1 // SPDX-License-Identifier: GPL-2.0+
3 * Renesas R-Car Fine Display Processor
5 * Video format converter and frame deinterlacer device.
8 * Copyright (c) 2016 Renesas Electronics Corporation.
10 * This code is developed and inspired from the vim2m, rcar_jpu,
11 * m2m-deinterlace, and vsp1 drivers.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/timer.h>
27 #include <media/rcar-fcp.h>
28 #include <media/v4l2-ctrls.h>
29 #include <media/v4l2-device.h>
30 #include <media/v4l2-event.h>
31 #include <media/v4l2-ioctl.h>
32 #include <media/v4l2-mem2mem.h>
33 #include <media/videobuf2-dma-contig.h>
35 static unsigned int debug;
36 module_param(debug, uint, 0644);
37 MODULE_PARM_DESC(debug, "activate debug info");
39 /* Minimum and maximum frame width/height */
40 #define FDP1_MIN_W 80U
41 #define FDP1_MIN_H 80U
43 #define FDP1_MAX_W 3840U
44 #define FDP1_MAX_H 2160U
46 #define FDP1_MAX_PLANES 3U
47 #define FDP1_MAX_STRIDE 8190U
49 /* Flags that indicate a format can be used for capture/output */
50 #define FDP1_CAPTURE BIT(0)
51 #define FDP1_OUTPUT BIT(1)
53 #define DRIVER_NAME "rcar_fdp1"
55 /* Number of Job's to have available on the processing queue */
56 #define FDP1_NUMBER_JOBS 8
58 #define dprintk(fdp1, fmt, arg...) \
59 v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
62 * FDP1 registers and bits
65 /* FDP1 start register - Imm */
66 #define FD1_CTL_CMD 0x0000
67 #define FD1_CTL_CMD_STRCMD BIT(0)
69 /* Sync generator register - Imm */
70 #define FD1_CTL_SGCMD 0x0004
71 #define FD1_CTL_SGCMD_SGEN BIT(0)
73 /* Register set end register - Imm */
74 #define FD1_CTL_REGEND 0x0008
75 #define FD1_CTL_REGEND_REGEND BIT(0)
77 /* Channel activation register - Vupdt */
78 #define FD1_CTL_CHACT 0x000c
79 #define FD1_CTL_CHACT_SMW BIT(9)
80 #define FD1_CTL_CHACT_WR BIT(8)
81 #define FD1_CTL_CHACT_SMR BIT(3)
82 #define FD1_CTL_CHACT_RD2 BIT(2)
83 #define FD1_CTL_CHACT_RD1 BIT(1)
84 #define FD1_CTL_CHACT_RD0 BIT(0)
86 /* Operation Mode Register - Vupdt */
87 #define FD1_CTL_OPMODE 0x0010
88 #define FD1_CTL_OPMODE_PRG BIT(4)
89 #define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0)
90 #define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0)
91 #define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0)
93 #define FD1_CTL_VPERIOD 0x0014
94 #define FD1_CTL_CLKCTRL 0x0018
95 #define FD1_CTL_CLKCTRL_CSTP_N BIT(0)
97 /* Software reset register */
98 #define FD1_CTL_SRESET 0x001c
99 #define FD1_CTL_SRESET_SRST BIT(0)
101 /* Control status register (V-update-status) */
102 #define FD1_CTL_STATUS 0x0024
103 #define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
104 #define FD1_CTL_STATUS_VINT_CNT_SHIFT 16
105 #define FD1_CTL_STATUS_SGREGSET BIT(10)
106 #define FD1_CTL_STATUS_SGVERR BIT(9)
107 #define FD1_CTL_STATUS_SGFREND BIT(8)
108 #define FD1_CTL_STATUS_BSY BIT(0)
110 #define FD1_CTL_VCYCLE_STAT 0x0028
112 /* Interrupt enable register */
113 #define FD1_CTL_IRQENB 0x0038
114 /* Interrupt status register */
115 #define FD1_CTL_IRQSTA 0x003c
116 /* Interrupt control register */
117 #define FD1_CTL_IRQFSET 0x0040
119 /* Common IRQ Bit settings */
120 #define FD1_CTL_IRQ_VERE BIT(16)
121 #define FD1_CTL_IRQ_VINTE BIT(4)
122 #define FD1_CTL_IRQ_FREE BIT(0)
123 #define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \
124 FD1_CTL_IRQ_VINTE | \
128 #define FD1_RPF_SIZE 0x0060
129 #define FD1_RPF_SIZE_MASK GENMASK(12, 0)
130 #define FD1_RPF_SIZE_H_SHIFT 16
131 #define FD1_RPF_SIZE_V_SHIFT 0
133 #define FD1_RPF_FORMAT 0x0064
134 #define FD1_RPF_FORMAT_CIPM BIT(16)
135 #define FD1_RPF_FORMAT_RSPYCS BIT(13)
136 #define FD1_RPF_FORMAT_RSPUVS BIT(12)
137 #define FD1_RPF_FORMAT_CF BIT(8)
139 #define FD1_RPF_PSTRIDE 0x0068
140 #define FD1_RPF_PSTRIDE_Y_SHIFT 16
141 #define FD1_RPF_PSTRIDE_C_SHIFT 0
143 /* RPF0 Source Component Y Address register */
144 #define FD1_RPF0_ADDR_Y 0x006c
146 /* RPF1 Current Picture Registers */
147 #define FD1_RPF1_ADDR_Y 0x0078
148 #define FD1_RPF1_ADDR_C0 0x007c
149 #define FD1_RPF1_ADDR_C1 0x0080
151 /* RPF2 next picture register */
152 #define FD1_RPF2_ADDR_Y 0x0084
154 #define FD1_RPF_SMSK_ADDR 0x0090
155 #define FD1_RPF_SWAP 0x0094
158 #define FD1_WPF_FORMAT 0x00c0
159 #define FD1_WPF_FORMAT_PDV_SHIFT 24
160 #define FD1_WPF_FORMAT_FCNL BIT(20)
161 #define FD1_WPF_FORMAT_WSPYCS BIT(15)
162 #define FD1_WPF_FORMAT_WSPUVS BIT(14)
163 #define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9)
164 #define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9)
165 #define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9)
166 #define FD1_WPF_FORMAT_CSC BIT(8)
168 #define FD1_WPF_RNDCTL 0x00c4
169 #define FD1_WPF_RNDCTL_CBRM BIT(28)
170 #define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12)
171 #define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12)
172 #define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12)
174 #define FD1_WPF_PSTRIDE 0x00c8
175 #define FD1_WPF_PSTRIDE_Y_SHIFT 16
176 #define FD1_WPF_PSTRIDE_C_SHIFT 0
178 /* WPF Destination picture */
179 #define FD1_WPF_ADDR_Y 0x00cc
180 #define FD1_WPF_ADDR_C0 0x00d0
181 #define FD1_WPF_ADDR_C1 0x00d4
182 #define FD1_WPF_SWAP 0x00d8
183 #define FD1_WPF_SWAP_OSWAP_SHIFT 0
184 #define FD1_WPF_SWAP_SSWAP_SHIFT 4
187 #define FD1_RWPF_SWAP_BYTE BIT(0)
188 #define FD1_RWPF_SWAP_WORD BIT(1)
189 #define FD1_RWPF_SWAP_LWRD BIT(2)
190 #define FD1_RWPF_SWAP_LLWD BIT(3)
193 #define FD1_IPC_MODE 0x0100
194 #define FD1_IPC_MODE_DLI BIT(8)
195 #define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0)
196 #define FD1_IPC_MODE_DIM_FIXED2D (1 << 0)
197 #define FD1_IPC_MODE_DIM_FIXED3D (2 << 0)
198 #define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0)
199 #define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0)
201 #define FD1_IPC_SMSK_THRESH 0x0104
202 #define FD1_IPC_SMSK_THRESH_CONST 0x00010002
204 #define FD1_IPC_COMB_DET 0x0108
205 #define FD1_IPC_COMB_DET_CONST 0x00200040
207 #define FD1_IPC_MOTDEC 0x010c
208 #define FD1_IPC_MOTDEC_CONST 0x00008020
211 #define FD1_IPC_DLI_BLEND 0x0120
212 #define FD1_IPC_DLI_BLEND_CONST 0x0080ff02
214 #define FD1_IPC_DLI_HGAIN 0x0124
215 #define FD1_IPC_DLI_HGAIN_CONST 0x001000ff
217 #define FD1_IPC_DLI_SPRS 0x0128
218 #define FD1_IPC_DLI_SPRS_CONST 0x009004ff
220 #define FD1_IPC_DLI_ANGLE 0x012c
221 #define FD1_IPC_DLI_ANGLE_CONST 0x0004080c
223 #define FD1_IPC_DLI_ISOPIX0 0x0130
224 #define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10
226 #define FD1_IPC_DLI_ISOPIX1 0x0134
227 #define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10
229 /* Sensor registers */
230 #define FD1_IPC_SENSOR_TH0 0x0140
231 #define FD1_IPC_SENSOR_TH0_CONST 0x20208080
233 #define FD1_IPC_SENSOR_TH1 0x0144
234 #define FD1_IPC_SENSOR_TH1_CONST 0
236 #define FD1_IPC_SENSOR_CTL0 0x0170
237 #define FD1_IPC_SENSOR_CTL0_CONST 0x00002201
239 #define FD1_IPC_SENSOR_CTL1 0x0174
240 #define FD1_IPC_SENSOR_CTL1_CONST 0
242 #define FD1_IPC_SENSOR_CTL2 0x0178
243 #define FD1_IPC_SENSOR_CTL2_X_SHIFT 16
244 #define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0
246 #define FD1_IPC_SENSOR_CTL3 0x017c
247 #define FD1_IPC_SENSOR_CTL3_0_SHIFT 16
248 #define FD1_IPC_SENSOR_CTL3_1_SHIFT 0
250 /* Line memory pixel number register */
251 #define FD1_IPC_LMEM 0x01e0
252 #define FD1_IPC_LMEM_LINEAR 1024
253 #define FD1_IPC_LMEM_TILE 960
255 /* Internal Data (HW Version) */
256 #define FD1_IP_INTDATA 0x0800
257 /* R-Car Gen2 HW manual says zero, but actual value matches R-Car H3 ES1.x */
258 #define FD1_IP_GEN2 0x02010101
259 #define FD1_IP_M3W 0x02010202
260 #define FD1_IP_H3 0x02010203
261 #define FD1_IP_M3N 0x02010204
262 #define FD1_IP_E3 0x02010205
265 #define FD1_LUT_DIF_ADJ 0x1000
266 #define FD1_LUT_SAD_ADJ 0x1400
267 #define FD1_LUT_BLD_GAIN 0x1800
268 #define FD1_LUT_DIF_GAIN 0x1c00
269 #define FD1_LUT_MDET 0x2000
272 * struct fdp1_fmt - The FDP1 internal format data
273 * @fourcc: the fourcc code, to match the V4L2 API
274 * @bpp: bits per pixel per plane
275 * @num_planes: number of planes
276 * @hsub: horizontal subsampling factor
277 * @vsub: vertical subsampling factor
278 * @fmt: 7-bit format code for the fdp1 hardware
279 * @swap_yc: the Y and C components are swapped (Y comes before C)
280 * @swap_uv: the U and V components are swapped (V comes before U)
281 * @swap: swap register control
282 * @types: types of queue this format is applicable to
