]> Git Repo - linux.git/blob - drivers/crypto/aspeed/aspeed-acry.c
net: bgmac: Fix return value check for fixed_phy_register()
[linux.git] / drivers / crypto / aspeed / aspeed-acry.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2021 Aspeed Technology Inc.
4  */
5 #include <crypto/akcipher.h>
6 #include <crypto/algapi.h>
7 #include <crypto/engine.h>
8 #include <crypto/internal/akcipher.h>
9 #include <crypto/internal/rsa.h>
10 #include <crypto/scatterwalk.h>
11 #include <linux/clk.h>
12 #include <linux/platform_device.h>
13 #include <linux/module.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/interrupt.h>
20 #include <linux/count_zeros.h>
21 #include <linux/err.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/regmap.h>
24
25 #ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG
26 #define ACRY_DBG(d, fmt, ...)   \
27         dev_info((d)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
28 #else
29 #define ACRY_DBG(d, fmt, ...)   \
30         dev_dbg((d)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
31 #endif
32
33 /*****************************
34  *                           *
35  * ACRY register definitions *
36  *                           *
37  * ***************************/
38 #define ASPEED_ACRY_TRIGGER             0x000   /* ACRY Engine Control: trigger */
39 #define ASPEED_ACRY_DMA_CMD             0x048   /* ACRY Engine Control: Command */
40 #define ASPEED_ACRY_DMA_SRC_BASE        0x04C   /* ACRY DRAM base address for DMA */
41 #define ASPEED_ACRY_DMA_LEN             0x050   /* ACRY Data Length of DMA */
42 #define ASPEED_ACRY_RSA_KEY_LEN         0x058   /* ACRY RSA Exp/Mod Key Length (Bits) */
43 #define ASPEED_ACRY_INT_MASK            0x3F8   /* ACRY Interrupt Mask */
44 #define ASPEED_ACRY_STATUS              0x3FC   /* ACRY Interrupt Status */
45
46 /* rsa trigger */
47 #define  ACRY_CMD_RSA_TRIGGER           BIT(0)
48 #define  ACRY_CMD_DMA_RSA_TRIGGER       BIT(1)
49
50 /* rsa dma cmd */
51 #define  ACRY_CMD_DMA_SRAM_MODE_RSA     (0x3 << 4)
52 #define  ACRY_CMD_DMEM_AHB              BIT(8)
53 #define  ACRY_CMD_DMA_SRAM_AHB_ENGINE   0
54
55 /* rsa key len */
56 #define  RSA_E_BITS_LEN(x)              ((x) << 16)
57 #define  RSA_M_BITS_LEN(x)              (x)
58
59 /* acry isr */
60 #define  ACRY_RSA_ISR                   BIT(1)
61
62 #define ASPEED_ACRY_BUFF_SIZE           0x1800  /* DMA buffer size */
63 #define ASPEED_ACRY_SRAM_MAX_LEN        2048    /* ACRY SRAM maximum length (Bytes) */
64 #define ASPEED_ACRY_RSA_MAX_KEY_LEN     512     /* ACRY RSA maximum key length (Bytes) */
65
66 #define CRYPTO_FLAGS_BUSY               BIT(1)
67 #define BYTES_PER_DWORD                 4
68
69 /*****************************
70  *                           *
71  * AHBC register definitions *
72  *                           *
73  * ***************************/
74 #define AHBC_REGION_PROT                0x240
75 #define REGION_ACRYM                    BIT(23)
76
77 #define ast_acry_write(acry, val, offset)       \
78         writel((val), (acry)->regs + (offset))
79
80 #define ast_acry_read(acry, offset)             \
81         readl((acry)->regs + (offset))
82
83 struct aspeed_acry_dev;
84
85 typedef int (*aspeed_acry_fn_t)(struct aspeed_acry_dev *);
86
87 struct aspeed_acry_dev {
88         void __iomem                    *regs;
89         struct device                   *dev;
90         int                             irq;
91         struct clk                      *clk;
92         struct regmap                   *ahbc;
93
94         struct akcipher_request         *req;
95         struct tasklet_struct           done_task;
96         aspeed_acry_fn_t                resume;
97         unsigned long                   flags;
98
99         /* ACRY output SRAM buffer */
100         void __iomem                    *acry_sram;
101
102         /* ACRY input DMA buffer */
