]> Git Repo - linux.git/blob - drivers/md/bcache/request.c
net: bgmac: Fix return value check for fixed_phy_register()
[linux.git] / drivers / md / bcache / request.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <[email protected]>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD        95
24 #define CUTOFF_CACHE_READA      90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *cl);
29
30 static unsigned int cache_mode(struct cached_dev *dc)
31 {
32         return BDEV_CACHE_MODE(&dc->sb);
33 }
34
35 static bool verify(struct cached_dev *dc)
36 {
37         return dc->verify;
38 }
39
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42         struct bio_vec bv;
43         struct bvec_iter iter;
44         uint64_t csum = 0;
45
46         bio_for_each_segment(bv, bio, iter) {
47                 void *d = bvec_kmap_local(&bv);
48
49                 csum = crc64_be(csum, d, bv.bv_len);
50                 kunmap_local(d);
51         }
52
53         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54 }
55
56 /* Insert data into cache */
57
58 static void bch_data_insert_keys(struct closure *cl)
59 {
60         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61         atomic_t *journal_ref = NULL;
62         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63         int ret;
64
65         if (!op->replace)
66                 journal_ref = bch_journal(op->c, &op->insert_keys,
67                                           op->flush_journal ? cl : NULL);
68
69         ret = bch_btree_insert(op->c, &op->insert_keys,
70                                journal_ref, replace_key);
71         if (ret == -ESRCH) {
72                 op->replace_collision = true;
73         } else if (ret) {
74                 op->status              = BLK_STS_RESOURCE;
75                 op->insert_data_done    = true;
76         }
77
78         if (journal_ref)
79                 atomic_dec_bug(journal_ref);
80
81         if (!op->insert_data_done) {
82                 continue_at(cl, bch_data_insert_start, op->wq);
83                 return;
84         }
85
86         bch_keylist_free(&op->insert_keys);
87         closure_return(cl);
88 }
89
90 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
91                                struct cache_set *c)
92 {
93         size_t oldsize = bch_keylist_nkeys(l);
94         size_t newsize = oldsize + u64s;
95
96         /*
97          * The journalling code doesn't handle the case where the keys to insert
98          * is bigger than an empty write: If we just return -ENOMEM here,
99          * bch_data_insert_keys() will insert the keys created so far
100          * and finish the rest when the keylist is empty.
101          */
102         if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
103                 return -ENOMEM;
104
105         return __bch_keylist_realloc(l, u64s);
106 }
107
108 static void bch_data_invalidate(struct closure *cl)
109 {
110         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
111         struct bio *bio = op->bio;
112
113         pr_debug("invalidating %i sectors from %llu\n",
114                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
115
116         while (bio_sectors(bio)) {
117                 unsigned int sectors = min(bio_sectors(bio),
118                                        1U << (KEY_SIZE_BITS - 1));
119
120                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
121                         goto out;
122
123                 bio->bi_iter.bi_sector  += sectors;
124                 bio->bi_iter.bi_size    -= sectors << 9;
125
126                 bch_keylist_add(&op->insert_keys,
127                                 &KEY(op->inode,
128                                      bio->bi_iter.bi_sector,
129                                      sectors));
130         }
131
132         op->insert_data_done = true;
133         /* get in bch_data_insert() */
134         bio_put(bio);
135 out:
136         continue_at(cl, bch_data_insert_keys, op->wq);
137 }
138
139 static void bch_data_insert_error(struct closure *cl)
140 {
141         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
142
143         /*
144          * Our data write just errored, which means we've got a bunch of keys to
145          * insert that point to data that wasn't successfully written.
146          *
147          * We don't have to insert those keys but we still have to invalidate
148          * that region of the cache - so, if we just strip off all the pointers
149          * from the keys we'll accomplish just that.
150          */
151
152         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
153
154         while (src != op->insert_keys.top) {
155                 struct bkey *n = bkey_next(src);
156
157                 SET_KEY_PTRS(src, 0);
158                 memmove(dst, src, bkey_bytes(src));
159
160                 dst = bkey_next(dst);
161                 src = n;
162         }
163
164         op->insert_keys.top = dst;
165
166         bch_data_insert_keys(cl);
167 }
168
169 static void bch_data_insert_endio(struct bio *bio)
170 {
171         struct closure *cl = bio->bi_private;
172         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
173
174         if (bio->bi_status) {
175                 /* TODO: We could try to recover from this. */
176                 if (op->writeback)
177                         op->status = bio->bi_status;
178                 else if (!op->replace)
179                         set_closure_fn(cl, bch_data_insert_error, op->wq);
180                 else
181                         set_closure_fn(cl, NULL, NULL);
182         }
183
184         bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
185 }
186
187 static void bch_data_insert_start(struct closure *cl)
188 {
189         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
190         struct bio *bio = op->bio, *n;
191
192         if (op->bypass)
193                 return bch_data_invalidate(cl);
194
195         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
196                 wake_up_gc(op->c);
197
198         /*
199          * Journal writes are marked REQ_PREFLUSH; if the original write was a
200          * flush, it'll wait on the journal write.
