1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
77 static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
87 static const char *mod_state_to_str(unsigned short mod_state)
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
94 static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
100 static const char *dev_state_to_str(unsigned short dev_state)
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
107 static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
121 static const char *event_to_str(unsigned short event)
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
128 static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
142 static const char *sm_state_to_str(unsigned short sm_state)
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
149 static const char *gpio_names[] = {
158 static const enum gpiod_flags gpio_flags[] = {
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
172 #define T_WAIT msecs_to_jiffies(50)
173 #define T_START_UP msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
179 #define T_RESET_US 10
180 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
187 #define N_FAULT_INIT 5
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
193 #define T_PHY_RETRY msecs_to_jiffies(50)
194 #define R_PHY_RETRY 12
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
203 #define T_SERIAL msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT 10
207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW 12
210 /* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
215 #define SFP_PHY_ADDR 22
216 #define SFP_PHY_ADDR_ROLLBALL 17
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
222 #define SFP_EEPROM_BLOCK_SIZE 16
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
262 struct delayed_work poll;
263 struct delayed_work timeout;
264 struct mutex sm_mutex; /* Protects state machine */
265 unsigned char sm_mod_state;
266 unsigned char sm_mod_tries_init;
267 unsigned char sm_mod_tries;
268 unsigned char sm_dev_state;
269 unsigned short sm_state;
270 unsigned char sm_fault_retries;
271 unsigned char sm_phy_retries;
273 struct sfp_eeprom_id id;
274 unsigned int module_power_mW;
275 unsigned int module_t_start_up;
276 unsigned int module_t_wait;
278 unsigned int rate_kbd;
279 unsigned int rs_threshold_kbd;
280 unsigned int rs_state_mask;
283 bool tx_fault_ignore;
285 const struct sfp_quirk *quirk;
287 #if IS_ENABLED(CONFIG_HWMON)
288 struct sfp_diag diag;
289 struct delayed_work hwmon_probe;
290 unsigned int hwmon_tries;
291 struct device *hwmon_dev;
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 struct dentry *debugfs_dir;
300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
302 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
306 static const struct sff_data sff_data = {
307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 .module_supported = sff_module_supported,
311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313 if (id->base.phys_id == SFF8024_ID_SFP &&
314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 * as supported based on vendor name and pn match.
321 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
330 static const struct sff_data sfp_data = {
331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 .module_supported = sfp_module_supported,
336 static const struct of_device_id sfp_of_match[] = {
337 { .compatible = "sff,sff", .data = &sff_data, },
338 { .compatible = "sff,sfp", .data = &sfp_data, },
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
343 static void sfp_fixup_long_startup(struct sfp *sfp)
345 sfp->module_t_start_up = T_START_UP_BAD_GPON;
348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
350 sfp->tx_fault_ignore = true;
353 // For 10GBASE-T short-reach modules
354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
368 sfp_fixup_10gbaset_30m(sfp);
370 // These SFPs need 4 seconds before the PHY can be accessed
371 sfp_fixup_rollball_proto(sfp, 4);
374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
376 /* Ignore the TX_FAULT and LOS signals on this module.
377 * these are possibly used for other purposes on this
378 * module, e.g. a serial port.
380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
383 static void sfp_fixup_rollball(struct sfp *sfp)
385 // Rollball SFPs need 25 seconds before the PHY can be accessed
386 sfp_fixup_rollball_proto(sfp, 25);
389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
391 sfp_fixup_rollball(sfp);
393 /* Some RollBall SFPs may have wrong (zero) extended compliance code
394 * burned in EEPROM. For PHY probing we need the correct one.
396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 unsigned long *modes,
401 unsigned long *interfaces)
403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 unsigned long *modes,
409 unsigned long *interfaces)
411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 unsigned long *modes,
416 unsigned long *interfaces)
418 /* Copper 2.5G SFP */
419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 sfp_quirk_disable_autoneg(id, modes, interfaces);
424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 unsigned long *modes,
426 unsigned long *interfaces)
428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 * types including 10G Ethernet which is not truth. So clear all claimed
430 * modes and set only one mode which module supports: 1000baseX_Full.
432 linkmode_zero(modes);
433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
441 static const struct sfp_quirk sfp_quirks[] = {
442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 // report 2500MBd NRZ in their EEPROM
444 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
446 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
447 // NRZ in their EEPROM
448 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
449 sfp_fixup_long_startup),
451 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
452 // Rollball protocol to talk to the PHY.
453 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
455 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
457 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
458 // 2600MBd in their EERPOM
459 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
461 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
463 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
464 sfp_fixup_ignore_tx_fault),
466 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
467 // 2500MBd NRZ in their EEPROM
468 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
470 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
472 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
473 // Rollball protocol to talk to the PHY.
474 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
475 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
477 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
478 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
479 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
480 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
481 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
482 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
485 static size_t sfp_strlen(const char *str, size_t maxlen)
489 /* Trailing characters should be filled with space chars, but
490 * some manufacturers can't read SFF-8472 and use NUL.
