]> Git Repo - linux.git/blob - arch/mips/kernel/traps.c
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux.git] / arch / mips / kernel / traps.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, [email protected] and Carsten Langgaard, [email protected]
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
72 #include <asm/uasm.h>
73
74 extern void check_wait(void);
75 extern asmlinkage void rollback_handle_int(void);
76 extern asmlinkage void handle_int(void);
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
100
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
108
109 static void show_raw_backtrace(unsigned long reg29)
110 {
111         unsigned long *sp = (unsigned long *)(reg29 & ~3);
112         unsigned long addr;
113
114         printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
116         printk("\n");
117 #endif
118         while (!kstack_end(sp)) {
119                 unsigned long __user *p =
120                         (unsigned long __user *)(unsigned long)sp++;
121                 if (__get_user(addr, p)) {
122                         printk(" (Bad stack address)");
123                         break;
124                 }
125                 if (__kernel_text_address(addr))
126                         print_ip_sym(addr);
127         }
128         printk("\n");
129 }
130
131 #ifdef CONFIG_KALLSYMS
132 int raw_show_trace;
133 static int __init set_raw_show_trace(char *str)
134 {
135         raw_show_trace = 1;
136         return 1;
137 }
138 __setup("raw_show_trace", set_raw_show_trace);
139 #endif
140
141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142 {
143         unsigned long sp = regs->regs[29];
144         unsigned long ra = regs->regs[31];
145         unsigned long pc = regs->cp0_epc;
146
147         if (!task)
148                 task = current;
149
150         if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151                 show_raw_backtrace(sp);
152                 return;
153         }
154         printk("Call Trace:\n");
155         do {
156                 print_ip_sym(pc);
157                 pc = unwind_stack(task, &sp, pc, &ra);
158         } while (pc);
159         pr_cont("\n");
160 }
161
162 /*
163  * This routine abuses get_user()/put_user() to reference pointers
164  * with at least a bit of error checking ...
165  */
166 static void show_stacktrace(struct task_struct *task,
167         const struct pt_regs *regs)
168 {
169         const int field = 2 * sizeof(unsigned long);
170         long stackdata;
171         int i;
172         unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173
174         printk("Stack :");
175         i = 0;
176         while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177                 if (i && ((i % (64 / field)) == 0)) {
178                         pr_cont("\n");
179                         printk("       ");
180                 }
181                 if (i > 39) {
182                         pr_cont(" ...");
183                         break;
184                 }
185
186                 if (__get_user(stackdata, sp++)) {
187                         pr_cont(" (Bad stack address)");
188                         break;
189                 }
190
191                 pr_cont(" %0*lx", field, stackdata);
192                 i++;
193         }
194         pr_cont("\n");
195         show_backtrace(task, regs);
196 }
197
198 void show_stack(struct task_struct *task, unsigned long *sp)
199 {
200         struct pt_regs regs;
201         mm_segment_t old_fs = get_fs();
202
203         regs.cp0_status = KSU_KERNEL;
204         if (sp) {
205                 regs.regs[29] = (unsigned long)sp;
206                 regs.regs[31] = 0;
207                 regs.cp0_epc = 0;
208         } else {
209                 if (task && task != current) {
210                         regs.regs[29] = task->thread.reg29;
211                         regs.regs[31] = 0;
212                         regs.cp0_epc = task->thread.reg31;
213                 } else {
214                         prepare_frametrace(&regs);
215                 }
216         }
217         /*
218          * show_stack() deals exclusively with kernel mode, so be sure to access
219          * the stack in the kernel (not user) address space.
220          */
221         set_fs(KERNEL_DS);
222         show_stacktrace(task, &regs);
223         set_fs(old_fs);
224 }
225
226 static void show_code(unsigned int __user *pc)
227 {
228         long i;
229         unsigned short __user *pc16 = NULL;
230
231         printk("Code:");
232
233         if ((unsigned long)pc & 1)
234                 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
235         for(i = -3 ; i < 6 ; i++) {
236                 unsigned int insn;
237                 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
238                         pr_cont(" (Bad address in epc)\n");
239                         break;
240                 }
241                 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
242         }
243         pr_cont("\n");
244 }
245
246 static void __show_regs(const struct pt_regs *regs)
247 {
248         const int field = 2 * sizeof(unsigned long);
249         unsigned int cause = regs->cp0_cause;
250         unsigned int exccode;
251         int i;
252
253         show_regs_print_info(KERN_DEFAULT);
254
255         /*
256          * Saved main processor registers
257          */
258         for (i = 0; i < 32; ) {
259                 if ((i % 4) == 0)
260                         printk("$%2d   :", i);
261                 if (i == 0)
262                         pr_cont(" %0*lx", field, 0UL);
263                 else if (i == 26 || i == 27)
264                         pr_cont(" %*s", field, "");
265                 else
266                         pr_cont(" %0*lx", field, regs->regs[i]);
267
268                 i++;
269                 if ((i % 4) == 0)
270                         pr_cont("\n");
271         }
272
273 #ifdef CONFIG_CPU_HAS_SMARTMIPS
274         printk("Acx    : %0*lx\n", field, regs->acx);
275 #endif
276         if (MIPS_ISA_REV < 6) {
277                 printk("Hi    : %0*lx\n", field, regs->hi);
278                 printk("Lo    : %0*lx\n", field, regs->lo);
279         }
280
281         /*
282          * Saved cp0 registers
283          */
284         printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
285                (void *) regs->cp0_epc);
286         printk("ra    : %0*lx %pS\n", field, regs->regs[31],
287                (void *) regs->regs[31]);
288
289         printk("Status: %08x    ", (uint32_t) regs->cp0_status);
290
291         if (cpu_has_3kex) {
292                 if (regs->cp0_status & ST0_KUO)
293                         pr_cont("KUo ");
294                 if (regs->cp0_status & ST0_IEO)
295                         pr_cont("IEo ");
296                 if (regs->cp0_status & ST0_KUP)
297                         pr_cont("KUp ");
298                 if (regs->cp0_status & ST0_IEP)
299                         pr_cont("IEp ");
300                 if (regs->cp0_status & ST0_KUC)
301                         pr_cont("KUc ");
302                 if (regs->cp0_status & ST0_IEC)
303                         pr_cont("IEc ");
304         } else if (cpu_has_4kex) {
305                 if (regs->cp0_status & ST0_KX)
306                         pr_cont("KX ");
307                 if (regs->cp0_status & ST0_SX)
308                         pr_cont("SX ");
309                 if (regs->cp0_status & ST0_UX)
310                         pr_cont("UX ");
311                 switch (regs->cp0_status & ST0_KSU) {
312                 case KSU_USER:
313                         pr_cont("USER ");
314                         break;
315                 case KSU_SUPERVISOR:
316                         pr_cont("SUPERVISOR ");
317                         break;
318                 case KSU_KERNEL:
319                         pr_cont("KERNEL ");
320                         break;
321                 default:
322                         pr_cont("BAD_MODE ");
323                         break;
324                 }
325                 if (regs->cp0_status & ST0_ERL)
326                         pr_cont("ERL ");
327                 if (regs->cp0_status & ST0_EXL)
328                         pr_cont("EXL ");
329                 if (regs->cp0_status & ST0_IE)
330                         pr_cont("IE ");
331         }
332         pr_cont("\n");
333
334         exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
335         printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
336
337         if (1 <= exccode && exccode <= 5)
338                 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
339
340         printk("PrId  : %08x (%s)\n", read_c0_prid(),
341                cpu_name_string());
342 }
343
344 /*
345  * FIXME: really the generic show_regs should take a const pointer argument.
