2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 #include "rcu-string.h"
57 #include "dev-replace.h"
62 #include "compression.h"
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
70 struct btrfs_ioctl_timespec_32 {
73 } __attribute__ ((__packed__));
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
89 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
90 struct btrfs_ioctl_send_args_32 {
91 __s64 send_fd; /* in */
92 __u64 clone_sources_count; /* in */
93 compat_uptr_t clone_sources; /* in */
94 __u64 parent_root; /* in */
96 __u64 reserved[4]; /* in */
97 } __attribute__ ((__packed__));
99 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
100 struct btrfs_ioctl_send_args_32)
103 static int btrfs_clone(struct inode *src, struct inode *inode,
104 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
107 /* Mask out flags that are inappropriate for the given type of inode. */
108 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
112 else if (S_ISREG(mode))
113 return flags & ~FS_DIRSYNC_FL;
115 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
119 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
121 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
123 unsigned int iflags = 0;
125 if (flags & BTRFS_INODE_SYNC)
126 iflags |= FS_SYNC_FL;
127 if (flags & BTRFS_INODE_IMMUTABLE)
128 iflags |= FS_IMMUTABLE_FL;
129 if (flags & BTRFS_INODE_APPEND)
130 iflags |= FS_APPEND_FL;
131 if (flags & BTRFS_INODE_NODUMP)
132 iflags |= FS_NODUMP_FL;
133 if (flags & BTRFS_INODE_NOATIME)
134 iflags |= FS_NOATIME_FL;
135 if (flags & BTRFS_INODE_DIRSYNC)
136 iflags |= FS_DIRSYNC_FL;
137 if (flags & BTRFS_INODE_NODATACOW)
138 iflags |= FS_NOCOW_FL;
140 if (flags & BTRFS_INODE_NOCOMPRESS)
141 iflags |= FS_NOCOMP_FL;
142 else if (flags & BTRFS_INODE_COMPRESS)
143 iflags |= FS_COMPR_FL;
149 * Update inode->i_flags based on the btrfs internal flags.
151 void btrfs_update_iflags(struct inode *inode)
153 struct btrfs_inode *ip = BTRFS_I(inode);
154 unsigned int new_fl = 0;
156 if (ip->flags & BTRFS_INODE_SYNC)
158 if (ip->flags & BTRFS_INODE_IMMUTABLE)
159 new_fl |= S_IMMUTABLE;
160 if (ip->flags & BTRFS_INODE_APPEND)
162 if (ip->flags & BTRFS_INODE_NOATIME)
164 if (ip->flags & BTRFS_INODE_DIRSYNC)
167 set_mask_bits(&inode->i_flags,
168 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
172 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
174 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
175 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
177 if (copy_to_user(arg, &flags, sizeof(flags)))
182 static int check_flags(unsigned int flags)
184 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
185 FS_NOATIME_FL | FS_NODUMP_FL | \
186 FS_SYNC_FL | FS_DIRSYNC_FL | \
187 FS_NOCOMP_FL | FS_COMPR_FL |
191 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
197 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
199 struct inode *inode = file_inode(file);
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
201 struct btrfs_inode *ip = BTRFS_I(inode);
202 struct btrfs_root *root = ip->root;
203 struct btrfs_trans_handle *trans;
204 unsigned int flags, oldflags;
207 unsigned int i_oldflags;
210 if (!inode_owner_or_capable(inode))
213 if (btrfs_root_readonly(root))
216 if (copy_from_user(&flags, arg, sizeof(flags)))
219 ret = check_flags(flags);
223 ret = mnt_want_write_file(file);
229 ip_oldflags = ip->flags;
230 i_oldflags = inode->i_flags;
231 mode = inode->i_mode;
233 flags = btrfs_mask_flags(inode->i_mode, flags);
234 oldflags = btrfs_flags_to_ioctl(ip->flags);
235 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
236 if (!capable(CAP_LINUX_IMMUTABLE)) {
242 if (flags & FS_SYNC_FL)
243 ip->flags |= BTRFS_INODE_SYNC;
245 ip->flags &= ~BTRFS_INODE_SYNC;
246 if (flags & FS_IMMUTABLE_FL)
247 ip->flags |= BTRFS_INODE_IMMUTABLE;
249 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
250 if (flags & FS_APPEND_FL)
251 ip->flags |= BTRFS_INODE_APPEND;
253 ip->flags &= ~BTRFS_INODE_APPEND;
254 if (flags & FS_NODUMP_FL)
255 ip->flags |= BTRFS_INODE_NODUMP;
257 ip->flags &= ~BTRFS_INODE_NODUMP;
258 if (flags & FS_NOATIME_FL)
259 ip->flags |= BTRFS_INODE_NOATIME;
261 ip->flags &= ~BTRFS_INODE_NOATIME;
262 if (flags & FS_DIRSYNC_FL)
263 ip->flags |= BTRFS_INODE_DIRSYNC;
265 ip->flags &= ~BTRFS_INODE_DIRSYNC;
266 if (flags & FS_NOCOW_FL) {
269 * It's safe to turn csums off here, no extents exist.
270 * Otherwise we want the flag to reflect the real COW
271 * status of the file and will not set it.