492 for (i = 0, size = 0; i < maxlen; i++)
493 if (str[i] != ' ' && str[i] != '\0')
499 static bool sfp_match(const char *qs, const char *str, size_t len)
503 if (strlen(qs) != len)
505 return !strncmp(qs, str, len);
508 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
510 const struct sfp_quirk *q;
514 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
515 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
517 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
518 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
519 sfp_match(q->part, id->base.vendor_pn, ps))
525 static unsigned long poll_jiffies;
527 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
529 unsigned int i, state, v;
531 for (i = state = 0; i < GPIO_MAX; i++) {
532 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
535 v = gpiod_get_value_cansleep(sfp->gpio[i]);
543 static unsigned int sff_gpio_get_state(struct sfp *sfp)
545 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
548 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
552 if (state & SFP_F_PRESENT)
553 /* If the module is present, drive the requested signals */
554 drive = sfp->state_hw_drive;
556 /* Otherwise, let them float to the pull-ups */
559 if (sfp->gpio[GPIO_TX_DISABLE]) {
560 if (drive & SFP_F_TX_DISABLE)
561 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
562 state & SFP_F_TX_DISABLE);
564 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
567 if (sfp->gpio[GPIO_RS0]) {
568 if (drive & SFP_F_RS0)
569 gpiod_direction_output(sfp->gpio[GPIO_RS0],
572 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
575 if (sfp->gpio[GPIO_RS1]) {
576 if (drive & SFP_F_RS1)
577 gpiod_direction_output(sfp->gpio[GPIO_RS1],
580 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
584 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
587 struct i2c_msg msgs[2];
588 u8 bus_addr = a2 ? 0x51 : 0x50;
589 size_t block_size = sfp->i2c_block_size;
593 msgs[0].addr = bus_addr;
596 msgs[0].buf = &dev_addr;
597 msgs[1].addr = bus_addr;
598 msgs[1].flags = I2C_M_RD;
604 if (this_len > block_size)
605 this_len = block_size;
607 msgs[1].len = this_len;
609 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
613 if (ret != ARRAY_SIZE(msgs))
616 msgs[1].buf += this_len;
617 dev_addr += this_len;
621 return msgs[1].buf - (u8 *)buf;
624 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
627 struct i2c_msg msgs[1];
628 u8 bus_addr = a2 ? 0x51 : 0x50;
631 msgs[0].addr = bus_addr;
633 msgs[0].len = 1 + len;
634 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
638 msgs[0].buf[0] = dev_addr;
639 memcpy(&msgs[0].buf[1], buf, len);
641 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
648 return ret == ARRAY_SIZE(msgs) ? len : 0;
651 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
653 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
657 sfp->read = sfp_i2c_read;
658 sfp->write = sfp_i2c_write;
663 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
665 struct mii_bus *i2c_mii;
668 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
670 return PTR_ERR(i2c_mii);
672 i2c_mii->name = "SFP I2C Bus";
673 i2c_mii->phy_mask = ~0;
675 ret = mdiobus_register(i2c_mii);
677 mdiobus_free(i2c_mii);
681 sfp->i2c_mii = i2c_mii;
686 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
688 mdiobus_unregister(sfp->i2c_mii);
693 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
695 return sfp->read(sfp, a2, addr, buf, len);
698 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
700 return sfp->write(sfp, a2, addr, buf, len);
703 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
708 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
709 if (ret != sizeof(old))
712 v = (old & ~mask) | (val & mask);
716 return sfp_write(sfp, a2, addr, &v, sizeof(v));
719 static unsigned int sfp_soft_get_state(struct sfp *sfp)
721 unsigned int state = 0;
725 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
726 if (ret == sizeof(status)) {
727 if (status & SFP_STATUS_RX_LOS)
729 if (status & SFP_STATUS_TX_FAULT)
730 state |= SFP_F_TX_FAULT;
732 dev_err_ratelimited(sfp->dev,
733 "failed to read SFP soft status: %pe\n",
735 /* Preserve the current state */
739 return state & sfp->state_soft_mask;
742 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
748 if (soft & SFP_F_TX_DISABLE)
749 mask |= SFP_STATUS_TX_DISABLE_FORCE;
750 if (state & SFP_F_TX_DISABLE)
751 val |= SFP_STATUS_TX_DISABLE_FORCE;
753 if (soft & SFP_F_RS0)
754 mask |= SFP_STATUS_RS0_SELECT;
755 if (state & SFP_F_RS0)
756 val |= SFP_STATUS_RS0_SELECT;
759 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
762 if (soft & SFP_F_RS1)
763 mask |= SFP_EXT_STATUS_RS1_SELECT;
764 if (state & SFP_F_RS1)
765 val |= SFP_EXT_STATUS_RS1_SELECT;
768 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
771 static void sfp_soft_start_poll(struct sfp *sfp)
773 const struct sfp_eeprom_id *id = &sfp->id;
774 unsigned int mask = 0;
776 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
777 mask |= SFP_F_TX_DISABLE;
778 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
779 mask |= SFP_F_TX_FAULT;
780 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
782 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
783 mask |= sfp->rs_state_mask;
785 mutex_lock(&sfp->st_mutex);
786 // Poll the soft state for hardware pins we want to ignore
787 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
789 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
791 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
792 mutex_unlock(&sfp->st_mutex);
795 static void sfp_soft_stop_poll(struct sfp *sfp)
797 mutex_lock(&sfp->st_mutex);
798 sfp->state_soft_mask = 0;
799 mutex_unlock(&sfp->st_mutex);
802 /* sfp_get_state() - must be called with st_mutex held, or in the
803 * initialisation path.
805 static unsigned int sfp_get_state(struct sfp *sfp)
807 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
810 state = sfp->get_state(sfp) & sfp->state_hw_mask;
811 if (state & SFP_F_PRESENT && soft)
812 state |= sfp_soft_get_state(sfp);
817 /* sfp_set_state() - must be called with st_mutex held, or in the
818 * initialisation path.
820 static void sfp_set_state(struct sfp *sfp, unsigned int state)
824 sfp->set_state(sfp, state);
826 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
827 if (state & SFP_F_PRESENT && soft)
828 sfp_soft_set_state(sfp, state, soft);
831 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
833 mutex_lock(&sfp->st_mutex);
834 sfp->state = (sfp->state & ~mask) | set;
835 sfp_set_state(sfp, sfp->state);
836 mutex_unlock(&sfp->st_mutex);
839 static unsigned int sfp_check(void *buf, size_t len)
843 for (p = buf, check = 0; len; p++, len--)
850 #if IS_ENABLED(CONFIG_HWMON)
851 static umode_t sfp_hwmon_is_visible(const void *data,
852 enum hwmon_sensor_types type,
853 u32 attr, int channel)
855 const struct sfp *sfp = data;
860 case hwmon_temp_min_alarm:
861 case hwmon_temp_max_alarm:
862 case hwmon_temp_lcrit_alarm:
863 case hwmon_temp_crit_alarm:
866 case hwmon_temp_lcrit:
867 case hwmon_temp_crit:
868 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
871 case hwmon_temp_input:
872 case hwmon_temp_label:
879 case hwmon_in_min_alarm:
880 case hwmon_in_max_alarm:
881 case hwmon_in_lcrit_alarm:
882 case hwmon_in_crit_alarm:
887 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
898 case hwmon_curr_min_alarm:
899 case hwmon_curr_max_alarm:
900 case hwmon_curr_lcrit_alarm:
901 case hwmon_curr_crit_alarm:
904 case hwmon_curr_lcrit:
905 case hwmon_curr_crit:
906 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
909 case hwmon_curr_input:
910 case hwmon_curr_label:
916 /* External calibration of receive power requires
917 * floating point arithmetic. Doing that in the kernel
918 * is not easy, so just skip it. If the module does
919 * not require external calibration, we can however
920 * show receiver power, since FP is then not needed.