297 static const struct fdp1_fmt fdp1_formats[] = {
298 /* RGB formats are only supported by the Write Pixel Formatter */
300 { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
301 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
302 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
304 { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
305 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
308 { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
309 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
312 { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
313 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
316 { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
317 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
319 { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
320 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
322 { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
323 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
324 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
326 { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
327 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
328 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
330 { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
331 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
332 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
334 { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
335 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
336 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
338 { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
339 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
342 { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
343 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
347 /* YUV Formats are supported by Read and Write Pixel Formatters */
349 { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
350 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
351 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
352 FDP1_CAPTURE | FDP1_OUTPUT },
353 { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
354 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
355 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
356 FDP1_CAPTURE | FDP1_OUTPUT },
357 { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
358 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
359 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
360 FDP1_CAPTURE | FDP1_OUTPUT },
361 { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
362 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
363 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
364 FDP1_CAPTURE | FDP1_OUTPUT },
365 { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
366 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
367 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
368 FDP1_CAPTURE | FDP1_OUTPUT },
369 { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
370 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
371 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
372 FDP1_CAPTURE | FDP1_OUTPUT },
373 { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
374 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
375 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
376 FDP1_CAPTURE | FDP1_OUTPUT },
377 { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
378 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
379 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
380 FDP1_CAPTURE | FDP1_OUTPUT },
381 { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
382 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
383 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
384 FDP1_CAPTURE | FDP1_OUTPUT },
385 { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
386 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
387 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
388 FDP1_CAPTURE | FDP1_OUTPUT },
389 { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
390 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
391 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
392 FDP1_CAPTURE | FDP1_OUTPUT },
393 { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
394 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
395 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
396 FDP1_CAPTURE | FDP1_OUTPUT },
397 { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
398 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
399 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
400 FDP1_CAPTURE | FDP1_OUTPUT },
401 { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
402 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
403 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
404 FDP1_CAPTURE | FDP1_OUTPUT },
407 static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
409 return fmt->fmt <= 0x1b; /* Last RGB code */
413 * FDP1 Lookup tables range from 0...255 only
415 * Each table must be less than 256 entries, and all tables
416 * are padded out to 256 entries by duplicating the last value.
418 static const u8 fdp1_diff_adj[] = {
419 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
420 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
421 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
424 static const u8 fdp1_sad_adj[] = {
425 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
426 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
427 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
430 static const u8 fdp1_bld_gain[] = {
434 static const u8 fdp1_dif_gain[] = {
438 static const u8 fdp1_mdet[] = {
439 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
440 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
441 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
442 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
443 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
444 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
445 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
446 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
447 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
448 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
449 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
450 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
451 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
452 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
453 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
454 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
455 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
456 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
457 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
458 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
459 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
460 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
461 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
462 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
463 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
464 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
465 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
466 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
467 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
468 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
469 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
470 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
473 /* Per-queue, driver-specific private data */
475 const struct fdp1_fmt *fmt;
476 struct v4l2_pix_format_mplane format;
479 unsigned int stride_y;
480 unsigned int stride_c;
483 static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
485 const struct fdp1_fmt *fmt;
488 for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
489 fmt = &fdp1_formats[i];
490 if (fmt->fourcc == pixelformat)
497 enum fdp1_deint_mode {
498 FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
506 #define FDP1_DEINT_MODE_USES_NEXT(mode) \
507 (mode == FDP1_ADAPT2D3D || \
508 mode == FDP1_FIXED3D || \
509 mode == FDP1_NEXTFIELD)
511 #define FDP1_DEINT_MODE_USES_PREV(mode) \
512 (mode == FDP1_ADAPT2D3D || \
513 mode == FDP1_FIXED3D || \
514 mode == FDP1_PREVFIELD)
517 * FDP1 operates on potentially 3 fields, which are tracked
518 * from the VB buffers using this context structure.