201          */
202         bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
203
204         do {
205                 unsigned int i;
206                 struct bkey *k;
207                 struct bio_set *split = &op->c->bio_split;
208
209                 /* 1 for the device pointer and 1 for the chksum */
210                 if (bch_keylist_realloc(&op->insert_keys,
211                                         3 + (op->csum ? 1 : 0),
212                                         op->c)) {
213                         continue_at(cl, bch_data_insert_keys, op->wq);
214                         return;
215                 }
216
217                 k = op->insert_keys.top;
218                 bkey_init(k);
219                 SET_KEY_INODE(k, op->inode);
220                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
221
222                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
223                                        op->write_point, op->write_prio,
224                                        op->writeback))
225                         goto err;
226
227                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
228
229                 n->bi_end_io    = bch_data_insert_endio;
230                 n->bi_private   = cl;
231
232                 if (op->writeback) {
233                         SET_KEY_DIRTY(k, true);
234
235                         for (i = 0; i < KEY_PTRS(k); i++)
236                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
237                                             GC_MARK_DIRTY);
238                 }
239
240                 SET_KEY_CSUM(k, op->csum);
241                 if (KEY_CSUM(k))
242                         bio_csum(n, k);
243
244                 trace_bcache_cache_insert(k);
245                 bch_keylist_push(&op->insert_keys);
246
247                 n->bi_opf = REQ_OP_WRITE;
248                 bch_submit_bbio(n, op->c, k, 0);
249         } while (n != bio);
250
251         op->insert_data_done = true;
252         continue_at(cl, bch_data_insert_keys, op->wq);
253         return;
254 err:
255         /* bch_alloc_sectors() blocks if s->writeback = true */
256         BUG_ON(op->writeback);
257
258         /*
259          * But if it's not a writeback write we'd rather just bail out if
260          * there aren't any buckets ready to write to - it might take awhile and
261          * we might be starving btree writes for gc or something.
262          */
263
264         if (!op->replace) {
265                 /*
266                  * Writethrough write: We can't complete the write until we've
267                  * updated the index. But we don't want to delay the write while
268                  * we wait for buckets to be freed up, so just invalidate the
269                  * rest of the write.
270                  */
271                 op->bypass = true;
272                 return bch_data_invalidate(cl);
273         } else {
274                 /*
275                  * From a cache miss, we can just insert the keys for the data
276                  * we have written or bail out if we didn't do anything.
277                  */
278                 op->insert_data_done = true;
279                 bio_put(bio);
280
281                 if (!bch_keylist_empty(&op->insert_keys))
282                         continue_at(cl, bch_data_insert_keys, op->wq);
283                 else
284                         closure_return(cl);
285         }
286 }
287
288 /**
289  * bch_data_insert - stick some data in the cache
290  * @cl: closure pointer.
291  *
292  * This is the starting point for any data to end up in a cache device; it could
293  * be from a normal write, or a writeback write, or a write to a flash only
294  * volume - it's also used by the moving garbage collector to compact data in
295  * mostly empty buckets.
296  *
297  * It first writes the data to the cache, creating a list of keys to be inserted
298  * (if the data had to be fragmented there will be multiple keys); after the
299  * data is written it calls bch_journal, and after the keys have been added to
300  * the next journal write they're inserted into the btree.
301  *
302  * It inserts the data in op->bio; bi_sector is used for the key offset,
303  * and op->inode is used for the key inode.
304  *
305  * If op->bypass is true, instead of inserting the data it invalidates the
306  * region of the cache represented by op->bio and op->inode.
307  */
308 void bch_data_insert(struct closure *cl)
309 {
310         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
311
312         trace_bcache_write(op->c, op->inode, op->bio,
313                            op->writeback, op->bypass);
314
315         bch_keylist_init(&op->insert_keys);
316         bio_get(op->bio);
317         bch_data_insert_start(cl);
318 }
319
320 /*
321  * Congested?  Return 0 (not congested) or the limit (in sectors)
322  * beyond which we should bypass the cache due to congestion.
323  */
324 unsigned int bch_get_congested(const struct cache_set *c)
325 {
326         int i;
327
328         if (!c->congested_read_threshold_us &&
329             !c->congested_write_threshold_us)
330                 return 0;
331
332         i = (local_clock_us() - c->congested_last_us) / 1024;
333         if (i < 0)
334                 return 0;
335
336         i += atomic_read(&c->congested);
337         if (i >= 0)
338                 return 0;
339
340         i += CONGESTED_MAX;
341
342         if (i > 0)
343                 i = fract_exp_two(i, 6);
344
345         i -= hweight32(get_random_u32());
346
347         return i > 0 ? i : 1;
348 }
349
350 static void add_sequential(struct task_struct *t)
351 {
352         ewma_add(t->sequential_io_avg,
353                  t->sequential_io, 8, 0);
354
355         t->sequential_io = 0;
356 }
357
358 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
359 {
360         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
361 }
362
363 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
364 {
365         struct cache_set *c = dc->disk.c;
366         unsigned int mode = cache_mode(dc);
367         unsigned int sectors, congested;
368         struct task_struct *task = current;
369         struct io *i;
370
371         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
372             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
373             (bio_op(bio) == REQ_OP_DISCARD))
374                 goto skip;
375
376         if (mode == CACHE_MODE_NONE ||
377             (mode == CACHE_MODE_WRITEAROUND &&
378              op_is_write(bio_op(bio))))
379                 goto skip;
380
381         /*
382          * If the bio is for read-ahead or background IO, bypass it or
383          * not depends on the following situations,
384          * - If the IO is for meta data, always cache it and no bypass
385          * - If the IO is not meta data, check dc->cache_reada_policy,
386          *      BCH_CACHE_READA_ALL: cache it and not bypass
387          *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
388          * That is, read-ahead request for metadata always get cached
389          * (eg, for gfs2 or xfs).