922 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
926 case hwmon_power_min_alarm:
927 case hwmon_power_max_alarm:
928 case hwmon_power_lcrit_alarm:
929 case hwmon_power_crit_alarm:
930 case hwmon_power_min:
931 case hwmon_power_max:
932 case hwmon_power_lcrit:
933 case hwmon_power_crit:
934 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
937 case hwmon_power_input:
938 case hwmon_power_label:
948 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
953 err = sfp_read(sfp, true, reg, &val, sizeof(val));
957 *value = be16_to_cpu(val);
962 static void sfp_hwmon_to_rx_power(long *value)
964 *value = DIV_ROUND_CLOSEST(*value, 10);
967 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
970 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
971 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
974 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
976 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
977 be16_to_cpu(sfp->diag.cal_t_offset), value);
979 if (*value >= 0x8000)
982 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
985 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
987 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
988 be16_to_cpu(sfp->diag.cal_v_offset), value);
990 *value = DIV_ROUND_CLOSEST(*value, 10);
993 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
995 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
996 be16_to_cpu(sfp->diag.cal_txi_offset), value);
998 *value = DIV_ROUND_CLOSEST(*value, 500);
1001 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1003 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1004 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1006 *value = DIV_ROUND_CLOSEST(*value, 10);
1009 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1013 err = sfp_hwmon_read_sensor(sfp, reg, value);
1017 sfp_hwmon_calibrate_temp(sfp, value);
1022 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1026 err = sfp_hwmon_read_sensor(sfp, reg, value);
1030 sfp_hwmon_calibrate_vcc(sfp, value);
1035 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1039 err = sfp_hwmon_read_sensor(sfp, reg, value);
1043 sfp_hwmon_calibrate_bias(sfp, value);
1048 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1052 err = sfp_hwmon_read_sensor(sfp, reg, value);
1056 sfp_hwmon_calibrate_tx_power(sfp, value);
1061 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1065 err = sfp_hwmon_read_sensor(sfp, reg, value);
1069 sfp_hwmon_to_rx_power(value);
1074 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1080 case hwmon_temp_input:
1081 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1083 case hwmon_temp_lcrit:
1084 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1085 sfp_hwmon_calibrate_temp(sfp, value);
1088 case hwmon_temp_min:
1089 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1090 sfp_hwmon_calibrate_temp(sfp, value);
1092 case hwmon_temp_max:
1093 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1094 sfp_hwmon_calibrate_temp(sfp, value);
1097 case hwmon_temp_crit:
1098 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1099 sfp_hwmon_calibrate_temp(sfp, value);
1102 case hwmon_temp_lcrit_alarm:
1103 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1107 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1110 case hwmon_temp_min_alarm:
1111 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1115 *value = !!(status & SFP_WARN0_TEMP_LOW);
1118 case hwmon_temp_max_alarm:
1119 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1123 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1126 case hwmon_temp_crit_alarm:
1127 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1131 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1140 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1146 case hwmon_in_input:
1147 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1149 case hwmon_in_lcrit:
1150 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1151 sfp_hwmon_calibrate_vcc(sfp, value);
1155 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1156 sfp_hwmon_calibrate_vcc(sfp, value);
1160 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1161 sfp_hwmon_calibrate_vcc(sfp, value);
1165 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1166 sfp_hwmon_calibrate_vcc(sfp, value);
1169 case hwmon_in_lcrit_alarm:
1170 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1174 *value = !!(status & SFP_ALARM0_VCC_LOW);
1177 case hwmon_in_min_alarm:
1178 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1182 *value = !!(status & SFP_WARN0_VCC_LOW);
1185 case hwmon_in_max_alarm:
1186 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1190 *value = !!(status & SFP_WARN0_VCC_HIGH);
1193 case hwmon_in_crit_alarm:
1194 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1198 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1207 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1213 case hwmon_curr_input:
1214 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1216 case hwmon_curr_lcrit:
1217 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1218 sfp_hwmon_calibrate_bias(sfp, value);
1221 case hwmon_curr_min:
1222 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1223 sfp_hwmon_calibrate_bias(sfp, value);
1226 case hwmon_curr_max:
1227 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1228 sfp_hwmon_calibrate_bias(sfp, value);
1231 case hwmon_curr_crit:
1232 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1233 sfp_hwmon_calibrate_bias(sfp, value);
1236 case hwmon_curr_lcrit_alarm:
1237 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1241 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1244 case hwmon_curr_min_alarm:
1245 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1249 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1252 case hwmon_curr_max_alarm:
1253 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1257 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1260 case hwmon_curr_crit_alarm:
1261 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1265 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1274 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1280 case hwmon_power_input:
1281 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1283 case hwmon_power_lcrit:
1284 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1285 sfp_hwmon_calibrate_tx_power(sfp, value);
1288 case hwmon_power_min:
1289 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1290 sfp_hwmon_calibrate_tx_power(sfp, value);
1293 case hwmon_power_max:
1294 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1295 sfp_hwmon_calibrate_tx_power(sfp, value);
1298 case hwmon_power_crit:
1299 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1300 sfp_hwmon_calibrate_tx_power(sfp, value);
1303 case hwmon_power_lcrit_alarm:
1304 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1308 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1311 case hwmon_power_min_alarm:
1312 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1316 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1319 case hwmon_power_max_alarm:
1320 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1324 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1327 case hwmon_power_crit_alarm:
1328 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1332 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1341 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1347 case hwmon_power_input:
1348 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1350 case hwmon_power_lcrit:
1351 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1352 sfp_hwmon_to_rx_power(value);
1355 case hwmon_power_min:
1356 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1357 sfp_hwmon_to_rx_power(value);
1360 case hwmon_power_max:
1361 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1362 sfp_hwmon_to_rx_power(value);
1365 case hwmon_power_crit:
1366 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1367 sfp_hwmon_to_rx_power(value);
1370 case hwmon_power_lcrit_alarm:
1371 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1375 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1378 case hwmon_power_min_alarm:
1379 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1383 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1386 case hwmon_power_max_alarm:
1387 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1391 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1394 case hwmon_power_crit_alarm:
1395 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1399 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1408 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1409 u32 attr, int channel, long *value)
1411 struct sfp *sfp = dev_get_drvdata(dev);
1415 return sfp_hwmon_temp(sfp, attr, value);
1417 return sfp_hwmon_vcc(sfp, attr, value);
1419 return sfp_hwmon_bias(sfp, attr, value);
1423 return sfp_hwmon_tx_power(sfp, attr, value);
1425 return sfp_hwmon_rx_power(sfp, attr, value);
1434 static const char *const sfp_hwmon_power_labels[] = {
1439 static int sfp_hwmon_read_string(struct device *dev,
1440 enum hwmon_sensor_types type,
1441 u32 attr, int channel, const char **str)
1446 case hwmon_curr_label:
1455 case hwmon_temp_label:
1456 *str = "temperature";
1464 case hwmon_in_label:
1473 case hwmon_power_label:
1474 *str = sfp_hwmon_power_labels[channel];
1487 static const struct hwmon_ops sfp_hwmon_ops = {
1488 .is_visible = sfp_hwmon_is_visible,
1489 .read = sfp_hwmon_read,
1490 .read_string = sfp_hwmon_read_string,
1493 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1494 HWMON_CHANNEL_INFO(chip,
1495 HWMON_C_REGISTER_TZ),
1496 HWMON_CHANNEL_INFO(in,
1498 HWMON_I_MAX | HWMON_I_MIN |
1499 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1500 HWMON_I_CRIT | HWMON_I_LCRIT |
1501 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1503 HWMON_CHANNEL_INFO(temp,
1505 HWMON_T_MAX | HWMON_T_MIN |
1506 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1507 HWMON_T_CRIT | HWMON_T_LCRIT |
1508 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1510 HWMON_CHANNEL_INFO(curr,
1512 HWMON_C_MAX | HWMON_C_MIN |
1513 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1514 HWMON_C_CRIT | HWMON_C_LCRIT |
1515 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1517 HWMON_CHANNEL_INFO(power,
1518 /* Transmit power */
1520 HWMON_P_MAX | HWMON_P_MIN |
1521 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1522 HWMON_P_CRIT | HWMON_P_LCRIT |
1523 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1527 HWMON_P_MAX | HWMON_P_MIN |
1528 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1529 HWMON_P_CRIT | HWMON_P_LCRIT |
1530 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1535 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1536 .ops = &sfp_hwmon_ops,
1537 .info = sfp_hwmon_info,
1540 static void sfp_hwmon_probe(struct work_struct *work)
1542 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1545 /* hwmon interface needs to access 16bit registers in atomic way to
1546 * guarantee coherency of the diagnostic monitoring data. If it is not
1547 * possible to guarantee coherency because EEPROM is broken in such way
1548 * that does not support atomic 16bit read operation then we have to
1549 * skip registration of hwmon device.