519 * Will always be a field or a full frame, never two fields.
521 struct fdp1_field_buffer {
522 struct vb2_v4l2_buffer *vb;
525 /* Should be NONE:TOP:BOTTOM only */
526 enum v4l2_field field;
528 /* Flag to indicate this is the last field in the vb */
531 /* Buffer queue lists */
532 struct list_head list;
536 struct v4l2_m2m_buffer m2m_buf;
537 struct fdp1_field_buffer fields[2];
538 unsigned int num_fields;
541 static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
543 return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
547 struct fdp1_field_buffer *previous;
548 struct fdp1_field_buffer *active;
549 struct fdp1_field_buffer *next;
550 struct fdp1_field_buffer *dst;
552 /* A job can only be on one list at a time */
553 struct list_head list;
557 struct v4l2_device v4l2_dev;
558 struct video_device vfd;
560 struct mutex dev_mutex;
562 spinlock_t device_process_lock;
569 struct fdp1_job jobs[FDP1_NUMBER_JOBS];
570 struct list_head free_job_list;
571 struct list_head queued_job_list;
572 struct list_head hw_job_list;
574 unsigned int clk_rate;
576 struct rcar_fcp_device *fcp;
577 struct v4l2_m2m_dev *m2m_dev;
582 struct fdp1_dev *fdp1;
584 struct v4l2_ctrl_handler hdl;
585 unsigned int sequence;
587 /* Processed buffers in this transaction */
590 /* Transaction length (i.e. how many buffers per transaction) */
593 /* Abort requested by m2m */
596 /* Deinterlace processing mode */
597 enum fdp1_deint_mode deint_mode;
600 * Adaptive 2D/3D mode uses a shared mask
601 * This is allocated at streamon, if the ADAPT2D3D mode
604 unsigned int smsk_size;
605 dma_addr_t smsk_addr[2];
608 /* Capture pipeline, can specify an alpha value
609 * for supported formats. 0-255 only
613 /* Source and destination queue data */
614 struct fdp1_q_data out_q; /* HW Source */
615 struct fdp1_q_data cap_q; /* HW Destination */
619 * Interlaced fields are used on 3 occasions, and tracked in this list.
621 * V4L2 Buffers are tracked inside the fdp1_buffer
622 * and released when the last 'field' completes
624 struct list_head fields_queue;
625 unsigned int buffers_queued;
628 * For de-interlacing we need to track our previous buffer
629 * while preparing our job lists.
631 struct fdp1_field_buffer *previous;
634 static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
636 return container_of(fh, struct fdp1_ctx, fh);
639 static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
640 enum v4l2_buf_type type)
642 if (V4L2_TYPE_IS_OUTPUT(type))
649 * list_remove_job: Take the first item off the specified job list
651 * Returns: pointer to a job, or NULL if the list is empty.
653 static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
654 struct list_head *list)
656 struct fdp1_job *job;
659 spin_lock_irqsave(&fdp1->irqlock, flags);
660 job = list_first_entry_or_null(list, struct fdp1_job, list);
662 list_del(&job->list);
663 spin_unlock_irqrestore(&fdp1->irqlock, flags);
669 * list_add_job: Add a job to the specified job list
671 * Returns: void - always succeeds
673 static void list_add_job(struct fdp1_dev *fdp1,
674 struct list_head *list,
675 struct fdp1_job *job)
679 spin_lock_irqsave(&fdp1->irqlock, flags);
680 list_add_tail(&job->list, list);
681 spin_unlock_irqrestore(&fdp1->irqlock, flags);
684 static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
686 return list_remove_job(fdp1, &fdp1->free_job_list);
689 static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
691 /* Ensure that all residue from previous jobs is gone */
692 memset(job, 0, sizeof(struct fdp1_job));
694 list_add_job(fdp1, &fdp1->free_job_list, job);
697 static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
699 list_add_job(fdp1, &fdp1->queued_job_list, job);
702 static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
704 return list_remove_job(fdp1, &fdp1->queued_job_list);
707 static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
709 list_add_job(fdp1, &fdp1->hw_job_list, job);
712 static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
714 return list_remove_job(fdp1, &fdp1->hw_job_list);
718 * Buffer lists handling
720 static void fdp1_field_complete(struct fdp1_ctx *ctx,
721 struct fdp1_field_buffer *fbuf)
723 /* job->previous may be on the first field */
727 if (fbuf->last_field)
728 v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
731 static void fdp1_queue_field(struct fdp1_ctx *ctx,
732 struct fdp1_field_buffer *fbuf)
736 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
737 list_add_tail(&fbuf->list, &ctx->fields_queue);
738 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
740 ctx->buffers_queued++;
743 static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
745 struct fdp1_field_buffer *fbuf;
748 ctx->buffers_queued--;
750 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
751 fbuf = list_first_entry_or_null(&ctx->fields_queue,
752 struct fdp1_field_buffer, list);
754 list_del(&fbuf->list);
755 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
761 * Return the next field in the queue - or NULL,
762 * without removing the item from the list
764 static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
766 struct fdp1_field_buffer *fbuf;
769 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
770 fbuf = list_first_entry_or_null(&ctx->fields_queue,
771 struct fdp1_field_buffer, list);
772 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
777 static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
779 u32 value = ioread32(fdp1->regs + reg);
782 dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
787 static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
790 dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
792 iowrite32(val, fdp1->regs + reg);
795 /* IPC registers are to be programmed with constant values */
796 static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
798 struct fdp1_dev *fdp1 = ctx->fdp1;
800 fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH);
801 fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET);
802 fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC);
804 fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND);
805 fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN);
806 fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS);
807 fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE);
808 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0);
809 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1);
813 static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
815 struct fdp1_dev *fdp1 = ctx->fdp1;
816 struct fdp1_q_data *src_q_data = &ctx->out_q;
818 unsigned int hsize = src_q_data->format.width;
819 unsigned int vsize = src_q_data->format.height;
824 fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
825 fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
826 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
827 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
829 fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
830 ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
831 FD1_IPC_SENSOR_CTL2);
833 fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
834 (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
835 FD1_IPC_SENSOR_CTL3);
839 * fdp1_write_lut: Write a padded LUT to the hw
841 * FDP1 uses constant data for de-interlacing processing,
842 * with large tables. These hardware tables are all 256 bytes
843 * long, however they often contain repeated data at the end.
845 * The last byte of the table is written to all remaining entries.