103         void                            *buf_addr;
104         dma_addr_t                      buf_dma_addr;
105
106         struct crypto_engine            *crypt_engine_rsa;
107
108         /* ACRY SRAM memory mapped */
109         int                             exp_dw_mapping[ASPEED_ACRY_RSA_MAX_KEY_LEN];
110         int                             mod_dw_mapping[ASPEED_ACRY_RSA_MAX_KEY_LEN];
111         int                             data_byte_mapping[ASPEED_ACRY_SRAM_MAX_LEN];
112 };
113
114 struct aspeed_acry_ctx {
115         struct crypto_engine_ctx        enginectx;
116         struct aspeed_acry_dev          *acry_dev;
117
118         struct rsa_key                  key;
119         int                             enc;
120         u8                              *n;
121         u8                              *e;
122         u8                              *d;
123         size_t                          n_sz;
124         size_t                          e_sz;
125         size_t                          d_sz;
126
127         aspeed_acry_fn_t                trigger;
128
129         struct crypto_akcipher          *fallback_tfm;
130 };
131
132 struct aspeed_acry_alg {
133         struct aspeed_acry_dev          *acry_dev;
134         struct akcipher_alg             akcipher;
135 };
136
137 enum aspeed_rsa_key_mode {
138         ASPEED_RSA_EXP_MODE = 0,
139         ASPEED_RSA_MOD_MODE,
140         ASPEED_RSA_DATA_MODE,
141 };
142
143 static inline struct akcipher_request *
144         akcipher_request_cast(struct crypto_async_request *req)
145 {
146         return container_of(req, struct akcipher_request, base);
147 }
148
149 static int aspeed_acry_do_fallback(struct akcipher_request *req)
150 {
151         struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
152         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
153         int err;
154
155         akcipher_request_set_tfm(req, ctx->fallback_tfm);
156
157         if (ctx->enc)
158                 err = crypto_akcipher_encrypt(req);
159         else
160                 err = crypto_akcipher_decrypt(req);
161
162         akcipher_request_set_tfm(req, cipher);
163
164         return err;
165 }
166
167 static bool aspeed_acry_need_fallback(struct akcipher_request *req)
168 {
169         struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
170         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
171
172         return ctx->key.n_sz > ASPEED_ACRY_RSA_MAX_KEY_LEN;
173 }
174
175 static int aspeed_acry_handle_queue(struct aspeed_acry_dev *acry_dev,
176                                     struct akcipher_request *req)
177 {
178         if (aspeed_acry_need_fallback(req)) {
179                 ACRY_DBG(acry_dev, "SW fallback\n");
180                 return aspeed_acry_do_fallback(req);
181         }
182
183         return crypto_transfer_akcipher_request_to_engine(acry_dev->crypt_engine_rsa, req);
184 }
185
186 static int aspeed_acry_do_request(struct crypto_engine *engine, void *areq)
187 {
188         struct akcipher_request *req = akcipher_request_cast(areq);
189         struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
190         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
191         struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
192
193         acry_dev->req = req;
194         acry_dev->flags |= CRYPTO_FLAGS_BUSY;
195
196         return ctx->trigger(acry_dev);
197 }
198
199 static int aspeed_acry_complete(struct aspeed_acry_dev *acry_dev, int err)
200 {
201         struct akcipher_request *req = acry_dev->req;
202
203         acry_dev->flags &= ~CRYPTO_FLAGS_BUSY;
204
205         crypto_finalize_akcipher_request(acry_dev->crypt_engine_rsa, req, err);
206
207         return err;
208 }
209
210 /*
211  * Copy Data to DMA buffer for engine used.