1551 if (sfp->i2c_block_size < 2) {
1553 "skipping hwmon device registration due to broken EEPROM\n");
1555 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1559 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1561 if (sfp->hwmon_tries--) {
1562 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1563 T_PROBE_RETRY_SLOW);
1565 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1571 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1572 if (IS_ERR(sfp->hwmon_name)) {
1573 dev_err(sfp->dev, "out of memory for hwmon name\n");
1577 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1578 sfp->hwmon_name, sfp,
1579 &sfp_hwmon_chip_info,
1581 if (IS_ERR(sfp->hwmon_dev))
1582 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1583 PTR_ERR(sfp->hwmon_dev));
1586 static int sfp_hwmon_insert(struct sfp *sfp)
1588 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1589 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1590 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1596 static void sfp_hwmon_remove(struct sfp *sfp)
1598 cancel_delayed_work_sync(&sfp->hwmon_probe);
1599 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1600 hwmon_device_unregister(sfp->hwmon_dev);
1601 sfp->hwmon_dev = NULL;
1602 kfree(sfp->hwmon_name);
1606 static int sfp_hwmon_init(struct sfp *sfp)
1608 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1613 static void sfp_hwmon_exit(struct sfp *sfp)
1615 cancel_delayed_work_sync(&sfp->hwmon_probe);
1618 static int sfp_hwmon_insert(struct sfp *sfp)
1623 static void sfp_hwmon_remove(struct sfp *sfp)
1627 static int sfp_hwmon_init(struct sfp *sfp)
1632 static void sfp_hwmon_exit(struct sfp *sfp)
1638 static void sfp_module_tx_disable(struct sfp *sfp)
1640 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1641 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1642 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1645 static void sfp_module_tx_enable(struct sfp *sfp)
1647 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1648 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1649 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1652 #if IS_ENABLED(CONFIG_DEBUG_FS)
1653 static int sfp_debug_state_show(struct seq_file *s, void *data)
1655 struct sfp *sfp = s->private;
1657 seq_printf(s, "Module state: %s\n",
1658 mod_state_to_str(sfp->sm_mod_state));
1659 seq_printf(s, "Module probe attempts: %d %d\n",
1660 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1661 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1662 seq_printf(s, "Device state: %s\n",
1663 dev_state_to_str(sfp->sm_dev_state));
1664 seq_printf(s, "Main state: %s\n",
1665 sm_state_to_str(sfp->sm_state));
1666 seq_printf(s, "Fault recovery remaining retries: %d\n",
1667 sfp->sm_fault_retries);
1668 seq_printf(s, "PHY probe remaining retries: %d\n",
1669 sfp->sm_phy_retries);
1670 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1671 seq_printf(s, "Rate select threshold: %u kBd\n",
1672 sfp->rs_threshold_kbd);
1673 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1674 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1675 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1676 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1677 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1678 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1681 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1683 static void sfp_debugfs_init(struct sfp *sfp)
1685 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1687 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1688 &sfp_debug_state_fops);
1691 static void sfp_debugfs_exit(struct sfp *sfp)
1693 debugfs_remove_recursive(sfp->debugfs_dir);
1696 static void sfp_debugfs_init(struct sfp *sfp)
1700 static void sfp_debugfs_exit(struct sfp *sfp)
1705 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1709 mutex_lock(&sfp->st_mutex);
1711 if (!(state & SFP_F_TX_DISABLE)) {
1712 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1716 sfp_set_state(sfp, state);
1718 mutex_unlock(&sfp->st_mutex);
1721 /* SFP state machine */
1722 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1725 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1728 cancel_delayed_work(&sfp->timeout);
1731 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1732 unsigned int timeout)
1734 sfp->sm_state = state;
1735 sfp_sm_set_timer(sfp, timeout);
1738 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1739 unsigned int timeout)
1741 sfp->sm_mod_state = state;
1742 sfp_sm_set_timer(sfp, timeout);
1745 static void sfp_sm_phy_detach(struct sfp *sfp)
1747 sfp_remove_phy(sfp->sfp_bus);
1748 phy_device_remove(sfp->mod_phy);
1749 phy_device_free(sfp->mod_phy);
1750 sfp->mod_phy = NULL;
1753 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1755 struct phy_device *phy;
1758 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1759 if (phy == ERR_PTR(-ENODEV))
1760 return PTR_ERR(phy);
1762 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1763 return PTR_ERR(phy);
1766 err = phy_device_register(phy);
1768 phy_device_free(phy);
1769 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1774 err = sfp_add_phy(sfp->sfp_bus, phy);
1776 phy_device_remove(phy);
1777 phy_device_free(phy);
1778 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1787 static void sfp_sm_link_up(struct sfp *sfp)
1789 sfp_link_up(sfp->sfp_bus);
1790 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1793 static void sfp_sm_link_down(struct sfp *sfp)
1795 sfp_link_down(sfp->sfp_bus);
1798 static void sfp_sm_link_check_los(struct sfp *sfp)
1800 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1801 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1802 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1805 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1806 * are set, we assume that no LOS signal is available. If both are
1807 * set, we assume LOS is not implemented (and is meaningless.)