390          */
391         if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
392                 if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
393                     (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
394                         goto skip;
395         }
396
397         if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
398             bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
399                 pr_debug("skipping unaligned io\n");
400                 goto skip;
401         }
402
403         if (bypass_torture_test(dc)) {
404                 if (get_random_u32_below(4) == 3)
405                         goto skip;
406                 else
407                         goto rescale;
408         }
409
410         congested = bch_get_congested(c);
411         if (!congested && !dc->sequential_cutoff)
412                 goto rescale;
413
414         spin_lock(&dc->io_lock);
415
416         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
417                 if (i->last == bio->bi_iter.bi_sector &&
418                     time_before(jiffies, i->jiffies))
419                         goto found;
420
421         i = list_first_entry(&dc->io_lru, struct io, lru);
422
423         add_sequential(task);
424         i->sequential = 0;
425 found:
426         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
427                 i->sequential   += bio->bi_iter.bi_size;
428
429         i->last                  = bio_end_sector(bio);
430         i->jiffies               = jiffies + msecs_to_jiffies(5000);
431         task->sequential_io      = i->sequential;
432
433         hlist_del(&i->hash);
434         hlist_add_head(&i->hash, iohash(dc, i->last));
435         list_move_tail(&i->lru, &dc->io_lru);
436
437         spin_unlock(&dc->io_lock);
438
439         sectors = max(task->sequential_io,
440                       task->sequential_io_avg) >> 9;
441
442         if (dc->sequential_cutoff &&
443             sectors >= dc->sequential_cutoff >> 9) {
444                 trace_bcache_bypass_sequential(bio);
445                 goto skip;
446         }
447
448         if (congested && sectors >= congested) {
449                 trace_bcache_bypass_congested(bio);
450                 goto skip;
451         }
452
453 rescale:
454         bch_rescale_priorities(c, bio_sectors(bio));
455         return false;
456 skip:
457         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
458         return true;
459 }
460
461 /* Cache lookup */
462
463 struct search {
464         /* Stack frame for bio_complete */
465         struct closure          cl;
466
467         struct bbio             bio;
468         struct bio              *orig_bio;
469         struct bio              *cache_miss;
470         struct bcache_device    *d;
471
472         unsigned int            insert_bio_sectors;
473         unsigned int            recoverable:1;
474         unsigned int            write:1;
475         unsigned int            read_dirty_data:1;
476         unsigned int            cache_missed:1;
477
478         struct block_device     *orig_bdev;
479         unsigned long           start_time;
480
481         struct btree_op         op;
482         struct data_insert_op   iop;
483 };
484
485 static void bch_cache_read_endio(struct bio *bio)
486 {
487         struct bbio *b = container_of(bio, struct bbio, bio);
488         struct closure *cl = bio->bi_private;
489         struct search *s = container_of(cl, struct search, cl);
490
491         /*
492          * If the bucket was reused while our bio was in flight, we might have
493          * read the wrong data. Set s->error but not error so it doesn't get
494          * counted against the cache device, but we'll still reread the data
495          * from the backing device.
496          */
497
498         if (bio->bi_status)
499                 s->iop.status = bio->bi_status;
500         else if (!KEY_DIRTY(&b->key) &&
501                  ptr_stale(s->iop.c, &b->key, 0)) {
502                 atomic_long_inc(&s->iop.c->cache_read_races);
503                 s->iop.status = BLK_STS_IOERR;
504         }
505
506         bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
507 }
508
509 /*
510  * Read from a single key, handling the initial cache miss if the key starts in
511  * the middle of the bio
512  */
513 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
514 {
515         struct search *s = container_of(op, struct search, op);
516         struct bio *n, *bio = &s->bio.bio;
517         struct bkey *bio_key;
518         unsigned int ptr;
519
520         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
521                 return MAP_CONTINUE;
522
523         if (KEY_INODE(k) != s->iop.inode ||
524             KEY_START(k) > bio->bi_iter.bi_sector) {
525                 unsigned int bio_sectors = bio_sectors(bio);
526                 unsigned int sectors = KEY_INODE(k) == s->iop.inode
527                         ? min_t(uint64_t, INT_MAX,
528                                 KEY_START(k) - bio->bi_iter.bi_sector)
529                         : INT_MAX;
530                 int ret = s->d->cache_miss(b, s, bio, sectors);
531
532                 if (ret != MAP_CONTINUE)
533                         return ret;
534
535                 /* if this was a complete miss we shouldn't get here */
536                 BUG_ON(bio_sectors <= sectors);
537         }
538
539         if (!KEY_SIZE(k))
540                 return MAP_CONTINUE;
541
542         /* XXX: figure out best pointer - for multiple cache devices */
543         ptr = 0;
544
545         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
546
547         if (KEY_DIRTY(k))
548                 s->read_dirty_data = true;
549
550         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
551                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
552                            GFP_NOIO, &s->d->bio_split);
553
554         bio_key = &container_of(n, struct bbio, bio)->key;
555         bch_bkey_copy_single_ptr(bio_key, k, ptr);
556
557         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
558         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
559
560         n->bi_end_io    = bch_cache_read_endio;
561         n->bi_private   = &s->cl;
562
563         /*
564          * The bucket we're reading from might be reused while our bio
565          * is in flight, and we could then end up reading the wrong
566          * data.