346  */
347 void show_regs(struct pt_regs *regs)
348 {
349         __show_regs(regs);
350         dump_stack();
351 }
352
353 void show_registers(struct pt_regs *regs)
354 {
355         const int field = 2 * sizeof(unsigned long);
356         mm_segment_t old_fs = get_fs();
357
358         __show_regs(regs);
359         print_modules();
360         printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
361                current->comm, current->pid, current_thread_info(), current,
362               field, current_thread_info()->tp_value);
363         if (cpu_has_userlocal) {
364                 unsigned long tls;
365
366                 tls = read_c0_userlocal();
367                 if (tls != current_thread_info()->tp_value)
368                         printk("*HwTLS: %0*lx\n", field, tls);
369         }
370
371         if (!user_mode(regs))
372                 /* Necessary for getting the correct stack content */
373                 set_fs(KERNEL_DS);
374         show_stacktrace(current, regs);
375         show_code((unsigned int __user *) regs->cp0_epc);
376         printk("\n");
377         set_fs(old_fs);
378 }
379
380 static DEFINE_RAW_SPINLOCK(die_lock);
381
382 void __noreturn die(const char *str, struct pt_regs *regs)
383 {
384         static int die_counter;
385         int sig = SIGSEGV;
386
387         oops_enter();
388
389         if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
390                        SIGSEGV) == NOTIFY_STOP)
391                 sig = 0;
392
393         console_verbose();
394         raw_spin_lock_irq(&die_lock);
395         bust_spinlocks(1);
396
397         printk("%s[#%d]:\n", str, ++die_counter);
398         show_registers(regs);
399         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
400         raw_spin_unlock_irq(&die_lock);
401
402         oops_exit();
403
404         if (in_interrupt())
405                 panic("Fatal exception in interrupt");
406
407         if (panic_on_oops)
408                 panic("Fatal exception");
409
410         if (regs && kexec_should_crash(current))
411                 crash_kexec(regs);
412
413         do_exit(sig);
414 }
415
416 extern struct exception_table_entry __start___dbe_table[];
417 extern struct exception_table_entry __stop___dbe_table[];
418
419 __asm__(
420 "       .section        __dbe_table, \"a\"\n"
421 "       .previous                       \n");
422
423 /* Given an address, look for it in the exception tables. */
424 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
425 {
426         const struct exception_table_entry *e;
427
428         e = search_extable(__start___dbe_table,
429                            __stop___dbe_table - __start___dbe_table, addr);
430         if (!e)
431                 e = search_module_dbetables(addr);
432         return e;
433 }
434
435 asmlinkage void do_be(struct pt_regs *regs)
436 {
437         const int field = 2 * sizeof(unsigned long);
438         const struct exception_table_entry *fixup = NULL;
439         int data = regs->cp0_cause & 4;
440         int action = MIPS_BE_FATAL;
441         enum ctx_state prev_state;
442
443         prev_state = exception_enter();
444         /* XXX For now.  Fixme, this searches the wrong table ...  */
445         if (data && !user_mode(regs))
446                 fixup = search_dbe_tables(exception_epc(regs));
447
448         if (fixup)
449                 action = MIPS_BE_FIXUP;
450
451         if (board_be_handler)
452                 action = board_be_handler(regs, fixup != NULL);
453         else
454                 mips_cm_error_report();
455
456         switch (action) {
457         case MIPS_BE_DISCARD:
458                 goto out;
459         case MIPS_BE_FIXUP:
460                 if (fixup) {
461                         regs->cp0_epc = fixup->nextinsn;
462                         goto out;
463                 }
464                 break;
465         default:
466                 break;
467         }
468
469         /*
470          * Assume it would be too dangerous to continue ...
471          */
472         printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
473                data ? "Data" : "Instruction",
474                field, regs->cp0_epc, field, regs->regs[31]);
475         if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
476                        SIGBUS) == NOTIFY_STOP)
477                 goto out;
478
479         die_if_kernel("Oops", regs);
480         force_sig(SIGBUS);
481
482 out:
483         exception_exit(prev_state);
484 }
485
486 /*
487  * ll/sc, rdhwr, sync emulation
488  */
489
490 #define OPCODE 0xfc000000
491 #define BASE   0x03e00000
492 #define RT     0x001f0000
493 #define OFFSET 0x0000ffff
494 #define LL     0xc0000000
495 #define SC     0xe0000000
496 #define SPEC0  0x00000000
497 #define SPEC3  0x7c000000
498 #define RD     0x0000f800
499 #define FUNC   0x0000003f
500 #define SYNC   0x0000000f
501 #define RDHWR  0x0000003b
502
503 /*  microMIPS definitions   */
504 #define MM_POOL32A_FUNC 0xfc00ffff
505 #define MM_RDHWR        0x00006b3c
506 #define MM_RS           0x001f0000
507 #define MM_RT           0x03e00000
508
509 /*
510  * The ll_bit is cleared by r*_switch.S
511  */
512
513 unsigned int ll_bit;
514 struct task_struct *ll_task;
515
516 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
517 {
518         unsigned long value, __user *vaddr;
519         long offset;
520
521         /*
522          * analyse the ll instruction that just caused a ri exception
523          * and put the referenced address to addr.
524          */
525
526         /* sign extend offset */
527         offset = opcode & OFFSET;
528         offset <<= 16;
529         offset >>= 16;
530
531         vaddr = (unsigned long __user *)
532                 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
533
534         if ((unsigned long)vaddr & 3)
535                 return SIGBUS;
536         if (get_user(value, vaddr))
537                 return SIGSEGV;
538
539         preempt_disable();
540
541         if (ll_task == NULL || ll_task == current) {
542                 ll_bit = 1;
543         } else {
544                 ll_bit = 0;
545         }
546         ll_task = current;
547
548         preempt_enable();
549
550         regs->regs[(opcode & RT) >> 16] = value;
551
552         return 0;
553 }
554
555 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
556 {
557         unsigned long __user *vaddr;
558         unsigned long reg;
559         long offset;
560
561         /*
562          * analyse the sc instruction that just caused a ri exception
563          * and put the referenced address to addr.
564          */
565
566         /* sign extend offset */
567         offset = opcode & OFFSET;
568         offset <<= 16;
569         offset >>= 16;
570
571         vaddr = (unsigned long __user *)
572                 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
573         reg = (opcode & RT) >> 16;
574
575         if ((unsigned long)vaddr & 3)
576                 return SIGBUS;
577
578         preempt_disable();
579
580         if (ll_bit == 0 || ll_task != current) {
581                 regs->regs[reg] = 0;
582                 preempt_enable();
583                 return 0;
584         }
585
586         preempt_enable();
587
588         if (put_user(regs->regs[reg], vaddr))
589                 return SIGSEGV;
590
591         regs->regs[reg] = 1;
592
593         return 0;
594 }
595
596 /*
597  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
598  * opcodes are supposed to result in coprocessor unusable exceptions if
599  * executed on ll/sc-less processors.  That's the theory.  In practice a
600  * few processors such as NEC's VR4100 throw reserved instruction exceptions
601  * instead, so we're doing the emulation thing in both exception handlers.
602  */
603 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
604 {
605         if ((opcode & OPCODE) == LL) {
606                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
607                                 1, regs, 0);
608                 return simulate_ll(regs, opcode);
609         }
610         if ((opcode & OPCODE) == SC) {
611                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612                                 1, regs, 0);
613                 return simulate_sc(regs, opcode);
614         }
615
616         return -1;                      /* Must be something else ... */
617 }
618
619 /*
620  * Simulate trapping 'rdhwr' instructions to provide user accessible
621  * registers not implemented in hardware.
622  */
623 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
624 {
625         struct thread_info *ti = task_thread_info(current);
626
627         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
628                         1, regs, 0);
629         switch (rd) {
630         case MIPS_HWR_CPUNUM:           /* CPU number */
631                 regs->regs[rt] = smp_processor_id();
632                 return 0;
633         case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
634                 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
635                                      current_cpu_data.icache.linesz);
636                 return 0;
637         case MIPS_HWR_CC:               /* Read count register */
638                 regs->regs[rt] = read_c0_count();
639                 return 0;
640         case MIPS_HWR_CCRES:            /* Count register resolution */
641                 switch (current_cpu_type()) {
642                 case CPU_20KC:
643                 case CPU_25KF:
644                         regs->regs[rt] = 1;
645                         break;
646                 default:
647                         regs->regs[rt] = 2;
648                 }
649                 return 0;
650         case MIPS_HWR_ULR:              /* Read UserLocal register */
651                 regs->regs[rt] = ti->tp_value;
652                 return 0;
653         default:
654                 return -1;
655         }
656 }
657
658 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
659 {
660         if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
661                 int rd = (opcode & RD) >> 11;
662                 int rt = (opcode & RT) >> 16;
663
664                 simulate_rdhwr(regs, rd, rt);
665                 return 0;
666         }
667
668         /* Not ours.  */
669         return -1;
670 }
671
672 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
673 {
674         if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
675                 int rd = (opcode & MM_RS) >> 16;
676                 int rt = (opcode & MM_RT) >> 21;
677                 simulate_rdhwr(regs, rd, rt);
678                 return 0;
679         }
680
681         /* Not ours.  */
682         return -1;
683 }
684
685 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
686 {
687         if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
688                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
689                                 1, regs, 0);
690                 return 0;
691         }
692
693         return -1;                      /* Must be something else ... */
694 }
695
696 asmlinkage void do_ov(struct pt_regs *regs)
697 {
698         enum ctx_state prev_state;
699
700         prev_state = exception_enter();
701         die_if_kernel("Integer overflow", regs);
702
703         force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
704         exception_exit(prev_state);
705 }
706
707 #ifdef CONFIG_MIPS_FP_SUPPORT
708
709 /*
710  * Send SIGFPE according to FCSR Cause bits, which must have already
711  * been masked against Enable bits.  This is impotant as Inexact can
712  * happen together with Overflow or Underflow, and `ptrace' can set
713  * any bits.