212  */
213 static void aspeed_acry_rsa_sg_copy_to_buffer(struct aspeed_acry_dev *acry_dev,
214                                               u8 *buf, struct scatterlist *src,
215                                               size_t nbytes)
216 {
217         static u8 dram_buffer[ASPEED_ACRY_SRAM_MAX_LEN];
218         int i = 0, j;
219         int data_idx;
220
221         ACRY_DBG(acry_dev, "\n");
222
223         scatterwalk_map_and_copy(dram_buffer, src, 0, nbytes, 0);
224
225         for (j = nbytes - 1; j >= 0; j--) {
226                 data_idx = acry_dev->data_byte_mapping[i];
227                 buf[data_idx] =  dram_buffer[j];
228                 i++;
229         }
230
231         for (; i < ASPEED_ACRY_SRAM_MAX_LEN; i++) {
232                 data_idx = acry_dev->data_byte_mapping[i];
233                 buf[data_idx] = 0;
234         }
235 }
236
237 /*
238  * Copy Exp/Mod to DMA buffer for engine used.
239  *
240  * Params:
241  * - mode 0 : Exponential
242  * - mode 1 : Modulus
243  *
244  * Example:
245  * - DRAM memory layout:
246  *      D[0], D[4], D[8], D[12]
247  * - ACRY SRAM memory layout should reverse the order of source data:
248  *      D[12], D[8], D[4], D[0]
249  */
250 static int aspeed_acry_rsa_ctx_copy(struct aspeed_acry_dev *acry_dev, void *buf,
251                                     const void *xbuf, size_t nbytes,
252                                     enum aspeed_rsa_key_mode mode)
253 {
254         const u8 *src = xbuf;
255         __le32 *dw_buf = buf;
256         int nbits, ndw;
257         int i, j, idx;
258         u32 data = 0;
259
260         ACRY_DBG(acry_dev, "nbytes:%zu, mode:%d\n", nbytes, mode);
261
262         if (nbytes > ASPEED_ACRY_RSA_MAX_KEY_LEN)
263                 return -ENOMEM;
264
265         /* Remove the leading zeros */
266         while (nbytes > 0 && src[0] == 0) {
267                 src++;
268                 nbytes--;
269         }
270
271         nbits = nbytes * 8;
272         if (nbytes > 0)
273                 nbits -= count_leading_zeros(src[0]) - (BITS_PER_LONG - 8);
274
275         /* double-world alignment */
276         ndw = DIV_ROUND_UP(nbytes, BYTES_PER_DWORD);
277
278         if (nbytes > 0) {
279                 i = BYTES_PER_DWORD - nbytes % BYTES_PER_DWORD;
280                 i %= BYTES_PER_DWORD;
281
282                 for (j = ndw; j > 0; j--) {
283                         for (; i < BYTES_PER_DWORD; i++) {
284                                 data <<= 8;
285                                 data |= *src++;
286                         }
287
288                         i = 0;
289
290                         if (mode == ASPEED_RSA_EXP_MODE)
291                                 idx = acry_dev->exp_dw_mapping[j - 1];
292                         else /* mode == ASPEED_RSA_MOD_MODE */
293                                 idx = acry_dev->mod_dw_mapping[j - 1];
294
295                         dw_buf[idx] = cpu_to_le32(data);
296                 }
297         }
298
299         return nbits;
300 }
301
302 static int aspeed_acry_rsa_transfer(struct aspeed_acry_dev *acry_dev)
303 {
304         struct akcipher_request *req = acry_dev->req;
305         u8 __iomem *sram_buffer = acry_dev->acry_sram;
306         struct scatterlist *out_sg = req->dst;
307         static u8 dram_buffer[ASPEED_ACRY_SRAM_MAX_LEN];
308         int leading_zero = 1;
309         int result_nbytes;
310         int i = 0, j;
311         int data_idx;
312
313         /* Set Data Memory to AHB(CPU) Access Mode */
314         ast_acry_write(acry_dev, ACRY_CMD_DMEM_AHB, ASPEED_ACRY_DMA_CMD);
315
316         /* Disable ACRY SRAM protection */
