1 // SPDX-License-Identifier: GPL-2.0
4 #include <drm/panfrost_drm.h>
6 #include <linux/atomic.h>
7 #include <linux/bitfield.h>
8 #include <linux/delay.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/interrupt.h>
12 #include <linux/iopoll.h>
13 #include <linux/io-pgtable.h>
14 #include <linux/iommu.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/sizes.h>
20 #include "panfrost_device.h"
21 #include "panfrost_mmu.h"
22 #include "panfrost_gem.h"
23 #include "panfrost_features.h"
24 #include "panfrost_regs.h"
26 #define mmu_write(dev, reg, data) writel(data, dev->iomem + reg)
27 #define mmu_read(dev, reg) readl(dev->iomem + reg)
29 static int wait_ready(struct panfrost_device *pfdev, u32 as_nr)
34 /* Wait for the MMU status to indicate there is no active command, in
35 * case one is pending. */
36 ret = readl_relaxed_poll_timeout_atomic(pfdev->iomem + AS_STATUS(as_nr),
37 val, !(val & AS_STATUS_AS_ACTIVE), 10, 100000);
40 /* The GPU hung, let's trigger a reset */
41 panfrost_device_schedule_reset(pfdev);
42 dev_err(pfdev->dev, "AS_ACTIVE bit stuck\n");
48 static int write_cmd(struct panfrost_device *pfdev, u32 as_nr, u32 cmd)
52 /* write AS_COMMAND when MMU is ready to accept another command */
53 status = wait_ready(pfdev, as_nr);
55 mmu_write(pfdev, AS_COMMAND(as_nr), cmd);
60 static void lock_region(struct panfrost_device *pfdev, u32 as_nr,
61 u64 region_start, u64 size)
65 u64 region_end = region_start + size;
71 * The locked region is a naturally aligned power of 2 block encoded as
73 * Calculate the desired start/end and look for the highest bit which
74 * differs. The smallest naturally aligned block must include this bit
75 * change, the desired region starts with this bit (and subsequent bits)
76 * zeroed and ends with the bit (and subsequent bits) set to one.
78 region_width = max(fls64(region_start ^ (region_end - 1)),
79 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
82 * Mask off the low bits of region_start (which would be ignored by
83 * the hardware anyway)
85 region_start &= GENMASK_ULL(63, region_width);
87 region = region_width | region_start;
89 /* Lock the region that needs to be updated */
90 mmu_write(pfdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
91 mmu_write(pfdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
92 write_cmd(pfdev, as_nr, AS_COMMAND_LOCK);
96 static int mmu_hw_do_operation_locked(struct panfrost_device *pfdev, int as_nr,
97 u64 iova, u64 size, u32 op)
102 if (op != AS_COMMAND_UNLOCK)
103 lock_region(pfdev, as_nr, iova, size);
105 /* Run the MMU operation */
106 write_cmd(pfdev, as_nr, op);
108 /* Wait for the flush to complete */
109 return wait_ready(pfdev, as_nr);
112 static int mmu_hw_do_operation(struct panfrost_device *pfdev,
113 struct panfrost_mmu *mmu,
114 u64 iova, u64 size, u32 op)
118 spin_lock(&pfdev->as_lock);
119 ret = mmu_hw_do_operation_locked(pfdev, mmu->as, iova, size, op);
120 spin_unlock(&pfdev->as_lock);
124 static void panfrost_mmu_enable(struct panfrost_device *pfdev, struct panfrost_mmu *mmu)
127 struct io_pgtable_cfg *cfg = &mmu->pgtbl_cfg;
128 u64 transtab = cfg->arm_mali_lpae_cfg.transtab;
129 u64 memattr = cfg->arm_mali_lpae_cfg.memattr;
131 mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
133 mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
134 mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
136 /* Need to revisit mem attrs.
137 * NC is the default, Mali driver is inner WT.
139 mmu_write(pfdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
140 mmu_write(pfdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
142 write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE);
145 static void panfrost_mmu_disable(struct panfrost_device *pfdev, u32 as_nr)
147 mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
149 mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), 0);
150 mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), 0);
152 mmu_write(pfdev, AS_MEMATTR_LO(as_nr), 0);
153 mmu_write(pfdev, AS_MEMATTR_HI(as_nr), 0);
155 write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE);
158 u32 panfrost_mmu_as_get(struct panfrost_device *pfdev, struct panfrost_mmu *mmu)
162 spin_lock(&pfdev->as_lock);
166 int en = atomic_inc_return(&mmu->as_count);
167 u32 mask = BIT(as) | BIT(16 + as);
170 * AS can be retained by active jobs or a perfcnt context,
171 * hence the '+ 1' here.