714  */
715 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
716                      struct task_struct *tsk)
717 {
718         int si_code = FPE_FLTUNK;
719
720         if (fcr31 & FPU_CSR_INV_X)
721                 si_code = FPE_FLTINV;
722         else if (fcr31 & FPU_CSR_DIV_X)
723                 si_code = FPE_FLTDIV;
724         else if (fcr31 & FPU_CSR_OVF_X)
725                 si_code = FPE_FLTOVF;
726         else if (fcr31 & FPU_CSR_UDF_X)
727                 si_code = FPE_FLTUND;
728         else if (fcr31 & FPU_CSR_INE_X)
729                 si_code = FPE_FLTRES;
730
731         force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
732 }
733
734 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
735 {
736         int si_code;
737         struct vm_area_struct *vma;
738
739         switch (sig) {
740         case 0:
741                 return 0;
742
743         case SIGFPE:
744                 force_fcr31_sig(fcr31, fault_addr, current);
745                 return 1;
746
747         case SIGBUS:
748                 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
749                 return 1;
750
751         case SIGSEGV:
752                 down_read(&current->mm->mmap_sem);
753                 vma = find_vma(current->mm, (unsigned long)fault_addr);
754                 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
755                         si_code = SEGV_ACCERR;
756                 else
757                         si_code = SEGV_MAPERR;
758                 up_read(&current->mm->mmap_sem);
759                 force_sig_fault(SIGSEGV, si_code, fault_addr);
760                 return 1;
761
762         default:
763                 force_sig(sig);
764                 return 1;
765         }
766 }
767
768 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
769                        unsigned long old_epc, unsigned long old_ra)
770 {
771         union mips_instruction inst = { .word = opcode };
772         void __user *fault_addr;
773         unsigned long fcr31;
774         int sig;
775
776         /* If it's obviously not an FP instruction, skip it */
777         switch (inst.i_format.opcode) {
778         case cop1_op:
779         case cop1x_op:
780         case lwc1_op:
781         case ldc1_op:
782         case swc1_op:
783         case sdc1_op:
784                 break;
785
786         default:
787                 return -1;
788         }
789
790         /*
791          * do_ri skipped over the instruction via compute_return_epc, undo
792          * that for the FPU emulator.
793          */
794         regs->cp0_epc = old_epc;
795         regs->regs[31] = old_ra;
796
797         /* Run the emulator */
798         sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
799                                        &fault_addr);
800
801         /*
802          * We can't allow the emulated instruction to leave any
803          * enabled Cause bits set in $fcr31.
804          */
805         fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
806         current->thread.fpu.fcr31 &= ~fcr31;
807
808         /* Restore the hardware register state */
809         own_fpu(1);
810
811         /* Send a signal if required.  */
812         process_fpemu_return(sig, fault_addr, fcr31);
813
814         return 0;
815 }
816
817 /*
818  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
819  */
820 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
821 {
822         enum ctx_state prev_state;
823         void __user *fault_addr;
824         int sig;
825
826         prev_state = exception_enter();
827         if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
828                        SIGFPE) == NOTIFY_STOP)
829                 goto out;
830
831         /* Clear FCSR.Cause before enabling interrupts */
832         write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
833         local_irq_enable();
834
835         die_if_kernel("FP exception in kernel code", regs);
836
837         if (fcr31 & FPU_CSR_UNI_X) {
838                 /*
839                  * Unimplemented operation exception.  If we've got the full
840                  * software emulator on-board, let's use it...
841                  *
842                  * Force FPU to dump state into task/thread context.  We're
843                  * moving a lot of data here for what is probably a single
844                  * instruction, but the alternative is to pre-decode the FP
845                  * register operands before invoking the emulator, which seems
846                  * a bit extreme for what should be an infrequent event.
847                  */
848
849                 /* Run the emulator */
850                 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
851                                                &fault_addr);
852
853                 /*
854                  * We can't allow the emulated instruction to leave any
855                  * enabled Cause bits set in $fcr31.
856                  */
857                 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
858                 current->thread.fpu.fcr31 &= ~fcr31;
859
860                 /* Restore the hardware register state */
861                 own_fpu(1);     /* Using the FPU again.  */
862         } else {
863                 sig = SIGFPE;
864                 fault_addr = (void __user *) regs->cp0_epc;
865         }
866
867         /* Send a signal if required.  */
868         process_fpemu_return(sig, fault_addr, fcr31);
869
870 out:
871         exception_exit(prev_state);
872 }
873
874 /*
875  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
876  * emulated more than some threshold number of instructions, force migration to
877  * a "CPU" that has FP support.
878  */
879 static void mt_ase_fp_affinity(void)
880 {
881 #ifdef CONFIG_MIPS_MT_FPAFF
882         if (mt_fpemul_threshold > 0 &&
883              ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
884                 /*
885                  * If there's no FPU present, or if the application has already
886                  * restricted the allowed set to exclude any CPUs with FPUs,
887                  * we'll skip the procedure.
888                  */
889                 if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
890                         cpumask_t tmask;
891
892                         current->thread.user_cpus_allowed
893                                 = current->cpus_mask;
894                         cpumask_and(&tmask, &current->cpus_mask,
895                                     &mt_fpu_cpumask);
896                         set_cpus_allowed_ptr(current, &tmask);
897                         set_thread_flag(TIF_FPUBOUND);
898                 }
899         }
900 #endif /* CONFIG_MIPS_MT_FPAFF */
901 }
902
903 #else /* !CONFIG_MIPS_FP_SUPPORT */
904
905 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
906                        unsigned long old_epc, unsigned long old_ra)
907 {
908         return -1;
909 }
910
911 #endif /* !CONFIG_MIPS_FP_SUPPORT */
912
913 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
914         const char *str)
915 {
916         char b[40];
917
918 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
919         if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
920                          SIGTRAP) == NOTIFY_STOP)
921                 return;
922 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
923
924         if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
925                        SIGTRAP) == NOTIFY_STOP)
926                 return;
927
928         /*
929          * A short test says that IRIX 5.3 sends SIGTRAP for all trap
930          * insns, even for trap and break codes that indicate arithmetic
931          * failures.  Weird ...
932          * But should we continue the brokenness???  --macro
933          */
934         switch (code) {
935         case BRK_OVERFLOW:
936         case BRK_DIVZERO:
937                 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
938                 die_if_kernel(b, regs);
939                 force_sig_fault(SIGFPE,
940                                 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
941                                 (void __user *) regs->cp0_epc);
942                 break;
943         case BRK_BUG:
944                 die_if_kernel("Kernel bug detected", regs);
945                 force_sig(SIGTRAP);
946                 break;
947         case BRK_MEMU:
948                 /*
949                  * This breakpoint code is used by the FPU emulator to retake
950                  * control of the CPU after executing the instruction from the
951                  * delay slot of an emulated branch.
952                  *
953                  * Terminate if exception was recognized as a delay slot return
954                  * otherwise handle as normal.
955                  */
956                 if (do_dsemulret(regs))
957                         return;
958
959                 die_if_kernel("Math emu break/trap", regs);
960                 force_sig(SIGTRAP);
961                 break;
962         default:
963                 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
964                 die_if_kernel(b, regs);
965                 if (si_code) {
966                         force_sig_fault(SIGTRAP, si_code, NULL);
967                 } else {
968                         force_sig(SIGTRAP);
969                 }
970         }
971 }
972
973 asmlinkage void do_bp(struct pt_regs *regs)
974 {
975         unsigned long epc = msk_isa16_mode(exception_epc(regs));
976         unsigned int opcode, bcode;
977         enum ctx_state prev_state;
978         mm_segment_t seg;
979
980         seg = get_fs();
981         if (!user_mode(regs))
982                 set_fs(KERNEL_DS);
983
984         prev_state = exception_enter();
985         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
986         if (get_isa16_mode(regs->cp0_epc)) {
987                 u16 instr[2];
988
989                 if (__get_user(instr[0], (u16 __user *)epc))
990                         goto out_sigsegv;
991
992                 if (!cpu_has_mmips) {
993                         /* MIPS16e mode */
994                         bcode = (instr[0] >> 5) & 0x3f;
995                 } else if (mm_insn_16bit(instr[0])) {
996                         /* 16-bit microMIPS BREAK */
997                         bcode = instr[0] & 0xf;
998                 } else {
999                         /* 32-bit microMIPS BREAK */
1000                         if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1001                                 goto out_sigsegv;
1002                         opcode = (instr[0] << 16) | instr[1];
1003                         bcode = (opcode >> 6) & ((1 << 20) - 1);
1004                 }
1005         } else {
1006                 if (__get_user(opcode, (unsigned int __user *)epc))
1007                         goto out_sigsegv;
1008                 bcode = (opcode >> 6) & ((1 << 20) - 1);
1009         }
1010
1011         /*
1012          * There is the ancient bug in the MIPS assemblers that the break
1013          * code starts left to bit 16 instead to bit 6 in the opcode.
1014          * Gas is bug-compatible, but not always, grrr...
1015          * We handle both cases with a simple heuristics.  --macro
1016          */
1017         if (bcode >= (1 << 10))
1018                 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1019
1020         /*
1021          * notify the kprobe handlers, if instruction is likely to
1022          * pertain to them.