1809 if (los_options == los_inverted)
1810 los = !(sfp->state & SFP_F_LOS);
1811 else if (los_options == los_normal)
1812 los = !!(sfp->state & SFP_F_LOS);
1815 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1817 sfp_sm_link_up(sfp);
1820 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1822 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1823 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1824 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1826 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1827 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1830 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1832 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1833 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1834 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1836 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1837 (los_options == los_normal && event == SFP_E_LOS_LOW);
1840 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1842 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1844 "module persistently indicates fault, disabling\n");
1845 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1848 dev_err(sfp->dev, "module transmit fault indicated\n");
1850 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1854 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1856 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1857 return sfp_i2c_mdiobus_create(sfp);
1862 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1863 * normally sits at I2C bus address 0x56, and may either be a clause 22
1866 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1867 * negotiation enabled, but some may be in 1000base-X - which is for the
1868 * PHY driver to determine.
1870 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1871 * mode according to the negotiated line speed.
1873 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1877 switch (sfp->mdio_protocol) {
1881 case MDIO_I2C_MARVELL_C22:
1882 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1886 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1889 case MDIO_I2C_ROLLBALL:
1890 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1897 static int sfp_module_parse_power(struct sfp *sfp)
1899 u32 power_mW = 1000;
1902 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1903 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1905 /* Added in Rev 11.9, but there is no compliance code for this */
1906 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1907 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1910 /* Power level 1 modules (max. 1W) are always supported. */
1911 if (power_mW <= 1000) {
1912 sfp->module_power_mW = power_mW;
1916 supports_a2 = sfp->id.ext.sff8472_compliance !=
1917 SFP_SFF8472_COMPLIANCE_NONE ||
1918 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1920 if (power_mW > sfp->max_power_mW) {
1921 /* Module power specification exceeds the allowed maximum. */
1923 /* The module appears not to implement bus address
1924 * 0xa2, so assume that the module powers up in the
1928 "Host does not support %u.%uW modules\n",
1929 power_mW / 1000, (power_mW / 100) % 10);
1933 "Host does not support %u.%uW modules, module left in power mode 1\n",
1934 power_mW / 1000, (power_mW / 100) % 10);
1940 /* The module power level is below the host maximum and the
1941 * module appears not to implement bus address 0xa2, so assume
1942 * that the module powers up in the indicated mode.
1947 /* If the module requires a higher power mode, but also requires
1948 * an address change sequence, warn the user that the module may
1949 * not be functional.
1951 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1953 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1954 power_mW / 1000, (power_mW / 100) % 10);
1958 sfp->module_power_mW = power_mW;
1963 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1967 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1968 SFP_EXT_STATUS_PWRLVL_SELECT,
1969 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1970 if (err != sizeof(u8)) {
1971 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1972 enable ? "en" : "dis", ERR_PTR(err));
1977 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1978 sfp->module_power_mW / 1000,
1979 (sfp->module_power_mW / 100) % 10);
1984 static void sfp_module_parse_rate_select(struct sfp *sfp)
1988 sfp->rs_threshold_kbd = 0;
1989 sfp->rs_state_mask = 0;
1991 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
1992 /* No support for RateSelect */
1995 /* Default to INF-8074 RateSelect operation. The signalling threshold
1996 * rate is not well specified, so always select "Full Bandwidth", but
1997 * SFF-8079 reveals that it is understood that RS0 will be low for
1998 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
1999 * This method exists prior to SFF-8472.
2001 sfp->rs_state_mask = SFP_F_RS0;
2002 sfp->rs_threshold_kbd = 1594;
2004 /* Parse the rate identifier, which is complicated due to history:
2005 * SFF-8472 rev 9.5 marks this field as reserved.
2006 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2007 * compliance is not required.
2008 * SFF-8472 rev 10.2 defines this field using values 0..4
2009 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2012 rate_id = sfp->id.base.rate_id;
2017 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2018 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2019 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2021 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2022 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2024 rate_id = SFF_RID_8431;
2026 if (rate_id & SFF_RID_8079) {
2027 /* SFF-8079 RateSelect / Application Select in conjunction with
2028 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2029 * with only bit 0 used, which takes precedence over SFF-8472.
2031 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2032 /* SFF-8079 Part 1 - rate selection between Fibre
2033 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2034 * is high for 2125, so we have to subtract 1 to
2037 sfp->rs_threshold_kbd = 2125 - 1;
2038 sfp->rs_state_mask = SFP_F_RS0;
2043 /* SFF-8472 rev 9.5 does not define the rate identifier */
2044 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2047 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2048 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2051 case SFF_RID_8431_RX_ONLY:
2052 sfp->rs_threshold_kbd = 4250;
2053 sfp->rs_state_mask = SFP_F_RS0;
2056 case SFF_RID_8431_TX_ONLY:
2057 sfp->rs_threshold_kbd = 4250;
2058 sfp->rs_state_mask = SFP_F_RS1;
2062 sfp->rs_threshold_kbd = 4250;
2063 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2067 sfp->rs_threshold_kbd = 9000;
2068 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2073 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2074 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2075 * not support multibyte reads from the EEPROM. Each multi-byte read
2076 * operation returns just one byte of EEPROM followed by zeros. There is
2077 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2078 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2079 * name and vendor id into EEPROM, so there is even no way to detect if
2080 * module is V-SOL V2801F. Therefore check for those zeros in the read
2081 * data and then based on check switch to reading EEPROM to one byte
2084 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2086 size_t i, block_size = sfp->i2c_block_size;
2088 /* Already using byte IO */
2089 if (block_size == 1)
2092 for (i = 1; i < len; i += block_size) {
2093 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2099 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2104 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2105 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2106 id->base.connector != SFF8024_CONNECTOR_LC) {
2107 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2108 id->base.phys_id = SFF8024_ID_SFF_8472;
2109 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2110 id->base.connector = SFF8024_CONNECTOR_LC;
2111 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2114 "Failed to rewrite module EEPROM: %pe\n",
2119 /* Cotsworks modules have been found to require a delay between write operations. */
2122 /* Update base structure checksum */
2123 check = sfp_check(&id->base, sizeof(id->base) - 1);
2124 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2127 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2135 static int sfp_module_parse_sff8472(struct sfp *sfp)
2137 /* If the module requires address swap mode, warn about it */
2138 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2140 "module address swap to access page 0xA2 is not supported.\n");
2142 sfp->have_a2 = true;
2147 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2149 /* SFP module inserted - read I2C data */
2150 struct sfp_eeprom_id id;
2151 bool cotsworks_sfbg;
2157 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2159 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2162 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2167 if (ret != sizeof(id.base)) {
2168 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2172 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2173 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2174 * that EEPROM supports atomic 16bit read operation for diagnostic
2175 * fields, so do not switch to one byte reading at a time unless it
2176 * is really required and we have no other option.