273 if (inode->i_size == 0)
274 ip->flags |= BTRFS_INODE_NODATACOW
275 | BTRFS_INODE_NODATASUM;
277 ip->flags |= BTRFS_INODE_NODATACOW;
281 * Revert back under same assumptions as above
284 if (inode->i_size == 0)
285 ip->flags &= ~(BTRFS_INODE_NODATACOW
286 | BTRFS_INODE_NODATASUM);
288 ip->flags &= ~BTRFS_INODE_NODATACOW;
293 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
294 * flag may be changed automatically if compression code won't make
297 if (flags & FS_NOCOMP_FL) {
298 ip->flags &= ~BTRFS_INODE_COMPRESS;
299 ip->flags |= BTRFS_INODE_NOCOMPRESS;
301 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
302 if (ret && ret != -ENODATA)
304 } else if (flags & FS_COMPR_FL) {
307 ip->flags |= BTRFS_INODE_COMPRESS;
308 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
310 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
312 else if (fs_info->compress_type == BTRFS_COMPRESS_ZLIB)
316 ret = btrfs_set_prop(inode, "btrfs.compression",
317 comp, strlen(comp), 0);
322 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
323 if (ret && ret != -ENODATA)
325 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
328 trans = btrfs_start_transaction(root, 1);
330 ret = PTR_ERR(trans);
334 btrfs_update_iflags(inode);
335 inode_inc_iversion(inode);
336 inode->i_ctime = current_time(inode);
337 ret = btrfs_update_inode(trans, root, inode);
339 btrfs_end_transaction(trans);
342 ip->flags = ip_oldflags;
343 inode->i_flags = i_oldflags;
348 mnt_drop_write_file(file);
352 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
354 struct inode *inode = file_inode(file);
356 return put_user(inode->i_generation, arg);
359 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
361 struct inode *inode = file_inode(file);
362 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
363 struct btrfs_device *device;
364 struct request_queue *q;
365 struct fstrim_range range;
366 u64 minlen = ULLONG_MAX;
368 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
371 if (!capable(CAP_SYS_ADMIN))
375 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
379 q = bdev_get_queue(device->bdev);
380 if (blk_queue_discard(q)) {
382 minlen = min_t(u64, q->limits.discard_granularity,
390 if (copy_from_user(&range, arg, sizeof(range)))
392 if (range.start > total_bytes ||
393 range.len < fs_info->sb->s_blocksize)
396 range.len = min(range.len, total_bytes - range.start);
397 range.minlen = max(range.minlen, minlen);
398 ret = btrfs_trim_fs(fs_info, &range);
402 if (copy_to_user(arg, &range, sizeof(range)))
408 int btrfs_is_empty_uuid(u8 *uuid)
412 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
419 static noinline int create_subvol(struct inode *dir,
420 struct dentry *dentry,
421 const char *name, int namelen,
423 struct btrfs_qgroup_inherit *inherit)
425 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
426 struct btrfs_trans_handle *trans;
427 struct btrfs_key key;
428 struct btrfs_root_item *root_item;
429 struct btrfs_inode_item *inode_item;
430 struct extent_buffer *leaf;
431 struct btrfs_root *root = BTRFS_I(dir)->root;
432 struct btrfs_root *new_root;
433 struct btrfs_block_rsv block_rsv;
434 struct timespec cur_time = current_time(dir);
439 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
444 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
448 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
453 * Don't create subvolume whose level is not zero. Or qgroup will be
454 * screwed up since it assumes subvolume qgroup's level to be 0.
456 if (btrfs_qgroup_level(objectid)) {
461 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
463 * The same as the snapshot creation, please see the comment
464 * of create_snapshot().
466 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
467 8, &qgroup_reserved, false);
471 trans = btrfs_start_transaction(root, 0);
473 ret = PTR_ERR(trans);
474 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
477 trans->block_rsv = &block_rsv;
478 trans->bytes_reserved = block_rsv.size;
480 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
484 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
490 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
491 btrfs_set_header_bytenr(leaf, leaf->start);
492 btrfs_set_header_generation(leaf, trans->transid);
493 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
494 btrfs_set_header_owner(leaf, objectid);
496 write_extent_buffer_fsid(leaf, fs_info->fsid);
497 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
498 btrfs_mark_buffer_dirty(leaf);
500 inode_item = &root_item->inode;
501 btrfs_set_stack_inode_generation(inode_item, 1);
502 btrfs_set_stack_inode_size(inode_item, 3);
503 btrfs_set_stack_inode_nlink(inode_item, 1);
504 btrfs_set_stack_inode_nbytes(inode_item,
506 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
508 btrfs_set_root_flags(root_item, 0);
509 btrfs_set_root_limit(root_item, 0);
510 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
512 btrfs_set_root_bytenr(root_item, leaf->start);
513 btrfs_set_root_generation(root_item, trans->transid);
514 btrfs_set_root_level(root_item, 0);
515 btrfs_set_root_refs(root_item, 1);
516 btrfs_set_root_used(root_item, leaf->len);
517 btrfs_set_root_last_snapshot(root_item, 0);
519 btrfs_set_root_generation_v2(root_item,
520 btrfs_root_generation(root_item));
521 uuid_le_gen(&new_uuid);
522 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
523 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
524 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
525 root_item->ctime = root_item->otime;
526 btrfs_set_root_ctransid(root_item, trans->transid);
527 btrfs_set_root_otransid(root_item, trans->transid);
529 btrfs_tree_unlock(leaf);
530 free_extent_buffer(leaf);
533 btrfs_set_root_dirid(root_item, new_dirid);
535 key.objectid = objectid;
537 key.type = BTRFS_ROOT_ITEM_KEY;
538 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
543 key.offset = (u64)-1;
544 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
545 if (IS_ERR(new_root)) {
546 ret = PTR_ERR(new_root);
547 btrfs_abort_transaction(trans, ret);
551 btrfs_record_root_in_trans(trans, new_root);
553 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
555 /* We potentially lose an unused inode item here */
556 btrfs_abort_transaction(trans, ret);
560 mutex_lock(&new_root->objectid_mutex);
561 new_root->highest_objectid = new_dirid;
562 mutex_unlock(&new_root->objectid_mutex);
565 * insert the directory item
567 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
569 btrfs_abort_transaction(trans, ret);
573 ret = btrfs_insert_dir_item(trans, root,
574 name, namelen, BTRFS_I(dir), &key,
575 BTRFS_FT_DIR, index);
577 btrfs_abort_transaction(trans, ret);
581 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
582 ret = btrfs_update_inode(trans, root, dir);