1023          */
1024         switch (bcode) {
1025         case BRK_UPROBE:
1026                 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1027                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1028                         goto out;
1029                 else
1030                         break;
1031         case BRK_UPROBE_XOL:
1032                 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1033                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1034                         goto out;
1035                 else
1036                         break;
1037         case BRK_KPROBE_BP:
1038                 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1039                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1040                         goto out;
1041                 else
1042                         break;
1043         case BRK_KPROBE_SSTEPBP:
1044                 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1045                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1046                         goto out;
1047                 else
1048                         break;
1049         default:
1050                 break;
1051         }
1052
1053         do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1054
1055 out:
1056         set_fs(seg);
1057         exception_exit(prev_state);
1058         return;
1059
1060 out_sigsegv:
1061         force_sig(SIGSEGV);
1062         goto out;
1063 }
1064
1065 asmlinkage void do_tr(struct pt_regs *regs)
1066 {
1067         u32 opcode, tcode = 0;
1068         enum ctx_state prev_state;
1069         u16 instr[2];
1070         mm_segment_t seg;
1071         unsigned long epc = msk_isa16_mode(exception_epc(regs));
1072
1073         seg = get_fs();
1074         if (!user_mode(regs))
1075                 set_fs(KERNEL_DS);
1076
1077         prev_state = exception_enter();
1078         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1079         if (get_isa16_mode(regs->cp0_epc)) {
1080                 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1081                     __get_user(instr[1], (u16 __user *)(epc + 2)))
1082                         goto out_sigsegv;
1083                 opcode = (instr[0] << 16) | instr[1];
1084                 /* Immediate versions don't provide a code.  */
1085                 if (!(opcode & OPCODE))
1086                         tcode = (opcode >> 12) & ((1 << 4) - 1);
1087         } else {
1088                 if (__get_user(opcode, (u32 __user *)epc))
1089                         goto out_sigsegv;
1090                 /* Immediate versions don't provide a code.  */
1091                 if (!(opcode & OPCODE))
1092                         tcode = (opcode >> 6) & ((1 << 10) - 1);
1093         }
1094
1095         do_trap_or_bp(regs, tcode, 0, "Trap");
1096
1097 out:
1098         set_fs(seg);
1099         exception_exit(prev_state);
1100         return;
1101
1102 out_sigsegv:
1103         force_sig(SIGSEGV);
1104         goto out;
1105 }
1106
1107 asmlinkage void do_ri(struct pt_regs *regs)
1108 {
1109         unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1110         unsigned long old_epc = regs->cp0_epc;
1111         unsigned long old31 = regs->regs[31];
1112         enum ctx_state prev_state;
1113         unsigned int opcode = 0;
1114         int status = -1;
1115
1116         /*
1117          * Avoid any kernel code. Just emulate the R2 instruction
1118          * as quickly as possible.
1119          */
1120         if (mipsr2_emulation && cpu_has_mips_r6 &&
1121             likely(user_mode(regs)) &&
1122             likely(get_user(opcode, epc) >= 0)) {
1123                 unsigned long fcr31 = 0;
1124
1125                 status = mipsr2_decoder(regs, opcode, &fcr31);
1126                 switch (status) {
1127                 case 0:
1128                 case SIGEMT:
1129                         return;
1130                 case SIGILL:
1131                         goto no_r2_instr;
1132                 default:
1133                         process_fpemu_return(status,
1134                                              &current->thread.cp0_baduaddr,
1135                                              fcr31);
1136                         return;
1137                 }
1138         }
1139
1140 no_r2_instr:
1141
1142         prev_state = exception_enter();
1143         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1144
1145         if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1146                        SIGILL) == NOTIFY_STOP)
1147                 goto out;
1148
1149         die_if_kernel("Reserved instruction in kernel code", regs);
1150
1151         if (unlikely(compute_return_epc(regs) < 0))
1152                 goto out;
1153
1154         if (!get_isa16_mode(regs->cp0_epc)) {
1155                 if (unlikely(get_user(opcode, epc) < 0))
1156                         status = SIGSEGV;
1157
1158                 if (!cpu_has_llsc && status < 0)
1159                         status = simulate_llsc(regs, opcode);
1160
1161                 if (status < 0)
1162                         status = simulate_rdhwr_normal(regs, opcode);
1163
1164                 if (status < 0)
1165                         status = simulate_sync(regs, opcode);
1166
1167                 if (status < 0)
1168                         status = simulate_fp(regs, opcode, old_epc, old31);
1169         } else if (cpu_has_mmips) {
1170                 unsigned short mmop[2] = { 0 };
1171
1172                 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1173                         status = SIGSEGV;
1174                 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1175                         status = SIGSEGV;
1176                 opcode = mmop[0];
1177                 opcode = (opcode << 16) | mmop[1];
1178
1179                 if (status < 0)
1180                         status = simulate_rdhwr_mm(regs, opcode);
1181         }
1182
1183         if (status < 0)
1184                 status = SIGILL;
1185
1186         if (unlikely(status > 0)) {
1187                 regs->cp0_epc = old_epc;                /* Undo skip-over.  */
1188                 regs->regs[31] = old31;
1189                 force_sig(status);
1190         }
1191
1192 out:
1193         exception_exit(prev_state);
1194 }
1195
1196 /*
1197  * No lock; only written during early bootup by CPU 0.
1198  */
1199 static RAW_NOTIFIER_HEAD(cu2_chain);
1200
1201 int __ref register_cu2_notifier(struct notifier_block *nb)
1202 {
1203         return raw_notifier_chain_register(&cu2_chain, nb);
1204 }
1205
1206 int cu2_notifier_call_chain(unsigned long val, void *v)
1207 {
1208         return raw_notifier_call_chain(&cu2_chain, val, v);
1209 }
1210
1211 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1212         void *data)
1213 {
1214         struct pt_regs *regs = data;
1215
1216         die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1217                               "instruction", regs);
1218         force_sig(SIGILL);
1219
1220         return NOTIFY_OK;
1221 }
1222
1223 #ifdef CONFIG_MIPS_FP_SUPPORT
1224
1225 static int enable_restore_fp_context(int msa)
1226 {
1227         int err, was_fpu_owner, prior_msa;
1228         bool first_fp;
1229
1230         /* Initialize context if it hasn't been used already */
1231         first_fp = init_fp_ctx(current);
1232
1233         if (first_fp) {
1234                 preempt_disable();
1235                 err = own_fpu_inatomic(1);
1236                 if (msa && !err) {
1237                         enable_msa();
1238                         set_thread_flag(TIF_USEDMSA);
1239                         set_thread_flag(TIF_MSA_CTX_LIVE);
1240                 }
1241                 preempt_enable();
1242                 return err;
1243         }
1244
1245         /*
1246          * This task has formerly used the FP context.
1247          *
1248          * If this thread has no live MSA vector context then we can simply
1249          * restore the scalar FP context. If it has live MSA vector context
1250          * (that is, it has or may have used MSA since last performing a
1251          * function call) then we'll need to restore the vector context. This
1252          * applies even if we're currently only executing a scalar FP
1253          * instruction. This is because if we were to later execute an MSA
1254          * instruction then we'd either have to:
1255          *
1256          *  - Restore the vector context & clobber any registers modified by
1257          *    scalar FP instructions between now & then.
1258          *
1259          * or
1260          *
1261          *  - Not restore the vector context & lose the most significant bits
1262          *    of all vector registers.
1263          *
1264          * Neither of those options is acceptable. We cannot restore the least
1265          * significant bits of the registers now & only restore the most
1266          * significant bits later because the most significant bits of any
1267          * vector registers whose aliased FP register is modified now will have
1268          * been zeroed. We'd have no way to know that when restoring the vector
1269          * context & thus may load an outdated value for the most significant
1270          * bits of a vector register.
1271          */
1272         if (!msa && !thread_msa_context_live())
1273                 return own_fpu(1);
1274
1275         /*
1276          * This task is using or has previously used MSA. Thus we require
1277          * that Status.FR == 1.
1278          */
1279         preempt_disable();
1280         was_fpu_owner = is_fpu_owner();
1281         err = own_fpu_inatomic(0);
1282         if (err)
1283                 goto out;
1284
1285         enable_msa();
1286         write_msa_csr(current->thread.fpu.msacsr);
1287         set_thread_flag(TIF_USEDMSA);
1288
1289         /*
1290          * If this is the first time that the task is using MSA and it has
1291          * previously used scalar FP in this time slice then we already nave
1292          * FP context which we shouldn't clobber. We do however need to clear
1293          * the upper 64b of each vector register so that this task has no
1294          * opportunity to see data left behind by another.
1295          */
1296         prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1297         if (!prior_msa && was_fpu_owner) {
1298                 init_msa_upper();
1299
1300                 goto out;
1301         }
1302
1303         if (!prior_msa) {
1304                 /*
1305                  * Restore the least significant 64b of each vector register
1306                  * from the existing scalar FP context.
1307                  */
1308                 _restore_fp(current);
1309
1310                 /*
1311                  * The task has not formerly used MSA, so clear the upper 64b
1312                  * of each vector register such that it cannot see data left
1313                  * behind by another task.
