]> Git Repo - linux.git/blob - drivers/nvme/target/rdma.c
net: bgmac: Fix return value check for fixed_phy_register()
[linux.git] / drivers / nvme / target / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/nvme.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/wait.h>
18 #include <linux/inet.h>
19 #include <asm/unaligned.h>
20
21 #include <rdma/ib_verbs.h>
22 #include <rdma/rdma_cm.h>
23 #include <rdma/rw.h>
24 #include <rdma/ib_cm.h>
25
26 #include <linux/nvme-rdma.h>
27 #include "nvmet.h"
28
29 /*
30  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31  */
32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE     PAGE_SIZE
33 #define NVMET_RDMA_MAX_INLINE_SGE               4
34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE         max_t(int, SZ_16K, PAGE_SIZE)
35
36 /* Assume mpsmin == device_page_size == 4KB */
37 #define NVMET_RDMA_MAX_MDTS                     8
38 #define NVMET_RDMA_MAX_METADATA_MDTS            5
39
40 struct nvmet_rdma_srq;
41
42 struct nvmet_rdma_cmd {
43         struct ib_sge           sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
44         struct ib_cqe           cqe;
45         struct ib_recv_wr       wr;
46         struct scatterlist      inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
47         struct nvme_command     *nvme_cmd;
48         struct nvmet_rdma_queue *queue;
49         struct nvmet_rdma_srq   *nsrq;
50 };
51
52 enum {
53         NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
54         NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
55 };
56
57 struct nvmet_rdma_rsp {
58         struct ib_sge           send_sge;
59         struct ib_cqe           send_cqe;
60         struct ib_send_wr       send_wr;
61
62         struct nvmet_rdma_cmd   *cmd;
63         struct nvmet_rdma_queue *queue;
64
65         struct ib_cqe           read_cqe;
66         struct ib_cqe           write_cqe;
67         struct rdma_rw_ctx      rw;
68
69         struct nvmet_req        req;
70
71         bool                    allocated;
72         u8                      n_rdma;
73         u32                     flags;
74         u32                     invalidate_rkey;
75
76         struct list_head        wait_list;
77         struct list_head        free_list;
78 };
79
80 enum nvmet_rdma_queue_state {
81         NVMET_RDMA_Q_CONNECTING,
82         NVMET_RDMA_Q_LIVE,
83         NVMET_RDMA_Q_DISCONNECTING,
84 };
85
86 struct nvmet_rdma_queue {
87         struct rdma_cm_id       *cm_id;
88         struct ib_qp            *qp;
89         struct nvmet_port       *port;
90         struct ib_cq            *cq;
91         atomic_t                sq_wr_avail;
92         struct nvmet_rdma_device *dev;
93         struct nvmet_rdma_srq   *nsrq;
94         spinlock_t              state_lock;
95         enum nvmet_rdma_queue_state state;
96         struct nvmet_cq         nvme_cq;
97         struct nvmet_sq         nvme_sq;
98
99         struct nvmet_rdma_rsp   *rsps;
100         struct list_head        free_rsps;
101         spinlock_t              rsps_lock;
102         struct nvmet_rdma_cmd   *cmds;
103
104         struct work_struct      release_work;
105         struct list_head        rsp_wait_list;
106         struct list_head        rsp_wr_wait_list;
107         spinlock_t              rsp_wr_wait_lock;
108
109         int                     idx;
110         int                     host_qid;
111         int                     comp_vector;
112         int                     recv_queue_size;
113         int                     send_queue_size;
114
115         struct list_head        queue_list;
116 };
117
118 struct nvmet_rdma_port {
119         struct nvmet_port       *nport;
120         struct sockaddr_storage addr;
121         struct rdma_cm_id       *cm_id;
122         struct delayed_work     repair_work;
123 };
124
125 struct nvmet_rdma_srq {
126         struct ib_srq            *srq;
127         struct nvmet_rdma_cmd    *cmds;
128         struct nvmet_rdma_device *ndev;
129 };
130
131 struct nvmet_rdma_device {
132         struct ib_device        *device;
133         struct ib_pd            *pd;
134         struct nvmet_rdma_srq   **srqs;
135         int                     srq_count;
136         size_t                  srq_size;
137         struct kref             ref;
138         struct list_head        entry;
139         int                     inline_data_size;
140         int                     inline_page_count;
141 };
142
143 static bool nvmet_rdma_use_srq;
144 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
145 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
146
147 static int srq_size_set(const char *val, const struct kernel_param *kp);
148 static const struct kernel_param_ops srq_size_ops = {
149         .set = srq_size_set,
150         .get = param_get_int,
151 };
152
153 static int nvmet_rdma_srq_size = 1024;
154 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
155 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
156
157 static DEFINE_IDA(nvmet_rdma_queue_ida);
158 static LIST_HEAD(nvmet_rdma_queue_list);
159 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
160
161 static LIST_HEAD(device_list);
162 static DEFINE_MUTEX(device_list_mutex);
163
164 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
165 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
169 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
170 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
171 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
172                                 struct nvmet_rdma_rsp *r);
173 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
174                                 struct nvmet_rdma_rsp *r);
175
176 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
177
178 static int srq_size_set(const char *val, const struct kernel_param *kp)
179 {
180         int n = 0, ret;
181
182         ret = kstrtoint(val, 10, &n);
183         if (ret != 0 || n < 256)
184                 return -EINVAL;
185
186         return param_set_int(val, kp);
187 }
188
189 static int num_pages(int len)
190 {
191         return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
192 }
193
194 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
195 {
196         return nvme_is_write(rsp->req.cmd) &&
197                 rsp->req.transfer_len &&
198                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
199 }
200
201 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
202 {
203         return !nvme_is_write(rsp->req.cmd) &&
204                 rsp->req.transfer_len &&
205                 !rsp->req.cqe->status &&
206                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
207 }
208
209 static inline struct nvmet_rdma_rsp *
210 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
211 {
212         struct nvmet_rdma_rsp *rsp;
213         unsigned long flags;
214
215         spin_lock_irqsave(&queue->rsps_lock, flags);
216         rsp = list_first_entry_or_null(&queue->free_rsps,
217                                 struct nvmet_rdma_rsp, free_list);
218         if (likely(rsp))
219                 list_del(&rsp->free_list);
220         spin_unlock_irqrestore(&queue->rsps_lock, flags);
221
222         if (unlikely(!rsp)) {
223                 int ret;
224
225                 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
226                 if (unlikely(!rsp))
227                         return NULL;
228                 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
229                 if (unlikely(ret)) {
230                         kfree(rsp);
231                         return NULL;
232                 }
233
234                 rsp->allocated = true;
235         }
236
237         return rsp;
238 }
239
240 static inline void
241 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
242 {
243         unsigned long flags;
244
245         if (unlikely(rsp->allocated)) {
246                 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
247                 kfree(rsp);
248                 return;
249         }
250
251         spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
252         list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
253         spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
254 }
255
256 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
257                                 struct nvmet_rdma_cmd *c)
258 {
259         struct scatterlist *sg;
260         struct ib_sge *sge;
261         int i;
262
263         if (!ndev->inline_data_size)
264                 return;
265
266         sg = c->inline_sg;
267         sge = &c->sge[1];
268
269         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
270                 if (sge->length)
271                         ib_dma_unmap_page(ndev->device, sge->addr,
272                                         sge->length, DMA_FROM_DEVICE);
273                 if (sg_page(sg))
274                         __free_page(sg_page(sg));
275         }
276 }
277
278 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
279                                 struct nvmet_rdma_cmd *c)
280 {
281         struct scatterlist *sg;
282         struct ib_sge *sge;
283         struct page *pg;
284         int len;
285         int i;
286
287         if (!ndev->inline_data_size)
288                 return 0;
289
290         sg = c->inline_sg;
291         sg_init_table(sg, ndev->inline_page_count);
292         sge = &c->sge[1];
293         len = ndev->inline_data_size;
294
295         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
296                 pg = alloc_page(GFP_KERNEL);
297                 if (!pg)
298                         goto out_err;
299                 sg_assign_page(sg, pg);
300                 sge->addr = ib_dma_map_page(ndev->device,
301                         pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
302                 if (ib_dma_mapping_error(ndev->device, sge->addr))
303                         goto out_err;
304                 sge->length = min_t(int, len, PAGE_SIZE);
305                 sge->lkey = ndev->pd->local_dma_lkey;
306                 len -= sge->length;
307         }
308
309         return 0;
310 out_err:
311         for (; i >= 0; i--, sg--, sge--) {
312                 if (sge->length)
