1632 spin_unlock_irqrestore(&queue->state_lock, flags);
1633 nvmet_rdma_handle_command(queue, cmd);
1634 spin_lock_irqsave(&queue->state_lock, flags);
1638 spin_unlock_irqrestore(&queue->state_lock, flags);
1641 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1643 bool disconnect = false;
1644 unsigned long flags;
1646 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1648 spin_lock_irqsave(&queue->state_lock, flags);
1649 switch (queue->state) {
1650 case NVMET_RDMA_Q_CONNECTING:
1651 while (!list_empty(&queue->rsp_wait_list)) {
1652 struct nvmet_rdma_rsp *rsp;
1654 rsp = list_first_entry(&queue->rsp_wait_list,
1655 struct nvmet_rdma_rsp,
1657 list_del(&rsp->wait_list);
1658 nvmet_rdma_put_rsp(rsp);
1661 case NVMET_RDMA_Q_LIVE:
1662 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1665 case NVMET_RDMA_Q_DISCONNECTING:
1668 spin_unlock_irqrestore(&queue->state_lock, flags);
1671 rdma_disconnect(queue->cm_id);
1672 queue_work(nvmet_wq, &queue->release_work);
1676 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1678 bool disconnect = false;
1680 mutex_lock(&nvmet_rdma_queue_mutex);
1681 if (!list_empty(&queue->queue_list)) {
1682 list_del_init(&queue->queue_list);
1685 mutex_unlock(&nvmet_rdma_queue_mutex);
1688 __nvmet_rdma_queue_disconnect(queue);
1691 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1692 struct nvmet_rdma_queue *queue)
1694 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1696 mutex_lock(&nvmet_rdma_queue_mutex);
1697 if (!list_empty(&queue->queue_list))
1698 list_del_init(&queue->queue_list);
1699 mutex_unlock(&nvmet_rdma_queue_mutex);
1701 pr_err("failed to connect queue %d\n", queue->idx);
1702 queue_work(nvmet_wq, &queue->release_work);
1706 * nvmet_rdma_device_removal() - Handle RDMA device removal
1707 * @cm_id: rdma_cm id, used for nvmet port
1708 * @queue: nvmet rdma queue (cm id qp_context)
1710 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1711 * to unplug. Note that this event can be generated on a normal
1712 * queue cm_id and/or a device bound listener cm_id (where in this
1713 * case queue will be null).
1715 * We registered an ib_client to handle device removal for queues,
1716 * so we only need to handle the listening port cm_ids. In this case
1717 * we nullify the priv to prevent double cm_id destruction and destroying
1718 * the cm_id implicitely by returning a non-zero rc to the callout.
1720 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1721 struct nvmet_rdma_queue *queue)
1723 struct nvmet_rdma_port *port;
1727 * This is a queue cm_id. we have registered
1728 * an ib_client to handle queues removal
1729 * so don't interfear and just return.
1734 port = cm_id->context;
1737 * This is a listener cm_id. Make sure that
1738 * future remove_port won't invoke a double
1739 * cm_id destroy. use atomic xchg to make sure
1740 * we don't compete with remove_port.
1742 if (xchg(&port->cm_id, NULL) != cm_id)
1746 * We need to return 1 so that the core will destroy
1747 * it's own ID. What a great API design..
1752 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1753 struct rdma_cm_event *event)
1755 struct nvmet_rdma_queue *queue = NULL;
1759 queue = cm_id->qp->qp_context;
1761 pr_debug("%s (%d): status %d id %p\n",
1762 rdma_event_msg(event->event), event->event,
1763 event->status, cm_id);
1765 switch (event->event) {
1766 case RDMA_CM_EVENT_CONNECT_REQUEST:
1767 ret = nvmet_rdma_queue_connect(cm_id, event);
1769 case RDMA_CM_EVENT_ESTABLISHED:
1770 nvmet_rdma_queue_established(queue);
1772 case RDMA_CM_EVENT_ADDR_CHANGE:
1774 struct nvmet_rdma_port *port = cm_id->context;
1776 queue_delayed_work(nvmet_wq, &port->repair_work, 0);
1780 case RDMA_CM_EVENT_DISCONNECTED:
1781 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1782 nvmet_rdma_queue_disconnect(queue);
1784 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1785 ret = nvmet_rdma_device_removal(cm_id, queue);
1787 case RDMA_CM_EVENT_REJECTED:
1788 pr_debug("Connection rejected: %s\n",
1789 rdma_reject_msg(cm_id, event->status));
1791 case RDMA_CM_EVENT_UNREACHABLE:
1792 case RDMA_CM_EVENT_CONNECT_ERROR:
1793 nvmet_rdma_queue_connect_fail(cm_id, queue);
1796 pr_err("received unrecognized RDMA CM event %d\n",
1804 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1806 struct nvmet_rdma_queue *queue;
1809 mutex_lock(&nvmet_rdma_queue_mutex);
1810 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1811 if (queue->nvme_sq.ctrl == ctrl) {
1812 list_del_init(&queue->queue_list);
1813 mutex_unlock(&nvmet_rdma_queue_mutex);
1815 __nvmet_rdma_queue_disconnect(queue);
1819 mutex_unlock(&nvmet_rdma_queue_mutex);
1822 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1824 struct nvmet_rdma_queue *queue, *tmp;
1825 struct nvmet_port *nport = port->nport;
1827 mutex_lock(&nvmet_rdma_queue_mutex);
1828 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1830 if (queue->port != nport)
1833 list_del_init(&queue->queue_list);
1834 __nvmet_rdma_queue_disconnect(queue);
1836 mutex_unlock(&nvmet_rdma_queue_mutex);
1839 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1841 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1844 rdma_destroy_id(cm_id);
1847 * Destroy the remaining queues, which are not belong to any
1848 * controller yet. Do it here after the RDMA-CM was destroyed
1849 * guarantees that no new queue will be created.