567          *
568          * We guard against this by checking (in cache_read_endio()) if
569          * the pointer is stale again; if so, we treat it as an error
570          * and reread from the backing device (but we don't pass that
571          * error up anywhere).
572          */
573
574         __bch_submit_bbio(n, b->c);
575         return n == bio ? MAP_DONE : MAP_CONTINUE;
576 }
577
578 static void cache_lookup(struct closure *cl)
579 {
580         struct search *s = container_of(cl, struct search, iop.cl);
581         struct bio *bio = &s->bio.bio;
582         struct cached_dev *dc;
583         int ret;
584
585         bch_btree_op_init(&s->op, -1);
586
587         ret = bch_btree_map_keys(&s->op, s->iop.c,
588                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
589                                  cache_lookup_fn, MAP_END_KEY);
590         if (ret == -EAGAIN) {
591                 continue_at(cl, cache_lookup, bcache_wq);
592                 return;
593         }
594
595         /*
596          * We might meet err when searching the btree, If that happens, we will
597          * get negative ret, in this scenario we should not recover data from
598          * backing device (when cache device is dirty) because we don't know
599          * whether bkeys the read request covered are all clean.
600          *
601          * And after that happened, s->iop.status is still its initial value
602          * before we submit s->bio.bio
603          */
604         if (ret < 0) {
605                 BUG_ON(ret == -EINTR);
606                 if (s->d && s->d->c &&
607                                 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
608                         dc = container_of(s->d, struct cached_dev, disk);
609                         if (dc && atomic_read(&dc->has_dirty))
610                                 s->recoverable = false;
611                 }
612                 if (!s->iop.status)
613                         s->iop.status = BLK_STS_IOERR;
614         }
615
616         closure_return(cl);
617 }
618
619 /* Common code for the make_request functions */
620
621 static void request_endio(struct bio *bio)
622 {
623         struct closure *cl = bio->bi_private;
624
625         if (bio->bi_status) {
626                 struct search *s = container_of(cl, struct search, cl);
627
628                 s->iop.status = bio->bi_status;
629                 /* Only cache read errors are recoverable */
630                 s->recoverable = false;
631         }
632
633         bio_put(bio);
634         closure_put(cl);
635 }
636
637 static void backing_request_endio(struct bio *bio)
638 {
639         struct closure *cl = bio->bi_private;
640
641         if (bio->bi_status) {
642                 struct search *s = container_of(cl, struct search, cl);
643                 struct cached_dev *dc = container_of(s->d,
644                                                      struct cached_dev, disk);
645                 /*
646                  * If a bio has REQ_PREFLUSH for writeback mode, it is
647                  * speically assembled in cached_dev_write() for a non-zero
648                  * write request which has REQ_PREFLUSH. we don't set
649                  * s->iop.status by this failure, the status will be decided
650                  * by result of bch_data_insert() operation.
651                  */
652                 if (unlikely(s->iop.writeback &&
653                              bio->bi_opf & REQ_PREFLUSH)) {
654                         pr_err("Can't flush %pg: returned bi_status %i\n",
655                                 dc->bdev, bio->bi_status);
656                 } else {
657                         /* set to orig_bio->bi_status in bio_complete() */
658                         s->iop.status = bio->bi_status;
659                 }
660                 s->recoverable = false;
661                 /* should count I/O error for backing device here */
662                 bch_count_backing_io_errors(dc, bio);
663         }
664
665         bio_put(bio);
666         closure_put(cl);
667 }
668
669 static void bio_complete(struct search *s)
670 {
671         if (s->orig_bio) {
672                 /* Count on bcache device */
673                 bio_end_io_acct_remapped(s->orig_bio, s->start_time,
674                                          s->orig_bdev);
675                 trace_bcache_request_end(s->d, s->orig_bio);
676                 s->orig_bio->bi_status = s->iop.status;
677                 bio_endio(s->orig_bio);
678                 s->orig_bio = NULL;
679         }
680 }
681
682 static void do_bio_hook(struct search *s,
683                         struct bio *orig_bio,
684                         bio_end_io_t *end_io_fn)
685 {
686         struct bio *bio = &s->bio.bio;
687