847 static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
848 unsigned int len, unsigned int base)
853 /* Tables larger than the hw are clipped */
854 len = min(len, 256u);
856 for (i = 0; i < len; i++)
857 fdp1_write(fdp1, lut[i], base + (i*4));
859 /* Tables are padded with the last entry */
863 fdp1_write(fdp1, pad, base + (i*4));
866 static void fdp1_set_lut(struct fdp1_dev *fdp1)
868 fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
870 fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj),
872 fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
874 fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
876 fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
880 static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
881 struct fdp1_job *job)
883 struct fdp1_dev *fdp1 = ctx->fdp1;
889 struct fdp1_q_data *q_data = &ctx->out_q;
891 /* Picture size is common to Source and Destination frames */
892 picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
893 | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
896 pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
897 if (q_data->format.num_planes > 1)
898 pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
901 format = q_data->fmt->fmt;
902 if (q_data->fmt->swap_yc)
903 format |= FD1_RPF_FORMAT_RSPYCS;
905 if (q_data->fmt->swap_uv)
906 format |= FD1_RPF_FORMAT_RSPUVS;
908 if (job->active->field == V4L2_FIELD_BOTTOM) {
909 format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
910 smsk_addr = ctx->smsk_addr[0];
912 smsk_addr = ctx->smsk_addr[1];
915 /* Deint mode is non-zero when deinterlacing */
917 format |= FD1_RPF_FORMAT_CIPM;
919 fdp1_write(fdp1, format, FD1_RPF_FORMAT);
920 fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
921 fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
922 fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
923 fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
925 /* Previous Field Channel (CH0) */
927 fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
929 /* Current Field Channel (CH1) */
930 fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
931 fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
932 fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
934 /* Next Field Channel (CH2) */
936 fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
939 static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
940 struct fdp1_job *job)
942 struct fdp1_dev *fdp1 = ctx->fdp1;
943 struct fdp1_q_data *src_q_data = &ctx->out_q;
944 struct fdp1_q_data *q_data = &ctx->cap_q;
950 pstride = q_data->format.plane_fmt[0].bytesperline
951 << FD1_WPF_PSTRIDE_Y_SHIFT;
953 if (q_data->format.num_planes > 1)
954 pstride |= q_data->format.plane_fmt[1].bytesperline
955 << FD1_WPF_PSTRIDE_C_SHIFT;
957 format = q_data->fmt->fmt; /* Output Format Code */
959 if (q_data->fmt->swap_yc)
960 format |= FD1_WPF_FORMAT_WSPYCS;
962 if (q_data->fmt->swap_uv)
963 format |= FD1_WPF_FORMAT_WSPUVS;
965 if (fdp1_fmt_is_rgb(q_data->fmt)) {
966 /* Enable Colour Space conversion */
967 format |= FD1_WPF_FORMAT_CSC;
970 if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
971 format |= FD1_WPF_FORMAT_WRTM_709_16;
972 else if (src_q_data->format.quantization ==
973 V4L2_QUANTIZATION_FULL_RANGE)
974 format |= FD1_WPF_FORMAT_WRTM_601_0;
976 format |= FD1_WPF_FORMAT_WRTM_601_16;
979 /* Set an alpha value into the Pad Value */
980 format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
982 /* Determine picture rounding and clipping */
983 rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
984 rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
986 /* WPF Swap needs both ISWAP and OSWAP setting */
987 swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
988 swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
990 fdp1_write(fdp1, format, FD1_WPF_FORMAT);
991 fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
992 fdp1_write(fdp1, swap, FD1_WPF_SWAP);
993 fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
995 fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
996 fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
997 fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
1000 static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
1001 struct fdp1_job *job)
1003 struct fdp1_dev *fdp1 = ctx->fdp1;
1004 u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
1005 u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
1006 u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
1008 /* De-interlacing Mode */
1009 switch (ctx->deint_mode) {
1011 case FDP1_PROGRESSIVE:
1012 dprintk(fdp1, "Progressive Mode\n");
1013 opmode |= FD1_CTL_OPMODE_PRG;
1014 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1016 case FDP1_ADAPT2D3D:
1017 dprintk(fdp1, "Adapt2D3D Mode\n");
1018 if (ctx->sequence == 0 || ctx->aborting)
1019 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1021 ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
1023 if (ctx->sequence > 1) {
1024 channels |= FD1_CTL_CHACT_SMW;
1025 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1028 if (ctx->sequence > 2)
1029 channels |= FD1_CTL_CHACT_SMR;
1033 dprintk(fdp1, "Fixed 3D Mode\n");
1034 ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
1035 /* Except for first and last frame, enable all channels */
1036 if (!(ctx->sequence == 0 || ctx->aborting))
1037 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1040 dprintk(fdp1, "Fixed 2D Mode\n");
1041 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1042 /* No extra channels enabled */
1044 case FDP1_PREVFIELD:
1045 dprintk(fdp1, "Previous Field Mode\n");
1046 ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
1047 channels |= FD1_CTL_CHACT_RD0; /* Previous */
1049 case FDP1_NEXTFIELD:
1050 dprintk(fdp1, "Next Field Mode\n");
1051 ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
1052 channels |= FD1_CTL_CHACT_RD2; /* Next */
1056 fdp1_write(fdp1, channels, FD1_CTL_CHACT);
1057 fdp1_write(fdp1, opmode, FD1_CTL_OPMODE);
1058 fdp1_write(fdp1, ipcmode, FD1_IPC_MODE);
1062 * fdp1_device_process() - Run the hardware
1064 * Configure and start the hardware to generate a single frame
1065 * of output given our input parameters.
1067 static int fdp1_device_process(struct fdp1_ctx *ctx)
1070 struct fdp1_dev *fdp1 = ctx->fdp1;
1071 struct fdp1_job *job;
1072 unsigned long flags;
1074 spin_lock_irqsave(&fdp1->device_process_lock, flags);
1076 /* Get a job to process */
1077 job = get_queued_job(fdp1);
1080 * VINT can call us to see if we can queue another job.
1081 * If we have no work to do, we simply return.
1083 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1087 /* First Frame only? ... */
1088 fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
1090 /* Set the mode, and configuration */
1091 fdp1_configure_deint_mode(ctx, job);
1093 /* DLI Static Configuration */
1094 fdp1_set_ipc_dli(ctx);
1096 /* Sensor Configuration */
1097 fdp1_set_ipc_sensor(ctx);
1099 /* Setup the source picture */
1100 fdp1_configure_rpf(ctx, job);
1102 /* Setup the destination picture */
1103 fdp1_configure_wpf(ctx, job);
1105 /* Line Memory Pixel Number Register for linear access */
1106 fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
1108 /* Enable Interrupts */
1109 fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
1111 /* Finally, the Immediate Registers */
1113 /* This job is now in the HW queue */
1114 queue_hw_job(fdp1, job);
1116 /* Start the command */
1117 fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
1119 /* Registers will update to HW at next VINT */
1120 fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
1122 /* Enable VINT Generator */
1123 fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
1125 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1135 * job_ready() - check whether an instance is ready to be scheduled to run
1137 static int fdp1_m2m_job_ready(void *priv)
1139 struct fdp1_ctx *ctx = priv;
1140 struct fdp1_q_data *src_q_data = &ctx->out_q;
1144 dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
1145 v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
1146 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
1148 /* One output buffer is required for each field */
1149 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1152 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
1153 || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
1154 dprintk(ctx->fdp1, "Not enough buffers available\n");
1161 static void fdp1_m2m_job_abort(void *priv)
1163 struct fdp1_ctx *ctx = priv;
1165 dprintk(ctx->fdp1, "+\n");
1167 /* Will cancel the transaction in the next interrupt handler */
1170 /* Immediate abort sequence */
1171 fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
1172 fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
1176 * fdp1_prepare_job: Prepare and queue a new job for a single action of work
1178 * Prepare the next field, (or frame in progressive) and an output
1179 * buffer for the hardware to perform a single operation.