2178 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2180 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2182 "Switching to reading EEPROM to one byte at a time\n");
2183 sfp->i2c_block_size = 1;
2185 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2189 "failed to read EEPROM: %pe\n",
2194 if (ret != sizeof(id.base)) {
2195 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2201 /* Cotsworks do not seem to update the checksums when they
2202 * do the final programming with the final module part number,
2203 * serial number and date code.
2205 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2206 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2208 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2209 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2210 * Cotsworks PN matches and bytes are not correct.
2212 if (cotsworks && cotsworks_sfbg) {
2213 ret = sfp_cotsworks_fixup_check(sfp, &id);
2218 /* Validate the checksum over the base structure */
2219 check = sfp_check(&id.base, sizeof(id.base) - 1);
2220 if (check != id.base.cc_base) {
2223 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2224 check, id.base.cc_base);
2227 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2228 check, id.base.cc_base);
2229 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2230 16, 1, &id, sizeof(id), true);
2235 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2238 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2243 if (ret != sizeof(id.ext)) {
2244 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2248 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2249 if (check != id.ext.cc_ext) {
2252 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2253 check, id.ext.cc_ext);
2256 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2257 check, id.ext.cc_ext);
2258 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2259 16, 1, &id, sizeof(id), true);
2260 memset(&id.ext, 0, sizeof(id.ext));
2266 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2267 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2268 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2269 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2270 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2271 (int)sizeof(id.ext.datecode), id.ext.datecode);
2273 /* Check whether we support this module */
2274 if (!sfp->type->module_supported(&id)) {
2276 "module is not supported - phys id 0x%02x 0x%02x\n",
2277 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2281 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2282 ret = sfp_module_parse_sff8472(sfp);
2287 /* Parse the module power requirement */
2288 ret = sfp_module_parse_power(sfp);
2292 sfp_module_parse_rate_select(sfp);
2294 mask = SFP_F_PRESENT;
2295 if (sfp->gpio[GPIO_TX_DISABLE])
2296 mask |= SFP_F_TX_DISABLE;
2297 if (sfp->gpio[GPIO_TX_FAULT])
2298 mask |= SFP_F_TX_FAULT;
2299 if (sfp->gpio[GPIO_LOS])
2301 if (sfp->gpio[GPIO_RS0])
2303 if (sfp->gpio[GPIO_RS1])
2306 sfp->module_t_start_up = T_START_UP;
2307 sfp->module_t_wait = T_WAIT;
2309 sfp->tx_fault_ignore = false;
2311 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2312 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2313 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2314 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2315 sfp->mdio_protocol = MDIO_I2C_C45;
2316 else if (sfp->id.base.e1000_base_t)
2317 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2319 sfp->mdio_protocol = MDIO_I2C_NONE;
2321 sfp->quirk = sfp_lookup_quirk(&id);
2323 mutex_lock(&sfp->st_mutex);
2324 /* Initialise state bits to use from hardware */
2325 sfp->state_hw_mask = mask;
2327 /* We want to drive the rate select pins that the module is using */
2328 sfp->state_hw_drive |= sfp->rs_state_mask;
2330 if (sfp->quirk && sfp->quirk->fixup)
2331 sfp->quirk->fixup(sfp);
2332 mutex_unlock(&sfp->st_mutex);
2337 static void sfp_sm_mod_remove(struct sfp *sfp)
2339 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2340 sfp_module_remove(sfp->sfp_bus);
2342 sfp_hwmon_remove(sfp);
2344 memset(&sfp->id, 0, sizeof(sfp->id));
2345 sfp->module_power_mW = 0;
2346 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2347 sfp->have_a2 = false;
2349 dev_info(sfp->dev, "module removed\n");
2352 /* This state machine tracks the upstream's state */
2353 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2355 switch (sfp->sm_dev_state) {
2357 if (event == SFP_E_DEV_ATTACH)
2358 sfp->sm_dev_state = SFP_DEV_DOWN;
2362 if (event == SFP_E_DEV_DETACH)
2363 sfp->sm_dev_state = SFP_DEV_DETACHED;
2364 else if (event == SFP_E_DEV_UP)
2365 sfp->sm_dev_state = SFP_DEV_UP;
2369 if (event == SFP_E_DEV_DETACH)
2370 sfp->sm_dev_state = SFP_DEV_DETACHED;
2371 else if (event == SFP_E_DEV_DOWN)
2372 sfp->sm_dev_state = SFP_DEV_DOWN;
2377 /* This state machine tracks the insert/remove state of the module, probes
2378 * the on-board EEPROM, and sets up the power level.
2380 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2384 /* Handle remove event globally, it resets this state machine */
2385 if (event == SFP_E_REMOVE) {
2386 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2387 sfp_sm_mod_remove(sfp);
2388 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2392 /* Handle device detach globally */
2393 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2394 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2395 if (sfp->module_power_mW > 1000 &&
2396 sfp->sm_mod_state > SFP_MOD_HPOWER)
2397 sfp_sm_mod_hpower(sfp, false);
2398 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2402 switch (sfp->sm_mod_state) {
2404 if (event == SFP_E_INSERT) {
2405 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2406 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2407 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2412 /* Wait for T_PROBE_INIT to time out */
2413 if (event != SFP_E_TIMEOUT)
2416 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2417 if (err == -EAGAIN) {
2418 if (sfp->sm_mod_tries_init &&
2419 --sfp->sm_mod_tries_init) {
2420 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2422 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2423 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2425 "please wait, module slow to respond\n");
2426 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2431 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2435 /* Force a poll to re-read the hardware signal state after
2436 * sfp_sm_mod_probe() changed state_hw_mask.