688         bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
689         /*
690          * bi_end_io can be set separately somewhere else, e.g. the
691          * variants in,
692          * - cache_bio->bi_end_io from cached_dev_cache_miss()
693          * - n->bi_end_io from cache_lookup_fn()
694          */
695         bio->bi_end_io          = end_io_fn;
696         bio->bi_private         = &s->cl;
697
698         bio_cnt_set(bio, 3);
699 }
700
701 static void search_free(struct closure *cl)
702 {
703         struct search *s = container_of(cl, struct search, cl);
704
705         atomic_dec(&s->iop.c->search_inflight);
706
707         if (s->iop.bio)
708                 bio_put(s->iop.bio);
709
710         bio_complete(s);
711         closure_debug_destroy(cl);
712         mempool_free(s, &s->iop.c->search);
713 }
714
715 static inline struct search *search_alloc(struct bio *bio,
716                 struct bcache_device *d, struct block_device *orig_bdev,
717                 unsigned long start_time)
718 {
719         struct search *s;
720
721         s = mempool_alloc(&d->c->search, GFP_NOIO);
722
723         closure_init(&s->cl, NULL);
724         do_bio_hook(s, bio, request_endio);
725         atomic_inc(&d->c->search_inflight);
726
727         s->orig_bio             = bio;
728         s->cache_miss           = NULL;
729         s->cache_missed         = 0;
730         s->d                    = d;
731         s->recoverable          = 1;
732         s->write                = op_is_write(bio_op(bio));
733         s->read_dirty_data      = 0;
734         /* Count on the bcache device */
735         s->orig_bdev            = orig_bdev;
736         s->start_time           = start_time;
737         s->iop.c                = d->c;
738         s->iop.bio              = NULL;
739         s->iop.inode            = d->id;
740         s->iop.write_point      = hash_long((unsigned long) current, 16);
741         s->iop.write_prio       = 0;
742         s->iop.status           = 0;
743         s->iop.flags            = 0;
744         s->iop.flush_journal    = op_is_flush(bio->bi_opf);
745         s->iop.wq               = bcache_wq;
746
747         return s;
748 }
749
750 /* Cached devices */
751
752 static void cached_dev_bio_complete(struct closure *cl)
753 {
754         struct search *s = container_of(cl, struct search, cl);
755         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
756
757         cached_dev_put(dc);
758         search_free(cl);
759 }
760
761 /* Process reads */
762
763 static void cached_dev_read_error_done(struct closure *cl)
764 {
765         struct search *s = container_of(cl, struct search, cl);
766
767         if (s->iop.replace_collision)
768                 bch_mark_cache_miss_collision(s->iop.c, s->d);
769
770         if (s->iop.bio)
771                 bio_free_pages(s->iop.bio);
772
773         cached_dev_bio_complete(cl);
774 }
775
776 static void cached_dev_read_error(struct closure *cl)
777 {
778         struct search *s = container_of(cl, struct search, cl);
779         struct bio *bio = &s->bio.bio;
780
781         /*
782          * If read request hit dirty data (s->read_dirty_data is true),
783          * then recovery a failed read request from cached device may
784          * get a stale data back. So read failure recovery is only
785          * permitted when read request hit clean data in cache device,
786          * or when cache read race happened.
787          */
788         if (s->recoverable && !s->read_dirty_data) {
789                 /* Retry from the backing device: */
790                 trace_bcache_read_retry(s->orig_bio);
791
792                 s->iop.status = 0;
793                 do_bio_hook(s, s->orig_bio, backing_request_endio);
794
795                 /* XXX: invalidate cache */
796
797                 /* I/O request sent to backing device */
798                 closure_bio_submit(s->iop.c, bio, cl);
799         }
800
801         continue_at(cl, cached_dev_read_error_done, NULL);
802 }
803
804 static void cached_dev_cache_miss_done(struct closure *cl)
805 {
806         struct search *s = container_of(cl, struct search, cl);
807         struct bcache_device *d = s->d;
808
809         if (s->iop.replace_collision)
810                 bch_mark_cache_miss_collision(s->iop.c, s->d);
811
812         if (s->iop.bio)
813                 bio_free_pages(s->iop.bio);
814
815         cached_dev_bio_complete(cl);
816         closure_put(&d->cl);
817 }
818
819 static void cached_dev_read_done(struct closure *cl)
820 {
821         struct search *s = container_of(cl, struct search, cl);
822         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
823
824         /*
825          * We had a cache miss; cache_bio now contains data ready to be inserted
826          * into the cache.