1314                  */
1315                 init_msa_upper();
1316         } else {
1317                 /* We need to restore the vector context. */
1318                 restore_msa(current);
1319
1320                 /* Restore the scalar FP control & status register */
1321                 if (!was_fpu_owner)
1322                         write_32bit_cp1_register(CP1_STATUS,
1323                                                  current->thread.fpu.fcr31);
1324         }
1325
1326 out:
1327         preempt_enable();
1328
1329         return 0;
1330 }
1331
1332 #else /* !CONFIG_MIPS_FP_SUPPORT */
1333
1334 static int enable_restore_fp_context(int msa)
1335 {
1336         return SIGILL;
1337 }
1338
1339 #endif /* CONFIG_MIPS_FP_SUPPORT */
1340
1341 asmlinkage void do_cpu(struct pt_regs *regs)
1342 {
1343         enum ctx_state prev_state;
1344         unsigned int __user *epc;
1345         unsigned long old_epc, old31;
1346         unsigned int opcode;
1347         unsigned int cpid;
1348         int status;
1349
1350         prev_state = exception_enter();
1351         cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1352
1353         if (cpid != 2)
1354                 die_if_kernel("do_cpu invoked from kernel context!", regs);
1355
1356         switch (cpid) {
1357         case 0:
1358                 epc = (unsigned int __user *)exception_epc(regs);
1359                 old_epc = regs->cp0_epc;
1360                 old31 = regs->regs[31];
1361                 opcode = 0;
1362                 status = -1;
1363
1364                 if (unlikely(compute_return_epc(regs) < 0))
1365                         break;
1366
1367                 if (!get_isa16_mode(regs->cp0_epc)) {
1368                         if (unlikely(get_user(opcode, epc) < 0))
1369                                 status = SIGSEGV;
1370
1371                         if (!cpu_has_llsc && status < 0)
1372                                 status = simulate_llsc(regs, opcode);
1373                 }
1374
1375                 if (status < 0)
1376                         status = SIGILL;
1377
1378                 if (unlikely(status > 0)) {
1379                         regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1380                         regs->regs[31] = old31;
1381                         force_sig(status);
1382                 }
1383
1384                 break;
1385
1386 #ifdef CONFIG_MIPS_FP_SUPPORT
1387         case 3:
1388                 /*
1389                  * The COP3 opcode space and consequently the CP0.Status.CU3
1390                  * bit and the CP0.Cause.CE=3 encoding have been removed as
1391                  * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1392                  * up the space has been reused for COP1X instructions, that
1393                  * are enabled by the CP0.Status.CU1 bit and consequently
1394                  * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1395                  * exceptions.  Some FPU-less processors that implement one
1396                  * of these ISAs however use this code erroneously for COP1X
1397                  * instructions.  Therefore we redirect this trap to the FP
1398                  * emulator too.
1399                  */
1400                 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1401                         force_sig(SIGILL);
1402                         break;
1403                 }
1404                 /* Fall through.  */
1405
1406         case 1: {
1407                 void __user *fault_addr;
1408                 unsigned long fcr31;
1409                 int err, sig;
1410
1411                 err = enable_restore_fp_context(0);
1412
1413                 if (raw_cpu_has_fpu && !err)
1414                         break;
1415
1416                 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1417                                                &fault_addr);
1418
1419                 /*
1420                  * We can't allow the emulated instruction to leave
1421                  * any enabled Cause bits set in $fcr31.
1422                  */
1423                 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1424                 current->thread.fpu.fcr31 &= ~fcr31;
1425
1426                 /* Send a signal if required.  */
1427                 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1428                         mt_ase_fp_affinity();
1429
1430                 break;
1431         }
1432 #else /* CONFIG_MIPS_FP_SUPPORT */
1433         case 1:
1434         case 3:
1435                 force_sig(SIGILL);
1436                 break;
1437 #endif /* CONFIG_MIPS_FP_SUPPORT */
1438
1439         case 2:
1440                 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1441                 break;
1442         }
1443
1444         exception_exit(prev_state);
1445 }
1446
1447 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1448 {
1449         enum ctx_state prev_state;
1450
1451         prev_state = exception_enter();
1452         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1453         if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1454                        current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1455                 goto out;
1456
1457         /* Clear MSACSR.Cause before enabling interrupts */
1458         write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1459         local_irq_enable();
1460
1461         die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1462         force_sig(SIGFPE);
1463 out:
1464         exception_exit(prev_state);
1465 }
1466
1467 asmlinkage void do_msa(struct pt_regs *regs)
1468 {
1469         enum ctx_state prev_state;
1470         int err;
1471
1472         prev_state = exception_enter();
1473
1474         if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1475                 force_sig(SIGILL);
1476                 goto out;
1477         }
1478
1479         die_if_kernel("do_msa invoked from kernel context!", regs);
1480
1481         err = enable_restore_fp_context(1);
1482         if (err)
1483                 force_sig(SIGILL);
1484 out:
1485         exception_exit(prev_state);
1486 }
1487
1488 asmlinkage void do_mdmx(struct pt_regs *regs)
1489 {
1490         enum ctx_state prev_state;
1491
1492         prev_state = exception_enter();
1493         force_sig(SIGILL);
1494         exception_exit(prev_state);
1495 }
1496
1497 /*
1498  * Called with interrupts disabled.
1499  */
1500 asmlinkage void do_watch(struct pt_regs *regs)
1501 {
1502         enum ctx_state prev_state;
1503
1504         prev_state = exception_enter();
1505         /*
1506          * Clear WP (bit 22) bit of cause register so we don't loop
1507          * forever.
1508          */
1509         clear_c0_cause(CAUSEF_WP);
1510
1511         /*
1512          * If the current thread has the watch registers loaded, save
1513          * their values and send SIGTRAP.  Otherwise another thread
1514          * left the registers set, clear them and continue.
1515          */
1516         if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1517                 mips_read_watch_registers();
1518                 local_irq_enable();
1519                 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1520         } else {
1521                 mips_clear_watch_registers();
1522                 local_irq_enable();
1523         }
1524         exception_exit(prev_state);
1525 }
1526
1527 asmlinkage void do_mcheck(struct pt_regs *regs)
1528 {
1529         int multi_match = regs->cp0_status & ST0_TS;
1530         enum ctx_state prev_state;
1531         mm_segment_t old_fs = get_fs();
1532
1533         prev_state = exception_enter();
1534         show_regs(regs);
1535
1536         if (multi_match) {
1537                 dump_tlb_regs();
1538                 pr_info("\n");
1539                 dump_tlb_all();
1540         }
1541
1542         if (!user_mode(regs))
1543                 set_fs(KERNEL_DS);
1544
1545         show_code((unsigned int __user *) regs->cp0_epc);
1546
1547         set_fs(old_fs);
1548
1549         /*
1550          * Some chips may have other causes of machine check (e.g. SB1
1551          * graduation timer)
1552          */
1553         panic("Caught Machine Check exception - %scaused by multiple "
1554               "matching entries in the TLB.",
1555               (multi_match) ? "" : "not ");
1556 }
1557
1558 asmlinkage void do_mt(struct pt_regs *regs)
1559 {
1560         int subcode;
1561
1562         subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1563                         >> VPECONTROL_EXCPT_SHIFT;
1564         switch (subcode) {
1565         case 0:
1566                 printk(KERN_DEBUG "Thread Underflow\n");
1567                 break;
1568         case 1:
1569                 printk(KERN_DEBUG "Thread Overflow\n");
1570                 break;
1571         case 2:
1572                 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1573                 break;
1574         case 3:
1575                 printk(KERN_DEBUG "Gating Storage Exception\n");
1576                 break;
1577         case 4:
1578                 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1579                 break;
1580         case 5:
1581                 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1582                 break;
1583         default:
1584                 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1585                         subcode);
1586                 break;
1587         }
1588         die_if_kernel("MIPS MT Thread exception in kernel", regs);
1589
1590         force_sig(SIGILL);
1591 }
1592
1593
1594 asmlinkage void do_dsp(struct pt_regs *regs)
1595 {
1596         if (cpu_has_dsp)
1597                 panic("Unexpected DSP exception");
1598
1599         force_sig(SIGILL);
1600 }
1601
1602 asmlinkage void do_reserved(struct pt_regs *regs)
1603 {
1604         /*
1605          * Game over - no way to handle this if it ever occurs.  Most probably
1606          * caused by a new unknown cpu type or after another deadly
1607          * hard/software error.
1608          */
1609         show_regs(regs);
1610         panic("Caught reserved exception %ld - should not happen.",
1611               (regs->cp0_cause & 0x7f) >> 2);
1612 }
1613
1614 static int __initdata l1parity = 1;
1615 static int __init nol1parity(char *s)
1616 {
1617         l1parity = 0;
1618         return 1;
1619 }
1620 __setup("nol1par", nol1parity);
1621 static int __initdata l2parity = 1;
1622 static int __init nol2parity(char *s)
1623 {
1624         l2parity = 0;
1625         return 1;
1626 }
1627 __setup("nol2par", nol2parity);
1628
1629 /*
1630  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1631  * it different ways.
1632  */
1633 static inline void parity_protection_init(void)
1634 {
1635 #define ERRCTL_PE       0x80000000
1636 #define ERRCTL_L2P      0x00800000
1637
1638         if (mips_cm_revision() >= CM_REV_CM3) {
1639                 ulong gcr_ectl, cp0_ectl;
1640
1641                 /*
1642                  * With CM3 systems we need to ensure that the L1 & L2
1643                  * parity enables are set to the same value, since this
1644                  * is presumed by the hardware engineers.
1645                  *
1646                  * If the user disabled either of L1 or L2 ECC checking,
1647                  * disable both.