1181 static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
1183 struct vb2_v4l2_buffer *vbuf;
1184 struct fdp1_buffer *fbuf;
1185 struct fdp1_dev *fdp1 = ctx->fdp1;
1186 struct fdp1_job *job;
1187 unsigned int buffers_required = 1;
1189 dprintk(fdp1, "+\n");
1191 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
1192 buffers_required = 2;
1194 if (ctx->buffers_queued < buffers_required)
1197 job = fdp1_job_alloc(fdp1);
1199 dprintk(fdp1, "No free jobs currently available\n");
1203 job->active = fdp1_dequeue_field(ctx);
1205 /* Buffer check should prevent this ever happening */
1206 dprintk(fdp1, "No input buffers currently available\n");
1208 fdp1_job_free(fdp1, job);
1212 dprintk(fdp1, "+ Buffer en-route...\n");
1214 /* Source buffers have been prepared on our buffer_queue
1215 * Prepare our Output buffer
1217 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1218 fbuf = to_fdp1_buffer(vbuf);
1219 job->dst = &fbuf->fields[0];
1221 job->active->vb->sequence = ctx->sequence;
1222 job->dst->vb->sequence = ctx->sequence;
1225 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
1226 job->previous = ctx->previous;
1228 /* Active buffer becomes the next job's previous buffer */
1229 ctx->previous = job->active;
1232 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
1233 /* Must be called after 'active' is dequeued */
1234 job->next = fdp1_peek_queued_field(ctx);
1237 /* Transfer timestamps and flags from src->dst */
1239 job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
1241 job->dst->vb->flags = job->active->vb->flags &
1242 V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1244 /* Ideally, the frame-end function will just 'check' to see
1245 * if there are more jobs instead
1249 /* Finally, Put this job on the processing queue */
1250 queue_job(fdp1, job);
1252 dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
1257 /* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
1259 * A single input buffer is taken and serialised into our fdp1_buffer
1260 * queue. The queue is then processed to create as many jobs as possible
1261 * from our available input.
1263 static void fdp1_m2m_device_run(void *priv)
1265 struct fdp1_ctx *ctx = priv;
1266 struct fdp1_dev *fdp1 = ctx->fdp1;
1267 struct vb2_v4l2_buffer *src_vb;
1268 struct fdp1_buffer *buf;
1271 dprintk(fdp1, "+\n");
1275 /* Get our incoming buffer of either one or two fields, or one frame */
1276 src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1277 buf = to_fdp1_buffer(src_vb);
1279 for (i = 0; i < buf->num_fields; i++) {
1280 struct fdp1_field_buffer *fbuf = &buf->fields[i];
1282 fdp1_queue_field(ctx, fbuf);
1283 dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
1284 i, fbuf->last_field);
1287 /* Queue as many jobs as our data provides for */
1288 while (fdp1_prepare_job(ctx))
1291 if (ctx->translen == 0) {
1292 dprintk(fdp1, "No jobs were processed. M2M action complete\n");
1293 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1297 /* Kick the job processing action */
1298 fdp1_device_process(ctx);
1304 * Handles the M2M level after a buffer completion event.
1306 static void device_frame_end(struct fdp1_dev *fdp1,
1307 enum vb2_buffer_state state)
1309 struct fdp1_ctx *ctx;
1310 unsigned long flags;
1311 struct fdp1_job *job = get_hw_queued_job(fdp1);
1313 dprintk(fdp1, "+\n");
1315 ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
1318 v4l2_err(&fdp1->v4l2_dev,
1319 "Instance released before the end of transaction\n");
1323 ctx->num_processed++;
1326 * fdp1_field_complete will call buf_done only when the last vb2_buffer
1327 * reference is complete
1329 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
1330 fdp1_field_complete(ctx, job->previous);
1332 fdp1_field_complete(ctx, job->active);
1334 spin_lock_irqsave(&fdp1->irqlock, flags);
1335 v4l2_m2m_buf_done(job->dst->vb, state);
1337 spin_unlock_irqrestore(&fdp1->irqlock, flags);
1339 /* Move this job back to the free job list */
1340 fdp1_job_free(fdp1, job);
1342 dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
1343 ctx->num_processed, ctx->translen);
1345 if (ctx->num_processed == ctx->translen ||
1347 dprintk(ctx->fdp1, "Finishing transaction\n");
1348 ctx->num_processed = 0;
1349 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1352 * For pipelined performance support, this would
1353 * be called from a VINT handler
1355 fdp1_device_process(ctx);
1362 static int fdp1_vidioc_querycap(struct file *file, void *priv,
1363 struct v4l2_capability *cap)
1365 strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1366 strscpy(cap->card, DRIVER_NAME, sizeof(cap->card));
1367 snprintf(cap->bus_info, sizeof(cap->bus_info),
1368 "platform:%s", DRIVER_NAME);
1372 static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1374 unsigned int i, num;
1378 for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
1379 if (fdp1_formats[i].types & type) {
1380 if (num == f->index)
1386 /* Format not found */
1387 if (i >= ARRAY_SIZE(fdp1_formats))
1391 f->pixelformat = fdp1_formats[i].fourcc;
1396 static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
1397 struct v4l2_fmtdesc *f)
1399 return fdp1_enum_fmt(f, FDP1_CAPTURE);
1402 static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
1403 struct v4l2_fmtdesc *f)
1405 return fdp1_enum_fmt(f, FDP1_OUTPUT);
1408 static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1410 struct fdp1_q_data *q_data;
1411 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1413 if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
1416 q_data = get_q_data(ctx, f->type);
1417 f->fmt.pix_mp = q_data->format;
1422 static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
1423 const struct fdp1_fmt *fmt)
1427 /* Compute and clamp the stride and image size. */
1428 for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
1429 unsigned int hsub = i > 0 ? fmt->hsub : 1;
1430 unsigned int vsub = i > 0 ? fmt->vsub : 1;
1431 /* From VSP : TODO: Confirm alignment limits for FDP1 */
1432 unsigned int align = 128;
1435 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
1436 pix->width / hsub * fmt->bpp[i] / 8,
1437 round_down(FDP1_MAX_STRIDE, align));
1439 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
1440 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
1441 * pix->height / vsub;
1445 if (fmt->num_planes == 3) {
1446 /* The two chroma planes must have the same stride. */
1447 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
1448 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
1453 static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
1454 const struct fdp1_fmt **fmtinfo,
1455 struct v4l2_pix_format_mplane *pix)
1457 const struct fdp1_fmt *fmt;
1459 unsigned int height;
1461 /* Validate the pixel format to ensure the output queue supports it. */
1462 fmt = fdp1_find_format(pix->pixelformat);
1463 if (!fmt || !(fmt->types & FDP1_OUTPUT))
1464 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1469 pix->pixelformat = fmt->fourcc;
1470 pix->num_planes = fmt->num_planes;
1473 * Progressive video and all interlaced field orders are acceptable.
1474 * Default to V4L2_FIELD_INTERLACED.
1476 if (pix->field != V4L2_FIELD_NONE &&
1477 pix->field != V4L2_FIELD_ALTERNATE &&
1478 !V4L2_FIELD_HAS_BOTH(pix->field))
1479 pix->field = V4L2_FIELD_INTERLACED;
1482 * The deinterlacer doesn't care about the colorspace, accept all values
1483 * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
1484 * at the output of the deinterlacer supports a subset of encodings and
1485 * quantization methods and will only be available when the colorspace
1488 if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
1489 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1492 * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
1493 * them to the supported frame size range. The height boundary are
1494 * related to the full frame, divide them by two when the format passes
1495 * fields in separate buffers.