827          *
828          * First, we copy the data we just read from cache_bio's bounce buffers
829          * to the buffers the original bio pointed to:
830          */
831
832         if (s->iop.bio) {
833                 bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
834                 s->iop.bio->bi_iter.bi_sector =
835                         s->cache_miss->bi_iter.bi_sector;
836                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
837                 bio_clone_blkg_association(s->iop.bio, s->cache_miss);
838                 bch_bio_map(s->iop.bio, NULL);
839
840                 bio_copy_data(s->cache_miss, s->iop.bio);
841
842                 bio_put(s->cache_miss);
843                 s->cache_miss = NULL;
844         }
845
846         if (verify(dc) && s->recoverable && !s->read_dirty_data)
847                 bch_data_verify(dc, s->orig_bio);
848
849         closure_get(&dc->disk.cl);
850         bio_complete(s);
851
852         if (s->iop.bio &&
853             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
854                 BUG_ON(!s->iop.replace);
855                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
856         }
857
858         continue_at(cl, cached_dev_cache_miss_done, NULL);
859 }
860
861 static void cached_dev_read_done_bh(struct closure *cl)
862 {
863         struct search *s = container_of(cl, struct search, cl);
864         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
865
866         bch_mark_cache_accounting(s->iop.c, s->d,
867                                   !s->cache_missed, s->iop.bypass);
868         trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
869
870         if (s->iop.status)
871                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
872         else if (s->iop.bio || verify(dc))
873                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
874         else
875                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
876 }
877
878 static int cached_dev_cache_miss(struct btree *b, struct search *s,
879                                  struct bio *bio, unsigned int sectors)
880 {
881         int ret = MAP_CONTINUE;
882         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
883         struct bio *miss, *cache_bio;
884         unsigned int size_limit;
885
886         s->cache_missed = 1;
887
888         if (s->cache_miss || s->iop.bypass) {
889                 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
890                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
891                 goto out_submit;
892         }
893
894         /* Limitation for valid replace key size and cache_bio bvecs number */
895         size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
896                            (1 << KEY_SIZE_BITS) - 1);
897         s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
898
899         s->iop.replace_key = KEY(s->iop.inode,
900                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
901                                  s->insert_bio_sectors);
902
903         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
904         if (ret)
905                 return ret;
906
907         s->iop.replace = true;
908
909         miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
910                               &s->d->bio_split);
911
912         /* btree_search_recurse()'s btree iterator is no good anymore */
913         ret = miss == bio ? MAP_DONE : -EINTR;
914
915         cache_bio = bio_alloc_bioset(miss->bi_bdev,
916                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
917                         0, GFP_NOWAIT, &dc->disk.bio_split);
918         if (!cache_bio)
919                 goto out_submit;
920
921         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
922         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
923
924         cache_bio->bi_end_io    = backing_request_endio;
925         cache_bio->bi_private   = &s->cl;
926
927         bch_bio_map(cache_bio, NULL);
928         if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
929                 goto out_put;
930
931         s->cache_miss   = miss;
932         s->iop.bio      = cache_bio;
933         bio_get(cache_bio);
934         /* I/O request sent to backing device */
935         closure_bio_submit(s->iop.c, cache_bio, &s->cl);
936
937         return ret;
938 out_put:
939         bio_put(cache_bio);
940 out_submit:
941         miss->bi_end_io         = backing_request_endio;
942         miss->bi_private        = &s->cl;
943         /* I/O request sent to backing device */
944         closure_bio_submit(s->iop.c, miss, &s->cl);
945         return ret;
946 }
947
948 static void cached_dev_read(struct cached_dev *dc, struct search *s)
949 {
950         struct closure *cl = &s->cl;
951
952         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
953         continue_at(cl, cached_dev_read_done_bh, NULL);
954 }
955
956 /* Process writes */
957
958 static void cached_dev_write_complete(struct closure *cl)
959 {
960         struct search *s = container_of(cl, struct search, cl);
961         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
962
963         up_read_non_owner(&dc->writeback_lock);
964         cached_dev_bio_complete(cl);
965 }
966
967 static void cached_dev_write(struct cached_dev *dc, struct search *s)
968 {
969         struct closure *cl = &s->cl;
970         struct bio *bio = &s->bio.bio;
971         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
972         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
973
974         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
975
976         down_read_non_owner(&dc->writeback_lock);
977         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
978                 /*
979                  * We overlap with some dirty data undergoing background
980                  * writeback, force this write to writeback
981                  */
982                 s->iop.bypass = false;
983                 s->iop.writeback = true;
984         }
985
986         /*
987          * Discards aren't _required_ to do anything, so skipping if
988          * check_overlapping returned true is ok
989          *
990          * But check_overlapping drops dirty keys for which io hasn't started,
991          * so we still want to call it.
992          */
993         if (bio_op(bio) == REQ_OP_DISCARD)
994                 s->iop.bypass = true;
995
996         if (should_writeback(dc, s->orig_bio,
997                              cache_mode(dc),
998                              s->iop.bypass)) {
999                 s->iop.bypass = false;
1000                 s->iop.writeback = true;
1001         }
1002
1003         if (s->iop.bypass) {
1004                 s->iop.bio = s->orig_bio;
1005                 bio_get(s->iop.bio);
1006
1007                 if (bio_op(bio) == REQ_OP_DISCARD &&
1008                     !bdev_max_discard_sectors(dc->bdev))
1009                         goto insert_data;
1010
1011                 /* I/O request sent to backing device */
1012                 bio->bi_end_io = backing_request_endio;
1013                 closure_bio_submit(s->iop.c, bio, cl);
1014
1015         } else if (s->iop.writeback) {
1016                 bch_writeback_add(dc);
1017                 s->iop.bio = bio;
1018
1019                 if (bio->bi_opf & REQ_PREFLUSH) {
1020                         /*
1021                          * Also need to send a flush to the backing
1022                          * device.