585 ret = btrfs_add_root_ref(trans, fs_info,
586 objectid, root->root_key.objectid,
587 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
590 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
591 BTRFS_UUID_KEY_SUBVOL, objectid);
593 btrfs_abort_transaction(trans, ret);
597 trans->block_rsv = NULL;
598 trans->bytes_reserved = 0;
599 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
602 *async_transid = trans->transid;
603 err = btrfs_commit_transaction_async(trans, 1);
605 err = btrfs_commit_transaction(trans);
607 err = btrfs_commit_transaction(trans);
613 inode = btrfs_lookup_dentry(dir, dentry);
615 return PTR_ERR(inode);
616 d_instantiate(dentry, inode);
625 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
626 struct dentry *dentry,
627 u64 *async_transid, bool readonly,
628 struct btrfs_qgroup_inherit *inherit)
630 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
632 struct btrfs_pending_snapshot *pending_snapshot;
633 struct btrfs_trans_handle *trans;
636 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
639 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
640 if (!pending_snapshot)
643 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
645 pending_snapshot->path = btrfs_alloc_path();
646 if (!pending_snapshot->root_item || !pending_snapshot->path) {
651 atomic_inc(&root->will_be_snapshotted);
652 smp_mb__after_atomic();
653 /* wait for no snapshot writes */
654 wait_event(root->subv_writers->wait,
655 percpu_counter_sum(&root->subv_writers->counter) == 0);
657 ret = btrfs_start_delalloc_inodes(root, 0);
661 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
663 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
664 BTRFS_BLOCK_RSV_TEMP);
666 * 1 - parent dir inode
669 * 2 - root ref/backref
670 * 1 - root of snapshot
673 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
674 &pending_snapshot->block_rsv, 8,
675 &pending_snapshot->qgroup_reserved,
680 pending_snapshot->dentry = dentry;
681 pending_snapshot->root = root;
682 pending_snapshot->readonly = readonly;
683 pending_snapshot->dir = dir;
684 pending_snapshot->inherit = inherit;
686 trans = btrfs_start_transaction(root, 0);
688 ret = PTR_ERR(trans);
692 spin_lock(&fs_info->trans_lock);
693 list_add(&pending_snapshot->list,
694 &trans->transaction->pending_snapshots);
695 spin_unlock(&fs_info->trans_lock);
697 *async_transid = trans->transid;
698 ret = btrfs_commit_transaction_async(trans, 1);
700 ret = btrfs_commit_transaction(trans);
702 ret = btrfs_commit_transaction(trans);
707 ret = pending_snapshot->error;
711 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
715 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
717 ret = PTR_ERR(inode);
721 d_instantiate(dentry, inode);
724 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
726 if (atomic_dec_and_test(&root->will_be_snapshotted))
727 wake_up_atomic_t(&root->will_be_snapshotted);
729 kfree(pending_snapshot->root_item);
730 btrfs_free_path(pending_snapshot->path);
731 kfree(pending_snapshot);
736 /* copy of may_delete in fs/namei.c()
737 * Check whether we can remove a link victim from directory dir, check
738 * whether the type of victim is right.
739 * 1. We can't do it if dir is read-only (done in permission())
740 * 2. We should have write and exec permissions on dir
741 * 3. We can't remove anything from append-only dir
742 * 4. We can't do anything with immutable dir (done in permission())
743 * 5. If the sticky bit on dir is set we should either
744 * a. be owner of dir, or
745 * b. be owner of victim, or
746 * c. have CAP_FOWNER capability
747 * 6. If the victim is append-only or immutable we can't do anything with
748 * links pointing to it.
749 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
750 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
751 * 9. We can't remove a root or mountpoint.
752 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
753 * nfs_async_unlink().
756 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
760 if (d_really_is_negative(victim))
763 BUG_ON(d_inode(victim->d_parent) != dir);
764 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
766 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
771 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
772 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
775 if (!d_is_dir(victim))
779 } else if (d_is_dir(victim))
783 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
788 /* copy of may_create in fs/namei.c() */
789 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
791 if (d_really_is_positive(child))
795 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
799 * Create a new subvolume below @parent. This is largely modeled after
800 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
801 * inside this filesystem so it's quite a bit simpler.
803 static noinline int btrfs_mksubvol(const struct path *parent,
804 const char *name, int namelen,
805 struct btrfs_root *snap_src,
806 u64 *async_transid, bool readonly,
807 struct btrfs_qgroup_inherit *inherit)
809 struct inode *dir = d_inode(parent->dentry);
810 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
811 struct dentry *dentry;
814 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
818 dentry = lookup_one_len(name, parent->dentry, namelen);
819 error = PTR_ERR(dentry);
823 error = btrfs_may_create(dir, dentry);
828 * even if this name doesn't exist, we may get hash collisions.
829 * check for them now when we can safely fail
831 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
837 down_read(&fs_info->subvol_sem);
839 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
843 error = create_snapshot(snap_src, dir, dentry,
844 async_transid, readonly, inherit);
846 error = create_subvol(dir, dentry, name, namelen,
847 async_transid, inherit);
850 fsnotify_mkdir(dir, dentry);
852 up_read(&fs_info->subvol_sem);
861 * When we're defragging a range, we don't want to kick it off again
862 * if it is really just waiting for delalloc to send it down.
863 * If we find a nice big extent or delalloc range for the bytes in the
864 * file you want to defrag, we return 0 to let you know to skip this
867 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
870 struct extent_map *em = NULL;
871 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
874 read_lock(&em_tree->lock);
875 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
876 read_unlock(&em_tree->lock);
879 end = extent_map_end(em);
881 if (end - offset > thresh)
884 /* if we already have a nice delalloc here, just stop */
886 end = count_range_bits(io_tree, &offset, offset + thresh,
887 thresh, EXTENT_DELALLOC, 1);
894 * helper function to walk through a file and find extents
895 * newer than a specific transid, and smaller than thresh.