173 WARN_ON(en >= (NUM_JOB_SLOTS + 1));
175 list_move(&mmu->list, &pfdev->as_lru_list);
177 if (pfdev->as_faulty_mask & mask) {
178 /* Unhandled pagefault on this AS, the MMU was
179 * disabled. We need to re-enable the MMU after
180 * clearing+unmasking the AS interrupts.
182 mmu_write(pfdev, MMU_INT_CLEAR, mask);
183 mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask);
184 pfdev->as_faulty_mask &= ~mask;
185 panfrost_mmu_enable(pfdev, mmu);
191 /* Check for a free AS */
192 as = ffz(pfdev->as_alloc_mask);
193 if (!(BIT(as) & pfdev->features.as_present)) {
194 struct panfrost_mmu *lru_mmu;
196 list_for_each_entry_reverse(lru_mmu, &pfdev->as_lru_list, list) {
197 if (!atomic_read(&lru_mmu->as_count))
200 WARN_ON(&lru_mmu->list == &pfdev->as_lru_list);
202 list_del_init(&lru_mmu->list);
209 /* Assign the free or reclaimed AS to the FD */
211 set_bit(as, &pfdev->as_alloc_mask);
212 atomic_set(&mmu->as_count, 1);
213 list_add(&mmu->list, &pfdev->as_lru_list);
215 dev_dbg(pfdev->dev, "Assigned AS%d to mmu %p, alloc_mask=%lx", as, mmu, pfdev->as_alloc_mask);
217 panfrost_mmu_enable(pfdev, mmu);
220 spin_unlock(&pfdev->as_lock);
224 void panfrost_mmu_as_put(struct panfrost_device *pfdev, struct panfrost_mmu *mmu)
226 atomic_dec(&mmu->as_count);
227 WARN_ON(atomic_read(&mmu->as_count) < 0);
230 void panfrost_mmu_reset(struct panfrost_device *pfdev)
232 struct panfrost_mmu *mmu, *mmu_tmp;
234 spin_lock(&pfdev->as_lock);
236 pfdev->as_alloc_mask = 0;
237 pfdev->as_faulty_mask = 0;
239 list_for_each_entry_safe(mmu, mmu_tmp, &pfdev->as_lru_list, list) {
241 atomic_set(&mmu->as_count, 0);
242 list_del_init(&mmu->list);
245 spin_unlock(&pfdev->as_lock);
247 mmu_write(pfdev, MMU_INT_CLEAR, ~0);
248 mmu_write(pfdev, MMU_INT_MASK, ~0);
251 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
254 * io-pgtable only operates on multiple pages within a single table
255 * entry, so we need to split at boundaries of the table size, i.e.
256 * the next block size up. The distance from address A to the next
257 * boundary of block size B is logically B - A % B, but in unsigned
258 * two's complement where B is a power of two we get the equivalence
259 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
261 size_t blk_offset = -addr % SZ_2M;
263 if (blk_offset || size < SZ_2M) {
264 *count = min_not_zero(blk_offset, size) / SZ_4K;
267 blk_offset = -addr % SZ_1G ?: SZ_1G;
268 *count = min(blk_offset, size) / SZ_2M;
272 static void panfrost_mmu_flush_range(struct panfrost_device *pfdev,
273 struct panfrost_mmu *mmu,
279 pm_runtime_get_noresume(pfdev->dev);
281 /* Flush the PTs only if we're already awake */
282 if (pm_runtime_active(pfdev->dev))
283 mmu_hw_do_operation(pfdev, mmu, iova, size, AS_COMMAND_FLUSH_PT);
285 pm_runtime_put_autosuspend(pfdev->dev);
288 static int mmu_map_sg(struct panfrost_device *pfdev, struct panfrost_mmu *mmu,
289 u64 iova, int prot, struct sg_table *sgt)
292 struct scatterlist *sgl;
293 struct io_pgtable_ops *ops = mmu->pgtbl_ops;
294 u64 start_iova = iova;
296 for_each_sgtable_dma_sg(sgt, sgl, count) {
297 unsigned long paddr = sg_dma_address(sgl);
298 size_t len = sg_dma_len(sgl);
300 dev_dbg(pfdev->dev, "map: as=%d, iova=%llx, paddr=%lx, len=%zx", mmu->as, iova, paddr, len);
303 size_t pgcount, mapped = 0;
304 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