313                         ib_dma_unmap_page(ndev->device, sge->addr,
314                                         sge->length, DMA_FROM_DEVICE);
315                 if (sg_page(sg))
316                         __free_page(sg_page(sg));
317         }
318         return -ENOMEM;
319 }
320
321 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
322                         struct nvmet_rdma_cmd *c, bool admin)
323 {
324         /* NVMe command / RDMA RECV */
325         c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
326         if (!c->nvme_cmd)
327                 goto out;
328
329         c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
330                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
331         if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
332                 goto out_free_cmd;
333
334         c->sge[0].length = sizeof(*c->nvme_cmd);
335         c->sge[0].lkey = ndev->pd->local_dma_lkey;
336
337         if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
338                 goto out_unmap_cmd;
339
340         c->cqe.done = nvmet_rdma_recv_done;
341
342         c->wr.wr_cqe = &c->cqe;
343         c->wr.sg_list = c->sge;
344         c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
345
346         return 0;
347
348 out_unmap_cmd:
349         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
350                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
351 out_free_cmd:
352         kfree(c->nvme_cmd);
353
354 out:
355         return -ENOMEM;
356 }
357
358 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
359                 struct nvmet_rdma_cmd *c, bool admin)
360 {
361         if (!admin)
362                 nvmet_rdma_free_inline_pages(ndev, c);
363         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
364                                 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
365         kfree(c->nvme_cmd);
366 }
367
368 static struct nvmet_rdma_cmd *
369 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
370                 int nr_cmds, bool admin)
371 {
372         struct nvmet_rdma_cmd *cmds;
373         int ret = -EINVAL, i;
374
375         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
376         if (!cmds)
377                 goto out;
378
379         for (i = 0; i < nr_cmds; i++) {
380                 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
381                 if (ret)
382                         goto out_free;
383         }
384
385         return cmds;
386
387 out_free:
388         while (--i >= 0)
389                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
390         kfree(cmds);
391 out:
392         return ERR_PTR(ret);
393 }
394
395 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
396                 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
397 {
398         int i;
399
400         for (i = 0; i < nr_cmds; i++)
401                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
402         kfree(cmds);
403 }
404
405 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
406                 struct nvmet_rdma_rsp *r)
407 {
408         /* NVMe CQE / RDMA SEND */
409         r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
410         if (!r->req.cqe)
411                 goto out;
412
413         r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
414                         sizeof(*r->req.cqe), DMA_TO_DEVICE);
415         if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
416                 goto out_free_rsp;
417
418         if (ib_dma_pci_p2p_dma_supported(ndev->device))
419                 r->req.p2p_client = &ndev->device->dev;
420         r->send_sge.length = sizeof(*r->req.cqe);
421         r->send_sge.lkey = ndev->pd->local_dma_lkey;
422
423         r->send_cqe.done = nvmet_rdma_send_done;
424
425         r->send_wr.wr_cqe = &r->send_cqe;
426         r->send_wr.sg_list = &r->send_sge;
427         r->send_wr.num_sge = 1;
428         r->send_wr.send_flags = IB_SEND_SIGNALED;
429
430         /* Data In / RDMA READ */
431         r->read_cqe.done = nvmet_rdma_read_data_done;
432         /* Data Out / RDMA WRITE */
433         r->write_cqe.done = nvmet_rdma_write_data_done;
434
435         return 0;
436
437 out_free_rsp:
438         kfree(r->req.cqe);
439 out:
440         return -ENOMEM;
441 }
442
443 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
444                 struct nvmet_rdma_rsp *r)
445 {
446         ib_dma_unmap_single(ndev->device, r->send_sge.addr,
447                                 sizeof(*r->req.cqe), DMA_TO_DEVICE);
448         kfree(r->req.cqe);
449 }
450
451 static int
452 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
453 {
454         struct nvmet_rdma_device *ndev = queue->dev;
455         int nr_rsps = queue->recv_queue_size * 2;
456         int ret = -EINVAL, i;
457
458         queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
459                         GFP_KERNEL);
460         if (!queue->rsps)
461                 goto out;
462
463         for (i = 0; i < nr_rsps; i++) {
464                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
465
466                 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
467                 if (ret)
468                         goto out_free;
469
470                 list_add_tail(&rsp->free_list, &queue->free_rsps);
471         }
472
473         return 0;
474
475 out_free:
476         while (--i >= 0) {
477                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
478
479                 list_del(&rsp->free_list);
480                 nvmet_rdma_free_rsp(ndev, rsp);
481         }
482         kfree(queue->rsps);
483 out:
484         return ret;
485 }
486
487 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
488 {
489         struct nvmet_rdma_device *ndev = queue->dev;
490         int i, nr_rsps = queue->recv_queue_size * 2;
491
492         for (i = 0; i < nr_rsps; i++) {
493                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
494
495                 list_del(&rsp->free_list);
496                 nvmet_rdma_free_rsp(ndev, rsp);
497         }
498         kfree(queue->rsps);
499 }
500
501 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
502                 struct nvmet_rdma_cmd *cmd)
503 {
504         int ret;
505
506         ib_dma_sync_single_for_device(ndev->device,
507                 cmd->sge[0].addr, cmd->sge[0].length,
508                 DMA_FROM_DEVICE);
509
510         if (cmd->nsrq)
511                 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
512         else
513                 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
514
515         if (unlikely(ret))
516                 pr_err("post_recv cmd failed\n");
517
518         return ret;
519 }
520
521 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
522 {
523         spin_lock(&queue->rsp_wr_wait_lock);
524         while (!list_empty(&queue->rsp_wr_wait_list)) {
525                 struct nvmet_rdma_rsp *rsp;
526                 bool ret;
527
528                 rsp = list_entry(queue->rsp_wr_wait_list.next,
529                                 struct nvmet_rdma_rsp, wait_list);
530                 list_del(&rsp->wait_list);
531
532                 spin_unlock(&queue->rsp_wr_wait_lock);
533                 ret = nvmet_rdma_execute_command(rsp);
534                 spin_lock(&queue->rsp_wr_wait_lock);
535
536                 if (!ret) {
537                         list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
538                         break;
539                 }
540         }
541         spin_unlock(&queue->rsp_wr_wait_lock);
542 }
543
544 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
545 {
546         struct ib_mr_status mr_status;
547         int ret;
548         u16 status = 0;
549
550         ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
551         if (ret) {
552                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
553                 return NVME_SC_INVALID_PI;
554         }
555
556         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
557                 switch (mr_status.sig_err.err_type) {
558                 case IB_SIG_BAD_GUARD:
559                         status = NVME_SC_GUARD_CHECK;
560                         break;
561                 case IB_SIG_BAD_REFTAG:
562                         status = NVME_SC_REFTAG_CHECK;
563                         break;
564                 case IB_SIG_BAD_APPTAG:
565                         status = NVME_SC_APPTAG_CHECK;
566                         break;
567                 }
568                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
569                        mr_status.sig_err.err_type,
570                        mr_status.sig_err.expected,
571                        mr_status.sig_err.actual);
572         }
573
574         return status;
575 }
576
577 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
578                 struct nvme_command *cmd, struct ib_sig_domain *domain,
579                 u16 control, u8 pi_type)
580 {
581         domain->sig_type = IB_SIG_TYPE_T10_DIF;
582         domain->sig.dif.bg_type = IB_T10DIF_CRC;
583         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
584         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
585         if (control & NVME_RW_PRINFO_PRCHK_REF)
586                 domain->sig.dif.ref_remap = true;
587
588         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
589         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
590         domain->sig.dif.app_escape = true;
591         if (pi_type == NVME_NS_DPS_PI_TYPE3)
592                 domain->sig.dif.ref_escape = true;
593 }
594
595 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
596                                      struct ib_sig_attrs *sig_attrs)
597 {
598         struct nvme_command *cmd = req->cmd;
599         u16 control = le16_to_cpu(cmd->rw.control);
600         u8 pi_type = req->ns->pi_type;
601         struct blk_integrity *bi;
602
603         bi = bdev_get_integrity(req->ns->bdev);
604
605         memset(sig_attrs, 0, sizeof(*sig_attrs));
606
607         if (control & NVME_RW_PRINFO_PRACT) {
608                 /* for WRITE_INSERT/READ_STRIP no wire domain */
609                 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
610                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
611                                           pi_type);
612                 /* Clear the PRACT bit since HCA will generate/verify the PI */
613                 control &= ~NVME_RW_PRINFO_PRACT;
614                 cmd->rw.control = cpu_to_le16(control);
615                 /* PI is added by the HW */
616                 req->transfer_len += req->metadata_len;
617         } else {
618                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
619                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
620                                           pi_type);
621                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
622                                           pi_type);
623         }
624
625         if (control & NVME_RW_PRINFO_PRCHK_REF)
626                 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
627         if (control & NVME_RW_PRINFO_PRCHK_GUARD)
628                 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
629         if (control & NVME_RW_PRINFO_PRCHK_APP)
630                 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
631 }
632
633 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
634                                   struct ib_sig_attrs *sig_attrs)
635 {
636         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
637         struct nvmet_req *req = &rsp->req;
638         int ret;
639
640         if (req->metadata_len)
641                 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
642                         cm_id->port_num, req->sg, req->sg_cnt,
643                         req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
644                         addr, key, nvmet_data_dir(req));
645         else
646                 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
647                                        req->sg, req->sg_cnt, 0, addr, key,
648                                        nvmet_data_dir(req));
649
650         return ret;
651 }
652
653 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
654 {
655         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
656         struct nvmet_req *req = &rsp->req;
657
658         if (req->metadata_len)
659                 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
660                         cm_id->port_num, req->sg, req->sg_cnt,
661                         req->metadata_sg, req->metadata_sg_cnt,
662                         nvmet_data_dir(req));
663         else
664                 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
665                                     req->sg, req->sg_cnt, nvmet_data_dir(req));
666 }
667
668 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
669 {
670         struct nvmet_rdma_queue *queue = rsp->queue;
671
672         atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
673
674         if (rsp->n_rdma)
675                 nvmet_rdma_rw_ctx_destroy(rsp);
676
677         if (rsp->req.sg != rsp->cmd->inline_sg)
678                 nvmet_req_free_sgls(&rsp->req);
679
680         if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
681                 nvmet_rdma_process_wr_wait_list(queue);
682
683         nvmet_rdma_put_rsp(rsp);
684 }
685
686 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
687 {
688         if (queue->nvme_sq.ctrl) {
689                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
690         } else {
691                 /*
692                  * we didn't setup the controller yet in case
693                  * of admin connect error, just disconnect and
694                  * cleanup the queue
695                  */
696                 nvmet_rdma_queue_disconnect(queue);
697         }
698 }
699
700 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
701 {
702         struct nvmet_rdma_rsp *rsp =
703                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
704         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
705
706         nvmet_rdma_release_rsp(rsp);
707
708         if (unlikely(wc->status != IB_WC_SUCCESS &&
709                      wc->status != IB_WC_WR_FLUSH_ERR)) {
710                 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
711                         wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
712                 nvmet_rdma_error_comp(queue);
713         }
714 }
715
716 static void nvmet_rdma_queue_response(struct nvmet_req *req)
717 {
718         struct nvmet_rdma_rsp *rsp =
719                 container_of(req, struct nvmet_rdma_rsp, req);
720         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
721         struct ib_send_wr *first_wr;
722
723         if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
724                 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
725                 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
726         } else {
727                 rsp->send_wr.opcode = IB_WR_SEND;
728         }
729
730         if (nvmet_rdma_need_data_out(rsp)) {
731                 if (rsp->req.metadata_len)
732                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
733                                         cm_id->port_num, &rsp->write_cqe, NULL);
734                 else
735                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
736                                         cm_id->port_num, NULL, &rsp->send_wr);
737         } else {
738                 first_wr = &rsp->send_wr;
739         }
740
741         nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
742
743         ib_dma_sync_single_for_device(rsp->queue->dev->device,
744                 rsp->send_sge.addr, rsp->send_sge.length,
745                 DMA_TO_DEVICE);
746
747         if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
748                 pr_err("sending cmd response failed\n");
749                 nvmet_rdma_release_rsp(rsp);
750         }
751 }
752
753 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
754 {
755         struct nvmet_rdma_rsp *rsp =
756                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
757         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
758         u16 status = 0;
759
760         WARN_ON(rsp->n_rdma <= 0);
761         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
762         rsp->n_rdma = 0;
763
764         if (unlikely(wc->status != IB_WC_SUCCESS)) {
765                 nvmet_rdma_rw_ctx_destroy(rsp);
766                 nvmet_req_uninit(&rsp->req);
767                 nvmet_rdma_release_rsp(rsp);
768                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
769                         pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
770                                 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
771                         nvmet_rdma_error_comp(queue);
772                 }
773                 return;
774         }
775
776         if (rsp->req.metadata_len)
777                 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
778         nvmet_rdma_rw_ctx_destroy(rsp);
779
780         if (unlikely(status))
781                 nvmet_req_complete(&rsp->req, status);
782         else
783                 rsp->req.execute(&rsp->req);
784 }
785
786 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
787 {
788         struct nvmet_rdma_rsp *rsp =
789                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
790         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
791         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
792         u16 status;
793
794         if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
795                 return;
796
797         WARN_ON(rsp->n_rdma <= 0);
798         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
799         rsp->n_rdma = 0;
800
801         if (unlikely(wc->status != IB_WC_SUCCESS)) {
802                 nvmet_rdma_rw_ctx_destroy(rsp);
803                 nvmet_req_uninit(&rsp->req);
804                 nvmet_rdma_release_rsp(rsp);
805                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
806                         pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
807                                 ib_wc_status_msg(wc->status), wc->status);
808                         nvmet_rdma_error_comp(queue);
809                 }
810                 return;
811         }
812
813         /*
814          * Upon RDMA completion check the signature status
815          * - if succeeded send good NVMe response
816          * - if failed send bad NVMe response with appropriate error
817          */
818         status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
819         if (unlikely(status))
820                 rsp->req.cqe->status = cpu_to_le16(status << 1);
821         nvmet_rdma_rw_ctx_destroy(rsp);
822
823         if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
824                 pr_err("sending cmd response failed\n");
825                 nvmet_rdma_release_rsp(rsp);
826         }
827 }
828
829 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
830                 u64 off)
831 {
832         int sg_count = num_pages(len);
833         struct scatterlist *sg;
834         int i;
835
836         sg = rsp->cmd->inline_sg;
837         for (i = 0; i < sg_count; i++, sg++) {
838                 if (i < sg_count - 1)
839                         sg_unmark_end(sg);
840                 else
841                         sg_mark_end(sg);
842                 sg->offset = off;
843                 sg->length = min_t(int, len, PAGE_SIZE - off);
844                 len -= sg->length;
845                 if (!i)
846                         off = 0;
847         }
848
849         rsp->req.sg = rsp->cmd->inline_sg;
850         rsp->req.sg_cnt = sg_count;
851 }
852
853 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
854 {
855         struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
856         u64 off = le64_to_cpu(sgl->addr);
857         u32 len = le32_to_cpu(sgl->length);
858
859         if (!nvme_is_write(rsp->req.cmd)) {
860                 rsp->req.error_loc =
861                         offsetof(struct nvme_common_command, opcode);
862                 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
863         }
864
865         if (off + len > rsp->queue->dev->inline_data_size) {
866                 pr_err("invalid inline data offset!\n");
867                 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
868         }
869
870         /* no data command? */
871         if (!len)
872                 return 0;
873
874         nvmet_rdma_use_inline_sg(rsp, len, off);
875         rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
876         rsp->req.transfer_len += len;
877         return 0;
878 }
879
880 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
881                 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
882 {
883         u64 addr = le64_to_cpu(sgl->addr);
884         u32 key = get_unaligned_le32(sgl->key);
885         struct ib_sig_attrs sig_attrs;
886         int ret;
887
888         rsp->req.transfer_len = get_unaligned_le24(sgl->length);
889
890         /* no data command? */
891         if (!rsp->req.transfer_len)
892                 return 0;
893
894         if (rsp->req.metadata_len)
895                 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
896
897         ret = nvmet_req_alloc_sgls(&rsp->req);
898         if (unlikely(ret < 0))
899                 goto error_out;
900
901         ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
902         if (unlikely(ret < 0))
903                 goto error_out;
904         rsp->n_rdma += ret;
905
906         if (invalidate) {
907                 rsp->invalidate_rkey = key;
908                 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
909         }
910
911         return 0;
912
913 error_out:
914         rsp->req.transfer_len = 0;
915         return NVME_SC_INTERNAL;
916 }
917
918 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
919 {
920         struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
921
922         switch (sgl->type >> 4) {
923         case NVME_SGL_FMT_DATA_DESC:
924                 switch (sgl->type & 0xf) {
925                 case NVME_SGL_FMT_OFFSET:
926                         return nvmet_rdma_map_sgl_inline(rsp);
927                 default:
928                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
929                         rsp->req.error_loc =
930                                 offsetof(struct nvme_common_command, dptr);
931                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
932                 }
933         case NVME_KEY_SGL_FMT_DATA_DESC:
934                 switch (sgl->type & 0xf) {
935                 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
936                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
937                 case NVME_SGL_FMT_ADDRESS:
938                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
939                 default:
940                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
941                         rsp->req.error_loc =
942                                 offsetof(struct nvme_common_command, dptr);
943                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
944                 }
945         default:
946                 pr_err("invalid SGL type: %#x\n", sgl->type);
947                 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
948                 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
949         }
950 }
951
952 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
953 {
954         struct nvmet_rdma_queue *queue = rsp->queue;
955
956         if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
957                         &queue->sq_wr_avail) < 0)) {
958                 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
959                                 1 + rsp->n_rdma, queue->idx,
960                                 queue->nvme_sq.ctrl->cntlid);
961                 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
962                 return false;
963         }
964
965         if (nvmet_rdma_need_data_in(rsp)) {
966                 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
967                                 queue->cm_id->port_num, &rsp->read_cqe, NULL))
968                         nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
969         } else {
970                 rsp->req.execute(&rsp->req);
971         }
972
973         return true;
974 }
975
976 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
977                 struct nvmet_rdma_rsp *cmd)
978 {
979         u16 status;
980
981         ib_dma_sync_single_for_cpu(queue->dev->device,
982                 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
983                 DMA_FROM_DEVICE);
984         ib_dma_sync_single_for_cpu(queue->dev->device,
985                 cmd->send_sge.addr, cmd->send_sge.length,
986                 DMA_TO_DEVICE);
987
988         if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
989                         &queue->nvme_sq, &nvmet_rdma_ops))
990                 return;
991
992         status = nvmet_rdma_map_sgl(cmd);
993         if (status)
994                 goto out_err;
995
996         if (unlikely(!nvmet_rdma_execute_command(cmd))) {
997                 spin_lock(&queue->rsp_wr_wait_lock);
998                 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
999                 spin_unlock(&queue->rsp_wr_wait_lock);
1000         }
1001
1002         return;
1003
1004 out_err:
1005         nvmet_req_complete(&cmd->req, status);
1006 }
1007
1008 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1009 {
1010         struct nvmet_rdma_cmd *cmd =
1011                 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1012         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1013         struct nvmet_rdma_rsp *rsp;
1014
1015         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1016                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1017                         pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1018                                 wc->wr_cqe, ib_wc_status_msg(wc->status),
1019                                 wc->status);
1020                         nvmet_rdma_error_comp(queue);
1021                 }
1022                 return;
1023         }
1024
1025         if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1026                 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1027                 nvmet_rdma_error_comp(queue);
1028                 return;
1029         }
1030
1031         cmd->queue = queue;
1032         rsp = nvmet_rdma_get_rsp(queue);
1033         if (unlikely(!rsp)) {
1034                 /*
1035                  * we get here only under memory pressure,
1036                  * silently drop and have the host retry
1037                  * as we can't even fail it.
1038                  */
1039                 nvmet_rdma_post_recv(queue->dev, cmd);
1040                 return;
1041         }
1042         rsp->queue = queue;
1043         rsp->cmd = cmd;
1044         rsp->flags = 0;
1045         rsp->req.cmd = cmd->nvme_cmd;
1046         rsp->req.port = queue->port;
1047         rsp->n_rdma = 0;
1048
1049         if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1050                 unsigned long flags;
1051
1052                 spin_lock_irqsave(&queue->state_lock, flags);
1053                 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1054                         list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1055                 else
1056                         nvmet_rdma_put_rsp(rsp);
1057                 spin_unlock_irqrestore(&queue->state_lock, flags);
1058                 return;
1059         }
1060
1061         nvmet_rdma_handle_command(queue, rsp);
1062 }
1063
1064 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1065 {
1066         nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1067                              false);
1068         ib_destroy_srq(nsrq->srq);
1069
1070         kfree(nsrq);
1071 }
1072
1073 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1074 {
1075         int i;
1076
1077         if (!ndev->srqs)
1078                 return;
1079
1080         for (i = 0; i < ndev->srq_count; i++)
1081                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1082
1083         kfree(ndev->srqs);
1084 }
1085
1086 static struct nvmet_rdma_srq *
1087 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1088 {
1089         struct ib_srq_init_attr srq_attr = { NULL, };
1090         size_t srq_size = ndev->srq_size;
1091         struct nvmet_rdma_srq *nsrq;
1092         struct ib_srq *srq;
1093         int ret, i;
1094
1095         nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1096         if (!nsrq)
1097                 return ERR_PTR(-ENOMEM);
1098
1099         srq_attr.attr.max_wr = srq_size;
1100         srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1101         srq_attr.attr.srq_limit = 0;
1102         srq_attr.srq_type = IB_SRQT_BASIC;
1103         srq = ib_create_srq(ndev->pd, &srq_attr);
1104         if (IS_ERR(srq)) {
1105                 ret = PTR_ERR(srq);
1106                 goto out_free;
1107         }
1108
1109         nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1110         if (IS_ERR(nsrq->cmds)) {
1111                 ret = PTR_ERR(nsrq->cmds);
1112                 goto out_destroy_srq;
1113         }
1114
1115         nsrq->srq = srq;
1116         nsrq->ndev = ndev;
1117
1118         for (i = 0; i < srq_size; i++) {
1119                 nsrq->cmds[i].nsrq = nsrq;
1120                 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1121                 if (ret)
1122                         goto out_free_cmds;
1123         }
1124
1125         return nsrq;
1126
1127 out_free_cmds:
1128         nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1129 out_destroy_srq:
1130         ib_destroy_srq(srq);
1131 out_free:
1132         kfree(nsrq);
1133         return ERR_PTR(ret);
1134 }
1135
1136 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1137 {
1138         int i, ret;
1139
1140         if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1141                 /*
1142                  * If SRQs aren't supported we just go ahead and use normal
1143                  * non-shared receive queues.
1144                  */
1145                 pr_info("SRQ requested but not supported.\n");
1146                 return 0;
1147         }
1148
1149         ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1150                              nvmet_rdma_srq_size);
1151         ndev->srq_count = min(ndev->device->num_comp_vectors,
1152                               ndev->device->attrs.max_srq);
1153
1154         ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1155         if (!ndev->srqs)
1156                 return -ENOMEM;
1157
1158         for (i = 0; i < ndev->srq_count; i++) {
1159                 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1160                 if (IS_ERR(ndev->srqs[i])) {
1161                         ret = PTR_ERR(ndev->srqs[i]);
1162                         goto err_srq;
1163                 }
1164         }
1165
1166         return 0;
1167
1168 err_srq:
1169         while (--i >= 0)
1170                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1171         kfree(ndev->srqs);
1172         return ret;
1173 }
1174
1175 static void nvmet_rdma_free_dev(struct kref *ref)
1176 {
1177         struct nvmet_rdma_device *ndev =
1178                 container_of(ref, struct nvmet_rdma_device, ref);
1179
1180         mutex_lock(&device_list_mutex);
1181         list_del(&ndev->entry);
1182         mutex_unlock(&device_list_mutex);
1183
1184         nvmet_rdma_destroy_srqs(ndev);
1185         ib_dealloc_pd(ndev->pd);
1186
1187         kfree(ndev);
1188 }
1189
1190 static struct nvmet_rdma_device *
1191 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1192 {
1193         struct nvmet_rdma_port *port = cm_id->context;
1194         struct nvmet_port *nport = port->nport;
1195         struct nvmet_rdma_device *ndev;
1196         int inline_page_count;
1197         int inline_sge_count;
1198         int ret;
1199
1200         mutex_lock(&device_list_mutex);
1201         list_for_each_entry(ndev, &device_list, entry) {
1202                 if (ndev->device->node_guid == cm_id->device->node_guid &&
1203                     kref_get_unless_zero(&ndev->ref))
1204                         goto out_unlock;
1205         }
1206
1207         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1208         if (!ndev)
1209                 goto out_err;
1210
1211         inline_page_count = num_pages(nport->inline_data_size);
1212         inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1213                                 cm_id->device->attrs.max_recv_sge) - 1;
1214         if (inline_page_count > inline_sge_count) {
1215                 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1216                         nport->inline_data_size, cm_id->device->name,
1217                         inline_sge_count * PAGE_SIZE);
1218                 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1219                 inline_page_count = inline_sge_count;
1220         }
1221         ndev->inline_data_size = nport->inline_data_size;
1222         ndev->inline_page_count = inline_page_count;
1223
1224         if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1225                                   IBK_INTEGRITY_HANDOVER)) {
1226                 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1227                         cm_id->device->name);
1228                 nport->pi_enable = false;
1229         }
1230
1231         ndev->device = cm_id->device;
1232         kref_init(&ndev->ref);
1233
1234         ndev->pd = ib_alloc_pd(ndev->device, 0);
1235         if (IS_ERR(ndev->pd))
1236                 goto out_free_dev;
1237
1238         if (nvmet_rdma_use_srq) {
1239                 ret = nvmet_rdma_init_srqs(ndev);
1240                 if (ret)
1241                         goto out_free_pd;
1242         }
1243
1244         list_add(&ndev->entry, &device_list);
1245 out_unlock:
1246         mutex_unlock(&device_list_mutex);
1247         pr_debug("added %s.\n", ndev->device->name);
1248         return ndev;
1249
1250 out_free_pd:
1251         ib_dealloc_pd(ndev->pd);
1252 out_free_dev:
1253         kfree(ndev);
1254 out_err:
1255         mutex_unlock(&device_list_mutex);
1256         return NULL;
1257 }
1258
1259 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1260 {
1261         struct ib_qp_init_attr qp_attr = { };
1262         struct nvmet_rdma_device *ndev = queue->dev;
1263         int nr_cqe, ret, i, factor;
1264
1265         /*
1266          * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1267          */
1268         nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1269
1270         queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1271                                    queue->comp_vector, IB_POLL_WORKQUEUE);
1272         if (IS_ERR(queue->cq)) {
1273                 ret = PTR_ERR(queue->cq);
1274                 pr_err("failed to create CQ cqe= %d ret= %d\n",
1275                        nr_cqe + 1, ret);
1276                 goto out;
1277         }
1278
1279         qp_attr.qp_context = queue;
1280         qp_attr.event_handler = nvmet_rdma_qp_event;
1281         qp_attr.send_cq = queue->cq;
1282         qp_attr.recv_cq = queue->cq;
1283         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1284         qp_attr.qp_type = IB_QPT_RC;
1285         /* +1 for drain */
1286         qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1287         factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1288                                    1 << NVMET_RDMA_MAX_MDTS);
1289         qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1290         qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1291                                         ndev->device->attrs.max_send_sge);
1292
1293         if (queue->nsrq) {
1294                 qp_attr.srq = queue->nsrq->srq;
1295         } else {
1296                 /* +1 for drain */
1297                 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1298                 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1299         }
1300
1301         if (queue->port->pi_enable && queue->host_qid)
1302                 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1303
1304         ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1305         if (ret) {
1306                 pr_err("failed to create_qp ret= %d\n", ret);
1307                 goto err_destroy_cq;
1308         }
1309         queue->qp = queue->cm_id->qp;
1310
1311         atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1312
1313         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1314                  __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1315                  qp_attr.cap.max_send_wr, queue->cm_id);
1316
1317         if (!queue->nsrq) {
1318                 for (i = 0; i < queue->recv_queue_size; i++) {
1319                         queue->cmds[i].queue = queue;
1320                         ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1321                         if (ret)
1322                                 goto err_destroy_qp;
1323                 }
1324         }
1325
1326 out:
1327         return ret;
1328
1329 err_destroy_qp:
1330         rdma_destroy_qp(queue->cm_id);
1331 err_destroy_cq:
1332         ib_cq_pool_put(queue->cq, nr_cqe + 1);
1333         goto out;
1334 }
1335
1336 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1337 {
1338         ib_drain_qp(queue->qp);
1339         if (queue->cm_id)
1340                 rdma_destroy_id(queue->cm_id);
1341         ib_destroy_qp(queue->qp);
1342         ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1343                        queue->send_queue_size + 1);
1344 }
1345
1346 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1347 {
1348         pr_debug("freeing queue %d\n", queue->idx);
1349
1350         nvmet_sq_destroy(&queue->nvme_sq);
1351
1352         nvmet_rdma_destroy_queue_ib(queue);
1353         if (!queue->nsrq) {
1354                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1355                                 queue->recv_queue_size,
1356                                 !queue->host_qid);
1357         }
1358         nvmet_rdma_free_rsps(queue);
1359         ida_free(&nvmet_rdma_queue_ida, queue->idx);
1360         kfree(queue);
1361 }
1362
1363 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1364 {
1365         struct nvmet_rdma_queue *queue =
1366                 container_of(w, struct nvmet_rdma_queue, release_work);
1367         struct nvmet_rdma_device *dev = queue->dev;
1368
1369         nvmet_rdma_free_queue(queue);
1370
1371         kref_put(&dev->ref, nvmet_rdma_free_dev);
1372 }
1373
1374 static int
1375 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1376                                 struct nvmet_rdma_queue *queue)
1377 {
1378         struct nvme_rdma_cm_req *req;
1379
1380         req = (struct nvme_rdma_cm_req *)conn->private_data;
1381         if (!req || conn->private_data_len == 0)
1382                 return NVME_RDMA_CM_INVALID_LEN;
1383
1384         if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1385                 return NVME_RDMA_CM_INVALID_RECFMT;
1386
1387         queue->host_qid = le16_to_cpu(req->qid);
1388
1389         /*
1390          * req->hsqsize corresponds to our recv queue size plus 1
1391          * req->hrqsize corresponds to our send queue size
1392          */
1393         queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1394         queue->send_queue_size = le16_to_cpu(req->hrqsize);
1395
1396         if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1397                 return NVME_RDMA_CM_INVALID_HSQSIZE;
1398
1399         /* XXX: Should we enforce some kind of max for IO queues? */
1400
1401         return 0;
1402 }
1403
1404 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1405                                 enum nvme_rdma_cm_status status)
1406 {
1407         struct nvme_rdma_cm_rej rej;
1408
1409         pr_debug("rejecting connect request: status %d (%s)\n",
1410                  status, nvme_rdma_cm_msg(status));
1411
1412         rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1413         rej.sts = cpu_to_le16(status);
1414
1415         return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1416                            IB_CM_REJ_CONSUMER_DEFINED);
1417 }
1418
1419 static struct nvmet_rdma_queue *
1420 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1421                 struct rdma_cm_id *cm_id,
1422                 struct rdma_cm_event *event)
1423 {
1424         struct nvmet_rdma_port *port = cm_id->context;
1425         struct nvmet_rdma_queue *queue;
1426         int ret;
1427
1428         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1429         if (!queue) {
1430                 ret = NVME_RDMA_CM_NO_RSC;
1431                 goto out_reject;
1432         }
1433
1434         ret = nvmet_sq_init(&queue->nvme_sq);
1435         if (ret) {
1436                 ret = NVME_RDMA_CM_NO_RSC;
1437                 goto out_free_queue;
1438         }
1439
1440         ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1441         if (ret)
1442                 goto out_destroy_sq;
1443
1444         /*
1445          * Schedules the actual release because calling rdma_destroy_id from
1446          * inside a CM callback would trigger a deadlock. (great API design..)
1447          */
1448         INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1449         queue->dev = ndev;
1450         queue->cm_id = cm_id;
1451         queue->port = port->nport;
1452
1453         spin_lock_init(&queue->state_lock);
1454         queue->state = NVMET_RDMA_Q_CONNECTING;
1455         INIT_LIST_HEAD(&queue->rsp_wait_list);
1456         INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1457         spin_lock_init(&queue->rsp_wr_wait_lock);
1458         INIT_LIST_HEAD(&queue->free_rsps);
1459         spin_lock_init(&queue->rsps_lock);
1460         INIT_LIST_HEAD(&queue->queue_list);
1461
1462         queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL);
1463         if (queue->idx < 0) {
1464                 ret = NVME_RDMA_CM_NO_RSC;
1465                 goto out_destroy_sq;
1466         }
1467
1468         /*
1469          * Spread the io queues across completion vectors,
1470          * but still keep all admin queues on vector 0.
1471          */
1472         queue->comp_vector = !queue->host_qid ? 0 :
1473                 queue->idx % ndev->device->num_comp_vectors;
1474
1475
1476         ret = nvmet_rdma_alloc_rsps(queue);
1477         if (ret) {
1478                 ret = NVME_RDMA_CM_NO_RSC;
1479                 goto out_ida_remove;
1480         }
1481
1482         if (ndev->srqs) {
1483                 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1484         } else {
1485                 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1486                                 queue->recv_queue_size,
1487                                 !queue->host_qid);
1488                 if (IS_ERR(queue->cmds)) {
1489                         ret = NVME_RDMA_CM_NO_RSC;
1490                         goto out_free_responses;
1491                 }
1492         }
1493
1494         ret = nvmet_rdma_create_queue_ib(queue);
1495         if (ret) {
1496                 pr_err("%s: creating RDMA queue failed (%d).\n",
1497                         __func__, ret);
1498                 ret = NVME_RDMA_CM_NO_RSC;
1499                 goto out_free_cmds;
1500         }
1501
1502         return queue;
1503
1504 out_free_cmds:
1505         if (!queue->nsrq) {
1506                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1507                                 queue->recv_queue_size,
1508                                 !queue->host_qid);
1509         }
1510 out_free_responses:
1511         nvmet_rdma_free_rsps(queue);
1512 out_ida_remove:
1513         ida_free(&nvmet_rdma_queue_ida, queue->idx);
1514 out_destroy_sq:
1515         nvmet_sq_destroy(&queue->nvme_sq);
1516 out_free_queue:
1517         kfree(queue);
1518 out_reject:
1519         nvmet_rdma_cm_reject(cm_id, ret);
1520         return NULL;
1521 }
1522
1523 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1524 {
1525         struct nvmet_rdma_queue *queue = priv;
1526
1527         switch (event->event) {
1528         case IB_EVENT_COMM_EST:
1529                 rdma_notify(queue->cm_id, event->event);
1530                 break;
1531         case IB_EVENT_QP_LAST_WQE_REACHED:
1532                 pr_debug("received last WQE reached event for queue=0x%p\n",
1533                          queue);
1534                 break;
1535         default:
1536                 pr_err("received IB QP event: %s (%d)\n",
1537                        ib_event_msg(event->event), event->event);
1538                 break;
1539         }
1540 }
1541
1542 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1543                 struct nvmet_rdma_queue *queue,
1544                 struct rdma_conn_param *p)
1545 {
1546         struct rdma_conn_param  param = { };
1547         struct nvme_rdma_cm_rep priv = { };
1548         int ret = -ENOMEM;
1549
1550         param.rnr_retry_count = 7;
1551         param.flow_control = 1;
1552         param.initiator_depth = min_t(u8, p->initiator_depth,
1553                 queue->dev->device->attrs.max_qp_init_rd_atom);
1554         param.private_data = &priv;
1555         param.private_data_len = sizeof(priv);
1556         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1557         priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1558
1559         ret = rdma_accept(cm_id, &param);
1560         if (ret)
1561                 pr_err("rdma_accept failed (error code = %d)\n", ret);
1562
1563         return ret;
1564 }
1565
1566 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1567                 struct rdma_cm_event *event)
1568 {
1569         struct nvmet_rdma_device *ndev;
1570         struct nvmet_rdma_queue *queue;
1571         int ret = -EINVAL;
1572
1573         ndev = nvmet_rdma_find_get_device(cm_id);
1574         if (!ndev) {
1575                 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1576                 return -ECONNREFUSED;
1577         }
1578
1579         queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1580         if (!queue) {
1581                 ret = -ENOMEM;
1582                 goto put_device;
1583         }
1584
1585         if (queue->host_qid == 0) {
1586                 /* Let inflight controller teardown complete */
1587                 flush_workqueue(nvmet_wq);
1588         }
1589
1590         ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1591         if (ret) {
1592                 /*
1593                  * Don't destroy the cm_id in free path, as we implicitly
1594                  * destroy the cm_id here with non-zero ret code.
1595                  */
1596                 queue->cm_id = NULL;
1597                 goto free_queue;
1598         }
1599
1600         mutex_lock(&nvmet_rdma_queue_mutex);
1601         list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1602         mutex_unlock(&nvmet_rdma_queue_mutex);
1603
1604         return 0;
1605
1606 free_queue:
1607         nvmet_rdma_free_queue(queue);
1608 put_device:
1609         kref_put(&ndev->ref, nvmet_rdma_free_dev);
1610
1611         return ret;
1612 }
1613
1614 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1615 {
1616         unsigned long flags;
1617
1618         spin_lock_irqsave(&queue->state_lock, flags);
1619         if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1620                 pr_warn("trying to establish a connected queue\n");
1621                 goto out_unlock;
1622         }
1623         queue->state = NVMET_RDMA_Q_LIVE;
1624
1625         while (!list_empty(&queue->rsp_wait_list)) {
1626                 struct nvmet_rdma_rsp *cmd;
1627
1628                 cmd = list_first_entry(&queue->rsp_wait_list,
1629                                         struct nvmet_rdma_rsp, wait_list);
1630                 list_del(&cmd->wait_list);
1631
1632                 spin_unlock_irqrestore(&queue->state_lock, flags);
1633                 nvmet_rdma_handle_command(queue, cmd);
1634                 spin_lock_irqsave(&queue->state_lock, flags);
1635         }
1636
1637 out_unlock:
1638         spin_unlock_irqrestore(&queue->state_lock, flags);
1639 }
1640
1641 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1642 {
1643         bool disconnect = false;
1644         unsigned long flags;
1645
1646         pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1647
1648         spin_lock_irqsave(&queue->state_lock, flags);
1649         switch (queue->state) {
1650         case NVMET_RDMA_Q_CONNECTING:
1651                 while (!list_empty(&queue->rsp_wait_list)) {
1652                         struct nvmet_rdma_rsp *rsp;
1653
1654                         rsp = list_first_entry(&queue->rsp_wait_list,
1655                                                struct nvmet_rdma_rsp,
1656                                                wait_list);
1657                         list_del(&rsp->wait_list);
1658                         nvmet_rdma_put_rsp(rsp);
1659                 }
1660                 fallthrough;
1661         case NVMET_RDMA_Q_LIVE:
1662                 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1663                 disconnect = true;
1664                 break;
1665         case NVMET_RDMA_Q_DISCONNECTING:
1666                 break;
1667         }
1668         spin_unlock_irqrestore(&queue->state_lock, flags);
1669
1670         if (disconnect) {
1671                 rdma_disconnect(queue->cm_id);
1672                 queue_work(nvmet_wq, &queue->release_work);
1673         }
1674 }
1675
1676 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1677 {
1678         bool disconnect = false;
1679
1680         mutex_lock(&nvmet_rdma_queue_mutex);
1681         if (!list_empty(&queue->queue_list)) {
1682                 list_del_init(&queue->queue_list);
1683                 disconnect = true;
1684         }
1685         mutex_unlock(&nvmet_rdma_queue_mutex);
1686
1687         if (disconnect)
1688                 __nvmet_rdma_queue_disconnect(queue);
1689 }
1690
1691 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1692                 struct nvmet_rdma_queue *queue)
1693 {
1694         WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1695
1696         mutex_lock(&nvmet_rdma_queue_mutex);
1697         if (!list_empty(&queue->queue_list))
1698                 list_del_init(&queue->queue_list);
1699         mutex_unlock(&nvmet_rdma_queue_mutex);
1700
1701         pr_err("failed to connect queue %d\n", queue->idx);
1702         queue_work(nvmet_wq, &queue->release_work);
1703 }
1704
1705 /**
1706  * nvmet_rdma_device_removal() - Handle RDMA device removal
1707  * @cm_id:      rdma_cm id, used for nvmet port
1708  * @queue:      nvmet rdma queue (cm id qp_context)
1709  *
1710  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1711  * to unplug. Note that this event can be generated on a normal
1712  * queue cm_id and/or a device bound listener cm_id (where in this
1713  * case queue will be null).
1714  *
1715  * We registered an ib_client to handle device removal for queues,
1716  * so we only need to handle the listening port cm_ids. In this case
1717  * we nullify the priv to prevent double cm_id destruction and destroying
1718  * the cm_id implicitely by returning a non-zero rc to the callout.
1719  */
1720 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1721                 struct nvmet_rdma_queue *queue)
1722 {
1723         struct nvmet_rdma_port *port;
1724
1725         if (queue) {
1726                 /*
1727                  * This is a queue cm_id. we have registered
1728                  * an ib_client to handle queues removal
1729                  * so don't interfear and just return.
1730                  */
1731                 return 0;
1732         }
1733
1734         port = cm_id->context;
1735
1736         /*
1737          * This is a listener cm_id. Make sure that
1738          * future remove_port won't invoke a double
1739          * cm_id destroy. use atomic xchg to make sure
1740          * we don't compete with remove_port.
1741          */
1742         if (xchg(&port->cm_id, NULL) != cm_id)
1743                 return 0;
1744
1745         /*
1746          * We need to return 1 so that the core will destroy
1747          * it's own ID.  What a great API design..
1748          */
1749         return 1;
1750 }
1751
1752 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1753                 struct rdma_cm_event *event)
1754 {
1755         struct nvmet_rdma_queue *queue = NULL;
1756         int ret = 0;
1757
1758         if (cm_id->qp)
1759                 queue = cm_id->qp->qp_context;
1760
1761         pr_debug("%s (%d): status %d id %p\n",
1762                 rdma_event_msg(event->event), event->event,
1763                 event->status, cm_id);
1764
1765         switch (event->event) {
1766         case RDMA_CM_EVENT_CONNECT_REQUEST:
1767                 ret = nvmet_rdma_queue_connect(cm_id, event);
1768                 break;
1769         case RDMA_CM_EVENT_ESTABLISHED:
1770                 nvmet_rdma_queue_established(queue);
1771                 break;
1772         case RDMA_CM_EVENT_ADDR_CHANGE:
1773                 if (!queue) {
1774                         struct nvmet_rdma_port *port = cm_id->context;
1775
1776                         queue_delayed_work(nvmet_wq, &port->repair_work, 0);
1777                         break;
1778                 }
1779                 fallthrough;
1780         case RDMA_CM_EVENT_DISCONNECTED:
1781         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1782                 nvmet_rdma_queue_disconnect(queue);
1783                 break;
1784         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1785                 ret = nvmet_rdma_device_removal(cm_id, queue);
1786                 break;
1787         case RDMA_CM_EVENT_REJECTED:
1788                 pr_debug("Connection rejected: %s\n",
1789                          rdma_reject_msg(cm_id, event->status));
1790                 fallthrough;
1791         case RDMA_CM_EVENT_UNREACHABLE:
1792         case RDMA_CM_EVENT_CONNECT_ERROR:
1793                 nvmet_rdma_queue_connect_fail(cm_id, queue);
1794                 break;
1795         default:
1796                 pr_err("received unrecognized RDMA CM event %d\n",
1797                         event->event);
1798                 break;
1799         }
1800
1801         return ret;
1802 }
1803
1804 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1805 {
1806         struct nvmet_rdma_queue *queue;
1807
1808 restart:
1809         mutex_lock(&nvmet_rdma_queue_mutex);
1810         list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1811                 if (queue->nvme_sq.ctrl == ctrl) {
1812                         list_del_init(&queue->queue_list);
1813                         mutex_unlock(&nvmet_rdma_queue_mutex);
1814
1815                         __nvmet_rdma_queue_disconnect(queue);
1816                         goto restart;
1817                 }
1818         }
1819         mutex_unlock(&nvmet_rdma_queue_mutex);
1820 }
1821
1822 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1823 {
1824         struct nvmet_rdma_queue *queue, *tmp;
1825         struct nvmet_port *nport = port->nport;
1826
1827         mutex_lock(&nvmet_rdma_queue_mutex);
1828         list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1829                                  queue_list) {
1830                 if (queue->port != nport)
1831                         continue;
1832
1833                 list_del_init(&queue->queue_list);
1834                 __nvmet_rdma_queue_disconnect(queue);
1835         }
1836         mutex_unlock(&nvmet_rdma_queue_mutex);
1837 }
1838
1839 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1840 {
1841         struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1842
1843         if (cm_id)
1844                 rdma_destroy_id(cm_id);
1845
1846         /*
1847          * Destroy the remaining queues, which are not belong to any
1848          * controller yet. Do it here after the RDMA-CM was destroyed
1849          * guarantees that no new queue will be created.