1648                  */
1649                 l1parity &= l2parity;
1650                 l2parity &= l1parity;
1651
1652                 /* Probe L1 ECC support */
1653                 cp0_ectl = read_c0_ecc();
1654                 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1655                 back_to_back_c0_hazard();
1656                 cp0_ectl = read_c0_ecc();
1657
1658                 /* Probe L2 ECC support */
1659                 gcr_ectl = read_gcr_err_control();
1660
1661                 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1662                     !(cp0_ectl & ERRCTL_PE)) {
1663                         /*
1664                          * One of L1 or L2 ECC checking isn't supported,
1665                          * so we cannot enable either.
1666                          */
1667                         l1parity = l2parity = 0;
1668                 }
1669
1670                 /* Configure L1 ECC checking */
1671                 if (l1parity)
1672                         cp0_ectl |= ERRCTL_PE;
1673                 else
1674                         cp0_ectl &= ~ERRCTL_PE;
1675                 write_c0_ecc(cp0_ectl);
1676                 back_to_back_c0_hazard();
1677                 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1678
1679                 /* Configure L2 ECC checking */
1680                 if (l2parity)
1681                         gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1682                 else
1683                         gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1684                 write_gcr_err_control(gcr_ectl);
1685                 gcr_ectl = read_gcr_err_control();
1686                 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1687                 WARN_ON(!!gcr_ectl != l2parity);
1688
1689                 pr_info("Cache parity protection %sabled\n",
1690                         l1parity ? "en" : "dis");
1691                 return;
1692         }
1693
1694         switch (current_cpu_type()) {
1695         case CPU_24K:
1696         case CPU_34K:
1697         case CPU_74K:
1698         case CPU_1004K:
1699         case CPU_1074K:
1700         case CPU_INTERAPTIV:
1701         case CPU_PROAPTIV:
1702         case CPU_P5600:
1703         case CPU_QEMU_GENERIC:
1704         case CPU_P6600:
1705                 {
1706                         unsigned long errctl;
1707                         unsigned int l1parity_present, l2parity_present;
1708
1709                         errctl = read_c0_ecc();
1710                         errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1711
1712                         /* probe L1 parity support */
1713                         write_c0_ecc(errctl | ERRCTL_PE);
1714                         back_to_back_c0_hazard();
1715                         l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1716
1717                         /* probe L2 parity support */
1718                         write_c0_ecc(errctl|ERRCTL_L2P);
1719                         back_to_back_c0_hazard();
1720                         l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1721
1722                         if (l1parity_present && l2parity_present) {
1723                                 if (l1parity)
1724                                         errctl |= ERRCTL_PE;
1725                                 if (l1parity ^ l2parity)
1726                                         errctl |= ERRCTL_L2P;
1727                         } else if (l1parity_present) {
1728                                 if (l1parity)
1729                                         errctl |= ERRCTL_PE;
1730                         } else if (l2parity_present) {
1731                                 if (l2parity)
1732                                         errctl |= ERRCTL_L2P;
1733                         } else {
1734                                 /* No parity available */
1735                         }
1736
1737                         printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1738
1739                         write_c0_ecc(errctl);
1740                         back_to_back_c0_hazard();
1741                         errctl = read_c0_ecc();
1742                         printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1743
1744                         if (l1parity_present)
1745                                 printk(KERN_INFO "Cache parity protection %sabled\n",
1746                                        (errctl & ERRCTL_PE) ? "en" : "dis");
1747
1748                         if (l2parity_present) {
1749                                 if (l1parity_present && l1parity)
1750                                         errctl ^= ERRCTL_L2P;
1751                                 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1752                                        (errctl & ERRCTL_L2P) ? "en" : "dis");
1753                         }
1754                 }
1755                 break;
1756
1757         case CPU_5KC:
1758         case CPU_5KE:
1759         case CPU_LOONGSON32:
1760                 write_c0_ecc(0x80000000);
1761                 back_to_back_c0_hazard();
1762                 /* Set the PE bit (bit 31) in the c0_errctl register. */
1763                 printk(KERN_INFO "Cache parity protection %sabled\n",
1764                        (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1765                 break;
1766         case CPU_20KC:
1767         case CPU_25KF:
1768                 /* Clear the DE bit (bit 16) in the c0_status register. */
1769                 printk(KERN_INFO "Enable cache parity protection for "
1770                        "MIPS 20KC/25KF CPUs.\n");
1771                 clear_c0_status(ST0_DE);
1772                 break;
1773         default:
1774                 break;
1775         }
1776 }
1777
1778 asmlinkage void cache_parity_error(void)
1779 {
1780         const int field = 2 * sizeof(unsigned long);
1781         unsigned int reg_val;
1782
1783         /* For the moment, report the problem and hang. */
1784         printk("Cache error exception:\n");
1785         printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1786         reg_val = read_c0_cacheerr();
1787         printk("c0_cacheerr == %08x\n", reg_val);
1788
1789         printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1790                reg_val & (1<<30) ? "secondary" : "primary",
1791                reg_val & (1<<31) ? "data" : "insn");
1792         if ((cpu_has_mips_r2_r6) &&
1793             ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1794                 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1795                         reg_val & (1<<29) ? "ED " : "",
1796                         reg_val & (1<<28) ? "ET " : "",
1797                         reg_val & (1<<27) ? "ES " : "",
1798                         reg_val & (1<<26) ? "EE " : "",
1799                         reg_val & (1<<25) ? "EB " : "",
1800                         reg_val & (1<<24) ? "EI " : "",
1801                         reg_val & (1<<23) ? "E1 " : "",
1802                         reg_val & (1<<22) ? "E0 " : "");
1803         } else {
1804                 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1805                         reg_val & (1<<29) ? "ED " : "",
1806                         reg_val & (1<<28) ? "ET " : "",
1807                         reg_val & (1<<26) ? "EE " : "",
1808                         reg_val & (1<<25) ? "EB " : "",
1809                         reg_val & (1<<24) ? "EI " : "",
1810                         reg_val & (1<<23) ? "E1 " : "",
1811                         reg_val & (1<<22) ? "E0 " : "");
1812         }
1813         printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1814
1815 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1816         if (reg_val & (1<<22))
1817                 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1818
1819         if (reg_val & (1<<23))
1820                 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1821 #endif
1822
1823         panic("Can't handle the cache error!");
1824 }
1825
1826 asmlinkage void do_ftlb(void)
1827 {
1828         const int field = 2 * sizeof(unsigned long);
1829         unsigned int reg_val;
1830
1831         /* For the moment, report the problem and hang. */
1832         if ((cpu_has_mips_r2_r6) &&
1833             (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1834             ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1835                 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1836                        read_c0_ecc());
1837                 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1838                 reg_val = read_c0_cacheerr();
1839                 pr_err("c0_cacheerr == %08x\n", reg_val);
1840
1841                 if ((reg_val & 0xc0000000) == 0xc0000000) {
1842                         pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1843                 } else {
1844                         pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1845                                reg_val & (1<<30) ? "secondary" : "primary",
1846                                reg_val & (1<<31) ? "data" : "insn");
1847                 }
1848         } else {
1849                 pr_err("FTLB error exception\n");
1850         }
1851         /* Just print the cacheerr bits for now */
1852         cache_parity_error();
1853 }
1854
1855 /*
1856  * SDBBP EJTAG debug exception handler.
1857  * We skip the instruction and return to the next instruction.
1858  */
1859 void ejtag_exception_handler(struct pt_regs *regs)
1860 {
1861         const int field = 2 * sizeof(unsigned long);
1862         unsigned long depc, old_epc, old_ra;
1863         unsigned int debug;
1864
1865         printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1866         depc = read_c0_depc();
1867         debug = read_c0_debug();
1868         printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1869         if (debug & 0x80000000) {
1870                 /*
1871                  * In branch delay slot.
1872                  * We cheat a little bit here and use EPC to calculate the
1873                  * debug return address (DEPC). EPC is restored after the
1874                  * calculation.
1875                  */
1876                 old_epc = regs->cp0_epc;
1877                 old_ra = regs->regs[31];
1878                 regs->cp0_epc = depc;
1879                 compute_return_epc(regs);
1880                 depc = regs->cp0_epc;
1881                 regs->cp0_epc = old_epc;
1882                 regs->regs[31] = old_ra;
1883         } else
1884                 depc += 4;
1885         write_c0_depc(depc);
1886
1887 #if 0
1888         printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1889         write_c0_debug(debug | 0x100);
1890 #endif
1891 }
1892
1893 /*
1894  * NMI exception handler.
1895  * No lock; only written during early bootup by CPU 0.
1896  */
1897 static RAW_NOTIFIER_HEAD(nmi_chain);
1898
1899 int register_nmi_notifier(struct notifier_block *nb)
1900 {
1901         return raw_notifier_chain_register(&nmi_chain, nb);
1902 }
1903
1904 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1905 {
1906         char str[100];
1907
1908         nmi_enter();
1909         raw_notifier_call_chain(&nmi_chain, 0, regs);
1910         bust_spinlocks(1);
1911         snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1912                  smp_processor_id(), regs->cp0_epc);
1913         regs->cp0_epc = read_c0_errorepc();
1914         die(str, regs);
1915         nmi_exit();
1916 }
1917
1918 #define VECTORSPACING 0x100     /* for EI/VI mode */
1919
1920 unsigned long ebase;
1921 EXPORT_SYMBOL_GPL(ebase);
1922 unsigned long exception_handlers[32];
1923 unsigned long vi_handlers[64];
1924
1925 void __init *set_except_vector(int n, void *addr)
1926 {
1927         unsigned long handler = (unsigned long) addr;
1928         unsigned long old_handler;
1929
1930 #ifdef CONFIG_CPU_MICROMIPS
1931         /*
1932          * Only the TLB handlers are cache aligned with an even
1933          * address. All other handlers are on an odd address and
1934          * require no modification. Otherwise, MIPS32 mode will
1935          * be entered when handling any TLB exceptions. That
1936          * would be bad...since we must stay in microMIPS mode.