2438 mod_delayed_work(system_wq, &sfp->poll, 1);
2440 err = sfp_hwmon_insert(sfp);
2442 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2445 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2447 case SFP_MOD_WAITDEV:
2448 /* Ensure that the device is attached before proceeding */
2449 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2452 /* Report the module insertion to the upstream device */
2453 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2456 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2460 /* If this is a power level 1 module, we are done */
2461 if (sfp->module_power_mW <= 1000)
2464 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2466 case SFP_MOD_HPOWER:
2467 /* Enable high power mode */
2468 err = sfp_sm_mod_hpower(sfp, true);
2470 if (err != -EAGAIN) {
2471 sfp_module_remove(sfp->sfp_bus);
2472 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2474 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2479 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2482 case SFP_MOD_WAITPWR:
2483 /* Wait for T_HPOWER_LEVEL to time out */
2484 if (event != SFP_E_TIMEOUT)
2488 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2491 case SFP_MOD_PRESENT:
2497 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2499 unsigned long timeout;
2502 /* Some events are global */
2503 if (sfp->sm_state != SFP_S_DOWN &&
2504 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2505 sfp->sm_dev_state != SFP_DEV_UP)) {
2506 if (sfp->sm_state == SFP_S_LINK_UP &&
2507 sfp->sm_dev_state == SFP_DEV_UP)
2508 sfp_sm_link_down(sfp);
2509 if (sfp->sm_state > SFP_S_INIT)
2510 sfp_module_stop(sfp->sfp_bus);
2512 sfp_sm_phy_detach(sfp);
2514 sfp_i2c_mdiobus_destroy(sfp);
2515 sfp_module_tx_disable(sfp);
2516 sfp_soft_stop_poll(sfp);
2517 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2521 /* The main state machine */
2522 switch (sfp->sm_state) {
2524 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2525 sfp->sm_dev_state != SFP_DEV_UP)
2528 /* Only use the soft state bits if we have access to the A2h
2529 * memory, which implies that we have some level of SFF-8472
2533 sfp_soft_start_poll(sfp);
2535 sfp_module_tx_enable(sfp);
2537 /* Initialise the fault clearance retries */
2538 sfp->sm_fault_retries = N_FAULT_INIT;
2540 /* We need to check the TX_FAULT state, which is not defined
2541 * while TX_DISABLE is asserted. The earliest we want to do
2542 * anything (such as probe for a PHY) is 50ms (or more on
2543 * specific modules).
2545 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2549 if (event != SFP_E_TIMEOUT)
2552 if (sfp->state & SFP_F_TX_FAULT) {
2553 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2554 * from the TX_DISABLE deassertion for the module to
2555 * initialise, which is indicated by TX_FAULT
2558 timeout = sfp->module_t_start_up;
2559 if (timeout > sfp->module_t_wait)
2560 timeout -= sfp->module_t_wait;
2564 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2566 /* TX_FAULT is not asserted, assume the module has
2567 * finished initialising.
2574 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2575 /* TX_FAULT is still asserted after t_init
2576 * or t_start_up, so assume there is a fault.
2578 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2579 sfp->sm_fault_retries == N_FAULT_INIT);
2580 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2582 /* Create mdiobus and start trying for PHY */
2583 ret = sfp_sm_add_mdio_bus(sfp);
2585 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2588 sfp->sm_phy_retries = R_PHY_RETRY;
2593 case SFP_S_INIT_PHY:
2594 if (event != SFP_E_TIMEOUT)
2597 /* TX_FAULT deasserted or we timed out with TX_FAULT
2598 * clear. Probe for the PHY and check the LOS state.
2600 ret = sfp_sm_probe_for_phy(sfp);
2601 if (ret == -ENODEV) {
2602 if (--sfp->sm_phy_retries) {
2603 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2606 dev_info(sfp->dev, "no PHY detected\n");
2609 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2612 if (sfp_module_start(sfp->sfp_bus)) {
2613 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2616 sfp_sm_link_check_los(sfp);
2618 /* Reset the fault retry count */
2619 sfp->sm_fault_retries = N_FAULT;
2622 case SFP_S_INIT_TX_FAULT:
2623 if (event == SFP_E_TIMEOUT) {
2624 sfp_module_tx_fault_reset(sfp);
2625 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2629 case SFP_S_WAIT_LOS:
2630 if (event == SFP_E_TX_FAULT)
2631 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2632 else if (sfp_los_event_inactive(sfp, event))
2633 sfp_sm_link_up(sfp);
2637 if (event == SFP_E_TX_FAULT) {
2638 sfp_sm_link_down(sfp);
2639 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2640 } else if (sfp_los_event_active(sfp, event)) {
2641 sfp_sm_link_down(sfp);
2642 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2646 case SFP_S_TX_FAULT:
2647 if (event == SFP_E_TIMEOUT) {
2648 sfp_module_tx_fault_reset(sfp);
2649 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2654 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2655 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2656 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2657 dev_info(sfp->dev, "module transmit fault recovered\n");
2658 sfp_sm_link_check_los(sfp);
2662 case SFP_S_TX_DISABLE:
2667 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2669 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2670 mod_state_to_str(sfp->sm_mod_state),
2671 dev_state_to_str(sfp->sm_dev_state),
2672 sm_state_to_str(sfp->sm_state),
2673 event_to_str(event));
2675 sfp_sm_device(sfp, event);
2676 sfp_sm_module(sfp, event);
2677 sfp_sm_main(sfp, event);
2679 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2680 mod_state_to_str(sfp->sm_mod_state),
2681 dev_state_to_str(sfp->sm_dev_state),
2682 sm_state_to_str(sfp->sm_state));
2685 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2687 mutex_lock(&sfp->sm_mutex);
2688 __sfp_sm_event(sfp, event);
2689 mutex_unlock(&sfp->sm_mutex);
2692 static void sfp_attach(struct sfp *sfp)
2694 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2697 static void sfp_detach(struct sfp *sfp)
2699 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2702 static void sfp_start(struct sfp *sfp)
2704 sfp_sm_event(sfp, SFP_E_DEV_UP);
2707 static void sfp_stop(struct sfp *sfp)
2709 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2712 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2716 sfp->rate_kbd = rate_kbd;
2718 if (rate_kbd > sfp->rs_threshold_kbd)
2719 set = sfp->rs_state_mask;
2723 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2726 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2728 /* locking... and check module is present */
2730 if (sfp->id.ext.sff8472_compliance &&
2731 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2732 modinfo->type = ETH_MODULE_SFF_8472;
2733 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2735 modinfo->type = ETH_MODULE_SFF_8079;
2736 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2741 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2744 unsigned int first, last, len;
2747 if (!(sfp->state & SFP_F_PRESENT))
2754 last = ee->offset + ee->len;
2755 if (first < ETH_MODULE_SFF_8079_LEN) {
2756 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2759 ret = sfp_read(sfp, false, first, data, len);
2766 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2767 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2769 first -= ETH_MODULE_SFF_8079_LEN;
2771 ret = sfp_read(sfp, true, first, data, len);
2778 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2779 const struct ethtool_module_eeprom *page,
2780 struct netlink_ext_ack *extack)
2782 if (!(sfp->state & SFP_F_PRESENT))
2786 NL_SET_ERR_MSG(extack, "Banks not supported");
2791 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2795 if (page->i2c_address != 0x50 &&
2796 page->i2c_address != 0x51) {
2797 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2801 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2802 page->data, page->length);
2805 static const struct sfp_socket_ops sfp_module_ops = {
2806 .attach = sfp_attach,
2807 .detach = sfp_detach,
2810 .set_signal_rate = sfp_set_signal_rate,
2811 .module_info = sfp_module_info,
2812 .module_eeprom = sfp_module_eeprom,
2813 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2816 static void sfp_timeout(struct work_struct *work)
2818 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2821 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2825 static void sfp_check_state(struct sfp *sfp)
2827 unsigned int state, i, changed;
2830 mutex_lock(&sfp->st_mutex);
2831 state = sfp_get_state(sfp);
2832 changed = state ^ sfp->state;
2833 if (sfp->tx_fault_ignore)
2834 changed &= SFP_F_PRESENT | SFP_F_LOS;
2836 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2838 for (i = 0; i < GPIO_MAX; i++)
2839 if (changed & BIT(i))
2840 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2841 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2843 state |= sfp->state & SFP_F_OUTPUTS;
2845 mutex_unlock(&sfp->st_mutex);
2847 mutex_lock(&sfp->sm_mutex);
2848 if (changed & SFP_F_PRESENT)
2849 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2850 SFP_E_INSERT : SFP_E_REMOVE);
2852 if (changed & SFP_F_TX_FAULT)
2853 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2854 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2856 if (changed & SFP_F_LOS)
2857 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2858 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2859 mutex_unlock(&sfp->sm_mutex);
2863 static irqreturn_t sfp_irq(int irq, void *data)
2865 struct sfp *sfp = data;
2867 sfp_check_state(sfp);
2872 static void sfp_poll(struct work_struct *work)
2874 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2876 sfp_check_state(sfp);
2878 // st_mutex doesn't need to be held here for state_soft_mask,
2879 // it's unimportant if we race while reading this.