1850          */
1851         nvmet_rdma_destroy_port_queues(port);
1852 }
1853
1854 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1855 {
1856         struct sockaddr *addr = (struct sockaddr *)&port->addr;
1857         struct rdma_cm_id *cm_id;
1858         int ret;
1859
1860         cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1861                         RDMA_PS_TCP, IB_QPT_RC);
1862         if (IS_ERR(cm_id)) {
1863                 pr_err("CM ID creation failed\n");
1864                 return PTR_ERR(cm_id);
1865         }
1866
1867         /*
1868          * Allow both IPv4 and IPv6 sockets to bind a single port
1869          * at the same time.
1870          */
1871         ret = rdma_set_afonly(cm_id, 1);
1872         if (ret) {
1873                 pr_err("rdma_set_afonly failed (%d)\n", ret);
1874                 goto out_destroy_id;
1875         }
1876
1877         ret = rdma_bind_addr(cm_id, addr);
1878         if (ret) {
1879                 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1880                 goto out_destroy_id;
1881         }
1882
1883         ret = rdma_listen(cm_id, 128);
1884         if (ret) {
1885                 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1886                 goto out_destroy_id;
1887         }
1888
1889         port->cm_id = cm_id;
1890         return 0;
1891
1892 out_destroy_id:
1893         rdma_destroy_id(cm_id);
1894         return ret;
1895 }
1896
1897 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1898 {
1899         struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1900                         struct nvmet_rdma_port, repair_work);
1901         int ret;
1902
1903         nvmet_rdma_disable_port(port);
1904         ret = nvmet_rdma_enable_port(port);
1905         if (ret)
1906                 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ);
1907 }
1908
1909 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1910 {
1911         struct nvmet_rdma_port *port;
1912         __kernel_sa_family_t af;
1913         int ret;
1914
1915         port = kzalloc(sizeof(*port), GFP_KERNEL);
1916         if (!port)
1917                 return -ENOMEM;
1918
1919         nport->priv = port;
1920         port->nport = nport;
1921         INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1922
1923         switch (nport->disc_addr.adrfam) {
1924         case NVMF_ADDR_FAMILY_IP4:
1925                 af = AF_INET;
1926                 break;
1927         case NVMF_ADDR_FAMILY_IP6:
1928                 af = AF_INET6;
1929                 break;
1930         default:
1931                 pr_err("address family %d not supported\n",
1932                         nport->disc_addr.adrfam);
1933                 ret = -EINVAL;
1934                 goto out_free_port;
1935         }
1936
1937         if (nport->inline_data_size < 0) {
1938                 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1939         } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1940                 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1941                         nport->inline_data_size,
1942                         NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1943                 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1944         }
1945
1946         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1947                         nport->disc_addr.trsvcid, &port->addr);
1948         if (ret) {
1949                 pr_err("malformed ip/port passed: %s:%s\n",
1950                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1951                 goto out_free_port;
1952         }
1953
1954         ret = nvmet_rdma_enable_port(port);
1955         if (ret)
1956                 goto out_free_port;
1957
1958         pr_info("enabling port %d (%pISpcs)\n",
1959                 le16_to_cpu(nport->disc_addr.portid),
1960                 (struct sockaddr *)&port->addr);
1961
1962         return 0;
1963
1964 out_free_port:
1965         kfree(port);
1966         return ret;
1967 }
1968
1969 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1970 {
1971         struct nvmet_rdma_port *port = nport->priv;
1972
1973         cancel_delayed_work_sync(&port->repair_work);
1974         nvmet_rdma_disable_port(port);
1975         kfree(port);
1976 }
1977
1978 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1979                 struct nvmet_port *nport, char *traddr)
1980 {
1981         struct nvmet_rdma_port *port = nport->priv;
1982         struct rdma_cm_id *cm_id = port->cm_id;
1983
1984         if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1985                 struct nvmet_rdma_rsp *rsp =
1986                         container_of(req, struct nvmet_rdma_rsp, req);
1987                 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1988                 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1989
1990                 sprintf(traddr, "%pISc", addr);
1991         } else {
1992                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1993         }
1994 }
1995
1996 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1997 {
1998         if (ctrl->pi_support)
1999                 return NVMET_RDMA_MAX_METADATA_MDTS;
2000         return NVMET_RDMA_MAX_MDTS;
2001 }
2002
2003 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2004 {
2005         return NVME_RDMA_MAX_QUEUE_SIZE;
2006 }
2007
2008 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2009         .owner                  = THIS_MODULE,
2010         .type                   = NVMF_TRTYPE_RDMA,
2011         .msdbd                  = 1,
2012         .flags                  = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2013         .add_port               = nvmet_rdma_add_port,
2014         .remove_port            = nvmet_rdma_remove_port,
2015         .queue_response         = nvmet_rdma_queue_response,
2016         .delete_ctrl            = nvmet_rdma_delete_ctrl,
2017         .disc_traddr            = nvmet_rdma_disc_port_addr,
2018         .get_mdts               = nvmet_rdma_get_mdts,
2019         .get_max_queue_size     = nvmet_rdma_get_max_queue_size,
2020 };
2021
2022 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2023 {
2024         struct nvmet_rdma_queue *queue, *tmp;
2025         struct nvmet_rdma_device *ndev;
2026         bool found = false;
2027
2028         mutex_lock(&device_list_mutex);
2029         list_for_each_entry(ndev, &device_list, entry) {
2030                 if (ndev->device == ib_device) {
2031                         found = true;
2032                         break;
2033                 }
2034         }
2035         mutex_unlock(&device_list_mutex);
2036
2037         if (!found)
2038                 return;
2039
2040         /*
2041          * IB Device that is used by nvmet controllers is being removed,
2042          * delete all queues using this device.
2043          */
2044         mutex_lock(&nvmet_rdma_queue_mutex);
2045         list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2046                                  queue_list) {
2047                 if (queue->dev->device != ib_device)
2048                         continue;
2049
2050                 pr_info("Removing queue %d\n", queue->idx);
2051                 list_del_init(&queue->queue_list);
2052                 __nvmet_rdma_queue_disconnect(queue);
2053         }
2054         mutex_unlock(&nvmet_rdma_queue_mutex);
2055
2056         flush_workqueue(nvmet_wq);
2057 }
2058
2059 static struct ib_client nvmet_rdma_ib_client = {
2060         .name   = "nvmet_rdma",
2061         .remove = nvmet_rdma_remove_one
2062 };
2063
2064 static int __init nvmet_rdma_init(void)
2065 {
2066         int ret;
2067
2068         ret = ib_register_client(&nvmet_rdma_ib_client);
2069         if (ret)
2070                 return ret;
2071
2072         ret = nvmet_register_transport(&nvmet_rdma_ops);
2073         if (ret)
2074                 goto err_ib_client;
2075
2076         return 0;
2077
2078 err_ib_client:
2079         ib_unregister_client(&nvmet_rdma_ib_client);
2080         return ret;
2081 }
2082
2083 static void __exit nvmet_rdma_exit(void)
2084 {
2085         nvmet_unregister_transport(&nvmet_rdma_ops);
2086         ib_unregister_client(&nvmet_rdma_ib_client);
2087         WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2088         ida_destroy(&nvmet_rdma_queue_ida);
2089 }
2090
2091 module_init(nvmet_rdma_init);
2092 module_exit(nvmet_rdma_exit);
2093
2094 MODULE_LICENSE("GPL v2");
2095 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
This page took 0.148275 seconds and 4 git commands to generate.