1497 width = round_down(pix->width, fmt->hsub);
1498 pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
1500 height = round_down(pix->height, fmt->vsub);
1501 if (pix->field == V4L2_FIELD_ALTERNATE)
1502 pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
1504 pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
1506 fdp1_compute_stride(pix, fmt);
1509 static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
1510 const struct fdp1_fmt **fmtinfo,
1511 struct v4l2_pix_format_mplane *pix)
1513 struct fdp1_q_data *src_data = &ctx->out_q;
1514 enum v4l2_colorspace colorspace;
1515 enum v4l2_ycbcr_encoding ycbcr_enc;
1516 enum v4l2_quantization quantization;
1517 const struct fdp1_fmt *fmt;
1521 * Validate the pixel format. We can only accept RGB output formats if
1522 * the input encoding and quantization are compatible with the format
1523 * conversions supported by the hardware. The supported combinations are
1525 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
1526 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
1527 * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
1529 colorspace = src_data->format.colorspace;
1531 ycbcr_enc = src_data->format.ycbcr_enc;
1532 if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
1533 ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
1535 quantization = src_data->format.quantization;
1536 if (quantization == V4L2_QUANTIZATION_DEFAULT)
1537 quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
1540 allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
1541 (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
1542 quantization == V4L2_QUANTIZATION_LIM_RANGE);
1544 fmt = fdp1_find_format(pix->pixelformat);
1545 if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
1546 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1551 pix->pixelformat = fmt->fourcc;
1552 pix->num_planes = fmt->num_planes;
1553 pix->field = V4L2_FIELD_NONE;
1556 * The colorspace on the capture queue is copied from the output queue
1557 * as the hardware can't change the colorspace. It can convert YCbCr to
1558 * RGB though, in which case the encoding and quantization are set to
1559 * default values as anything else wouldn't make sense.
1561 pix->colorspace = src_data->format.colorspace;
1562 pix->xfer_func = src_data->format.xfer_func;
1564 if (fdp1_fmt_is_rgb(fmt)) {
1565 pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1566 pix->quantization = V4L2_QUANTIZATION_DEFAULT;
1568 pix->ycbcr_enc = src_data->format.ycbcr_enc;
1569 pix->quantization = src_data->format.quantization;
1573 * The frame width is identical to the output queue, and the height is
1574 * either doubled or identical depending on whether the output queue
1575 * field order contains one or two fields per frame.
1577 pix->width = src_data->format.width;
1578 if (src_data->format.field == V4L2_FIELD_ALTERNATE)
1579 pix->height = 2 * src_data->format.height;
1581 pix->height = src_data->format.height;
1583 fdp1_compute_stride(pix, fmt);
1586 static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1588 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1590 if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1591 fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
1593 fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
1595 dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n",
1596 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1597 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1598 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1603 static void fdp1_set_format(struct fdp1_ctx *ctx,
1604 struct v4l2_pix_format_mplane *pix,
1605 enum v4l2_buf_type type)
1607 struct fdp1_q_data *q_data = get_q_data(ctx, type);
1608 const struct fdp1_fmt *fmtinfo;
1610 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1611 fdp1_try_fmt_output(ctx, &fmtinfo, pix);
1613 fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
1615 q_data->fmt = fmtinfo;
1616 q_data->format = *pix;
1618 q_data->vsize = pix->height;
1619 if (pix->field != V4L2_FIELD_NONE)
1622 q_data->stride_y = pix->plane_fmt[0].bytesperline;
1623 q_data->stride_c = pix->plane_fmt[1].bytesperline;
1625 /* Adjust strides for interleaved buffers */
1626 if (pix->field == V4L2_FIELD_INTERLACED ||
1627 pix->field == V4L2_FIELD_INTERLACED_TB ||
1628 pix->field == V4L2_FIELD_INTERLACED_BT) {
1629 q_data->stride_y *= 2;
1630 q_data->stride_c *= 2;
1633 /* Propagate the format from the output node to the capture node. */
1634 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1635 struct fdp1_q_data *dst_data = &ctx->cap_q;
1638 * Copy the format, clear the per-plane bytes per line and image
1639 * size, override the field and double the height if needed.
1641 dst_data->format = q_data->format;
1642 memset(dst_data->format.plane_fmt, 0,
1643 sizeof(dst_data->format.plane_fmt));
1645 dst_data->format.field = V4L2_FIELD_NONE;
1646 if (pix->field == V4L2_FIELD_ALTERNATE)
1647 dst_data->format.height *= 2;
1649 fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
1651 dst_data->vsize = dst_data->format.height;
1652 dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
1653 dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
1657 static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1659 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1660 struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
1661 struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
1663 if (vb2_is_busy(vq)) {
1664 v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
1668 fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
1670 dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n",
1671 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1672 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1673 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1678 static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
1680 struct fdp1_ctx *ctx =
1681 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1682 struct fdp1_q_data *src_q_data = &ctx->out_q;
1685 case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
1686 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1696 static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
1698 struct fdp1_ctx *ctx =
1699 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1702 case V4L2_CID_ALPHA_COMPONENT:
1703 ctx->alpha = ctrl->val;
1706 case V4L2_CID_DEINTERLACING_MODE:
1707 ctx->deint_mode = ctrl->val;
1714 static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
1715 .s_ctrl = fdp1_s_ctrl,
1716 .g_volatile_ctrl = fdp1_g_ctrl,
1719 static const char * const fdp1_ctrl_deint_menu[] = {
1729 static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
1730 .vidioc_querycap = fdp1_vidioc_querycap,
1732 .vidioc_enum_fmt_vid_cap = fdp1_enum_fmt_vid_cap,
1733 .vidioc_enum_fmt_vid_out = fdp1_enum_fmt_vid_out,
1734 .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt,
1735 .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt,
1736 .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt,
1737 .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt,
1738 .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt,
1739 .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt,
1741 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
1742 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
1743 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
1744 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
1745 .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
1746 .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
1747 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
1749 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
1750 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
1752 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1753 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1760 static int fdp1_queue_setup(struct vb2_queue *vq,
1761 unsigned int *nbuffers, unsigned int *nplanes,
1762 unsigned int sizes[],
1763 struct device *alloc_ctxs[])
1765 struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
1766 struct fdp1_q_data *q_data;
1769 q_data = get_q_data(ctx, vq->type);
1772 if (*nplanes > FDP1_MAX_PLANES)
1778 *nplanes = q_data->format.num_planes;
1780 for (i = 0; i < *nplanes; i++)
1781 sizes[i] = q_data->format.plane_fmt[i].sizeimage;
1786 static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
1787 struct vb2_v4l2_buffer *vbuf,
1788 unsigned int field_num)
1790 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1791 struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
1792 unsigned int num_fields;
1795 num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1798 fbuf->last_field = (field_num + 1) == num_fields;
1800 for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
1801 fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
1803 switch (vbuf->field) {
1804 case V4L2_FIELD_INTERLACED:
1806 * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
1807 * top-bottom for 50Hz. As TV standards are not applicable to
1808 * the mem-to-mem API, use the height as a heuristic.