897 * This is used by the defragging code to find new and small
900 static int find_new_extents(struct btrfs_root *root,
901 struct inode *inode, u64 newer_than,
902 u64 *off, u32 thresh)
904 struct btrfs_path *path;
905 struct btrfs_key min_key;
906 struct extent_buffer *leaf;
907 struct btrfs_file_extent_item *extent;
910 u64 ino = btrfs_ino(BTRFS_I(inode));
912 path = btrfs_alloc_path();
916 min_key.objectid = ino;
917 min_key.type = BTRFS_EXTENT_DATA_KEY;
918 min_key.offset = *off;
921 ret = btrfs_search_forward(root, &min_key, path, newer_than);
925 if (min_key.objectid != ino)
927 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
930 leaf = path->nodes[0];
931 extent = btrfs_item_ptr(leaf, path->slots[0],
932 struct btrfs_file_extent_item);
934 type = btrfs_file_extent_type(leaf, extent);
935 if (type == BTRFS_FILE_EXTENT_REG &&
936 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
937 check_defrag_in_cache(inode, min_key.offset, thresh)) {
938 *off = min_key.offset;
939 btrfs_free_path(path);
944 if (path->slots[0] < btrfs_header_nritems(leaf)) {
945 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
949 if (min_key.offset == (u64)-1)
953 btrfs_release_path(path);
956 btrfs_free_path(path);
960 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
962 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
964 struct extent_map *em;
968 * hopefully we have this extent in the tree already, try without
969 * the full extent lock
971 read_lock(&em_tree->lock);
972 em = lookup_extent_mapping(em_tree, start, len);
973 read_unlock(&em_tree->lock);
976 struct extent_state *cached = NULL;
977 u64 end = start + len - 1;
979 /* get the big lock and read metadata off disk */
980 lock_extent_bits(io_tree, start, end, &cached);
981 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
982 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
991 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
993 struct extent_map *next;
996 /* this is the last extent */
997 if (em->start + em->len >= i_size_read(inode))
1000 next = defrag_lookup_extent(inode, em->start + em->len);
1001 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1003 else if ((em->block_start + em->block_len == next->block_start) &&
1004 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1007 free_extent_map(next);
1011 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1012 u64 *last_len, u64 *skip, u64 *defrag_end,
1015 struct extent_map *em;
1017 bool next_mergeable = true;
1018 bool prev_mergeable = true;
1021 * make sure that once we start defragging an extent, we keep on
1024 if (start < *defrag_end)
1029 em = defrag_lookup_extent(inode, start);
1033 /* this will cover holes, and inline extents */
1034 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1040 prev_mergeable = false;
1042 next_mergeable = defrag_check_next_extent(inode, em);
1044 * we hit a real extent, if it is big or the next extent is not a
1045 * real extent, don't bother defragging it
1047 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1048 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1052 * last_len ends up being a counter of how many bytes we've defragged.
1053 * every time we choose not to defrag an extent, we reset *last_len
1054 * so that the next tiny extent will force a defrag.
1056 * The end result of this is that tiny extents before a single big
1057 * extent will force at least part of that big extent to be defragged.
1060 *defrag_end = extent_map_end(em);
1063 *skip = extent_map_end(em);
1067 free_extent_map(em);
1072 * it doesn't do much good to defrag one or two pages
1073 * at a time. This pulls in a nice chunk of pages
1074 * to COW and defrag.
1076 * It also makes sure the delalloc code has enough
1077 * dirty data to avoid making new small extents as part
1080 * It's a good idea to start RA on this range
1081 * before calling this.
1083 static int cluster_pages_for_defrag(struct inode *inode,
1084 struct page **pages,
1085 unsigned long start_index,
1086 unsigned long num_pages)
1088 unsigned long file_end;
1089 u64 isize = i_size_read(inode);
1096 struct btrfs_ordered_extent *ordered;
1097 struct extent_state *cached_state = NULL;
1098 struct extent_io_tree *tree;
1099 struct extent_changeset *data_reserved = NULL;
1100 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1102 file_end = (isize - 1) >> PAGE_SHIFT;
1103 if (!isize || start_index > file_end)
1106 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1108 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1109 start_index << PAGE_SHIFT,
1110 page_cnt << PAGE_SHIFT);
1114 tree = &BTRFS_I(inode)->io_tree;
1116 /* step one, lock all the pages */
1117 for (i = 0; i < page_cnt; i++) {
1120 page = find_or_create_page(inode->i_mapping,
1121 start_index + i, mask);
1125 page_start = page_offset(page);
1126 page_end = page_start + PAGE_SIZE - 1;
1128 lock_extent_bits(tree, page_start, page_end,
1130 ordered = btrfs_lookup_ordered_extent(inode,
1132 unlock_extent_cached(tree, page_start, page_end,
1133 &cached_state, GFP_NOFS);
1138 btrfs_start_ordered_extent(inode, ordered, 1);
1139 btrfs_put_ordered_extent(ordered);
1142 * we unlocked the page above, so we need check if
1143 * it was released or not.