317         regmap_update_bits(acry_dev->ahbc, AHBC_REGION_PROT,
318                            REGION_ACRYM, 0);
319
320         result_nbytes = ASPEED_ACRY_SRAM_MAX_LEN;
321
322         for (j = ASPEED_ACRY_SRAM_MAX_LEN - 1; j >= 0; j--) {
323                 data_idx = acry_dev->data_byte_mapping[j];
324                 if (readb(sram_buffer + data_idx) == 0 && leading_zero) {
325                         result_nbytes--;
326                 } else {
327                         leading_zero = 0;
328                         dram_buffer[i] = readb(sram_buffer + data_idx);
329                         i++;
330                 }
331         }
332
333         ACRY_DBG(acry_dev, "result_nbytes:%d, req->dst_len:%d\n",
334                  result_nbytes, req->dst_len);
335
336         if (result_nbytes <= req->dst_len) {
337                 scatterwalk_map_and_copy(dram_buffer, out_sg, 0, result_nbytes,
338                                          1);
339                 req->dst_len = result_nbytes;
340
341         } else {
342                 dev_err(acry_dev->dev, "RSA engine error!\n");
343         }
344
345         memzero_explicit(acry_dev->buf_addr, ASPEED_ACRY_BUFF_SIZE);
346
347         return aspeed_acry_complete(acry_dev, 0);
348 }
349
350 static int aspeed_acry_rsa_trigger(struct aspeed_acry_dev *acry_dev)
351 {
352         struct akcipher_request *req = acry_dev->req;
353         struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
354         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
355         int ne, nm;
356
357         if (!ctx->n || !ctx->n_sz) {
358                 dev_err(acry_dev->dev, "%s: key n is not set\n", __func__);
359                 return -EINVAL;
360         }
361
362         memzero_explicit(acry_dev->buf_addr, ASPEED_ACRY_BUFF_SIZE);
363
364         /* Copy source data to DMA buffer */
365         aspeed_acry_rsa_sg_copy_to_buffer(acry_dev, acry_dev->buf_addr,
366                                           req->src, req->src_len);
367
368         nm = aspeed_acry_rsa_ctx_copy(acry_dev, acry_dev->buf_addr, ctx->n,
369                                       ctx->n_sz, ASPEED_RSA_MOD_MODE);
370         if (ctx->enc) {
371                 if (!ctx->e || !ctx->e_sz) {
372                         dev_err(acry_dev->dev, "%s: key e is not set\n",
373                                 __func__);
374                         return -EINVAL;
375                 }
376                 /* Copy key e to DMA buffer */
377                 ne = aspeed_acry_rsa_ctx_copy(acry_dev, acry_dev->buf_addr,
378                                               ctx->e, ctx->e_sz,
379                                               ASPEED_RSA_EXP_MODE);
380         } else {
381                 if (!ctx->d || !ctx->d_sz) {
382                         dev_err(acry_dev->dev, "%s: key d is not set\n",
383                                 __func__);
384                         return -EINVAL;
385                 }
386                 /* Copy key d to DMA buffer */
387                 ne = aspeed_acry_rsa_ctx_copy(acry_dev, acry_dev->buf_addr,
388                                               ctx->key.d, ctx->key.d_sz,
389                                               ASPEED_RSA_EXP_MODE);
390         }
391
392         ast_acry_write(acry_dev, acry_dev->buf_dma_addr,
393                        ASPEED_ACRY_DMA_SRC_BASE);
394         ast_acry_write(acry_dev, (ne << 16) + nm,
395                        ASPEED_ACRY_RSA_KEY_LEN);
396         ast_acry_write(acry_dev, ASPEED_ACRY_BUFF_SIZE,
397                        ASPEED_ACRY_DMA_LEN);
398