1810 fbuf->field = (q_data->format.height < 576) == field_num
1811 ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1813 case V4L2_FIELD_INTERLACED_TB:
1814 case V4L2_FIELD_SEQ_TB:
1815 fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
1817 case V4L2_FIELD_INTERLACED_BT:
1818 case V4L2_FIELD_SEQ_BT:
1819 fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1822 fbuf->field = vbuf->field;
1826 /* Buffer is completed */
1830 /* Adjust buffer addresses for second field */
1831 switch (vbuf->field) {
1832 case V4L2_FIELD_INTERLACED:
1833 case V4L2_FIELD_INTERLACED_TB:
1834 case V4L2_FIELD_INTERLACED_BT:
1835 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1837 (i == 0 ? q_data->stride_y : q_data->stride_c);
1839 case V4L2_FIELD_SEQ_TB:
1840 case V4L2_FIELD_SEQ_BT:
1841 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1842 fbuf->addrs[i] += q_data->vsize *
1843 (i == 0 ? q_data->stride_y : q_data->stride_c);
1848 static int fdp1_buf_prepare(struct vb2_buffer *vb)
1850 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1851 struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
1852 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1853 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1856 if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
1857 bool field_valid = true;
1859 /* Validate the buffer field. */
1860 switch (q_data->format.field) {
1861 case V4L2_FIELD_NONE:
1862 if (vbuf->field != V4L2_FIELD_NONE)
1863 field_valid = false;
1866 case V4L2_FIELD_ALTERNATE:
1867 if (vbuf->field != V4L2_FIELD_TOP &&
1868 vbuf->field != V4L2_FIELD_BOTTOM)
1869 field_valid = false;
1872 case V4L2_FIELD_INTERLACED:
1873 case V4L2_FIELD_SEQ_TB:
1874 case V4L2_FIELD_SEQ_BT:
1875 case V4L2_FIELD_INTERLACED_TB:
1876 case V4L2_FIELD_INTERLACED_BT:
1877 if (vbuf->field != q_data->format.field)
1878 field_valid = false;
1884 "buffer field %u invalid for format field %u\n",
1885 vbuf->field, q_data->format.field);
1889 vbuf->field = V4L2_FIELD_NONE;
1892 /* Validate the planes sizes. */
1893 for (i = 0; i < q_data->format.num_planes; i++) {
1894 unsigned long size = q_data->format.plane_fmt[i].sizeimage;
1896 if (vb2_plane_size(vb, i) < size) {
1898 "data will not fit into plane [%u/%u] (%lu < %lu)\n",
1899 i, q_data->format.num_planes,
1900 vb2_plane_size(vb, i), size);
1904 /* We have known size formats all around */
1905 vb2_set_plane_payload(vb, i, size);
1908 buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1909 for (i = 0; i < buf->num_fields; ++i)
1910 fdp1_buf_prepare_field(q_data, vbuf, i);
1915 static void fdp1_buf_queue(struct vb2_buffer *vb)
1917 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1918 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1920 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
1923 static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
1925 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1926 struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
1928 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1930 * Force our deint_mode when we are progressive,
1931 * ignoring any setting on the device from the user,
1932 * Otherwise, lock in the requested de-interlace mode.
1934 if (q_data->format.field == V4L2_FIELD_NONE)
1935 ctx->deint_mode = FDP1_PROGRESSIVE;
1937 if (ctx->deint_mode == FDP1_ADAPT2D3D) {
1939 dma_addr_t smsk_base;
1940 const u32 bpp = 2; /* bytes per pixel */
1942 stride = round_up(q_data->format.width, 8);
1944 ctx->smsk_size = bpp * stride * q_data->vsize;
1946 ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
1947 ctx->smsk_size, &smsk_base, GFP_KERNEL);
1949 if (ctx->smsk_cpu == NULL) {
1950 dprintk(ctx->fdp1, "Failed to alloc smsk\n");
1954 ctx->smsk_addr[0] = smsk_base;
1955 ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
1962 static void fdp1_stop_streaming(struct vb2_queue *q)
1964 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1965 struct vb2_v4l2_buffer *vbuf;
1966 unsigned long flags;
1969 if (V4L2_TYPE_IS_OUTPUT(q->type))
1970 vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1972 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1975 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
1976 v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
1977 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
1980 /* Empty Output queues */
1981 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1982 /* Empty our internal queues */
1983 struct fdp1_field_buffer *fbuf;
1985 /* Free any queued buffers */
1986 fbuf = fdp1_dequeue_field(ctx);
1987 while (fbuf != NULL) {
1988 fdp1_field_complete(ctx, fbuf);
1989 fbuf = fdp1_dequeue_field(ctx);
1992 /* Free smsk_data */
1993 if (ctx->smsk_cpu) {
1994 dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
1995 ctx->smsk_cpu, ctx->smsk_addr[0]);
1996 ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
1997 ctx->smsk_cpu = NULL;
2000 WARN(!list_empty(&ctx->fields_queue),
2001 "Buffer queue not empty");
2003 /* Empty Capture queues (Jobs) */
2004 struct fdp1_job *job;
2006 job = get_queued_job(ctx->fdp1);
2008 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
2009 fdp1_field_complete(ctx, job->previous);
2011 fdp1_field_complete(ctx, job->active);
2013 v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
2016 job = get_queued_job(ctx->fdp1);
2019 /* Free any held buffer in the ctx */
2020 fdp1_field_complete(ctx, ctx->previous);
2022 WARN(!list_empty(&ctx->fdp1->queued_job_list),
2023 "Queued Job List not empty");
2025 WARN(!list_empty(&ctx->fdp1->hw_job_list),
2026 "HW Job list not empty");
2030 static const struct vb2_ops fdp1_qops = {
2031 .queue_setup = fdp1_queue_setup,
2032 .buf_prepare = fdp1_buf_prepare,
2033 .buf_queue = fdp1_buf_queue,
2034 .start_streaming = fdp1_start_streaming,
2035 .stop_streaming = fdp1_stop_streaming,
2036 .wait_prepare = vb2_ops_wait_prepare,
2037 .wait_finish = vb2_ops_wait_finish,
2040 static int queue_init(void *priv, struct vb2_queue *src_vq,
2041 struct vb2_queue *dst_vq)
2043 struct fdp1_ctx *ctx = priv;
2046 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2047 src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2048 src_vq->drv_priv = ctx;
2049 src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2050 src_vq->ops = &fdp1_qops;
2051 src_vq->mem_ops = &vb2_dma_contig_memops;
2052 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2053 src_vq->lock = &ctx->fdp1->dev_mutex;
2054 src_vq->dev = ctx->fdp1->dev;
2056 ret = vb2_queue_init(src_vq);
2060 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2061 dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2062 dst_vq->drv_priv = ctx;
2063 dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2064 dst_vq->ops = &fdp1_qops;
2065 dst_vq->mem_ops = &vb2_dma_contig_memops;
2066 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2067 dst_vq->lock = &ctx->fdp1->dev_mutex;
2068 dst_vq->dev = ctx->fdp1->dev;
2070 return vb2_queue_init(dst_vq);
2076 static int fdp1_open(struct file *file)
2078 struct fdp1_dev *fdp1 = video_drvdata(file);
2079 struct v4l2_pix_format_mplane format;
2080 struct fdp1_ctx *ctx = NULL;
2081 struct v4l2_ctrl *ctrl;
2084 if (mutex_lock_interruptible(&fdp1->dev_mutex))
2085 return -ERESTARTSYS;
2087 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2093 v4l2_fh_init(&ctx->fh, video_devdata(file));
2094 file->private_data = &ctx->fh;
2097 /* Initialise Queues */
2098 INIT_LIST_HEAD(&ctx->fields_queue);
2103 /* Initialise controls */
2105 v4l2_ctrl_handler_init(&ctx->hdl, 3);
2106 v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
2107 V4L2_CID_DEINTERLACING_MODE,
2108 FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
2109 fdp1_ctrl_deint_menu);
2111 ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2112 V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