1145 if (page->mapping != inode->i_mapping) {
1152 if (!PageUptodate(page)) {
1153 btrfs_readpage(NULL, page);
1155 if (!PageUptodate(page)) {
1163 if (page->mapping != inode->i_mapping) {
1175 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1179 * so now we have a nice long stream of locked
1180 * and up to date pages, lets wait on them
1182 for (i = 0; i < i_done; i++)
1183 wait_on_page_writeback(pages[i]);
1185 page_start = page_offset(pages[0]);
1186 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1188 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1189 page_start, page_end - 1, &cached_state);
1190 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1191 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1192 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1193 &cached_state, GFP_NOFS);
1195 if (i_done != page_cnt) {
1196 spin_lock(&BTRFS_I(inode)->lock);
1197 BTRFS_I(inode)->outstanding_extents++;
1198 spin_unlock(&BTRFS_I(inode)->lock);
1199 btrfs_delalloc_release_space(inode, data_reserved,
1200 start_index << PAGE_SHIFT,
1201 (page_cnt - i_done) << PAGE_SHIFT);
1205 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1208 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1209 page_start, page_end - 1, &cached_state,
1212 for (i = 0; i < i_done; i++) {
1213 clear_page_dirty_for_io(pages[i]);
1214 ClearPageChecked(pages[i]);
1215 set_page_extent_mapped(pages[i]);
1216 set_page_dirty(pages[i]);
1217 unlock_page(pages[i]);
1220 extent_changeset_free(data_reserved);
1223 for (i = 0; i < i_done; i++) {
1224 unlock_page(pages[i]);
1227 btrfs_delalloc_release_space(inode, data_reserved,
1228 start_index << PAGE_SHIFT,
1229 page_cnt << PAGE_SHIFT);
1230 extent_changeset_free(data_reserved);
1235 int btrfs_defrag_file(struct inode *inode, struct file *file,
1236 struct btrfs_ioctl_defrag_range_args *range,
1237 u64 newer_than, unsigned long max_to_defrag)
1239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1240 struct btrfs_root *root = BTRFS_I(inode)->root;
1241 struct file_ra_state *ra = NULL;
1242 unsigned long last_index;
1243 u64 isize = i_size_read(inode);
1247 u64 newer_off = range->start;
1249 unsigned long ra_index = 0;
1251 int defrag_count = 0;
1252 int compress_type = BTRFS_COMPRESS_ZLIB;
1253 u32 extent_thresh = range->extent_thresh;
1254 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1255 unsigned long cluster = max_cluster;
1256 u64 new_align = ~((u64)SZ_128K - 1);
1257 struct page **pages = NULL;
1258 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1263 if (range->start >= isize)
1267 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1269 if (range->compress_type)
1270 compress_type = range->compress_type;
1273 if (extent_thresh == 0)
1274 extent_thresh = SZ_256K;
1277 * If we were not given a file, allocate a readahead context. As
1278 * readahead is just an optimization, defrag will work without it so
1279 * we don't error out.
1282 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1284 file_ra_state_init(ra, inode->i_mapping);
1289 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1295 /* find the last page to defrag */
1296 if (range->start + range->len > range->start) {
1297 last_index = min_t(u64, isize - 1,
1298 range->start + range->len - 1) >> PAGE_SHIFT;
1300 last_index = (isize - 1) >> PAGE_SHIFT;
1304 ret = find_new_extents(root, inode, newer_than,
1305 &newer_off, SZ_64K);
1307 range->start = newer_off;
1309 * we always align our defrag to help keep
1310 * the extents in the file evenly spaced
1312 i = (newer_off & new_align) >> PAGE_SHIFT;
1316 i = range->start >> PAGE_SHIFT;
1319 max_to_defrag = last_index - i + 1;
1322 * make writeback starts from i, so the defrag range can be
1323 * written sequentially.
1325 if (i < inode->i_mapping->writeback_index)
1326 inode->i_mapping->writeback_index = i;
1328 while (i <= last_index && defrag_count < max_to_defrag &&
1329 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1331 * make sure we stop running if someone unmounts
1334 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1337 if (btrfs_defrag_cancelled(fs_info)) {
1338 btrfs_debug(fs_info, "defrag_file cancelled");
1343 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1344 extent_thresh, &last_len, &skip,
1345 &defrag_end, do_compress)){
1348 * the should_defrag function tells us how much to skip
1349 * bump our counter by the suggested amount
1351 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1352 i = max(i + 1, next);
1357 cluster = (PAGE_ALIGN(defrag_end) >>
1359 cluster = min(cluster, max_cluster);
1361 cluster = max_cluster;
1364 if (i + cluster > ra_index) {
1365 ra_index = max(i, ra_index);
1367 page_cache_sync_readahead(inode->i_mapping, ra,
1368 file, ra_index, cluster);
1369 ra_index += cluster;
1374 BTRFS_I(inode)->defrag_compress = compress_type;
1375 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1377 inode_unlock(inode);
1381 defrag_count += ret;
1382 balance_dirty_pages_ratelimited(inode->i_mapping);
1383 inode_unlock(inode);
1386 if (newer_off == (u64)-1)
1392 newer_off = max(newer_off + 1,
1393 (u64)i << PAGE_SHIFT);
1395 ret = find_new_extents(root, inode, newer_than,
1396 &newer_off, SZ_64K);
1398 range->start = newer_off;
1399 i = (newer_off & new_align) >> PAGE_SHIFT;
1406 last_len += ret << PAGE_SHIFT;
1414 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1415 filemap_flush(inode->i_mapping);
1416 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1417 &BTRFS_I(inode)->runtime_flags))
1418 filemap_flush(inode->i_mapping);
1421 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1422 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1423 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1424 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1432 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1433 inode_unlock(inode);
1441 static noinline int btrfs_ioctl_resize(struct file *file,
1444 struct inode *inode = file_inode(file);
1445 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
1450 struct btrfs_ioctl_vol_args *vol_args;
1451 struct btrfs_trans_handle *trans;
1452 struct btrfs_device *device = NULL;