306 ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
307 GFP_KERNEL, &mapped);
308 /* Don't get stuck if things have gone wrong */
309 mapped = max(mapped, pgsize);
316 panfrost_mmu_flush_range(pfdev, mmu, start_iova, iova - start_iova);
321 int panfrost_mmu_map(struct panfrost_gem_mapping *mapping)
323 struct panfrost_gem_object *bo = mapping->obj;
324 struct drm_gem_shmem_object *shmem = &bo->base;
325 struct drm_gem_object *obj = &shmem->base;
326 struct panfrost_device *pfdev = to_panfrost_device(obj->dev);
327 struct sg_table *sgt;
328 int prot = IOMMU_READ | IOMMU_WRITE;
330 if (WARN_ON(mapping->active))
334 prot |= IOMMU_NOEXEC;
336 sgt = drm_gem_shmem_get_pages_sgt(shmem);
337 if (WARN_ON(IS_ERR(sgt)))
340 mmu_map_sg(pfdev, mapping->mmu, mapping->mmnode.start << PAGE_SHIFT,
342 mapping->active = true;
347 void panfrost_mmu_unmap(struct panfrost_gem_mapping *mapping)
349 struct panfrost_gem_object *bo = mapping->obj;
350 struct drm_gem_object *obj = &bo->base.base;
351 struct panfrost_device *pfdev = to_panfrost_device(obj->dev);
352 struct io_pgtable_ops *ops = mapping->mmu->pgtbl_ops;
353 u64 iova = mapping->mmnode.start << PAGE_SHIFT;
354 size_t len = mapping->mmnode.size << PAGE_SHIFT;
355 size_t unmapped_len = 0;
357 if (WARN_ON(!mapping->active))
360 dev_dbg(pfdev->dev, "unmap: as=%d, iova=%llx, len=%zx",
361 mapping->mmu->as, iova, len);
363 while (unmapped_len < len) {
364 size_t unmapped_page, pgcount;
365 size_t pgsize = get_pgsize(iova, len - unmapped_len, &pgcount);
369 if (!bo->is_heap || ops->iova_to_phys(ops, iova)) {
370 unmapped_page = ops->unmap_pages(ops, iova, pgsize, pgcount, NULL);
371 WARN_ON(unmapped_page != pgsize * pgcount);
373 iova += pgsize * pgcount;
374 unmapped_len += pgsize * pgcount;
377 panfrost_mmu_flush_range(pfdev, mapping->mmu,
378 mapping->mmnode.start << PAGE_SHIFT, len);
379 mapping->active = false;
382 static void mmu_tlb_inv_context_s1(void *cookie)
385 static void mmu_tlb_sync_context(void *cookie)
387 //struct panfrost_mmu *mmu = cookie;
388 // TODO: Wait 1000 GPU cycles for HW_ISSUE_6367/T60X
391 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule,
394 mmu_tlb_sync_context(cookie);
397 static const struct iommu_flush_ops mmu_tlb_ops = {
398 .tlb_flush_all = mmu_tlb_inv_context_s1,
399 .tlb_flush_walk = mmu_tlb_flush_walk,
402 static struct panfrost_gem_mapping *
403 addr_to_mapping(struct panfrost_device *pfdev, int as, u64 addr)
405 struct panfrost_gem_mapping *mapping = NULL;
406 struct drm_mm_node *node;
407 u64 offset = addr >> PAGE_SHIFT;
408 struct panfrost_mmu *mmu;
410 spin_lock(&pfdev->as_lock);
411 list_for_each_entry(mmu, &pfdev->as_lru_list, list) {
419 spin_lock(&mmu->mm_lock);
421 drm_mm_for_each_node(node, &mmu->mm) {
422 if (offset >= node->start &&
423 offset < (node->start + node->size)) {
424 mapping = drm_mm_node_to_panfrost_mapping(node);
426 kref_get(&mapping->refcount);
431 spin_unlock(&mmu->mm_lock);
433 spin_unlock(&pfdev->as_lock);
437 #define NUM_FAULT_PAGES (SZ_2M / PAGE_SIZE)
439 static int panfrost_mmu_map_fault_addr(struct panfrost_device *pfdev, int as,
443 struct panfrost_gem_mapping *bomapping;
444 struct panfrost_gem_object *bo;
445 struct address_space *mapping;
447 struct sg_table *sgt;
450 bomapping = addr_to_mapping(pfdev, as, addr);
456 dev_WARN(pfdev->dev, "matching BO is not heap type (GPU VA = %llx)",