2880 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2882 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2885 static struct sfp *sfp_alloc(struct device *dev)
2889 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2891 return ERR_PTR(-ENOMEM);
2894 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2896 mutex_init(&sfp->sm_mutex);
2897 mutex_init(&sfp->st_mutex);
2898 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2899 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2901 sfp_hwmon_init(sfp);
2906 static void sfp_cleanup(void *data)
2908 struct sfp *sfp = data;
2910 sfp_hwmon_exit(sfp);
2912 cancel_delayed_work_sync(&sfp->poll);
2913 cancel_delayed_work_sync(&sfp->timeout);
2915 mdiobus_unregister(sfp->i2c_mii);
2916 mdiobus_free(sfp->i2c_mii);
2919 i2c_put_adapter(sfp->i2c);
2923 static int sfp_i2c_get(struct sfp *sfp)
2925 struct fwnode_handle *h;
2926 struct i2c_adapter *i2c;
2929 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2931 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2935 i2c = i2c_get_adapter_by_fwnode(h);
2937 err = -EPROBE_DEFER;
2941 err = sfp_i2c_configure(sfp, i2c);
2943 i2c_put_adapter(i2c);
2945 fwnode_handle_put(h);
2949 static int sfp_probe(struct platform_device *pdev)
2951 const struct sff_data *sff;
2956 sfp = sfp_alloc(&pdev->dev);
2958 return PTR_ERR(sfp);
2960 platform_set_drvdata(pdev, sfp);
2962 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2966 sff = device_get_match_data(sfp->dev);
2972 err = sfp_i2c_get(sfp);
2976 for (i = 0; i < GPIO_MAX; i++)
2977 if (sff->gpios & BIT(i)) {
2978 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2979 gpio_names[i], gpio_flags[i]);
2980 if (IS_ERR(sfp->gpio[i]))
2981 return PTR_ERR(sfp->gpio[i]);
2984 sfp->state_hw_mask = SFP_F_PRESENT;
2985 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2987 sfp->get_state = sfp_gpio_get_state;
2988 sfp->set_state = sfp_gpio_set_state;
2990 /* Modules that have no detect signal are always present */
2991 if (!(sfp->gpio[GPIO_MODDEF0]))
2992 sfp->get_state = sff_gpio_get_state;
2994 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2995 &sfp->max_power_mW);
2996 if (sfp->max_power_mW < 1000) {
2997 if (sfp->max_power_mW)
2999 "Firmware bug: host maximum power should be at least 1W\n");
3000 sfp->max_power_mW = 1000;
3003 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3004 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3006 /* Get the initial state, and always signal TX disable,
3007 * since the network interface will not be up.
3009 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3011 if (sfp->gpio[GPIO_RS0] &&
3012 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3013 sfp->state |= SFP_F_RS0;
3014 sfp_set_state(sfp, sfp->state);
3015 sfp_module_tx_disable(sfp);
3016 if (sfp->state & SFP_F_PRESENT) {
3018 sfp_sm_event(sfp, SFP_E_INSERT);
3022 for (i = 0; i < GPIO_MAX; i++) {
3023 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3026 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3027 if (sfp->gpio_irq[i] < 0) {
3028 sfp->gpio_irq[i] = 0;
3029 sfp->need_poll = true;
3033 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3034 "%s-%s", dev_name(sfp->dev),
3040 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3043 IRQF_TRIGGER_RISING |
3044 IRQF_TRIGGER_FALLING,
3047 sfp->gpio_irq[i] = 0;
3048 sfp->need_poll = true;
3053 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3055 /* We could have an issue in cases no Tx disable pin is available or
3056 * wired as modules using a laser as their light source will continue to
3057 * be active when the fiber is removed. This could be a safety issue and
3058 * we should at least warn the user about that.
3060 if (!sfp->gpio[GPIO_TX_DISABLE])
3062 "No tx_disable pin: SFP modules will always be emitting.\n");
3064 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3068 sfp_debugfs_init(sfp);
3073 static int sfp_remove(struct platform_device *pdev)
3075 struct sfp *sfp = platform_get_drvdata(pdev);
3077 sfp_debugfs_exit(sfp);
3078 sfp_unregister_socket(sfp->sfp_bus);
3081 sfp_sm_event(sfp, SFP_E_REMOVE);
3087 static void sfp_shutdown(struct platform_device *pdev)
3089 struct sfp *sfp = platform_get_drvdata(pdev);
3092 for (i = 0; i < GPIO_MAX; i++) {
3093 if (!sfp->gpio_irq[i])
3096 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3099 cancel_delayed_work_sync(&sfp->poll);
3100 cancel_delayed_work_sync(&sfp->timeout);
3103 static struct platform_driver sfp_driver = {
3105 .remove = sfp_remove,
3106 .shutdown = sfp_shutdown,
3109 .of_match_table = sfp_of_match,
3113 static int sfp_init(void)
3115 poll_jiffies = msecs_to_jiffies(100);
3117 return platform_driver_register(&sfp_driver);
3119 module_init(sfp_init);
3121 static void sfp_exit(void)
3123 platform_driver_unregister(&sfp_driver);
3125 module_exit(sfp_exit);
3127 MODULE_ALIAS("platform:sfp");
3128 MODULE_AUTHOR("Russell King");
3129 MODULE_LICENSE("GPL v2");