1455 char *devstr = NULL;
1459 if (!capable(CAP_SYS_ADMIN))
1462 ret = mnt_want_write_file(file);
1466 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1467 mnt_drop_write_file(file);
1468 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1471 mutex_lock(&fs_info->volume_mutex);
1472 vol_args = memdup_user(arg, sizeof(*vol_args));
1473 if (IS_ERR(vol_args)) {
1474 ret = PTR_ERR(vol_args);
1478 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1480 sizestr = vol_args->name;
1481 devstr = strchr(sizestr, ':');
1483 sizestr = devstr + 1;
1485 devstr = vol_args->name;
1486 ret = kstrtoull(devstr, 10, &devid);
1493 btrfs_info(fs_info, "resizing devid %llu", devid);
1496 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1498 btrfs_info(fs_info, "resizer unable to find device %llu",
1504 if (!device->writeable) {
1506 "resizer unable to apply on readonly device %llu",
1512 if (!strcmp(sizestr, "max"))
1513 new_size = device->bdev->bd_inode->i_size;
1515 if (sizestr[0] == '-') {
1518 } else if (sizestr[0] == '+') {
1522 new_size = memparse(sizestr, &retptr);
1523 if (*retptr != '\0' || new_size == 0) {
1529 if (device->is_tgtdev_for_dev_replace) {
1534 old_size = btrfs_device_get_total_bytes(device);
1537 if (new_size > old_size) {
1541 new_size = old_size - new_size;
1542 } else if (mod > 0) {
1543 if (new_size > ULLONG_MAX - old_size) {
1547 new_size = old_size + new_size;
1550 if (new_size < SZ_256M) {
1554 if (new_size > device->bdev->bd_inode->i_size) {
1559 new_size = round_down(new_size, fs_info->sectorsize);
1561 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1562 rcu_str_deref(device->name), new_size);
1564 if (new_size > old_size) {
1565 trans = btrfs_start_transaction(root, 0);
1566 if (IS_ERR(trans)) {
1567 ret = PTR_ERR(trans);
1570 ret = btrfs_grow_device(trans, device, new_size);
1571 btrfs_commit_transaction(trans);
1572 } else if (new_size < old_size) {
1573 ret = btrfs_shrink_device(device, new_size);
1574 } /* equal, nothing need to do */
1579 mutex_unlock(&fs_info->volume_mutex);
1580 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1581 mnt_drop_write_file(file);
1585 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1586 const char *name, unsigned long fd, int subvol,
1587 u64 *transid, bool readonly,
1588 struct btrfs_qgroup_inherit *inherit)
1593 if (!S_ISDIR(file_inode(file)->i_mode))
1596 ret = mnt_want_write_file(file);
1600 namelen = strlen(name);
1601 if (strchr(name, '/')) {
1603 goto out_drop_write;
1606 if (name[0] == '.' &&
1607 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1609 goto out_drop_write;
1613 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1614 NULL, transid, readonly, inherit);
1616 struct fd src = fdget(fd);
1617 struct inode *src_inode;
1620 goto out_drop_write;
1623 src_inode = file_inode(src.file);
1624 if (src_inode->i_sb != file_inode(file)->i_sb) {
1625 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1626 "Snapshot src from another FS");
1628 } else if (!inode_owner_or_capable(src_inode)) {
1630 * Subvolume creation is not restricted, but snapshots
1631 * are limited to own subvolumes only
1635 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1636 BTRFS_I(src_inode)->root,
1637 transid, readonly, inherit);
1642 mnt_drop_write_file(file);
1647 static noinline int btrfs_ioctl_snap_create(struct file *file,
1648 void __user *arg, int subvol)
1650 struct btrfs_ioctl_vol_args *vol_args;
1653 if (!S_ISDIR(file_inode(file)->i_mode))
1656 vol_args = memdup_user(arg, sizeof(*vol_args));
1657 if (IS_ERR(vol_args))
1658 return PTR_ERR(vol_args);
1659 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1661 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1662 vol_args->fd, subvol,
1669 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1670 void __user *arg, int subvol)
1672 struct btrfs_ioctl_vol_args_v2 *vol_args;
1676 bool readonly = false;
1677 struct btrfs_qgroup_inherit *inherit = NULL;
1679 if (!S_ISDIR(file_inode(file)->i_mode))
1682 vol_args = memdup_user(arg, sizeof(*vol_args));
1683 if (IS_ERR(vol_args))
1684 return PTR_ERR(vol_args);
1685 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1687 if (vol_args->flags &
1688 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1689 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1694 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1696 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1698 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1699 if (vol_args->size > PAGE_SIZE) {
1703 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1704 if (IS_ERR(inherit)) {
1705 ret = PTR_ERR(inherit);
1710 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1711 vol_args->fd, subvol, ptr,
1716 if (ptr && copy_to_user(arg +
1717 offsetof(struct btrfs_ioctl_vol_args_v2,
1729 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1732 struct inode *inode = file_inode(file);
1733 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1734 struct btrfs_root *root = BTRFS_I(inode)->root;
1738 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1741 down_read(&fs_info->subvol_sem);
1742 if (btrfs_root_readonly(root))
1743 flags |= BTRFS_SUBVOL_RDONLY;
1744 up_read(&fs_info->subvol_sem);
1746 if (copy_to_user(arg, &flags, sizeof(flags)))
1752 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1755 struct inode *inode = file_inode(file);
1756 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1757 struct btrfs_root *root = BTRFS_I(inode)->root;
1758 struct btrfs_trans_handle *trans;
1763 if (!inode_owner_or_capable(inode))
1766 ret = mnt_want_write_file(file);
1770 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1772 goto out_drop_write;
1775 if (copy_from_user(&flags, arg, sizeof(flags))) {
1777 goto out_drop_write;
1780 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1782 goto out_drop_write;
1785 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1787 goto out_drop_write;
1790 down_write(&fs_info->subvol_sem);
1793 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1796 root_flags = btrfs_root_flags(&root->root_item);
1797 if (flags & BTRFS_SUBVOL_RDONLY) {