457 bomapping->mmnode.start << PAGE_SHIFT);
461 WARN_ON(bomapping->mmu->as != as);
463 /* Assume 2MB alignment and size multiple */
464 addr &= ~((u64)SZ_2M - 1);
465 page_offset = addr >> PAGE_SHIFT;
466 page_offset -= bomapping->mmnode.start;
468 mutex_lock(&bo->base.pages_lock);
470 if (!bo->base.pages) {
471 bo->sgts = kvmalloc_array(bo->base.base.size / SZ_2M,
472 sizeof(struct sg_table), GFP_KERNEL | __GFP_ZERO);
474 mutex_unlock(&bo->base.pages_lock);
479 pages = kvmalloc_array(bo->base.base.size >> PAGE_SHIFT,
480 sizeof(struct page *), GFP_KERNEL | __GFP_ZERO);
484 mutex_unlock(&bo->base.pages_lock);
488 bo->base.pages = pages;
489 bo->base.pages_use_count = 1;
491 pages = bo->base.pages;
492 if (pages[page_offset]) {
493 /* Pages are already mapped, bail out. */
494 mutex_unlock(&bo->base.pages_lock);
499 mapping = bo->base.base.filp->f_mapping;
500 mapping_set_unevictable(mapping);
502 for (i = page_offset; i < page_offset + NUM_FAULT_PAGES; i++) {
503 pages[i] = shmem_read_mapping_page(mapping, i);
504 if (IS_ERR(pages[i])) {
505 mutex_unlock(&bo->base.pages_lock);
506 ret = PTR_ERR(pages[i]);
512 mutex_unlock(&bo->base.pages_lock);
514 sgt = &bo->sgts[page_offset / (SZ_2M / PAGE_SIZE)];
515 ret = sg_alloc_table_from_pages(sgt, pages + page_offset,
516 NUM_FAULT_PAGES, 0, SZ_2M, GFP_KERNEL);
520 ret = dma_map_sgtable(pfdev->dev, sgt, DMA_BIDIRECTIONAL, 0);
524 mmu_map_sg(pfdev, bomapping->mmu, addr,
525 IOMMU_WRITE | IOMMU_READ | IOMMU_NOEXEC, sgt);
527 bomapping->active = true;
529 dev_dbg(pfdev->dev, "mapped page fault @ AS%d %llx", as, addr);
532 panfrost_gem_mapping_put(bomapping);
539 drm_gem_shmem_put_pages(&bo->base);
541 panfrost_gem_mapping_put(bomapping);
545 static void panfrost_mmu_release_ctx(struct kref *kref)
547 struct panfrost_mmu *mmu = container_of(kref, struct panfrost_mmu,
549 struct panfrost_device *pfdev = mmu->pfdev;
551 spin_lock(&pfdev->as_lock);
553 pm_runtime_get_noresume(pfdev->dev);
554 if (pm_runtime_active(pfdev->dev))
555 panfrost_mmu_disable(pfdev, mmu->as);
556 pm_runtime_put_autosuspend(pfdev->dev);
558 clear_bit(mmu->as, &pfdev->as_alloc_mask);
559 clear_bit(mmu->as, &pfdev->as_in_use_mask);
560 list_del(&mmu->list);
562 spin_unlock(&pfdev->as_lock);
564 free_io_pgtable_ops(mmu->pgtbl_ops);
565 drm_mm_takedown(&mmu->mm);
569 void panfrost_mmu_ctx_put(struct panfrost_mmu *mmu)
571 kref_put(&mmu->refcount, panfrost_mmu_release_ctx);
574 struct panfrost_mmu *panfrost_mmu_ctx_get(struct panfrost_mmu *mmu)
576 kref_get(&mmu->refcount);
581 #define PFN_4G (SZ_4G >> PAGE_SHIFT)
582 #define PFN_4G_MASK (PFN_4G - 1)
583 #define PFN_16M (SZ_16M >> PAGE_SHIFT)
585 static void panfrost_drm_mm_color_adjust(const struct drm_mm_node *node,
587 u64 *start, u64 *end)
589 /* Executable buffers can't start or end on a 4GB boundary */
590 if (!(color & PANFROST_BO_NOEXEC)) {
593 if ((*start & PFN_4G_MASK) == 0)
596 if ((*end & PFN_4G_MASK) == 0)
599 next_seg = ALIGN(*start, PFN_4G);
600 if (next_seg - *start <= PFN_16M)
601 *start = next_seg + 1;
603 *end = min(*end, ALIGN(*start, PFN_4G) - 1);
607 struct panfrost_mmu *panfrost_mmu_ctx_create(struct panfrost_device *pfdev)
609 struct panfrost_mmu *mmu;
611 mmu = kzalloc(sizeof(*mmu), GFP_KERNEL);
613 return ERR_PTR(-ENOMEM);
616 spin_lock_init(&mmu->mm_lock);
618 /* 4G enough for now. can be 48-bit */