1023                          */
1024                         struct bio *flush;
1025
1026                         flush = bio_alloc_bioset(bio->bi_bdev, 0,
1027                                                  REQ_OP_WRITE | REQ_PREFLUSH,
1028                                                  GFP_NOIO, &dc->disk.bio_split);
1029                         if (!flush) {
1030                                 s->iop.status = BLK_STS_RESOURCE;
1031                                 goto insert_data;
1032                         }
1033                         flush->bi_end_io = backing_request_endio;
1034                         flush->bi_private = cl;
1035                         /* I/O request sent to backing device */
1036                         closure_bio_submit(s->iop.c, flush, cl);
1037                 }
1038         } else {
1039                 s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1040                                              &dc->disk.bio_split);
1041                 /* I/O request sent to backing device */
1042                 bio->bi_end_io = backing_request_endio;
1043                 closure_bio_submit(s->iop.c, bio, cl);
1044         }
1045
1046 insert_data:
1047         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1048         continue_at(cl, cached_dev_write_complete, NULL);
1049 }
1050
1051 static void cached_dev_nodata(struct closure *cl)
1052 {
1053         struct search *s = container_of(cl, struct search, cl);
1054         struct bio *bio = &s->bio.bio;
1055
1056         if (s->iop.flush_journal)
1057                 bch_journal_meta(s->iop.c, cl);
1058
1059         /* If it's a flush, we send the flush to the backing device too */
1060         bio->bi_end_io = backing_request_endio;
1061         closure_bio_submit(s->iop.c, bio, cl);
1062
1063         continue_at(cl, cached_dev_bio_complete, NULL);
1064 }
1065
1066 struct detached_dev_io_private {
1067         struct bcache_device    *d;
1068         unsigned long           start_time;
1069         bio_end_io_t            *bi_end_io;
1070         void                    *bi_private;
1071         struct block_device     *orig_bdev;
1072 };
1073
1074 static void detached_dev_end_io(struct bio *bio)
1075 {
1076         struct detached_dev_io_private *ddip;
1077
1078         ddip = bio->bi_private;
1079         bio->bi_end_io = ddip->bi_end_io;
1080         bio->bi_private = ddip->bi_private;
1081
1082         /* Count on the bcache device */
1083         bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
1084
1085         if (bio->bi_status) {
1086                 struct cached_dev *dc = container_of(ddip->d,
1087                                                      struct cached_dev, disk);
1088                 /* should count I/O error for backing device here */
1089                 bch_count_backing_io_errors(dc, bio);
1090         }
1091
1092         kfree(ddip);
1093         bio->bi_end_io(bio);
1094 }
1095
1096 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
1097                 struct block_device *orig_bdev, unsigned long start_time)
1098 {
1099         struct detached_dev_io_private *ddip;
1100         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1101
1102         /*
1103          * no need to call closure_get(&dc->disk.cl),
1104          * because upper layer had already opened bcache device,
1105          * which would call closure_get(&dc->disk.cl)
1106          */
1107         ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1108         if (!ddip) {
1109                 bio->bi_status = BLK_STS_RESOURCE;
1110                 bio->bi_end_io(bio);
1111                 return;
1112         }
1113
1114         ddip->d = d;
1115         /* Count on the bcache device */
1116         ddip->orig_bdev = orig_bdev;
1117         ddip->start_time = start_time;
1118         ddip->bi_end_io = bio->bi_end_io;
1119         ddip->bi_private = bio->bi_private;
1120         bio->bi_end_io = detached_dev_end_io;
1121         bio->bi_private = ddip;
1122
1123         if ((bio_op(bio) == REQ_OP_DISCARD) &&
1124             !bdev_max_discard_sectors(dc->bdev))
1125                 bio->bi_end_io(bio);
1126         else
1127                 submit_bio_noacct(bio);
1128 }
1129
1130 static void quit_max_writeback_rate(struct cache_set *c,
1131                                     struct cached_dev *this_dc)
1132 {
1133         int i;
1134         struct bcache_device *d;
1135         struct cached_dev *dc;
1136
1137         /*
1138          * mutex bch_register_lock may compete with other parallel requesters,
1139          * or attach/detach operations on other backing device. Waiting to
1140          * the mutex lock may increase I/O request latency for seconds or more.
1141          * To avoid such situation, if mutext_trylock() failed, only writeback
1142          * rate of current cached device is set to 1, and __update_write_back()
1143          * will decide writeback rate of other cached devices (remember now
1144          * c->idle_counter is 0 already).
1145          */
1146         if (mutex_trylock(&bch_register_lock)) {
1147                 for (i = 0; i < c->devices_max_used; i++) {
1148                         if (!c->devices[i])
1149                                 continue;
1150
1151                         if (UUID_FLASH_ONLY(&c->uuids[i]))
1152                                 continue;
1153
1154                         d = c->devices[i];
1155                         dc = container_of(d, struct cached_dev, disk);
1156                         /*
1157                          * set writeback rate to default minimum value,
1158                          * then let update_writeback_rate() to decide the
1159                          * upcoming rate.
1160                          */
1161                         atomic_long_set(&dc->writeback_rate.rate, 1);
1162                 }
1163                 mutex_unlock(&bch_register_lock);
1164         } else
1165                 atomic_long_set(&this_dc->writeback_rate.rate, 1);
1166 }
1167
1168 /* Cached devices - read & write stuff */
1169
1170 void cached_dev_submit_bio(struct bio *bio)
1171 {
1172         struct search *s;
1173         struct block_device *orig_bdev = bio->bi_bdev;
1174         struct bcache_device *d = orig_bdev->bd_disk->private_data;
1175         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1176         unsigned long start_time;
1177         int rw = bio_data_dir(bio);
1178
1179         if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1180                      dc->io_disable)) {
1181                 bio->bi_status = BLK_STS_IOERR;
1182                 bio_endio(bio);
1183                 return;
1184         }
1185
1186         if (likely(d->c)) {
1187                 if (atomic_read(&d->c->idle_counter))
1188                         atomic_set(&d->c->idle_counter, 0);
1189                 /*
1190                  * If at_max_writeback_rate of cache set is true and new I/O
1191                  * comes, quit max writeback rate of all cached devices
1192                  * attached to this cache set, and set at_max_writeback_rate
1193                  * to false.
1194                  */
1195                 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1196                         atomic_set(&d->c->at_max_writeback_rate, 0);
1197                         quit_max_writeback_rate(d->c, dc);
1198                 }
1199         }
1200
1201         start_time = bio_start_io_acct(bio);
1202
1203         bio_set_dev(bio, dc->bdev);
1204         bio->bi_iter.bi_sector += dc->sb.data_offset;
1205
1206         if (cached_dev_get(dc)) {
1207                 s = search_alloc(bio, d, orig_bdev, start_time);
1208                 trace_bcache_request_start(s->d, bio);
1209
1210                 if (!bio->bi_iter.bi_size) {
1211                         /*
1212                          * can't call bch_journal_meta from under
1213                          * submit_bio_noacct
1214                          */
1215                         continue_at_nobarrier(&s->cl,
1216                                               cached_dev_nodata,
1217                                               bcache_wq);
1218                 } else {
1219                         s->iop.bypass = check_should_bypass(dc, bio);
1220
1221                         if (rw)
1222                                 cached_dev_write(dc, s);
1223                         else
1224                                 cached_dev_read(dc, s);
1225                 }
1226         } else
1227                 /* I/O request sent to backing device */
1228                 detached_dev_do_request(d, bio, orig_bdev, start_time);
1229 }
1230
1231 static int cached_dev_ioctl(struct bcache_device *d, blk_mode_t mode,
1232                             unsigned int cmd, unsigned long arg)
1233 {
1234         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1235
1236         if (dc->io_disable)
1237                 return -EIO;
1238         if (!dc->bdev->bd_disk->fops->ioctl)
1239                 return -ENOTTY;
1240         return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
1241 }
1242
1243 void bch_cached_dev_request_init(struct cached_dev *dc)
1244 {
1245         dc->disk.cache_miss                     = cached_dev_cache_miss;
1246         dc->disk.ioctl                          = cached_dev_ioctl;
1247 }
1248
1249 /* Flash backed devices */
1250
1251 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1252                                 struct bio *bio, unsigned int sectors)
1253 {
1254         unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1255
1256         swap(bio->bi_iter.bi_size, bytes);
1257         zero_fill_bio(bio);
1258         swap(bio->bi_iter.bi_size, bytes);
1259
1260         bio_advance(bio, bytes);
1261
1262         if (!bio->bi_iter.bi_size)
1263                 return MAP_DONE;
1264
1265         return MAP_CONTINUE;
1266 }
1267
1268 static void flash_dev_nodata(struct closure *cl)
1269 {
1270         struct search *s = container_of(cl, struct search, cl);
1271
1272         if (s->iop.flush_journal)
1273                 bch_journal_meta(s->iop.c, cl);
1274
1275         continue_at(cl, search_free, NULL);
1276 }
1277
1278 void flash_dev_submit_bio(struct bio *bio)
1279 {
1280         struct search *s;
1281         struct closure *cl;
1282         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1283
1284         if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1285                 bio->bi_status = BLK_STS_IOERR;
1286                 bio_endio(bio);
1287                 return;
1288         }
1289
1290         s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
1291         cl = &s->cl;
1292         bio = &s->bio.bio;
1293
1294         trace_bcache_request_start(s->d, bio);
1295
1296         if (!bio->bi_iter.bi_size) {
1297                 /*
1298                  * can't call bch_journal_meta from under submit_bio_noacct
1299                  */
1300                 continue_at_nobarrier(&s->cl,
1301                                       flash_dev_nodata,
1302                                       bcache_wq);
1303                 return;
1304         } else if (bio_data_dir(bio)) {
1305                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1306                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1307                                         &KEY(d->id, bio_end_sector(bio), 0));
1308
1309                 s->iop.bypass           = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1310                 s->iop.writeback        = true;
1311                 s->iop.bio              = bio;
1312
1313                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1314         } else {
1315                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1316         }
1317
1318         continue_at(cl, search_free, NULL);
1319 }
1320
1321 static int flash_dev_ioctl(struct bcache_device *d, blk_mode_t mode,
1322                            unsigned int cmd, unsigned long arg)
1323 {
1324         return -ENOTTY;
1325 }
1326
1327 void bch_flash_dev_request_init(struct bcache_device *d)
1328 {
1329         d->cache_miss                           = flash_dev_cache_miss;
1330         d->ioctl                                = flash_dev_ioctl;
1331 }
1332
1333 void bch_request_exit(void)
1334 {
1335         kmem_cache_destroy(bch_search_cache);
1336 }
1337
1338 int __init bch_request_init(void)
1339 {
1340         bch_search_cache = KMEM_CACHE(search, 0);
1341         if (!bch_search_cache)
1342                 return -ENOMEM;
1343
1344         return 0;
1345 }
This page took 0.110819 seconds and 4 git commands to generate.