399         acry_dev->resume = aspeed_acry_rsa_transfer;
400
401         /* Enable ACRY SRAM protection */
402         regmap_update_bits(acry_dev->ahbc, AHBC_REGION_PROT,
403                            REGION_ACRYM, REGION_ACRYM);
404
405         ast_acry_write(acry_dev, ACRY_RSA_ISR, ASPEED_ACRY_INT_MASK);
406         ast_acry_write(acry_dev, ACRY_CMD_DMA_SRAM_MODE_RSA |
407                           ACRY_CMD_DMA_SRAM_AHB_ENGINE, ASPEED_ACRY_DMA_CMD);
408
409         /* Trigger RSA engines */
410         ast_acry_write(acry_dev, ACRY_CMD_RSA_TRIGGER |
411                           ACRY_CMD_DMA_RSA_TRIGGER, ASPEED_ACRY_TRIGGER);
412
413         return 0;
414 }
415
416 static int aspeed_acry_rsa_enc(struct akcipher_request *req)
417 {
418         struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
419         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
420         struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
421
422         ctx->trigger = aspeed_acry_rsa_trigger;
423         ctx->enc = 1;
424
425         return aspeed_acry_handle_queue(acry_dev, req);
426 }
427
428 static int aspeed_acry_rsa_dec(struct akcipher_request *req)
429 {
430         struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
431         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
432         struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
433
434         ctx->trigger = aspeed_acry_rsa_trigger;
435         ctx->enc = 0;
436
437         return aspeed_acry_handle_queue(acry_dev, req);
438 }
439
440 static u8 *aspeed_rsa_key_copy(u8 *src, size_t len)
441 {
442         return kmemdup(src, len, GFP_KERNEL);
443 }
444
445 static int aspeed_rsa_set_n(struct aspeed_acry_ctx *ctx, u8 *value,
446                             size_t len)
447 {
448         ctx->n_sz = len;
449         ctx->n = aspeed_rsa_key_copy(value, len);
450         if (!ctx->n)
451                 return -ENOMEM;
452
453         return 0;
454 }
455
456 static int aspeed_rsa_set_e(struct aspeed_acry_ctx *ctx, u8 *value,
457                             size_t len)
458 {
459         ctx->e_sz = len;
460         ctx->e = aspeed_rsa_key_copy(value, len);
461         if (!ctx->e)
462                 return -ENOMEM;
463
464         return 0;
465 }
466
467 static int aspeed_rsa_set_d(struct aspeed_acry_ctx *ctx, u8 *value,
468                             size_t len)
469 {
470         ctx->d_sz = len;
471         ctx->d = aspeed_rsa_key_copy(value, len);
472         if (!ctx->d)
473                 return -ENOMEM;
474
475         return 0;
476 }
477
478 static void aspeed_rsa_key_free(struct aspeed_acry_ctx *ctx)
479 {
480         kfree_sensitive(ctx->n);
481         kfree_sensitive(ctx->e);
482         kfree_sensitive(ctx->d);
483         ctx->n_sz = 0;
484         ctx->e_sz = 0;
485         ctx->d_sz = 0;
486 }
487
488 static int aspeed_acry_rsa_setkey(struct crypto_akcipher *tfm, const void *key,
489                                   unsigned int keylen, int priv)
490 {
491         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
492         struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
493         int ret;
494
495         if (priv)
496                 ret = rsa_parse_priv_key(&ctx->key, key, keylen);
497         else
498                 ret = rsa_parse_pub_key(&ctx->key, key, keylen);
499
500         if (ret) {
501                 dev_err(acry_dev->dev, "rsa parse key failed, ret:0x%x\n",
502                         ret);
503                 return ret;
504         }
505
506         /* Aspeed engine supports up to 4096 bits,
507          * Use software fallback instead.