2114 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2116 v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2117 V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
2119 if (ctx->hdl.error) {
2120 ret = ctx->hdl.error;
2124 ctx->fh.ctrl_handler = &ctx->hdl;
2125 v4l2_ctrl_handler_setup(&ctx->hdl);
2127 /* Configure default parameters. */
2128 memset(&format, 0, sizeof(format));
2129 fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
2131 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
2133 if (IS_ERR(ctx->fh.m2m_ctx)) {
2134 ret = PTR_ERR(ctx->fh.m2m_ctx);
2138 /* Perform any power management required */
2139 ret = pm_runtime_resume_and_get(fdp1->dev);
2143 v4l2_fh_add(&ctx->fh);
2145 dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
2146 ctx, ctx->fh.m2m_ctx);
2148 mutex_unlock(&fdp1->dev_mutex);
2152 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2154 v4l2_ctrl_handler_free(&ctx->hdl);
2157 mutex_unlock(&fdp1->dev_mutex);
2161 static int fdp1_release(struct file *file)
2163 struct fdp1_dev *fdp1 = video_drvdata(file);
2164 struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
2166 dprintk(fdp1, "Releasing instance %p\n", ctx);
2168 v4l2_fh_del(&ctx->fh);
2169 v4l2_fh_exit(&ctx->fh);
2170 v4l2_ctrl_handler_free(&ctx->hdl);
2171 mutex_lock(&fdp1->dev_mutex);
2172 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2173 mutex_unlock(&fdp1->dev_mutex);
2176 pm_runtime_put(fdp1->dev);
2181 static const struct v4l2_file_operations fdp1_fops = {
2182 .owner = THIS_MODULE,
2184 .release = fdp1_release,
2185 .poll = v4l2_m2m_fop_poll,
2186 .unlocked_ioctl = video_ioctl2,
2187 .mmap = v4l2_m2m_fop_mmap,
2190 static const struct video_device fdp1_videodev = {
2191 .name = DRIVER_NAME,
2192 .vfl_dir = VFL_DIR_M2M,
2194 .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2195 .ioctl_ops = &fdp1_ioctl_ops,
2197 .release = video_device_release_empty,
2200 static const struct v4l2_m2m_ops m2m_ops = {
2201 .device_run = fdp1_m2m_device_run,
2202 .job_ready = fdp1_m2m_job_ready,
2203 .job_abort = fdp1_m2m_job_abort,
2206 static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
2208 struct fdp1_dev *fdp1 = dev_id;
2214 int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
2215 cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
2216 ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
2217 vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
2218 FD1_CTL_STATUS_VINT_CNT_SHIFT;
2220 /* Clear interrupts */
2221 fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
2224 dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
2225 int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
2226 int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
2227 int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
2229 dprintk(fdp1, "CycleStatus = %d (%dms)\n",
2230 cycles, cycles/(fdp1->clk_rate/1000));
2233 "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
2234 ctl_status, vint_cnt,
2235 ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
2236 ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
2237 ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
2238 ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
2239 dprintk(fdp1, "***********************************\n");
2242 /* Spurious interrupt */
2243 if (!(FD1_CTL_IRQ_MASK & int_status))
2246 /* Work completed, release the frame */
2247 if (FD1_CTL_IRQ_VERE & int_status)
2248 device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
2249 else if (FD1_CTL_IRQ_FREE & int_status)
2250 device_frame_end(fdp1, VB2_BUF_STATE_DONE);
2255 static int fdp1_probe(struct platform_device *pdev)
2257 struct fdp1_dev *fdp1;
2258 struct video_device *vfd;
2259 struct device_node *fcp_node;
2266 fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
2270 INIT_LIST_HEAD(&fdp1->free_job_list);
2271 INIT_LIST_HEAD(&fdp1->queued_job_list);
2272 INIT_LIST_HEAD(&fdp1->hw_job_list);
2274 /* Initialise the jobs on the free list */
2275 for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
2276 list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
2278 mutex_init(&fdp1->dev_mutex);
2280 spin_lock_init(&fdp1->irqlock);
2281 spin_lock_init(&fdp1->device_process_lock);
2282 fdp1->dev = &pdev->dev;
2283 platform_set_drvdata(pdev, fdp1);
2285 /* Memory-mapped registers */
2286 fdp1->regs = devm_platform_ioremap_resource(pdev, 0);
2287 if (IS_ERR(fdp1->regs))
2288 return PTR_ERR(fdp1->regs);
2290 /* Interrupt service routine registration */
2291 ret = platform_get_irq(pdev, 0);
2296 ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
2297 dev_name(&pdev->dev), fdp1);
2299 dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
2304 fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
2306 fdp1->fcp = rcar_fcp_get(fcp_node);
2307 of_node_put(fcp_node);
2308 if (IS_ERR(fdp1->fcp)) {
2309 dev_dbg(&pdev->dev, "FCP not found (%ld)\n",
2310 PTR_ERR(fdp1->fcp));
2311 return PTR_ERR(fdp1->fcp);
2315 /* Determine our clock rate */
2316 clk = clk_get(&pdev->dev, NULL);
2322 fdp1->clk_rate = clk_get_rate(clk);
2325 /* V4L2 device registration */
2326 ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
2328 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2332 /* M2M registration */
2333 fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
2334 if (IS_ERR(fdp1->m2m_dev)) {
2335 v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
2336 ret = PTR_ERR(fdp1->m2m_dev);
2340 /* Video registration */
2341 fdp1->vfd = fdp1_videodev;
2343 vfd->lock = &fdp1->dev_mutex;
2344 vfd->v4l2_dev = &fdp1->v4l2_dev;
2345 video_set_drvdata(vfd, fdp1);
2346 strscpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
2348 ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0);
2350 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2354 v4l2_info(&fdp1->v4l2_dev, "Device registered as /dev/video%d\n",
2357 /* Power up the cells to read HW */
2358 pm_runtime_enable(&pdev->dev);
2359 ret = pm_runtime_resume_and_get(fdp1->dev);
2363 hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
2364 switch (hw_version) {
2366 dprintk(fdp1, "FDP1 Version R-Car Gen2\n");
2369 dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
2372 dprintk(fdp1, "FDP1 Version R-Car H3\n");
2375 dprintk(fdp1, "FDP1 Version R-Car M3-N\n");
2378 dprintk(fdp1, "FDP1 Version R-Car E3\n");
2381 dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
2385 /* Allow the hw to sleep until an open call puts it to use */
2386 pm_runtime_put(fdp1->dev);
2391 pm_runtime_disable(fdp1->dev);
2394 v4l2_m2m_release(fdp1->m2m_dev);
2397 v4l2_device_unregister(&fdp1->v4l2_dev);
2400 rcar_fcp_put(fdp1->fcp);
2404 static void fdp1_remove(struct platform_device *pdev)
2406 struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
2408 v4l2_m2m_release(fdp1->m2m_dev);
2409 video_unregister_device(&fdp1->vfd);
2410 v4l2_device_unregister(&fdp1->v4l2_dev);
2411 pm_runtime_disable(&pdev->dev);
2412 rcar_fcp_put(fdp1->fcp);
2415 static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
2417 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2419 rcar_fcp_disable(fdp1->fcp);
2424 static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
2426 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2428 /* Program in the static LUTs */
2431 return rcar_fcp_enable(fdp1->fcp);
2434 static const struct dev_pm_ops fdp1_pm_ops = {
2435 SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
2436 fdp1_pm_runtime_resume,
2440 static const struct of_device_id fdp1_dt_ids[] = {
2441 { .compatible = "renesas,fdp1" },
2444 MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
2446 static struct platform_driver fdp1_pdrv = {
2447 .probe = fdp1_probe,
2448 .remove_new = fdp1_remove,
2450 .name = DRIVER_NAME,
2451 .of_match_table = fdp1_dt_ids,
2456 module_platform_driver(fdp1_pdrv);
2458 MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
2460 MODULE_LICENSE("GPL");
2461 MODULE_ALIAS("platform:" DRIVER_NAME);