1798 btrfs_set_root_flags(&root->root_item,
1799 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1802 * Block RO -> RW transition if this subvolume is involved in
1805 spin_lock(&root->root_item_lock);
1806 if (root->send_in_progress == 0) {
1807 btrfs_set_root_flags(&root->root_item,
1808 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1809 spin_unlock(&root->root_item_lock);
1811 spin_unlock(&root->root_item_lock);
1813 "Attempt to set subvolume %llu read-write during send",
1814 root->root_key.objectid);
1820 trans = btrfs_start_transaction(root, 1);
1821 if (IS_ERR(trans)) {
1822 ret = PTR_ERR(trans);
1826 ret = btrfs_update_root(trans, fs_info->tree_root,
1827 &root->root_key, &root->root_item);
1829 btrfs_end_transaction(trans);
1833 ret = btrfs_commit_transaction(trans);
1837 btrfs_set_root_flags(&root->root_item, root_flags);
1839 up_write(&fs_info->subvol_sem);
1841 mnt_drop_write_file(file);
1847 * helper to check if the subvolume references other subvolumes
1849 static noinline int may_destroy_subvol(struct btrfs_root *root)
1851 struct btrfs_fs_info *fs_info = root->fs_info;
1852 struct btrfs_path *path;
1853 struct btrfs_dir_item *di;
1854 struct btrfs_key key;
1858 path = btrfs_alloc_path();
1862 /* Make sure this root isn't set as the default subvol */
1863 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1864 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1865 dir_id, "default", 7, 0);
1866 if (di && !IS_ERR(di)) {
1867 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1868 if (key.objectid == root->root_key.objectid) {
1871 "deleting default subvolume %llu is not allowed",
1875 btrfs_release_path(path);
1878 key.objectid = root->root_key.objectid;
1879 key.type = BTRFS_ROOT_REF_KEY;
1880 key.offset = (u64)-1;
1882 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1888 if (path->slots[0] > 0) {
1890 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1891 if (key.objectid == root->root_key.objectid &&
1892 key.type == BTRFS_ROOT_REF_KEY)
1896 btrfs_free_path(path);
1900 static noinline int key_in_sk(struct btrfs_key *key,
1901 struct btrfs_ioctl_search_key *sk)
1903 struct btrfs_key test;
1906 test.objectid = sk->min_objectid;
1907 test.type = sk->min_type;
1908 test.offset = sk->min_offset;
1910 ret = btrfs_comp_cpu_keys(key, &test);
1914 test.objectid = sk->max_objectid;
1915 test.type = sk->max_type;
1916 test.offset = sk->max_offset;
1918 ret = btrfs_comp_cpu_keys(key, &test);
1924 static noinline int copy_to_sk(struct btrfs_path *path,
1925 struct btrfs_key *key,
1926 struct btrfs_ioctl_search_key *sk,
1929 unsigned long *sk_offset,
1933 struct extent_buffer *leaf;
1934 struct btrfs_ioctl_search_header sh;
1935 struct btrfs_key test;
1936 unsigned long item_off;
1937 unsigned long item_len;
1943 leaf = path->nodes[0];
1944 slot = path->slots[0];
1945 nritems = btrfs_header_nritems(leaf);
1947 if (btrfs_header_generation(leaf) > sk->max_transid) {
1951 found_transid = btrfs_header_generation(leaf);
1953 for (i = slot; i < nritems; i++) {
1954 item_off = btrfs_item_ptr_offset(leaf, i);
1955 item_len = btrfs_item_size_nr(leaf, i);
1957 btrfs_item_key_to_cpu(leaf, key, i);
1958 if (!key_in_sk(key, sk))
1961 if (sizeof(sh) + item_len > *buf_size) {
1968 * return one empty item back for v1, which does not
1972 *buf_size = sizeof(sh) + item_len;
1977 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1982 sh.objectid = key->objectid;
1983 sh.offset = key->offset;
1984 sh.type = key->type;
1986 sh.transid = found_transid;
1988 /* copy search result header */
1989 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1994 *sk_offset += sizeof(sh);
1997 char __user *up = ubuf + *sk_offset;
1999 if (read_extent_buffer_to_user(leaf, up,
2000 item_off, item_len)) {
2005 *sk_offset += item_len;
2009 if (ret) /* -EOVERFLOW from above */
2012 if (*num_found >= sk->nr_items) {
2019 test.objectid = sk->max_objectid;
2020 test.type = sk->max_type;
2021 test.offset = sk->max_offset;
2022 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2024 else if (key->offset < (u64)-1)
2026 else if (key->type < (u8)-1) {
2029 } else if (key->objectid < (u64)-1) {
2037 * 0: all items from this leaf copied, continue with next
2038 * 1: * more items can be copied, but unused buffer is too small
2039 * * all items were found
2040 * Either way, it will stops the loop which iterates to the next
2042 * -EOVERFLOW: item was to large for buffer
2043 * -EFAULT: could not copy extent buffer back to userspace
2048 static noinline int search_ioctl(struct inode *inode,
2049 struct btrfs_ioctl_search_key *sk,
2053 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2054 struct btrfs_root *root;
2055 struct btrfs_key key;
2056 struct btrfs_path *path;
2059 unsigned long sk_offset = 0;
2061 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2062 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2066 path = btrfs_alloc_path();
2070 if (sk->tree_id == 0) {
2071 /* search the root of the inode that was passed */
2072 root = BTRFS_I(inode)->root;
2074 key.objectid = sk->tree_id;
2075 key.type = BTRFS_ROOT_ITEM_KEY;
2076 key.offset = (u64)-1;
2077 root = btrfs_read_fs_root_no_name(info, &key);
2079 btrfs_free_path(path);
2084 key.objectid = sk->min_objectid;
2085 key.type = sk->min_type;
2086 key.offset = sk->min_offset;
2089 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2095 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2096 &sk_offset, &num_found);
2097 btrfs_release_path(path);
2105 sk->nr_items = num_found;
2106 btrfs_free_path(path);
2110 static noinline int btrfs_ioctl_tree_search(struct file *file,
2113 struct btrfs_ioctl_search_args __user *uargs;
2114 struct btrfs_ioctl_search_key sk;
2115 struct inode *inode;
2119 if (!capable(CAP_SYS_ADMIN))
2122 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2124 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2127 buf_size = sizeof(uargs->buf);
2129 inode = file_inode(file);
2130 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2133 * In the origin implementation an overflow is handled by returning a
2134 * search header with a len of zero, so reset ret.