508          */
509         if (ctx->key.n_sz > ASPEED_ACRY_RSA_MAX_KEY_LEN)
510                 return 0;
511
512         ret = aspeed_rsa_set_n(ctx, (u8 *)ctx->key.n, ctx->key.n_sz);
513         if (ret)
514                 goto err;
515
516         ret = aspeed_rsa_set_e(ctx, (u8 *)ctx->key.e, ctx->key.e_sz);
517         if (ret)
518                 goto err;
519
520         if (priv) {
521                 ret = aspeed_rsa_set_d(ctx, (u8 *)ctx->key.d, ctx->key.d_sz);
522                 if (ret)
523                         goto err;
524         }
525
526         return 0;
527
528 err:
529         dev_err(acry_dev->dev, "rsa set key failed\n");
530         aspeed_rsa_key_free(ctx);
531
532         return ret;
533 }
534
535 static int aspeed_acry_rsa_set_pub_key(struct crypto_akcipher *tfm,
536                                        const void *key,
537                                        unsigned int keylen)
538 {
539         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
540         int ret;
541
542         ret = crypto_akcipher_set_pub_key(ctx->fallback_tfm, key, keylen);
543         if (ret)
544                 return ret;
545
546         return aspeed_acry_rsa_setkey(tfm, key, keylen, 0);
547 }
548
549 static int aspeed_acry_rsa_set_priv_key(struct crypto_akcipher *tfm,
550                                         const void *key,
551                                         unsigned int keylen)
552 {
553         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
554         int ret;
555
556         ret = crypto_akcipher_set_priv_key(ctx->fallback_tfm, key, keylen);
557         if (ret)
558                 return ret;
559
560         return aspeed_acry_rsa_setkey(tfm, key, keylen, 1);
561 }
562
563 static unsigned int aspeed_acry_rsa_max_size(struct crypto_akcipher *tfm)
564 {
565         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
566
567         if (ctx->key.n_sz > ASPEED_ACRY_RSA_MAX_KEY_LEN)
568                 return crypto_akcipher_maxsize(ctx->fallback_tfm);
569
570         return ctx->n_sz;
571 }
572
573 static int aspeed_acry_rsa_init_tfm(struct crypto_akcipher *tfm)
574 {
575         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
576         struct akcipher_alg *alg = crypto_akcipher_alg(tfm);
577         const char *name = crypto_tfm_alg_name(&tfm->base);
578         struct aspeed_acry_alg *acry_alg;
579
580         acry_alg = container_of(alg, struct aspeed_acry_alg, akcipher);
581
582         ctx->acry_dev = acry_alg->acry_dev;
583
584         ctx->fallback_tfm = crypto_alloc_akcipher(name, 0, CRYPTO_ALG_ASYNC |
585                                                   CRYPTO_ALG_NEED_FALLBACK);
586         if (IS_ERR(ctx->fallback_tfm)) {
587                 dev_err(ctx->acry_dev->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
588                         name, PTR_ERR(ctx->fallback_tfm));
589                 return PTR_ERR(ctx->fallback_tfm);
590         }
591
592         ctx->enginectx.op.do_one_request = aspeed_acry_do_request;
593         ctx->enginectx.op.prepare_request = NULL;
594         ctx->enginectx.op.unprepare_request = NULL;
595
596         return 0;
597 }
598
599 static void aspeed_acry_rsa_exit_tfm(struct crypto_akcipher *tfm)
600 {
601         struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
602
603         crypto_free_akcipher(ctx->fallback_tfm);
604 }
605
606 static struct aspeed_acry_alg aspeed_acry_akcipher_algs[] = {
607         {
608                 .akcipher = {
609                         .encrypt = aspeed_acry_rsa_enc,
610                         .decrypt = aspeed_acry_rsa_dec,
611                         .sign = aspeed_acry_rsa_dec,
612                         .verify = aspeed_acry_rsa_enc,
613                         .set_pub_key = aspeed_acry_rsa_set_pub_key,
614                         .set_priv_key = aspeed_acry_rsa_set_priv_key,
615                         .max_size = aspeed_acry_rsa_max_size,
616                         .init = aspeed_acry_rsa_init_tfm,