1851 nvmet_rdma_destroy_port_queues(port);
1854 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1856 struct sockaddr *addr = (struct sockaddr *)&port->addr;
1857 struct rdma_cm_id *cm_id;
1860 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1861 RDMA_PS_TCP, IB_QPT_RC);
1862 if (IS_ERR(cm_id)) {
1863 pr_err("CM ID creation failed\n");
1864 return PTR_ERR(cm_id);
1868 * Allow both IPv4 and IPv6 sockets to bind a single port
1871 ret = rdma_set_afonly(cm_id, 1);
1873 pr_err("rdma_set_afonly failed (%d)\n", ret);
1874 goto out_destroy_id;
1877 ret = rdma_bind_addr(cm_id, addr);
1879 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1880 goto out_destroy_id;
1883 ret = rdma_listen(cm_id, 128);
1885 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1886 goto out_destroy_id;
1889 port->cm_id = cm_id;
1893 rdma_destroy_id(cm_id);
1897 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1899 struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1900 struct nvmet_rdma_port, repair_work);
1903 nvmet_rdma_disable_port(port);
1904 ret = nvmet_rdma_enable_port(port);
1906 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
1909 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1911 struct nvmet_rdma_port *port;
1912 __kernel_sa_family_t af;
1915 port = kzalloc(sizeof(*port), GFP_KERNEL);
1920 port->nport = nport;
1921 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1923 switch (nport->disc_addr.adrfam) {
1924 case NVMF_ADDR_FAMILY_IP4:
1927 case NVMF_ADDR_FAMILY_IP6:
1931 pr_err("address family %d not supported\n",
1932 nport->disc_addr.adrfam);
1937 if (nport->inline_data_size < 0) {
1938 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1939 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1940 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1941 nport->inline_data_size,
1942 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1943 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1946 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1947 nport->disc_addr.trsvcid, &port->addr);
1949 pr_err("malformed ip/port passed: %s:%s\n",
1950 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1954 ret = nvmet_rdma_enable_port(port);
1958 pr_info("enabling port %d (%pISpcs)\n",
1959 le16_to_cpu(nport->disc_addr.portid),
1960 (struct sockaddr *)&port->addr);
1969 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1971 struct nvmet_rdma_port *port = nport->priv;
1973 cancel_delayed_work_sync(&port->repair_work);
1974 nvmet_rdma_disable_port(port);
1978 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1979 struct nvmet_port *nport, char *traddr)
1981 struct nvmet_rdma_port *port = nport->priv;
1982 struct rdma_cm_id *cm_id = port->cm_id;
1984 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1985 struct nvmet_rdma_rsp *rsp =
1986 container_of(req, struct nvmet_rdma_rsp, req);
1987 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1988 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1990 sprintf(traddr, "%pISc", addr);
1992 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1996 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1998 if (ctrl->pi_support)
1999 return NVMET_RDMA_MAX_METADATA_MDTS;
2000 return NVMET_RDMA_MAX_MDTS;
2003 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2005 return NVME_RDMA_MAX_QUEUE_SIZE;
2008 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2009 .owner = THIS_MODULE,
2010 .type = NVMF_TRTYPE_RDMA,
2012 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2013 .add_port = nvmet_rdma_add_port,
2014 .remove_port = nvmet_rdma_remove_port,
2015 .queue_response = nvmet_rdma_queue_response,
2016 .delete_ctrl = nvmet_rdma_delete_ctrl,
2017 .disc_traddr = nvmet_rdma_disc_port_addr,
2018 .get_mdts = nvmet_rdma_get_mdts,
2019 .get_max_queue_size = nvmet_rdma_get_max_queue_size,
2022 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2024 struct nvmet_rdma_queue *queue, *tmp;
2025 struct nvmet_rdma_device *ndev;
2028 mutex_lock(&device_list_mutex);
2029 list_for_each_entry(ndev, &device_list, entry) {
2030 if (ndev->device == ib_device) {
2035 mutex_unlock(&device_list_mutex);
2041 * IB Device that is used by nvmet controllers is being removed,
2042 * delete all queues using this device.
2044 mutex_lock(&nvmet_rdma_queue_mutex);
2045 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2047 if (queue->dev->device != ib_device)
2050 pr_info("Removing queue %d\n", queue->idx);
2051 list_del_init(&queue->queue_list);
2052 __nvmet_rdma_queue_disconnect(queue);
2054 mutex_unlock(&nvmet_rdma_queue_mutex);
2056 flush_workqueue(nvmet_wq);
2059 static struct ib_client nvmet_rdma_ib_client = {
2060 .name = "nvmet_rdma",
2061 .remove = nvmet_rdma_remove_one
2064 static int __init nvmet_rdma_init(void)
2068 ret = ib_register_client(&nvmet_rdma_ib_client);
2072 ret = nvmet_register_transport(&nvmet_rdma_ops);
2079 ib_unregister_client(&nvmet_rdma_ib_client);
2083 static void __exit nvmet_rdma_exit(void)
2085 nvmet_unregister_transport(&nvmet_rdma_ops);
2086 ib_unregister_client(&nvmet_rdma_ib_client);
2087 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2088 ida_destroy(&nvmet_rdma_queue_ida);
2091 module_init(nvmet_rdma_init);
2092 module_exit(nvmet_rdma_exit);
2094 MODULE_LICENSE("GPL v2");
2095 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */