2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
90 EXPORT_SYMBOL(ib_event_msg);
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
119 size_t index = status;
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
124 EXPORT_SYMBOL(ib_wc_status_msg);
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
153 EXPORT_SYMBOL(ib_rate_to_mult);
155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
182 EXPORT_SYMBOL(mult_to_ib_rate);
184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
211 EXPORT_SYMBOL(ib_rate_to_mbps);
213 __attribute_const__ enum rdma_transport_type
214 rdma_node_get_transport(unsigned int node_type)
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
226 return RDMA_TRANSPORT_IB;
228 EXPORT_SYMBOL(rdma_node_get_transport);
230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
233 enum rdma_transport_type lt;
234 if (device->ops.get_link_layer)
235 return device->ops.get_link_layer(device, port_num);
237 lt = rdma_node_get_transport(device->node_type);
238 if (lt == RDMA_TRANSPORT_IB)
239 return IB_LINK_LAYER_INFINIBAND;
241 return IB_LINK_LAYER_ETHERNET;
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
245 /* Protection domains */
248 * __ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 * @flags: protection domain flags
251 * @caller: caller's build-time module name
253 * A protection domain object provides an association between QPs, shared
254 * receive queues, address handles, memory regions, and memory windows.
256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
263 int mr_access_flags = 0;
266 pd = rdma_zalloc_drv_obj(device, ib_pd);
268 return ERR_PTR(-ENOMEM);
273 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
274 rdma_restrack_set_name(&pd->res, caller);
276 ret = device->ops.alloc_pd(pd, NULL);
278 rdma_restrack_put(&pd->res);
282 rdma_restrack_add(&pd->res);
284 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
285 pd->local_dma_lkey = device->local_dma_lkey;
287 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
290 pr_warn("%s: enabling unsafe global rkey\n", caller);
291 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
294 if (mr_access_flags) {
297 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
303 mr->device = pd->device;
305 mr->type = IB_MR_TYPE_DMA;
307 mr->need_inval = false;
309 pd->__internal_mr = mr;
311 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
312 pd->local_dma_lkey = pd->__internal_mr->lkey;
314 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
315 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
320 EXPORT_SYMBOL(__ib_alloc_pd);
323 * ib_dealloc_pd_user - Deallocates a protection domain.
324 * @pd: The protection domain to deallocate.
325 * @udata: Valid user data or NULL for kernel object
327 * It is an error to call this function while any resources in the pd still
328 * exist. The caller is responsible to synchronously destroy them and
329 * guarantee no new allocations will happen.
331 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335 if (pd->__internal_mr) {
336 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
338 pd->__internal_mr = NULL;
341 ret = pd->device->ops.dealloc_pd(pd, udata);
345 rdma_restrack_del(&pd->res);
349 EXPORT_SYMBOL(ib_dealloc_pd_user);
351 /* Address handles */
354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
355 * @dest: Pointer to destination ah_attr. Contents of the destination
356 * pointer is assumed to be invalid and attribute are overwritten.
357 * @src: Pointer to source ah_attr.
359 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
360 const struct rdma_ah_attr *src)
363 if (dest->grh.sgid_attr)
364 rdma_hold_gid_attr(dest->grh.sgid_attr);
366 EXPORT_SYMBOL(rdma_copy_ah_attr);
369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
370 * @old: Pointer to existing ah_attr which needs to be replaced.
371 * old is assumed to be valid or zero'd
372 * @new: Pointer to the new ah_attr.
374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
375 * old the ah_attr is valid; after that it copies the new attribute and holds
376 * the reference to the replaced ah_attr.
378 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
379 const struct rdma_ah_attr *new)
381 rdma_destroy_ah_attr(old);
383 if (old->grh.sgid_attr)
384 rdma_hold_gid_attr(old->grh.sgid_attr);
386 EXPORT_SYMBOL(rdma_replace_ah_attr);
389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
390 * @dest: Pointer to destination ah_attr to copy to.
391 * dest is assumed to be valid or zero'd
392 * @src: Pointer to the new ah_attr.
394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
395 * if it is valid. This also transfers ownership of internal references from
396 * src to dest, making src invalid in the process. No new reference of the src
399 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
401 rdma_destroy_ah_attr(dest);
403 src->grh.sgid_attr = NULL;
405 EXPORT_SYMBOL(rdma_move_ah_attr);
408 * Validate that the rdma_ah_attr is valid for the device before passing it
411 static int rdma_check_ah_attr(struct ib_device *device,
412 struct rdma_ah_attr *ah_attr)
414 if (!rdma_is_port_valid(device, ah_attr->port_num))
417 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
418 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
419 !(ah_attr->ah_flags & IB_AH_GRH))
422 if (ah_attr->grh.sgid_attr) {
424 * Make sure the passed sgid_attr is consistent with the
427 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
428 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
436 * On success the caller is responsible to call rdma_unfill_sgid_attr().
438 static int rdma_fill_sgid_attr(struct ib_device *device,
439 struct rdma_ah_attr *ah_attr,
440 const struct ib_gid_attr **old_sgid_attr)
442 const struct ib_gid_attr *sgid_attr;
443 struct ib_global_route *grh;
446 *old_sgid_attr = ah_attr->grh.sgid_attr;
448 ret = rdma_check_ah_attr(device, ah_attr);
452 if (!(ah_attr->ah_flags & IB_AH_GRH))
455 grh = rdma_ah_retrieve_grh(ah_attr);
460 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
461 if (IS_ERR(sgid_attr))
462 return PTR_ERR(sgid_attr);
464 /* Move ownerhip of the kref into the ah_attr */
465 grh->sgid_attr = sgid_attr;
469 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
470 const struct ib_gid_attr *old_sgid_attr)
473 * Fill didn't change anything, the caller retains ownership of
476 if (ah_attr->grh.sgid_attr == old_sgid_attr)
480 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
481 * doesn't see any change in the rdma_ah_attr. If we get here
482 * old_sgid_attr is NULL.
484 rdma_destroy_ah_attr(ah_attr);
487 static const struct ib_gid_attr *
488 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
489 const struct ib_gid_attr *old_attr)
492 rdma_put_gid_attr(old_attr);
493 if (ah_attr->ah_flags & IB_AH_GRH) {
494 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
495 return ah_attr->grh.sgid_attr;
500 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
501 struct rdma_ah_attr *ah_attr,
503 struct ib_udata *udata,
504 struct net_device *xmit_slave)
506 struct rdma_ah_init_attr init_attr = {};
507 struct ib_device *device = pd->device;
511 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
513 if (!udata && !device->ops.create_ah)
514 return ERR_PTR(-EOPNOTSUPP);
516 ah = rdma_zalloc_drv_obj_gfp(
518 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
520 return ERR_PTR(-ENOMEM);
524 ah->type = ah_attr->type;
525 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
526 init_attr.ah_attr = ah_attr;
527 init_attr.flags = flags;
528 init_attr.xmit_slave = xmit_slave;
531 ret = device->ops.create_user_ah(ah, &init_attr, udata);
533 ret = device->ops.create_ah(ah, &init_attr, NULL);
536 rdma_put_gid_attr(ah->sgid_attr);
541 atomic_inc(&pd->usecnt);
546 * rdma_create_ah - Creates an address handle for the
547 * given address vector.
548 * @pd: The protection domain associated with the address handle.
549 * @ah_attr: The attributes of the address vector.
550 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
552 * It returns 0 on success and returns appropriate error code on error.
553 * The address handle is used to reference a local or global destination
554 * in all UD QP post sends.
556 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
559 const struct ib_gid_attr *old_sgid_attr;
560 struct net_device *slave;
564 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
567 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
568 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
569 GFP_KERNEL : GFP_ATOMIC);
571 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
572 return (void *)slave;
574 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
575 rdma_lag_put_ah_roce_slave(slave);
576 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
579 EXPORT_SYMBOL(rdma_create_ah);
582 * rdma_create_user_ah - Creates an address handle for the
583 * given address vector.
584 * It resolves destination mac address for ah attribute of RoCE type.
585 * @pd: The protection domain associated with the address handle.
586 * @ah_attr: The attributes of the address vector.
587 * @udata: pointer to user's input output buffer information need by
590 * It returns 0 on success and returns appropriate error code on error.
591 * The address handle is used to reference a local or global destination
592 * in all UD QP post sends.
594 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
595 struct rdma_ah_attr *ah_attr,
596 struct ib_udata *udata)
598 const struct ib_gid_attr *old_sgid_attr;
602 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
606 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
607 err = ib_resolve_eth_dmac(pd->device, ah_attr);
614 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
618 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
621 EXPORT_SYMBOL(rdma_create_user_ah);
623 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
625 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
626 struct iphdr ip4h_checked;
627 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
629 /* If it's IPv6, the version must be 6, otherwise, the first
630 * 20 bytes (before the IPv4 header) are garbled.
632 if (ip6h->version != 6)
633 return (ip4h->version == 4) ? 4 : 0;
634 /* version may be 6 or 4 because the first 20 bytes could be garbled */
636 /* RoCE v2 requires no options, thus header length
643 * We can't write on scattered buffers so we need to copy to
646 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
647 ip4h_checked.check = 0;
648 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
649 /* if IPv4 header checksum is OK, believe it */
650 if (ip4h->check == ip4h_checked.check)
654 EXPORT_SYMBOL(ib_get_rdma_header_version);
656 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
658 const struct ib_grh *grh)
662 if (rdma_protocol_ib(device, port_num))
663 return RDMA_NETWORK_IB;
665 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
667 if (grh_version == 4)
668 return RDMA_NETWORK_IPV4;
670 if (grh->next_hdr == IPPROTO_UDP)
671 return RDMA_NETWORK_IPV6;
673 return RDMA_NETWORK_ROCE_V1;
676 struct find_gid_index_context {
678 enum ib_gid_type gid_type;
681 static bool find_gid_index(const union ib_gid *gid,
682 const struct ib_gid_attr *gid_attr,
685 struct find_gid_index_context *ctx = context;
686 u16 vlan_id = 0xffff;
689 if (ctx->gid_type != gid_attr->gid_type)
692 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
696 return ctx->vlan_id == vlan_id;
699 static const struct ib_gid_attr *
700 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
701 u16 vlan_id, const union ib_gid *sgid,
702 enum ib_gid_type gid_type)
704 struct find_gid_index_context context = {.vlan_id = vlan_id,
705 .gid_type = gid_type};
707 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
711 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
712 enum rdma_network_type net_type,
713 union ib_gid *sgid, union ib_gid *dgid)
715 struct sockaddr_in src_in;
716 struct sockaddr_in dst_in;
717 __be32 src_saddr, dst_saddr;
722 if (net_type == RDMA_NETWORK_IPV4) {
723 memcpy(&src_in.sin_addr.s_addr,
724 &hdr->roce4grh.saddr, 4);
725 memcpy(&dst_in.sin_addr.s_addr,
726 &hdr->roce4grh.daddr, 4);
727 src_saddr = src_in.sin_addr.s_addr;
728 dst_saddr = dst_in.sin_addr.s_addr;
729 ipv6_addr_set_v4mapped(src_saddr,
730 (struct in6_addr *)sgid);
731 ipv6_addr_set_v4mapped(dst_saddr,
732 (struct in6_addr *)dgid);
734 } else if (net_type == RDMA_NETWORK_IPV6 ||
735 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
736 *dgid = hdr->ibgrh.dgid;
737 *sgid = hdr->ibgrh.sgid;
743 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
745 /* Resolve destination mac address and hop limit for unicast destination
746 * GID entry, considering the source GID entry as well.
747 * ah_attribute must have have valid port_num, sgid_index.
749 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
750 struct rdma_ah_attr *ah_attr)
752 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
753 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
754 int hop_limit = 0xff;
757 /* If destination is link local and source GID is RoCEv1,
758 * IP stack is not used.
760 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
761 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
762 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
767 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
769 sgid_attr, &hop_limit);
771 grh->hop_limit = hop_limit;
776 * This function initializes address handle attributes from the incoming packet.
777 * Incoming packet has dgid of the receiver node on which this code is
778 * getting executed and, sgid contains the GID of the sender.
780 * When resolving mac address of destination, the arrived dgid is used
781 * as sgid and, sgid is used as dgid because sgid contains destinations
782 * GID whom to respond to.
784 * On success the caller is responsible to call rdma_destroy_ah_attr on the
787 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
788 const struct ib_wc *wc, const struct ib_grh *grh,
789 struct rdma_ah_attr *ah_attr)
793 enum rdma_network_type net_type = RDMA_NETWORK_IB;
794 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
795 const struct ib_gid_attr *sgid_attr;
802 memset(ah_attr, 0, sizeof *ah_attr);
803 ah_attr->type = rdma_ah_find_type(device, port_num);
804 if (rdma_cap_eth_ah(device, port_num)) {
805 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
806 net_type = wc->network_hdr_type;
808 net_type = ib_get_net_type_by_grh(device, port_num, grh);
809 gid_type = ib_network_to_gid_type(net_type);
811 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
816 rdma_ah_set_sl(ah_attr, wc->sl);
817 rdma_ah_set_port_num(ah_attr, port_num);
819 if (rdma_protocol_roce(device, port_num)) {
820 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
821 wc->vlan_id : 0xffff;
823 if (!(wc->wc_flags & IB_WC_GRH))
826 sgid_attr = get_sgid_attr_from_eth(device, port_num,
829 if (IS_ERR(sgid_attr))
830 return PTR_ERR(sgid_attr);
832 flow_class = be32_to_cpu(grh->version_tclass_flow);
833 rdma_move_grh_sgid_attr(ah_attr,
835 flow_class & 0xFFFFF,
837 (flow_class >> 20) & 0xFF,
840 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
842 rdma_destroy_ah_attr(ah_attr);
846 rdma_ah_set_dlid(ah_attr, wc->slid);
847 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
849 if ((wc->wc_flags & IB_WC_GRH) == 0)
852 if (dgid.global.interface_id !=
853 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
854 sgid_attr = rdma_find_gid_by_port(
855 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
857 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
859 if (IS_ERR(sgid_attr))
860 return PTR_ERR(sgid_attr);
861 flow_class = be32_to_cpu(grh->version_tclass_flow);
862 rdma_move_grh_sgid_attr(ah_attr,
864 flow_class & 0xFFFFF,
866 (flow_class >> 20) & 0xFF,
872 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
875 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
878 * @attr: Pointer to AH attribute structure
879 * @dgid: Destination GID
880 * @flow_label: Flow label
881 * @hop_limit: Hop limit
882 * @traffic_class: traffic class
883 * @sgid_attr: Pointer to SGID attribute
885 * This takes ownership of the sgid_attr reference. The caller must ensure
886 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
887 * calling this function.
889 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
890 u32 flow_label, u8 hop_limit, u8 traffic_class,
891 const struct ib_gid_attr *sgid_attr)
893 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
895 attr->grh.sgid_attr = sgid_attr;
897 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
900 * rdma_destroy_ah_attr - Release reference to SGID attribute of
902 * @ah_attr: Pointer to ah attribute
904 * Release reference to the SGID attribute of the ah attribute if it is
905 * non NULL. It is safe to call this multiple times, and safe to call it on
906 * a zero initialized ah_attr.
908 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
910 if (ah_attr->grh.sgid_attr) {
911 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
912 ah_attr->grh.sgid_attr = NULL;
915 EXPORT_SYMBOL(rdma_destroy_ah_attr);
917 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
918 const struct ib_grh *grh, u32 port_num)
920 struct rdma_ah_attr ah_attr;
924 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
928 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
930 rdma_destroy_ah_attr(&ah_attr);
933 EXPORT_SYMBOL(ib_create_ah_from_wc);
935 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
937 const struct ib_gid_attr *old_sgid_attr;
940 if (ah->type != ah_attr->type)
943 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
947 ret = ah->device->ops.modify_ah ?
948 ah->device->ops.modify_ah(ah, ah_attr) :
951 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
952 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
955 EXPORT_SYMBOL(rdma_modify_ah);
957 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
959 ah_attr->grh.sgid_attr = NULL;
961 return ah->device->ops.query_ah ?
962 ah->device->ops.query_ah(ah, ah_attr) :
965 EXPORT_SYMBOL(rdma_query_ah);
967 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
969 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
973 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
977 ret = ah->device->ops.destroy_ah(ah, flags);
981 atomic_dec(&pd->usecnt);
983 rdma_put_gid_attr(sgid_attr);
988 EXPORT_SYMBOL(rdma_destroy_ah_user);
990 /* Shared receive queues */
993 * ib_create_srq_user - Creates a SRQ associated with the specified protection
995 * @pd: The protection domain associated with the SRQ.
996 * @srq_init_attr: A list of initial attributes required to create the
997 * SRQ. If SRQ creation succeeds, then the attributes are updated to
998 * the actual capabilities of the created SRQ.
999 * @uobject: uobject pointer if this is not a kernel SRQ
1000 * @udata: udata pointer if this is not a kernel SRQ
1002 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1003 * requested size of the SRQ, and set to the actual values allocated
1004 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1005 * will always be at least as large as the requested values.
1007 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1008 struct ib_srq_init_attr *srq_init_attr,
1009 struct ib_usrq_object *uobject,
1010 struct ib_udata *udata)
1015 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1017 return ERR_PTR(-ENOMEM);
1019 srq->device = pd->device;
1021 srq->event_handler = srq_init_attr->event_handler;
1022 srq->srq_context = srq_init_attr->srq_context;
1023 srq->srq_type = srq_init_attr->srq_type;
1024 srq->uobject = uobject;
1026 if (ib_srq_has_cq(srq->srq_type)) {
1027 srq->ext.cq = srq_init_attr->ext.cq;
1028 atomic_inc(&srq->ext.cq->usecnt);
1030 if (srq->srq_type == IB_SRQT_XRC) {
1031 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1032 if (srq->ext.xrc.xrcd)
1033 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1035 atomic_inc(&pd->usecnt);
1037 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1038 rdma_restrack_parent_name(&srq->res, &pd->res);
1040 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1042 rdma_restrack_put(&srq->res);
1043 atomic_dec(&pd->usecnt);
1044 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1045 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1046 if (ib_srq_has_cq(srq->srq_type))
1047 atomic_dec(&srq->ext.cq->usecnt);
1049 return ERR_PTR(ret);
1052 rdma_restrack_add(&srq->res);
1056 EXPORT_SYMBOL(ib_create_srq_user);
1058 int ib_modify_srq(struct ib_srq *srq,
1059 struct ib_srq_attr *srq_attr,
1060 enum ib_srq_attr_mask srq_attr_mask)
1062 return srq->device->ops.modify_srq ?
1063 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1064 NULL) : -EOPNOTSUPP;
1066 EXPORT_SYMBOL(ib_modify_srq);
1068 int ib_query_srq(struct ib_srq *srq,
1069 struct ib_srq_attr *srq_attr)
1071 return srq->device->ops.query_srq ?
1072 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1074 EXPORT_SYMBOL(ib_query_srq);
1076 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1080 if (atomic_read(&srq->usecnt))
1083 ret = srq->device->ops.destroy_srq(srq, udata);
1087 atomic_dec(&srq->pd->usecnt);
1088 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1089 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1090 if (ib_srq_has_cq(srq->srq_type))
1091 atomic_dec(&srq->ext.cq->usecnt);
1092 rdma_restrack_del(&srq->res);
1097 EXPORT_SYMBOL(ib_destroy_srq_user);
1101 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1103 struct ib_qp *qp = context;
1104 unsigned long flags;
1106 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1107 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1108 if (event->element.qp->event_handler)
1109 event->element.qp->event_handler(event, event->element.qp->qp_context);
1110 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1113 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1114 void (*event_handler)(struct ib_event *, void *),
1118 unsigned long flags;
1121 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1123 return ERR_PTR(-ENOMEM);
1125 qp->real_qp = real_qp;
1126 err = ib_open_shared_qp_security(qp, real_qp->device);
1129 return ERR_PTR(err);
1132 qp->real_qp = real_qp;
1133 atomic_inc(&real_qp->usecnt);
1134 qp->device = real_qp->device;
1135 qp->event_handler = event_handler;
1136 qp->qp_context = qp_context;
1137 qp->qp_num = real_qp->qp_num;
1138 qp->qp_type = real_qp->qp_type;
1140 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1141 list_add(&qp->open_list, &real_qp->open_list);
1142 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1147 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1148 struct ib_qp_open_attr *qp_open_attr)
1150 struct ib_qp *qp, *real_qp;
1152 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1153 return ERR_PTR(-EINVAL);
1155 down_read(&xrcd->tgt_qps_rwsem);
1156 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1158 up_read(&xrcd->tgt_qps_rwsem);
1159 return ERR_PTR(-EINVAL);
1161 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1162 qp_open_attr->qp_context);
1163 up_read(&xrcd->tgt_qps_rwsem);
1166 EXPORT_SYMBOL(ib_open_qp);
1168 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1169 struct ib_qp_init_attr *qp_init_attr)
1171 struct ib_qp *real_qp = qp;
1174 qp->event_handler = __ib_shared_qp_event_handler;
1175 qp->qp_context = qp;
1177 qp->send_cq = qp->recv_cq = NULL;
1179 qp->xrcd = qp_init_attr->xrcd;
1180 atomic_inc(&qp_init_attr->xrcd->usecnt);
1181 INIT_LIST_HEAD(&qp->open_list);
1183 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1184 qp_init_attr->qp_context);
1188 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1189 real_qp, GFP_KERNEL));
1192 return ERR_PTR(err);
1197 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1198 struct ib_qp_init_attr *attr,
1199 struct ib_udata *udata,
1200 struct ib_uqp_object *uobj, const char *caller)
1202 struct ib_udata dummy = {};
1206 if (!dev->ops.create_qp)
1207 return ERR_PTR(-EOPNOTSUPP);
1209 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1211 return ERR_PTR(-ENOMEM);
1218 qp->qp_type = attr->qp_type;
1219 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1220 qp->srq = attr->srq;
1221 qp->event_handler = attr->event_handler;
1222 qp->port = attr->port_num;
1223 qp->qp_context = attr->qp_context;
1225 spin_lock_init(&qp->mr_lock);
1226 INIT_LIST_HEAD(&qp->rdma_mrs);
1227 INIT_LIST_HEAD(&qp->sig_mrs);
1229 qp->send_cq = attr->send_cq;
1230 qp->recv_cq = attr->recv_cq;
1232 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1233 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1234 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1235 ret = dev->ops.create_qp(qp, attr, udata);
1240 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1241 * Unfortunately, it is not an easy task to fix that driver.
1243 qp->send_cq = attr->send_cq;
1244 qp->recv_cq = attr->recv_cq;
1246 ret = ib_create_qp_security(qp, dev);
1250 rdma_restrack_add(&qp->res);
1254 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1256 rdma_restrack_put(&qp->res);
1258 return ERR_PTR(ret);
1263 * ib_create_qp_user - Creates a QP associated with the specified protection
1266 * @pd: The protection domain associated with the QP.
1267 * @attr: A list of initial attributes required to create the
1268 * QP. If QP creation succeeds, then the attributes are updated to
1269 * the actual capabilities of the created QP.
1271 * @uobj: uverbs obect
1272 * @caller: caller's build-time module name
1274 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1275 struct ib_qp_init_attr *attr,
1276 struct ib_udata *udata,
1277 struct ib_uqp_object *uobj, const char *caller)
1279 struct ib_qp *qp, *xrc_qp;
1281 if (attr->qp_type == IB_QPT_XRC_TGT)
1282 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1284 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1285 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1288 xrc_qp = create_xrc_qp_user(qp, attr);
1289 if (IS_ERR(xrc_qp)) {
1294 xrc_qp->uobject = uobj;
1297 EXPORT_SYMBOL(ib_create_qp_user);
1299 void ib_qp_usecnt_inc(struct ib_qp *qp)
1302 atomic_inc(&qp->pd->usecnt);
1304 atomic_inc(&qp->send_cq->usecnt);
1306 atomic_inc(&qp->recv_cq->usecnt);
1308 atomic_inc(&qp->srq->usecnt);
1309 if (qp->rwq_ind_tbl)
1310 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1312 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1314 void ib_qp_usecnt_dec(struct ib_qp *qp)
1316 if (qp->rwq_ind_tbl)
1317 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1319 atomic_dec(&qp->srq->usecnt);
1321 atomic_dec(&qp->recv_cq->usecnt);
1323 atomic_dec(&qp->send_cq->usecnt);
1325 atomic_dec(&qp->pd->usecnt);
1327 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1329 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1330 struct ib_qp_init_attr *qp_init_attr,
1333 struct ib_device *device = pd->device;
1338 * If the callers is using the RDMA API calculate the resources
1339 * needed for the RDMA READ/WRITE operations.
1341 * Note that these callers need to pass in a port number.
1343 if (qp_init_attr->cap.max_rdma_ctxs)
1344 rdma_rw_init_qp(device, qp_init_attr);
1346 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1350 ib_qp_usecnt_inc(qp);
1352 if (qp_init_attr->cap.max_rdma_ctxs) {
1353 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1359 * Note: all hw drivers guarantee that max_send_sge is lower than
1360 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1361 * max_send_sge <= max_sge_rd.
1363 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1364 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1365 device->attrs.max_sge_rd);
1366 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1367 qp->integrity_en = true;
1373 return ERR_PTR(ret);
1376 EXPORT_SYMBOL(ib_create_qp_kernel);
1378 static const struct {
1380 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1381 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1382 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1384 [IB_QPS_RESET] = { .valid = 1 },
1388 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1391 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1392 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1394 IB_QP_ACCESS_FLAGS),
1395 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1397 IB_QP_ACCESS_FLAGS),
1398 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1400 IB_QP_ACCESS_FLAGS),
1401 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1403 IB_QP_ACCESS_FLAGS),
1404 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1406 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1412 [IB_QPS_RESET] = { .valid = 1 },
1413 [IB_QPS_ERR] = { .valid = 1 },
1417 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1420 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1422 IB_QP_ACCESS_FLAGS),
1423 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1425 IB_QP_ACCESS_FLAGS),
1426 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1428 IB_QP_ACCESS_FLAGS),
1429 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1431 IB_QP_ACCESS_FLAGS),
1432 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1434 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1441 [IB_QPT_UC] = (IB_QP_AV |
1445 [IB_QPT_RC] = (IB_QP_AV |
1449 IB_QP_MAX_DEST_RD_ATOMIC |
1450 IB_QP_MIN_RNR_TIMER),
1451 [IB_QPT_XRC_INI] = (IB_QP_AV |
1455 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1459 IB_QP_MAX_DEST_RD_ATOMIC |
1460 IB_QP_MIN_RNR_TIMER),
1463 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1465 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1466 IB_QP_ACCESS_FLAGS |
1468 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1469 IB_QP_ACCESS_FLAGS |
1471 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1472 IB_QP_ACCESS_FLAGS |
1474 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1475 IB_QP_ACCESS_FLAGS |
1477 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1479 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1485 [IB_QPS_RESET] = { .valid = 1 },
1486 [IB_QPS_ERR] = { .valid = 1 },
1490 [IB_QPT_UD] = IB_QP_SQ_PSN,
1491 [IB_QPT_UC] = IB_QP_SQ_PSN,
1492 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1496 IB_QP_MAX_QP_RD_ATOMIC),
1497 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1501 IB_QP_MAX_QP_RD_ATOMIC),
1502 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1504 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1505 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1508 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1510 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1512 IB_QP_ACCESS_FLAGS |
1513 IB_QP_PATH_MIG_STATE),
1514 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1516 IB_QP_ACCESS_FLAGS |
1517 IB_QP_MIN_RNR_TIMER |
1518 IB_QP_PATH_MIG_STATE),
1519 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1521 IB_QP_ACCESS_FLAGS |
1522 IB_QP_PATH_MIG_STATE),
1523 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1525 IB_QP_ACCESS_FLAGS |
1526 IB_QP_MIN_RNR_TIMER |
1527 IB_QP_PATH_MIG_STATE),
1528 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1530 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1532 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1537 [IB_QPS_RESET] = { .valid = 1 },
1538 [IB_QPS_ERR] = { .valid = 1 },
1542 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1544 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1545 IB_QP_ACCESS_FLAGS |
1547 IB_QP_PATH_MIG_STATE),
1548 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1549 IB_QP_ACCESS_FLAGS |
1551 IB_QP_PATH_MIG_STATE |
1552 IB_QP_MIN_RNR_TIMER),
1553 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1554 IB_QP_ACCESS_FLAGS |
1556 IB_QP_PATH_MIG_STATE),
1557 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1558 IB_QP_ACCESS_FLAGS |
1560 IB_QP_PATH_MIG_STATE |
1561 IB_QP_MIN_RNR_TIMER),
1562 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1564 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1566 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1572 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1573 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1574 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1575 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1577 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1578 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1583 [IB_QPS_RESET] = { .valid = 1 },
1584 [IB_QPS_ERR] = { .valid = 1 },
1588 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1590 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1592 IB_QP_ACCESS_FLAGS |
1593 IB_QP_PATH_MIG_STATE),
1594 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1596 IB_QP_ACCESS_FLAGS |
1597 IB_QP_MIN_RNR_TIMER |
1598 IB_QP_PATH_MIG_STATE),
1599 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1601 IB_QP_ACCESS_FLAGS |
1602 IB_QP_PATH_MIG_STATE),
1603 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1605 IB_QP_ACCESS_FLAGS |
1606 IB_QP_MIN_RNR_TIMER |
1607 IB_QP_PATH_MIG_STATE),
1608 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1610 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1617 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1619 [IB_QPT_UC] = (IB_QP_AV |
1621 IB_QP_ACCESS_FLAGS |
1623 IB_QP_PATH_MIG_STATE),
1624 [IB_QPT_RC] = (IB_QP_PORT |
1629 IB_QP_MAX_QP_RD_ATOMIC |
1630 IB_QP_MAX_DEST_RD_ATOMIC |
1632 IB_QP_ACCESS_FLAGS |
1634 IB_QP_MIN_RNR_TIMER |
1635 IB_QP_PATH_MIG_STATE),
1636 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1641 IB_QP_MAX_QP_RD_ATOMIC |
1643 IB_QP_ACCESS_FLAGS |
1645 IB_QP_PATH_MIG_STATE),
1646 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1649 IB_QP_MAX_DEST_RD_ATOMIC |
1651 IB_QP_ACCESS_FLAGS |
1653 IB_QP_MIN_RNR_TIMER |
1654 IB_QP_PATH_MIG_STATE),
1655 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1657 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1663 [IB_QPS_RESET] = { .valid = 1 },
1664 [IB_QPS_ERR] = { .valid = 1 },
1668 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1670 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1671 IB_QP_ACCESS_FLAGS),
1672 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1674 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1680 [IB_QPS_RESET] = { .valid = 1 },
1681 [IB_QPS_ERR] = { .valid = 1 }
1685 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1686 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1688 enum ib_qp_attr_mask req_param, opt_param;
1690 if (mask & IB_QP_CUR_STATE &&
1691 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1692 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1695 if (!qp_state_table[cur_state][next_state].valid)
1698 req_param = qp_state_table[cur_state][next_state].req_param[type];
1699 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1701 if ((mask & req_param) != req_param)
1704 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1709 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1712 * ib_resolve_eth_dmac - Resolve destination mac address
1713 * @device: Device to consider
1714 * @ah_attr: address handle attribute which describes the
1715 * source and destination parameters
1716 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1717 * returns 0 on success or appropriate error code. It initializes the
1718 * necessary ah_attr fields when call is successful.
1720 static int ib_resolve_eth_dmac(struct ib_device *device,
1721 struct rdma_ah_attr *ah_attr)
1725 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1726 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1729 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1730 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1732 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1733 (char *)ah_attr->roce.dmac);
1736 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1741 static bool is_qp_type_connected(const struct ib_qp *qp)
1743 return (qp->qp_type == IB_QPT_UC ||
1744 qp->qp_type == IB_QPT_RC ||
1745 qp->qp_type == IB_QPT_XRC_INI ||
1746 qp->qp_type == IB_QPT_XRC_TGT);
1750 * IB core internal function to perform QP attributes modification.
1752 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1753 int attr_mask, struct ib_udata *udata)
1755 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1756 const struct ib_gid_attr *old_sgid_attr_av;
1757 const struct ib_gid_attr *old_sgid_attr_alt_av;
1760 attr->xmit_slave = NULL;
1761 if (attr_mask & IB_QP_AV) {
1762 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1767 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1768 is_qp_type_connected(qp)) {
1769 struct net_device *slave;
1772 * If the user provided the qp_attr then we have to
1773 * resolve it. Kerne users have to provide already
1774 * resolved rdma_ah_attr's.
1777 ret = ib_resolve_eth_dmac(qp->device,
1782 slave = rdma_lag_get_ah_roce_slave(qp->device,
1785 if (IS_ERR(slave)) {
1786 ret = PTR_ERR(slave);
1789 attr->xmit_slave = slave;
1792 if (attr_mask & IB_QP_ALT_PATH) {
1794 * FIXME: This does not track the migration state, so if the
1795 * user loads a new alternate path after the HW has migrated
1796 * from primary->alternate we will keep the wrong
1797 * references. This is OK for IB because the reference
1798 * counting does not serve any functional purpose.
1800 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1801 &old_sgid_attr_alt_av);
1806 * Today the core code can only handle alternate paths and APM
1807 * for IB. Ban them in roce mode.
1809 if (!(rdma_protocol_ib(qp->device,
1810 attr->alt_ah_attr.port_num) &&
1811 rdma_protocol_ib(qp->device, port))) {
1817 if (rdma_ib_or_roce(qp->device, port)) {
1818 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1819 dev_warn(&qp->device->dev,
1820 "%s rq_psn overflow, masking to 24 bits\n",
1822 attr->rq_psn &= 0xffffff;
1825 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1826 dev_warn(&qp->device->dev,
1827 " %s sq_psn overflow, masking to 24 bits\n",
1829 attr->sq_psn &= 0xffffff;
1834 * Bind this qp to a counter automatically based on the rdma counter
1835 * rules. This only set in RST2INIT with port specified
1837 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1838 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1839 rdma_counter_bind_qp_auto(qp, attr->port_num);
1841 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1845 if (attr_mask & IB_QP_PORT)
1846 qp->port = attr->port_num;
1847 if (attr_mask & IB_QP_AV)
1849 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1850 if (attr_mask & IB_QP_ALT_PATH)
1851 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1852 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1855 if (attr_mask & IB_QP_ALT_PATH)
1856 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1858 if (attr_mask & IB_QP_AV) {
1859 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1860 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1866 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1867 * @ib_qp: The QP to modify.
1868 * @attr: On input, specifies the QP attributes to modify. On output,
1869 * the current values of selected QP attributes are returned.
1870 * @attr_mask: A bit-mask used to specify which attributes of the QP
1871 * are being modified.
1872 * @udata: pointer to user's input output buffer information
1873 * are being modified.
1874 * It returns 0 on success and returns appropriate error code on error.
1876 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1877 int attr_mask, struct ib_udata *udata)
1879 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1881 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1883 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1887 struct net_device *netdev;
1888 struct ethtool_link_ksettings lksettings;
1890 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1893 netdev = ib_device_get_netdev(dev, port_num);
1898 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1903 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1904 netdev_speed = lksettings.base.speed;
1906 netdev_speed = SPEED_1000;
1907 pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name,
1911 if (netdev_speed <= SPEED_1000) {
1912 *width = IB_WIDTH_1X;
1913 *speed = IB_SPEED_SDR;
1914 } else if (netdev_speed <= SPEED_10000) {
1915 *width = IB_WIDTH_1X;
1916 *speed = IB_SPEED_FDR10;
1917 } else if (netdev_speed <= SPEED_20000) {
1918 *width = IB_WIDTH_4X;
1919 *speed = IB_SPEED_DDR;
1920 } else if (netdev_speed <= SPEED_25000) {
1921 *width = IB_WIDTH_1X;
1922 *speed = IB_SPEED_EDR;
1923 } else if (netdev_speed <= SPEED_40000) {
1924 *width = IB_WIDTH_4X;
1925 *speed = IB_SPEED_FDR10;
1927 *width = IB_WIDTH_4X;
1928 *speed = IB_SPEED_EDR;
1933 EXPORT_SYMBOL(ib_get_eth_speed);
1935 int ib_modify_qp(struct ib_qp *qp,
1936 struct ib_qp_attr *qp_attr,
1939 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1941 EXPORT_SYMBOL(ib_modify_qp);
1943 int ib_query_qp(struct ib_qp *qp,
1944 struct ib_qp_attr *qp_attr,
1946 struct ib_qp_init_attr *qp_init_attr)
1948 qp_attr->ah_attr.grh.sgid_attr = NULL;
1949 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1951 return qp->device->ops.query_qp ?
1952 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1953 qp_init_attr) : -EOPNOTSUPP;
1955 EXPORT_SYMBOL(ib_query_qp);
1957 int ib_close_qp(struct ib_qp *qp)
1959 struct ib_qp *real_qp;
1960 unsigned long flags;
1962 real_qp = qp->real_qp;
1966 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1967 list_del(&qp->open_list);
1968 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1970 atomic_dec(&real_qp->usecnt);
1972 ib_close_shared_qp_security(qp->qp_sec);
1977 EXPORT_SYMBOL(ib_close_qp);
1979 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1981 struct ib_xrcd *xrcd;
1982 struct ib_qp *real_qp;
1985 real_qp = qp->real_qp;
1986 xrcd = real_qp->xrcd;
1987 down_write(&xrcd->tgt_qps_rwsem);
1989 if (atomic_read(&real_qp->usecnt) == 0)
1990 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1993 up_write(&xrcd->tgt_qps_rwsem);
1996 ret = ib_destroy_qp(real_qp);
1998 atomic_dec(&xrcd->usecnt);
2004 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2006 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2007 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2008 struct ib_qp_security *sec;
2011 WARN_ON_ONCE(qp->mrs_used > 0);
2013 if (atomic_read(&qp->usecnt))
2016 if (qp->real_qp != qp)
2017 return __ib_destroy_shared_qp(qp);
2021 ib_destroy_qp_security_begin(sec);
2024 rdma_rw_cleanup_mrs(qp);
2026 rdma_counter_unbind_qp(qp, true);
2027 ret = qp->device->ops.destroy_qp(qp, udata);
2030 ib_destroy_qp_security_abort(sec);
2034 if (alt_path_sgid_attr)
2035 rdma_put_gid_attr(alt_path_sgid_attr);
2037 rdma_put_gid_attr(av_sgid_attr);
2039 ib_qp_usecnt_dec(qp);
2041 ib_destroy_qp_security_end(sec);
2043 rdma_restrack_del(&qp->res);
2047 EXPORT_SYMBOL(ib_destroy_qp_user);
2049 /* Completion queues */
2051 struct ib_cq *__ib_create_cq(struct ib_device *device,
2052 ib_comp_handler comp_handler,
2053 void (*event_handler)(struct ib_event *, void *),
2055 const struct ib_cq_init_attr *cq_attr,
2061 cq = rdma_zalloc_drv_obj(device, ib_cq);
2063 return ERR_PTR(-ENOMEM);
2065 cq->device = device;
2067 cq->comp_handler = comp_handler;
2068 cq->event_handler = event_handler;
2069 cq->cq_context = cq_context;
2070 atomic_set(&cq->usecnt, 0);
2072 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2073 rdma_restrack_set_name(&cq->res, caller);
2075 ret = device->ops.create_cq(cq, cq_attr, NULL);
2077 rdma_restrack_put(&cq->res);
2079 return ERR_PTR(ret);
2082 rdma_restrack_add(&cq->res);
2085 EXPORT_SYMBOL(__ib_create_cq);
2087 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2092 return cq->device->ops.modify_cq ?
2093 cq->device->ops.modify_cq(cq, cq_count,
2094 cq_period) : -EOPNOTSUPP;
2096 EXPORT_SYMBOL(rdma_set_cq_moderation);
2098 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2102 if (WARN_ON_ONCE(cq->shared))
2105 if (atomic_read(&cq->usecnt))
2108 ret = cq->device->ops.destroy_cq(cq, udata);
2112 rdma_restrack_del(&cq->res);
2116 EXPORT_SYMBOL(ib_destroy_cq_user);
2118 int ib_resize_cq(struct ib_cq *cq, int cqe)
2123 return cq->device->ops.resize_cq ?
2124 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2126 EXPORT_SYMBOL(ib_resize_cq);
2128 /* Memory regions */
2130 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2131 u64 virt_addr, int access_flags)
2135 if (access_flags & IB_ACCESS_ON_DEMAND) {
2136 if (!(pd->device->attrs.kernel_cap_flags &
2137 IBK_ON_DEMAND_PAGING)) {
2138 pr_debug("ODP support not available\n");
2139 return ERR_PTR(-EINVAL);
2143 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2144 access_flags, NULL);
2149 mr->device = pd->device;
2150 mr->type = IB_MR_TYPE_USER;
2153 atomic_inc(&pd->usecnt);
2154 mr->iova = virt_addr;
2155 mr->length = length;
2157 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2158 rdma_restrack_parent_name(&mr->res, &pd->res);
2159 rdma_restrack_add(&mr->res);
2163 EXPORT_SYMBOL(ib_reg_user_mr);
2165 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2166 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2168 if (!pd->device->ops.advise_mr)
2174 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2177 EXPORT_SYMBOL(ib_advise_mr);
2179 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2181 struct ib_pd *pd = mr->pd;
2182 struct ib_dm *dm = mr->dm;
2183 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2187 rdma_restrack_del(&mr->res);
2188 ret = mr->device->ops.dereg_mr(mr, udata);
2190 atomic_dec(&pd->usecnt);
2192 atomic_dec(&dm->usecnt);
2198 EXPORT_SYMBOL(ib_dereg_mr_user);
2201 * ib_alloc_mr() - Allocates a memory region
2202 * @pd: protection domain associated with the region
2203 * @mr_type: memory region type
2204 * @max_num_sg: maximum sg entries available for registration.
2207 * Memory registeration page/sg lists must not exceed max_num_sg.
2208 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2209 * max_num_sg * used_page_size.
2212 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2217 if (!pd->device->ops.alloc_mr) {
2218 mr = ERR_PTR(-EOPNOTSUPP);
2222 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2224 mr = ERR_PTR(-EINVAL);
2228 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2232 mr->device = pd->device;
2236 atomic_inc(&pd->usecnt);
2237 mr->need_inval = false;
2239 mr->sig_attrs = NULL;
2241 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2242 rdma_restrack_parent_name(&mr->res, &pd->res);
2243 rdma_restrack_add(&mr->res);
2245 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2248 EXPORT_SYMBOL(ib_alloc_mr);
2251 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2252 * @pd: protection domain associated with the region
2253 * @max_num_data_sg: maximum data sg entries available for registration
2254 * @max_num_meta_sg: maximum metadata sg entries available for
2258 * Memory registration page/sg lists must not exceed max_num_sg,
2259 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2262 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2263 u32 max_num_data_sg,
2264 u32 max_num_meta_sg)
2267 struct ib_sig_attrs *sig_attrs;
2269 if (!pd->device->ops.alloc_mr_integrity ||
2270 !pd->device->ops.map_mr_sg_pi) {
2271 mr = ERR_PTR(-EOPNOTSUPP);
2275 if (!max_num_meta_sg) {
2276 mr = ERR_PTR(-EINVAL);
2280 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2282 mr = ERR_PTR(-ENOMEM);
2286 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2293 mr->device = pd->device;
2297 atomic_inc(&pd->usecnt);
2298 mr->need_inval = false;
2299 mr->type = IB_MR_TYPE_INTEGRITY;
2300 mr->sig_attrs = sig_attrs;
2302 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2303 rdma_restrack_parent_name(&mr->res, &pd->res);
2304 rdma_restrack_add(&mr->res);
2306 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2309 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2311 /* Multicast groups */
2313 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2315 struct ib_qp_init_attr init_attr = {};
2316 struct ib_qp_attr attr = {};
2317 int num_eth_ports = 0;
2320 /* If QP state >= init, it is assigned to a port and we can check this
2323 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2324 if (attr.qp_state >= IB_QPS_INIT) {
2325 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2326 IB_LINK_LAYER_INFINIBAND)
2332 /* Can't get a quick answer, iterate over all ports */
2333 rdma_for_each_port(qp->device, port)
2334 if (rdma_port_get_link_layer(qp->device, port) !=
2335 IB_LINK_LAYER_INFINIBAND)
2338 /* If we have at lease one Ethernet port, RoCE annex declares that
2339 * multicast LID should be ignored. We can't tell at this step if the
2340 * QP belongs to an IB or Ethernet port.
2345 /* If all the ports are IB, we can check according to IB spec. */
2347 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2348 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2351 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2355 if (!qp->device->ops.attach_mcast)
2358 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2359 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2362 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2364 atomic_inc(&qp->usecnt);
2367 EXPORT_SYMBOL(ib_attach_mcast);
2369 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2373 if (!qp->device->ops.detach_mcast)
2376 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2377 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2380 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2382 atomic_dec(&qp->usecnt);
2385 EXPORT_SYMBOL(ib_detach_mcast);
2388 * ib_alloc_xrcd_user - Allocates an XRC domain.
2389 * @device: The device on which to allocate the XRC domain.
2390 * @inode: inode to connect XRCD
2391 * @udata: Valid user data or NULL for kernel object
2393 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2394 struct inode *inode, struct ib_udata *udata)
2396 struct ib_xrcd *xrcd;
2399 if (!device->ops.alloc_xrcd)
2400 return ERR_PTR(-EOPNOTSUPP);
2402 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2404 return ERR_PTR(-ENOMEM);
2406 xrcd->device = device;
2407 xrcd->inode = inode;
2408 atomic_set(&xrcd->usecnt, 0);
2409 init_rwsem(&xrcd->tgt_qps_rwsem);
2410 xa_init(&xrcd->tgt_qps);
2412 ret = device->ops.alloc_xrcd(xrcd, udata);
2418 return ERR_PTR(ret);
2420 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2423 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2424 * @xrcd: The XRC domain to deallocate.
2425 * @udata: Valid user data or NULL for kernel object
2427 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2431 if (atomic_read(&xrcd->usecnt))
2434 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2435 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2441 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2444 * ib_create_wq - Creates a WQ associated with the specified protection
2446 * @pd: The protection domain associated with the WQ.
2447 * @wq_attr: A list of initial attributes required to create the
2448 * WQ. If WQ creation succeeds, then the attributes are updated to
2449 * the actual capabilities of the created WQ.
2451 * wq_attr->max_wr and wq_attr->max_sge determine
2452 * the requested size of the WQ, and set to the actual values allocated
2454 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2455 * at least as large as the requested values.
2457 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2458 struct ib_wq_init_attr *wq_attr)
2462 if (!pd->device->ops.create_wq)
2463 return ERR_PTR(-EOPNOTSUPP);
2465 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2467 wq->event_handler = wq_attr->event_handler;
2468 wq->wq_context = wq_attr->wq_context;
2469 wq->wq_type = wq_attr->wq_type;
2470 wq->cq = wq_attr->cq;
2471 wq->device = pd->device;
2474 atomic_inc(&pd->usecnt);
2475 atomic_inc(&wq_attr->cq->usecnt);
2476 atomic_set(&wq->usecnt, 0);
2480 EXPORT_SYMBOL(ib_create_wq);
2483 * ib_destroy_wq_user - Destroys the specified user WQ.
2484 * @wq: The WQ to destroy.
2485 * @udata: Valid user data
2487 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2489 struct ib_cq *cq = wq->cq;
2490 struct ib_pd *pd = wq->pd;
2493 if (atomic_read(&wq->usecnt))
2496 ret = wq->device->ops.destroy_wq(wq, udata);
2500 atomic_dec(&pd->usecnt);
2501 atomic_dec(&cq->usecnt);
2504 EXPORT_SYMBOL(ib_destroy_wq_user);
2506 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2507 struct ib_mr_status *mr_status)
2509 if (!mr->device->ops.check_mr_status)
2512 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2514 EXPORT_SYMBOL(ib_check_mr_status);
2516 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2519 if (!device->ops.set_vf_link_state)
2522 return device->ops.set_vf_link_state(device, vf, port, state);
2524 EXPORT_SYMBOL(ib_set_vf_link_state);
2526 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2527 struct ifla_vf_info *info)
2529 if (!device->ops.get_vf_config)
2532 return device->ops.get_vf_config(device, vf, port, info);
2534 EXPORT_SYMBOL(ib_get_vf_config);
2536 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2537 struct ifla_vf_stats *stats)
2539 if (!device->ops.get_vf_stats)
2542 return device->ops.get_vf_stats(device, vf, port, stats);
2544 EXPORT_SYMBOL(ib_get_vf_stats);
2546 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2549 if (!device->ops.set_vf_guid)
2552 return device->ops.set_vf_guid(device, vf, port, guid, type);
2554 EXPORT_SYMBOL(ib_set_vf_guid);
2556 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2557 struct ifla_vf_guid *node_guid,
2558 struct ifla_vf_guid *port_guid)
2560 if (!device->ops.get_vf_guid)
2563 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2565 EXPORT_SYMBOL(ib_get_vf_guid);
2567 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2568 * information) and set an appropriate memory region for registration.
2569 * @mr: memory region
2570 * @data_sg: dma mapped scatterlist for data
2571 * @data_sg_nents: number of entries in data_sg
2572 * @data_sg_offset: offset in bytes into data_sg
2573 * @meta_sg: dma mapped scatterlist for metadata
2574 * @meta_sg_nents: number of entries in meta_sg
2575 * @meta_sg_offset: offset in bytes into meta_sg
2576 * @page_size: page vector desired page size
2579 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2581 * Return: 0 on success.
2583 * After this completes successfully, the memory region
2584 * is ready for registration.
2586 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2587 int data_sg_nents, unsigned int *data_sg_offset,
2588 struct scatterlist *meta_sg, int meta_sg_nents,
2589 unsigned int *meta_sg_offset, unsigned int page_size)
2591 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2592 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2595 mr->page_size = page_size;
2597 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2598 data_sg_offset, meta_sg,
2599 meta_sg_nents, meta_sg_offset);
2601 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2604 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2605 * and set it the memory region.
2606 * @mr: memory region
2607 * @sg: dma mapped scatterlist
2608 * @sg_nents: number of entries in sg
2609 * @sg_offset: offset in bytes into sg
2610 * @page_size: page vector desired page size
2614 * - The first sg element is allowed to have an offset.
2615 * - Each sg element must either be aligned to page_size or virtually
2616 * contiguous to the previous element. In case an sg element has a
2617 * non-contiguous offset, the mapping prefix will not include it.
2618 * - The last sg element is allowed to have length less than page_size.
2619 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2620 * then only max_num_sg entries will be mapped.
2621 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2622 * constraints holds and the page_size argument is ignored.
2624 * Returns the number of sg elements that were mapped to the memory region.
2626 * After this completes successfully, the memory region
2627 * is ready for registration.
2629 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2630 unsigned int *sg_offset, unsigned int page_size)
2632 if (unlikely(!mr->device->ops.map_mr_sg))
2635 mr->page_size = page_size;
2637 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2639 EXPORT_SYMBOL(ib_map_mr_sg);
2642 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2644 * @mr: memory region
2645 * @sgl: dma mapped scatterlist
2646 * @sg_nents: number of entries in sg
2647 * @sg_offset_p: ==== =======================================================
2648 * IN start offset in bytes into sg
2649 * OUT offset in bytes for element n of the sg of the first
2650 * byte that has not been processed where n is the return
2651 * value of this function.
2652 * ==== =======================================================
2653 * @set_page: driver page assignment function pointer
2655 * Core service helper for drivers to convert the largest
2656 * prefix of given sg list to a page vector. The sg list
2657 * prefix converted is the prefix that meet the requirements
2660 * Returns the number of sg elements that were assigned to
2663 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2664 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2666 struct scatterlist *sg;
2667 u64 last_end_dma_addr = 0;
2668 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2669 unsigned int last_page_off = 0;
2670 u64 page_mask = ~((u64)mr->page_size - 1);
2673 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2676 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2679 for_each_sg(sgl, sg, sg_nents, i) {
2680 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2681 u64 prev_addr = dma_addr;
2682 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2683 u64 end_dma_addr = dma_addr + dma_len;
2684 u64 page_addr = dma_addr & page_mask;
2687 * For the second and later elements, check whether either the
2688 * end of element i-1 or the start of element i is not aligned
2689 * on a page boundary.
2691 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2692 /* Stop mapping if there is a gap. */
2693 if (last_end_dma_addr != dma_addr)
2697 * Coalesce this element with the last. If it is small
2698 * enough just update mr->length. Otherwise start
2699 * mapping from the next page.
2705 ret = set_page(mr, page_addr);
2706 if (unlikely(ret < 0)) {
2707 sg_offset = prev_addr - sg_dma_address(sg);
2708 mr->length += prev_addr - dma_addr;
2710 *sg_offset_p = sg_offset;
2711 return i || sg_offset ? i : ret;
2713 prev_addr = page_addr;
2715 page_addr += mr->page_size;
2716 } while (page_addr < end_dma_addr);
2718 mr->length += dma_len;
2719 last_end_dma_addr = end_dma_addr;
2720 last_page_off = end_dma_addr & ~page_mask;
2729 EXPORT_SYMBOL(ib_sg_to_pages);
2731 struct ib_drain_cqe {
2733 struct completion done;
2736 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2738 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2741 complete(&cqe->done);
2745 * Post a WR and block until its completion is reaped for the SQ.
2747 static void __ib_drain_sq(struct ib_qp *qp)
2749 struct ib_cq *cq = qp->send_cq;
2750 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2751 struct ib_drain_cqe sdrain;
2752 struct ib_rdma_wr swr = {
2755 { .wr_cqe = &sdrain.cqe, },
2756 .opcode = IB_WR_RDMA_WRITE,
2761 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2763 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2767 sdrain.cqe.done = ib_drain_qp_done;
2768 init_completion(&sdrain.done);
2770 ret = ib_post_send(qp, &swr.wr, NULL);
2772 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2776 if (cq->poll_ctx == IB_POLL_DIRECT)
2777 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2778 ib_process_cq_direct(cq, -1);
2780 wait_for_completion(&sdrain.done);
2784 * Post a WR and block until its completion is reaped for the RQ.
2786 static void __ib_drain_rq(struct ib_qp *qp)
2788 struct ib_cq *cq = qp->recv_cq;
2789 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2790 struct ib_drain_cqe rdrain;
2791 struct ib_recv_wr rwr = {};
2794 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2796 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2800 rwr.wr_cqe = &rdrain.cqe;
2801 rdrain.cqe.done = ib_drain_qp_done;
2802 init_completion(&rdrain.done);
2804 ret = ib_post_recv(qp, &rwr, NULL);
2806 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2810 if (cq->poll_ctx == IB_POLL_DIRECT)
2811 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2812 ib_process_cq_direct(cq, -1);
2814 wait_for_completion(&rdrain.done);
2818 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2820 * @qp: queue pair to drain
2822 * If the device has a provider-specific drain function, then
2823 * call that. Otherwise call the generic drain function
2828 * ensure there is room in the CQ and SQ for the drain work request and
2831 * allocate the CQ using ib_alloc_cq().
2833 * ensure that there are no other contexts that are posting WRs concurrently.
2834 * Otherwise the drain is not guaranteed.
2836 void ib_drain_sq(struct ib_qp *qp)
2838 if (qp->device->ops.drain_sq)
2839 qp->device->ops.drain_sq(qp);
2842 trace_cq_drain_complete(qp->send_cq);
2844 EXPORT_SYMBOL(ib_drain_sq);
2847 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2849 * @qp: queue pair to drain
2851 * If the device has a provider-specific drain function, then
2852 * call that. Otherwise call the generic drain function
2857 * ensure there is room in the CQ and RQ for the drain work request and
2860 * allocate the CQ using ib_alloc_cq().
2862 * ensure that there are no other contexts that are posting WRs concurrently.
2863 * Otherwise the drain is not guaranteed.
2865 void ib_drain_rq(struct ib_qp *qp)
2867 if (qp->device->ops.drain_rq)
2868 qp->device->ops.drain_rq(qp);
2871 trace_cq_drain_complete(qp->recv_cq);
2873 EXPORT_SYMBOL(ib_drain_rq);
2876 * ib_drain_qp() - Block until all CQEs have been consumed by the
2877 * application on both the RQ and SQ.
2878 * @qp: queue pair to drain
2882 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2885 * allocate the CQs using ib_alloc_cq().
2887 * ensure that there are no other contexts that are posting WRs concurrently.
2888 * Otherwise the drain is not guaranteed.
2890 void ib_drain_qp(struct ib_qp *qp)
2896 EXPORT_SYMBOL(ib_drain_qp);
2898 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2899 enum rdma_netdev_t type, const char *name,
2900 unsigned char name_assign_type,
2901 void (*setup)(struct net_device *))
2903 struct rdma_netdev_alloc_params params;
2904 struct net_device *netdev;
2907 if (!device->ops.rdma_netdev_get_params)
2908 return ERR_PTR(-EOPNOTSUPP);
2910 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2915 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2916 setup, params.txqs, params.rxqs);
2918 return ERR_PTR(-ENOMEM);
2922 EXPORT_SYMBOL(rdma_alloc_netdev);
2924 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2925 enum rdma_netdev_t type, const char *name,
2926 unsigned char name_assign_type,
2927 void (*setup)(struct net_device *),
2928 struct net_device *netdev)
2930 struct rdma_netdev_alloc_params params;
2933 if (!device->ops.rdma_netdev_get_params)
2936 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2941 return params.initialize_rdma_netdev(device, port_num,
2942 netdev, params.param);
2944 EXPORT_SYMBOL(rdma_init_netdev);
2946 void __rdma_block_iter_start(struct ib_block_iter *biter,
2947 struct scatterlist *sglist, unsigned int nents,
2950 memset(biter, 0, sizeof(struct ib_block_iter));
2951 biter->__sg = sglist;
2952 biter->__sg_nents = nents;
2954 /* Driver provides best block size to use */
2955 biter->__pg_bit = __fls(pgsz);
2957 EXPORT_SYMBOL(__rdma_block_iter_start);
2959 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2961 unsigned int block_offset;
2962 unsigned int sg_delta;
2964 if (!biter->__sg_nents || !biter->__sg)
2967 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2968 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2969 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
2971 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
2972 biter->__sg_advance += sg_delta;
2974 biter->__sg_advance = 0;
2975 biter->__sg = sg_next(biter->__sg);
2976 biter->__sg_nents--;
2981 EXPORT_SYMBOL(__rdma_block_iter_next);
2984 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
2986 * @descs: array of static descriptors
2987 * @num_counters: number of elements in array
2988 * @lifespan: milliseconds between updates
2990 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
2991 const struct rdma_stat_desc *descs, int num_counters,
2992 unsigned long lifespan)
2994 struct rdma_hw_stats *stats;
2996 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3000 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3001 sizeof(*stats->is_disabled), GFP_KERNEL);
3002 if (!stats->is_disabled)
3005 stats->descs = descs;
3006 stats->num_counters = num_counters;
3007 stats->lifespan = msecs_to_jiffies(lifespan);
3008 mutex_init(&stats->lock);
3016 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3019 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3020 * @stats: statistics to release
3022 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3027 kfree(stats->is_disabled);
3030 EXPORT_SYMBOL(rdma_free_hw_stats_struct);