1937          */
1938         if (!(handler & 0x1))
1939                 handler |= 1;
1940 #endif
1941         old_handler = xchg(&exception_handlers[n], handler);
1942
1943         if (n == 0 && cpu_has_divec) {
1944 #ifdef CONFIG_CPU_MICROMIPS
1945                 unsigned long jump_mask = ~((1 << 27) - 1);
1946 #else
1947                 unsigned long jump_mask = ~((1 << 28) - 1);
1948 #endif
1949                 u32 *buf = (u32 *)(ebase + 0x200);
1950                 unsigned int k0 = 26;
1951                 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1952                         uasm_i_j(&buf, handler & ~jump_mask);
1953                         uasm_i_nop(&buf);
1954                 } else {
1955                         UASM_i_LA(&buf, k0, handler);
1956                         uasm_i_jr(&buf, k0);
1957                         uasm_i_nop(&buf);
1958                 }
1959                 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1960         }
1961         return (void *)old_handler;
1962 }
1963
1964 static void do_default_vi(void)
1965 {
1966         show_regs(get_irq_regs());
1967         panic("Caught unexpected vectored interrupt.");
1968 }
1969
1970 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1971 {
1972         unsigned long handler;
1973         unsigned long old_handler = vi_handlers[n];
1974         int srssets = current_cpu_data.srsets;
1975         u16 *h;
1976         unsigned char *b;
1977
1978         BUG_ON(!cpu_has_veic && !cpu_has_vint);
1979
1980         if (addr == NULL) {
1981                 handler = (unsigned long) do_default_vi;
1982                 srs = 0;
1983         } else
1984                 handler = (unsigned long) addr;
1985         vi_handlers[n] = handler;
1986
1987         b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1988
1989         if (srs >= srssets)
1990                 panic("Shadow register set %d not supported", srs);
1991
1992         if (cpu_has_veic) {
1993                 if (board_bind_eic_interrupt)
1994                         board_bind_eic_interrupt(n, srs);
1995         } else if (cpu_has_vint) {
1996                 /* SRSMap is only defined if shadow sets are implemented */
1997                 if (srssets > 1)
1998                         change_c0_srsmap(0xf << n*4, srs << n*4);
1999         }
2000
2001         if (srs == 0) {
2002                 /*
2003                  * If no shadow set is selected then use the default handler
2004                  * that does normal register saving and standard interrupt exit
2005                  */
2006                 extern char except_vec_vi, except_vec_vi_lui;
2007                 extern char except_vec_vi_ori, except_vec_vi_end;
2008                 extern char rollback_except_vec_vi;
2009                 char *vec_start = using_rollback_handler() ?
2010                         &rollback_except_vec_vi : &except_vec_vi;
2011 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2012                 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2013                 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2014 #else
2015                 const int lui_offset = &except_vec_vi_lui - vec_start;
2016                 const int ori_offset = &except_vec_vi_ori - vec_start;
2017 #endif
2018                 const int handler_len = &except_vec_vi_end - vec_start;
2019
2020                 if (handler_len > VECTORSPACING) {
2021                         /*
2022                          * Sigh... panicing won't help as the console
2023                          * is probably not configured :(
2024                          */
2025                         panic("VECTORSPACING too small");
2026                 }
2027
2028                 set_handler(((unsigned long)b - ebase), vec_start,
2029 #ifdef CONFIG_CPU_MICROMIPS
2030                                 (handler_len - 1));
2031 #else
2032                                 handler_len);
2033 #endif
2034                 h = (u16 *)(b + lui_offset);
2035                 *h = (handler >> 16) & 0xffff;
2036                 h = (u16 *)(b + ori_offset);
2037                 *h = (handler & 0xffff);
2038                 local_flush_icache_range((unsigned long)b,
2039                                          (unsigned long)(b+handler_len));
2040         }
2041         else {
2042                 /*
2043                  * In other cases jump directly to the interrupt handler. It
2044                  * is the handler's responsibility to save registers if required
2045                  * (eg hi/lo) and return from the exception using "eret".
2046                  */
2047                 u32 insn;
2048
2049                 h = (u16 *)b;
2050                 /* j handler */
2051 #ifdef CONFIG_CPU_MICROMIPS
2052                 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2053 #else
2054                 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2055 #endif
2056                 h[0] = (insn >> 16) & 0xffff;
2057                 h[1] = insn & 0xffff;
2058                 h[2] = 0;
2059                 h[3] = 0;
2060                 local_flush_icache_range((unsigned long)b,
2061                                          (unsigned long)(b+8));
2062         }
2063
2064         return (void *)old_handler;
2065 }
2066
2067 void *set_vi_handler(int n, vi_handler_t addr)
2068 {
2069         return set_vi_srs_handler(n, addr, 0);
2070 }
2071
2072 extern void tlb_init(void);
2073
2074 /*
2075  * Timer interrupt
2076  */
2077 int cp0_compare_irq;
2078 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2079 int cp0_compare_irq_shift;
2080
2081 /*
2082  * Performance counter IRQ or -1 if shared with timer
2083  */
2084 int cp0_perfcount_irq;
2085 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2086
2087 /*
2088  * Fast debug channel IRQ or -1 if not present
2089  */
2090 int cp0_fdc_irq;
2091 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2092
2093 static int noulri;
2094
2095 static int __init ulri_disable(char *s)
2096 {
2097         pr_info("Disabling ulri\n");
2098         noulri = 1;
2099
2100         return 1;
2101 }
2102 __setup("noulri", ulri_disable);
2103
2104 /* configure STATUS register */
2105 static void configure_status(void)
2106 {
2107         /*
2108          * Disable coprocessors and select 32-bit or 64-bit addressing
2109          * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2110          * flag that some firmware may have left set and the TS bit (for
2111          * IP27).  Set XX for ISA IV code to work.
2112          */
2113         unsigned int status_set = ST0_CU0;
2114 #ifdef CONFIG_64BIT
2115         status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2116 #endif
2117         if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2118                 status_set |= ST0_XX;
2119         if (cpu_has_dsp)
2120                 status_set |= ST0_MX;
2121
2122         change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2123                          status_set);
2124 }
2125
2126 unsigned int hwrena;
2127 EXPORT_SYMBOL_GPL(hwrena);
2128
2129 /* configure HWRENA register */
2130 static void configure_hwrena(void)
2131 {
2132         hwrena = cpu_hwrena_impl_bits;
2133
2134         if (cpu_has_mips_r2_r6)
2135                 hwrena |= MIPS_HWRENA_CPUNUM |
2136                           MIPS_HWRENA_SYNCISTEP |
2137                           MIPS_HWRENA_CC |
2138                           MIPS_HWRENA_CCRES;
2139
2140         if (!noulri && cpu_has_userlocal)
2141                 hwrena |= MIPS_HWRENA_ULR;
2142
2143         if (hwrena)
2144                 write_c0_hwrena(hwrena);
2145 }
2146
2147 static void configure_exception_vector(void)
2148 {
2149         if (cpu_has_mips_r2_r6) {
2150                 unsigned long sr = set_c0_status(ST0_BEV);
2151                 /* If available, use WG to set top bits of EBASE */
2152                 if (cpu_has_ebase_wg) {
2153 #ifdef CONFIG_64BIT
2154                         write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2155 #else
2156                         write_c0_ebase(ebase | MIPS_EBASE_WG);
2157 #endif
2158                 }
2159                 write_c0_ebase(ebase);
2160                 write_c0_status(sr);
2161         }
2162         if (cpu_has_veic || cpu_has_vint) {
2163                 /* Setting vector spacing enables EI/VI mode  */
2164                 change_c0_intctl(0x3e0, VECTORSPACING);
2165         }
2166         if (cpu_has_divec) {
2167                 if (cpu_has_mipsmt) {
2168                         unsigned int vpflags = dvpe();
2169                         set_c0_cause(CAUSEF_IV);
2170                         evpe(vpflags);
2171                 } else
2172                         set_c0_cause(CAUSEF_IV);
2173         }
2174 }
2175
2176 void per_cpu_trap_init(bool is_boot_cpu)
2177 {
2178         unsigned int cpu = smp_processor_id();
2179
2180         configure_status();
2181         configure_hwrena();
2182
2183         configure_exception_vector();
2184
2185         /*
2186          * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2187          *
2188          *  o read IntCtl.IPTI to determine the timer interrupt
2189          *  o read IntCtl.IPPCI to determine the performance counter interrupt
2190          *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2191          */
2192         if (cpu_has_mips_r2_r6) {
2193                 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2194                 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2195                 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2196                 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2197                 if (!cp0_fdc_irq)
2198                         cp0_fdc_irq = -1;
2199
2200         } else {
2201                 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2202                 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2203                 cp0_perfcount_irq = -1;
2204                 cp0_fdc_irq = -1;
2205         }
2206
2207         if (cpu_has_mmid)
2208                 cpu_data[cpu].asid_cache = 0;
2209         else if (!cpu_data[cpu].asid_cache)
2210                 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2211
2212         mmgrab(&init_mm);
2213         current->active_mm = &init_mm;
2214         BUG_ON(current->mm);
2215         enter_lazy_tlb(&init_mm, current);
2216
2217         /* Boot CPU's cache setup in setup_arch(). */
2218         if (!is_boot_cpu)
2219                 cpu_cache_init();
2220         tlb_init();
2221         TLBMISS_HANDLER_SETUP();
2222 }
2223
2224 /* Install CPU exception handler */
2225 void set_handler(unsigned long offset, void *addr, unsigned long size)
2226 {
2227 #ifdef CONFIG_CPU_MICROMIPS
2228         memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2229 #else
2230         memcpy((void *)(ebase + offset), addr, size);
2231 #endif
2232         local_flush_icache_range(ebase + offset, ebase + offset + size);
2233 }
2234
2235 static const char panic_null_cerr[] =
2236         "Trying to set NULL cache error exception handler\n";
2237
2238 /*
2239  * Install uncached CPU exception handler.
2240  * This is suitable only for the cache error exception which is the only
2241  * exception handler that is being run uncached.
2242  */
2243 void set_uncached_handler(unsigned long offset, void *addr,
2244         unsigned long size)
2245 {
2246         unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2247
2248         if (!addr)
2249                 panic(panic_null_cerr);
2250
2251         memcpy((void *)(uncached_ebase + offset), addr, size);
2252 }
2253
2254 static int __initdata rdhwr_noopt;
2255 static int __init set_rdhwr_noopt(char *str)
2256 {
2257         rdhwr_noopt = 1;
2258         return 1;
2259 }
2260
2261 __setup("rdhwr_noopt", set_rdhwr_noopt);
2262
2263 void __init trap_init(void)
2264 {
2265         extern char except_vec3_generic;
2266         extern char except_vec4;
2267         extern char except_vec3_r4000;
2268         unsigned long i, vec_size;
2269         phys_addr_t ebase_pa;
2270
2271         check_wait();
2272
2273         if (!cpu_has_mips_r2_r6) {
2274                 ebase = CAC_BASE;
2275                 ebase_pa = virt_to_phys((void *)ebase);
2276                 vec_size = 0x400;
2277
2278                 memblock_reserve(ebase_pa, vec_size);
2279         } else {
2280                 if (cpu_has_veic || cpu_has_vint)
2281                         vec_size = 0x200 + VECTORSPACING*64;
2282                 else
2283                         vec_size = PAGE_SIZE;
2284
2285                 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2286                 if (!ebase_pa)
2287                         panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2288                               __func__, vec_size, 1 << fls(vec_size));
2289
2290                 /*
2291                  * Try to ensure ebase resides in KSeg0 if possible.
2292                  *
2293                  * It shouldn't generally be in XKPhys on MIPS64 to avoid
2294                  * hitting a poorly defined exception base for Cache Errors.
2295                  * The allocation is likely to be in the low 512MB of physical,
2296                  * in which case we should be able to convert to KSeg0.
2297                  *
2298                  * EVA is special though as it allows segments to be rearranged
2299                  * and to become uncached during cache error handling.
2300                  */
2301                 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2302                         ebase = CKSEG0ADDR(ebase_pa);
2303                 else
2304                         ebase = (unsigned long)phys_to_virt(ebase_pa);
2305         }
2306
2307         if (cpu_has_mmips) {
2308                 unsigned int config3 = read_c0_config3();
2309
2310                 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2311                         write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2312                 else
2313                         write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2314         }
2315
2316         if (board_ebase_setup)
2317                 board_ebase_setup();
2318         per_cpu_trap_init(true);
2319         memblock_set_bottom_up(false);
2320
2321         /*
2322          * Copy the generic exception handlers to their final destination.
2323          * This will be overridden later as suitable for a particular
2324          * configuration.
2325          */
2326         set_handler(0x180, &except_vec3_generic, 0x80);
2327
2328         /*
2329          * Setup default vectors
2330          */
2331         for (i = 0; i <= 31; i++)
2332                 set_except_vector(i, handle_reserved);
2333
2334         /*
2335          * Copy the EJTAG debug exception vector handler code to it's final
2336          * destination.
2337          */
2338         if (cpu_has_ejtag && board_ejtag_handler_setup)
2339                 board_ejtag_handler_setup();
2340
2341         /*
2342          * Only some CPUs have the watch exceptions.
2343          */
2344         if (cpu_has_watch)
2345                 set_except_vector(EXCCODE_WATCH, handle_watch);
2346
2347         /*
2348          * Initialise interrupt handlers
2349          */
2350         if (cpu_has_veic || cpu_has_vint) {
2351                 int nvec = cpu_has_veic ? 64 : 8;
2352                 for (i = 0; i < nvec; i++)
2353                         set_vi_handler(i, NULL);
2354         }
2355         else if (cpu_has_divec)
2356                 set_handler(0x200, &except_vec4, 0x8);
2357
2358         /*
2359          * Some CPUs can enable/disable for cache parity detection, but does
2360          * it different ways.
2361          */
2362         parity_protection_init();
2363
2364         /*
2365          * The Data Bus Errors / Instruction Bus Errors are signaled
2366          * by external hardware.  Therefore these two exceptions
2367          * may have board specific handlers.
2368          */
2369         if (board_be_init)
2370                 board_be_init();
2371
2372         set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2373                                         rollback_handle_int : handle_int);
2374         set_except_vector(EXCCODE_MOD, handle_tlbm);
2375         set_except_vector(EXCCODE_TLBL, handle_tlbl);
2376         set_except_vector(EXCCODE_TLBS, handle_tlbs);
2377
2378         set_except_vector(EXCCODE_ADEL, handle_adel);
2379         set_except_vector(EXCCODE_ADES, handle_ades);
2380
2381         set_except_vector(EXCCODE_IBE, handle_ibe);
2382         set_except_vector(EXCCODE_DBE, handle_dbe);
2383
2384         set_except_vector(EXCCODE_SYS, handle_sys);
2385         set_except_vector(EXCCODE_BP, handle_bp);
2386
2387         if (rdhwr_noopt)
2388                 set_except_vector(EXCCODE_RI, handle_ri);
2389         else {
2390                 if (cpu_has_vtag_icache)
2391                         set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2392                 else if (current_cpu_type() == CPU_LOONGSON64)
2393                         set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2394                 else
2395                         set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2396         }
2397
2398         set_except_vector(EXCCODE_CPU, handle_cpu);
2399         set_except_vector(EXCCODE_OV, handle_ov);
2400         set_except_vector(EXCCODE_TR, handle_tr);
2401         set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2402
2403         if (board_nmi_handler_setup)
2404                 board_nmi_handler_setup();
2405
2406         if (cpu_has_fpu && !cpu_has_nofpuex)
2407                 set_except_vector(EXCCODE_FPE, handle_fpe);
2408
2409         set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2410
2411         if (cpu_has_rixiex) {
2412                 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2413                 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2414         }
2415
2416         set_except_vector(EXCCODE_MSADIS, handle_msa);
2417         set_except_vector(EXCCODE_MDMX, handle_mdmx);
2418
2419         if (cpu_has_mcheck)
2420                 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2421
2422         if (cpu_has_mipsmt)
2423                 set_except_vector(EXCCODE_THREAD, handle_mt);
2424
2425         set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2426
2427         if (board_cache_error_setup)
2428                 board_cache_error_setup();
2429
2430         if (cpu_has_vce)
2431                 /* Special exception: R4[04]00 uses also the divec space. */
2432                 set_handler(0x180, &except_vec3_r4000, 0x100);
2433         else if (cpu_has_4kex)
2434                 set_handler(0x180, &except_vec3_generic, 0x80);
2435         else
2436                 set_handler(0x080, &except_vec3_generic, 0x80);
2437
2438         local_flush_icache_range(ebase, ebase + vec_size);
2439
2440         sort_extable(__start___dbe_table, __stop___dbe_table);
2441
2442         cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
2443 }
2444
2445 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2446                             void *v)
2447 {
2448         switch (cmd) {
2449         case CPU_PM_ENTER_FAILED:
2450         case CPU_PM_EXIT:
2451                 configure_status();
2452                 configure_hwrena();
2453                 configure_exception_vector();
2454
2455                 /* Restore register with CPU number for TLB handlers */
2456                 TLBMISS_HANDLER_RESTORE();
2457
2458                 break;
2459         }
2460
2461         return NOTIFY_OK;
2462 }
2463
2464 static struct notifier_block trap_pm_notifier_block = {
2465         .notifier_call = trap_pm_notifier,
2466 };
2467
2468 static int __init trap_pm_init(void)
2469 {
2470         return cpu_pm_register_notifier(&trap_pm_notifier_block);
2471 }
2472 arch_initcall(trap_pm_init);
This page took 0.172713 seconds and 4 git commands to generate.