617                         .exit = aspeed_acry_rsa_exit_tfm,
618                         .base = {
619                                 .cra_name = "rsa",
620                                 .cra_driver_name = "aspeed-rsa",
621                                 .cra_priority = 300,
622                                 .cra_flags = CRYPTO_ALG_TYPE_AKCIPHER |
623                                              CRYPTO_ALG_ASYNC |
624                                              CRYPTO_ALG_KERN_DRIVER_ONLY |
625                                              CRYPTO_ALG_NEED_FALLBACK,
626                                 .cra_module = THIS_MODULE,
627                                 .cra_ctxsize = sizeof(struct aspeed_acry_ctx),
628                         },
629                 },
630         },
631 };
632
633 static void aspeed_acry_register(struct aspeed_acry_dev *acry_dev)
634 {
635         int i, rc;
636
637         for (i = 0; i < ARRAY_SIZE(aspeed_acry_akcipher_algs); i++) {
638                 aspeed_acry_akcipher_algs[i].acry_dev = acry_dev;
639                 rc = crypto_register_akcipher(&aspeed_acry_akcipher_algs[i].akcipher);
640                 if (rc) {
641                         ACRY_DBG(acry_dev, "Failed to register %s\n",
642                                  aspeed_acry_akcipher_algs[i].akcipher.base.cra_name);
643                 }
644         }
645 }
646
647 static void aspeed_acry_unregister(struct aspeed_acry_dev *acry_dev)
648 {
649         int i;
650
651         for (i = 0; i < ARRAY_SIZE(aspeed_acry_akcipher_algs); i++)
652                 crypto_unregister_akcipher(&aspeed_acry_akcipher_algs[i].akcipher);
653 }
654
655 /* ACRY interrupt service routine. */
656 static irqreturn_t aspeed_acry_irq(int irq, void *dev)
657 {
658         struct aspeed_acry_dev *acry_dev = (struct aspeed_acry_dev *)dev;
659         u32 sts;
660
661         sts = ast_acry_read(acry_dev, ASPEED_ACRY_STATUS);
662         ast_acry_write(acry_dev, sts, ASPEED_ACRY_STATUS);
663
664         ACRY_DBG(acry_dev, "irq sts:0x%x\n", sts);
665
666         if (sts & ACRY_RSA_ISR) {
667                 /* Stop RSA engine */
668                 ast_acry_write(acry_dev, 0, ASPEED_ACRY_TRIGGER);
669
670                 if (acry_dev->flags & CRYPTO_FLAGS_BUSY)
671                         tasklet_schedule(&acry_dev->done_task);
672                 else
673                         dev_err(acry_dev->dev, "RSA no active requests.\n");
674         }
675
676         return IRQ_HANDLED;
677 }
678
679 /*
680  * ACRY SRAM has its own memory layout.
681  * Set the DRAM to SRAM indexing for future used.
682  */
683 static void aspeed_acry_sram_mapping(struct aspeed_acry_dev *acry_dev)
684 {
685         int i, j = 0;
686
687         for (i = 0; i < (ASPEED_ACRY_SRAM_MAX_LEN / BYTES_PER_DWORD); i++) {
688                 acry_dev->exp_dw_mapping[i] = j;
689                 acry_dev->mod_dw_mapping[i] = j + 4;
690                 acry_dev->data_byte_mapping[(i * 4)] = (j + 8) * 4;
691                 acry_dev->data_byte_mapping[(i * 4) + 1] = (j + 8) * 4 + 1;
692                 acry_dev->data_byte_mapping[(i * 4) + 2] = (j + 8) * 4 + 2;
693                 acry_dev->data_byte_mapping[(i * 4) + 3] = (j + 8) * 4 + 3;
694                 j++;
695                 j = j % 4 ? j : j + 8;
696         }
697 }
698
699 static void aspeed_acry_done_task(unsigned long data)
700 {
701         struct aspeed_acry_dev *acry_dev = (struct aspeed_acry_dev *)data;
702
703         (void)acry_dev->resume(acry_dev);
704 }
705
706 static const struct of_device_id aspeed_acry_of_matches[] = {
707         { .compatible = "aspeed,ast2600-acry", },
708         {},
709 };
710
711 static int aspeed_acry_probe(struct platform_device *pdev)
712 {
713         struct aspeed_acry_dev *acry_dev;
714         struct device *dev = &pdev->dev;
715         int rc;
716
717         acry_dev = devm_kzalloc(dev, sizeof(struct aspeed_acry_dev),
718                                 GFP_KERNEL);