619 drm_mm_init(&mmu->mm, SZ_32M >> PAGE_SHIFT, (SZ_4G - SZ_32M) >> PAGE_SHIFT);
620 mmu->mm.color_adjust = panfrost_drm_mm_color_adjust;
622 INIT_LIST_HEAD(&mmu->list);
625 mmu->pgtbl_cfg = (struct io_pgtable_cfg) {
626 .pgsize_bitmap = SZ_4K | SZ_2M,
627 .ias = FIELD_GET(0xff, pfdev->features.mmu_features),
628 .oas = FIELD_GET(0xff00, pfdev->features.mmu_features),
629 .coherent_walk = pfdev->coherent,
631 .iommu_dev = pfdev->dev,
634 mmu->pgtbl_ops = alloc_io_pgtable_ops(ARM_MALI_LPAE, &mmu->pgtbl_cfg,
636 if (!mmu->pgtbl_ops) {
638 return ERR_PTR(-EINVAL);
641 kref_init(&mmu->refcount);
646 static const char *access_type_name(struct panfrost_device *pfdev,
649 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
650 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
651 if (panfrost_has_hw_feature(pfdev, HW_FEATURE_AARCH64_MMU))
655 case AS_FAULTSTATUS_ACCESS_TYPE_READ:
657 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
659 case AS_FAULTSTATUS_ACCESS_TYPE_EX:
667 static irqreturn_t panfrost_mmu_irq_handler(int irq, void *data)
669 struct panfrost_device *pfdev = data;
671 if (!mmu_read(pfdev, MMU_INT_STAT))
674 mmu_write(pfdev, MMU_INT_MASK, 0);
675 return IRQ_WAKE_THREAD;
678 static irqreturn_t panfrost_mmu_irq_handler_thread(int irq, void *data)
680 struct panfrost_device *pfdev = data;
681 u32 status = mmu_read(pfdev, MMU_INT_RAWSTAT);
685 u32 as = ffs(status | (status >> 16)) - 1;
686 u32 mask = BIT(as) | BIT(as + 16);
693 fault_status = mmu_read(pfdev, AS_FAULTSTATUS(as));
694 addr = mmu_read(pfdev, AS_FAULTADDRESS_LO(as));
695 addr |= (u64)mmu_read(pfdev, AS_FAULTADDRESS_HI(as)) << 32;
697 /* decode the fault status */
698 exception_type = fault_status & 0xFF;
699 access_type = (fault_status >> 8) & 0x3;
700 source_id = (fault_status >> 16);
702 mmu_write(pfdev, MMU_INT_CLEAR, mask);
704 /* Page fault only */
706 if ((status & mask) == BIT(as) && (exception_type & 0xF8) == 0xC0)
707 ret = panfrost_mmu_map_fault_addr(pfdev, as, addr);
710 /* terminal fault, print info about the fault */
712 "Unhandled Page fault in AS%d at VA 0x%016llX\n"
714 "raw fault status: 0x%X\n"
715 "decoded fault status: %s\n"
716 "exception type 0x%X: %s\n"
717 "access type 0x%X: %s\n"
722 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
723 exception_type, panfrost_exception_name(exception_type),
724 access_type, access_type_name(pfdev, fault_status),
727 spin_lock(&pfdev->as_lock);
728 /* Ignore MMU interrupts on this AS until it's been
731 pfdev->as_faulty_mask |= mask;
733 /* Disable the MMU to kill jobs on this AS. */
734 panfrost_mmu_disable(pfdev, as);
735 spin_unlock(&pfdev->as_lock);
740 /* If we received new MMU interrupts, process them before returning. */
742 status = mmu_read(pfdev, MMU_INT_RAWSTAT) & ~pfdev->as_faulty_mask;
745 spin_lock(&pfdev->as_lock);
746 mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask);
747 spin_unlock(&pfdev->as_lock);
752 int panfrost_mmu_init(struct panfrost_device *pfdev)
756 irq = platform_get_irq_byname(to_platform_device(pfdev->dev), "mmu");
760 err = devm_request_threaded_irq(pfdev->dev, irq,
761 panfrost_mmu_irq_handler,
762 panfrost_mmu_irq_handler_thread,
763 IRQF_SHARED, KBUILD_MODNAME "-mmu",
767 dev_err(pfdev->dev, "failed to request mmu irq");
774 void panfrost_mmu_fini(struct panfrost_device *pfdev)
776 mmu_write(pfdev, MMU_INT_MASK, 0);