719         if (!acry_dev)
720                 return -ENOMEM;
721
722         acry_dev->dev = dev;
723
724         platform_set_drvdata(pdev, acry_dev);
725
726         acry_dev->regs = devm_platform_ioremap_resource(pdev, 0);
727         if (IS_ERR(acry_dev->regs))
728                 return PTR_ERR(acry_dev->regs);
729
730         acry_dev->acry_sram = devm_platform_ioremap_resource(pdev, 1);
731         if (IS_ERR(acry_dev->acry_sram))
732                 return PTR_ERR(acry_dev->acry_sram);
733
734         /* Get irq number and register it */
735         acry_dev->irq = platform_get_irq(pdev, 0);
736         if (acry_dev->irq < 0)
737                 return -ENXIO;
738
739         rc = devm_request_irq(dev, acry_dev->irq, aspeed_acry_irq, 0,
740                               dev_name(dev), acry_dev);
741         if (rc) {
742                 dev_err(dev, "Failed to request irq.\n");
743                 return rc;
744         }
745
746         acry_dev->clk = devm_clk_get_enabled(dev, NULL);
747         if (IS_ERR(acry_dev->clk)) {
748                 dev_err(dev, "Failed to get acry clk\n");
749                 return PTR_ERR(acry_dev->clk);
750         }
751
752         acry_dev->ahbc = syscon_regmap_lookup_by_phandle(dev->of_node,
753                                                          "aspeed,ahbc");
754         if (IS_ERR(acry_dev->ahbc)) {
755                 dev_err(dev, "Failed to get AHBC regmap\n");
756                 return -ENODEV;
757         }
758
759         /* Initialize crypto hardware engine structure for RSA */
760         acry_dev->crypt_engine_rsa = crypto_engine_alloc_init(dev, true);
761         if (!acry_dev->crypt_engine_rsa) {
762                 rc = -ENOMEM;
763                 goto clk_exit;
764         }
765
766         rc = crypto_engine_start(acry_dev->crypt_engine_rsa);
767         if (rc)
768                 goto err_engine_rsa_start;
769
770         tasklet_init(&acry_dev->done_task, aspeed_acry_done_task,
771                      (unsigned long)acry_dev);
772
773         /* Set Data Memory to AHB(CPU) Access Mode */
774         ast_acry_write(acry_dev, ACRY_CMD_DMEM_AHB, ASPEED_ACRY_DMA_CMD);
775
776         /* Initialize ACRY SRAM index */
777         aspeed_acry_sram_mapping(acry_dev);
778
779         acry_dev->buf_addr = dmam_alloc_coherent(dev, ASPEED_ACRY_BUFF_SIZE,
780                                                  &acry_dev->buf_dma_addr,
781                                                  GFP_KERNEL);
782         if (!acry_dev->buf_addr) {
783                 rc = -ENOMEM;
784                 goto err_engine_rsa_start;
785         }
786
787         aspeed_acry_register(acry_dev);
788
789         dev_info(dev, "Aspeed ACRY Accelerator successfully registered\n");
790
791         return 0;
792
793 err_engine_rsa_start:
794         crypto_engine_exit(acry_dev->crypt_engine_rsa);
795 clk_exit:
796         clk_disable_unprepare(acry_dev->clk);
797
798         return rc;
799 }
800
801 static int aspeed_acry_remove(struct platform_device *pdev)
802 {
803         struct aspeed_acry_dev *acry_dev = platform_get_drvdata(pdev);
804
805         aspeed_acry_unregister(acry_dev);
806         crypto_engine_exit(acry_dev->crypt_engine_rsa);
807         tasklet_kill(&acry_dev->done_task);
808         clk_disable_unprepare(acry_dev->clk);
809
810         return 0;
811 }
812
813 MODULE_DEVICE_TABLE(of, aspeed_acry_of_matches);
814
815 static struct platform_driver aspeed_acry_driver = {
816         .probe          = aspeed_acry_probe,
817         .remove         = aspeed_acry_remove,
818         .driver         = {
819                 .name   = KBUILD_MODNAME,
820                 .of_match_table = aspeed_acry_of_matches,
821         },
822 };
823
824 module_platform_driver(aspeed_acry_driver);
825
826 MODULE_AUTHOR("Neal Liu <[email protected]>");
827 MODULE_DESCRIPTION("ASPEED ACRY driver for hardware RSA Engine");
828 MODULE_LICENSE("GPL");
This page took 0.078362 seconds and 4 git commands to generate.