2136 if (ret == -EOVERFLOW)
2139 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2144 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2147 struct btrfs_ioctl_search_args_v2 __user *uarg;
2148 struct btrfs_ioctl_search_args_v2 args;
2149 struct inode *inode;
2152 const size_t buf_limit = SZ_16M;
2154 if (!capable(CAP_SYS_ADMIN))
2157 /* copy search header and buffer size */
2158 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2159 if (copy_from_user(&args, uarg, sizeof(args)))
2162 buf_size = args.buf_size;
2164 /* limit result size to 16MB */
2165 if (buf_size > buf_limit)
2166 buf_size = buf_limit;
2168 inode = file_inode(file);
2169 ret = search_ioctl(inode, &args.key, &buf_size,
2170 (char __user *)(&uarg->buf[0]));
2171 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2173 else if (ret == -EOVERFLOW &&
2174 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2181 * Search INODE_REFs to identify path name of 'dirid' directory
2182 * in a 'tree_id' tree. and sets path name to 'name'.
2184 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2185 u64 tree_id, u64 dirid, char *name)
2187 struct btrfs_root *root;
2188 struct btrfs_key key;
2194 struct btrfs_inode_ref *iref;
2195 struct extent_buffer *l;
2196 struct btrfs_path *path;
2198 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2203 path = btrfs_alloc_path();
2207 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2209 key.objectid = tree_id;
2210 key.type = BTRFS_ROOT_ITEM_KEY;
2211 key.offset = (u64)-1;
2212 root = btrfs_read_fs_root_no_name(info, &key);
2214 btrfs_err(info, "could not find root %llu", tree_id);
2219 key.objectid = dirid;
2220 key.type = BTRFS_INODE_REF_KEY;
2221 key.offset = (u64)-1;
2224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2228 ret = btrfs_previous_item(root, path, dirid,
2229 BTRFS_INODE_REF_KEY);
2239 slot = path->slots[0];
2240 btrfs_item_key_to_cpu(l, &key, slot);
2242 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2243 len = btrfs_inode_ref_name_len(l, iref);
2245 total_len += len + 1;
2247 ret = -ENAMETOOLONG;
2252 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2254 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2257 btrfs_release_path(path);
2258 key.objectid = key.offset;
2259 key.offset = (u64)-1;
2260 dirid = key.objectid;
2262 memmove(name, ptr, total_len);
2263 name[total_len] = '\0';
2266 btrfs_free_path(path);
2270 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2273 struct btrfs_ioctl_ino_lookup_args *args;
2274 struct inode *inode;
2277 args = memdup_user(argp, sizeof(*args));
2279 return PTR_ERR(args);
2281 inode = file_inode(file);
2284 * Unprivileged query to obtain the containing subvolume root id. The
2285 * path is reset so it's consistent with btrfs_search_path_in_tree.
2287 if (args->treeid == 0)
2288 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2290 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2295 if (!capable(CAP_SYS_ADMIN)) {
2300 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2301 args->treeid, args->objectid,
2305 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2312 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2315 struct dentry *parent = file->f_path.dentry;
2316 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2317 struct dentry *dentry;
2318 struct inode *dir = d_inode(parent);
2319 struct inode *inode;
2320 struct btrfs_root *root = BTRFS_I(dir)->root;
2321 struct btrfs_root *dest = NULL;
2322 struct btrfs_ioctl_vol_args *vol_args;
2323 struct btrfs_trans_handle *trans;
2324 struct btrfs_block_rsv block_rsv;
2326 u64 qgroup_reserved;
2331 if (!S_ISDIR(dir->i_mode))
2334 vol_args = memdup_user(arg, sizeof(*vol_args));
2335 if (IS_ERR(vol_args))
2336 return PTR_ERR(vol_args);
2338 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2339 namelen = strlen(vol_args->name);
2340 if (strchr(vol_args->name, '/') ||
2341 strncmp(vol_args->name, "..", namelen) == 0) {
2346 err = mnt_want_write_file(file);
2351 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2353 goto out_drop_write;
2354 dentry = lookup_one_len(vol_args->name, parent, namelen);
2355 if (IS_ERR(dentry)) {
2356 err = PTR_ERR(dentry);
2357 goto out_unlock_dir;
2360 if (d_really_is_negative(dentry)) {
2365 inode = d_inode(dentry);
2366 dest = BTRFS_I(inode)->root;
2367 if (!capable(CAP_SYS_ADMIN)) {
2369 * Regular user. Only allow this with a special mount
2370 * option, when the user has write+exec access to the
2371 * subvol root, and when rmdir(2) would have been
2374 * Note that this is _not_ check that the subvol is
2375 * empty or doesn't contain data that we wouldn't
2376 * otherwise be able to delete.
2378 * Users who want to delete empty subvols should try
2382 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2386 * Do not allow deletion if the parent dir is the same
2387 * as the dir to be deleted. That means the ioctl
2388 * must be called on the dentry referencing the root
2389 * of the subvol, not a random directory contained
2396 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2401 /* check if subvolume may be deleted by a user */
2402 err = btrfs_may_delete(dir, dentry, 1);
2406 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2414 * Don't allow to delete a subvolume with send in progress. This is
2415 * inside the i_mutex so the error handling that has to drop the bit
2416 * again is not run concurrently.
2418 spin_lock(&dest->root_item_lock);
2419 root_flags = btrfs_root_flags(&dest->root_item);
2420 if (dest->send_in_progress == 0) {
2421 btrfs_set_root_flags(&dest->root_item,
2422 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2423 spin_unlock(&dest->root_item_lock);
2425 spin_unlock(&dest->root_item_lock);
2427 "Attempt to delete subvolume %llu during send",
2428 dest->root_key.objectid);
2430 goto out_unlock_inode;
2433 down_write(&fs_info->subvol_sem);
2435 err = may_destroy_subvol(dest);
2439 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2441 * One for dir inode, two for dir entries, two for root
2444 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2445 5, &qgroup_reserved, true);
2449 trans = btrfs_start_transaction(root, 0);
2450 if (IS_ERR(trans)) {
2451 err = PTR_ERR(trans);
2454 trans->block_rsv = &block_rsv;
2455 trans->bytes_reserved = block_rsv.size;
2457 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2459 ret = btrfs_unlink_subvol(trans, root, dir,
2460 dest->root_key.objectid,
2461 dentry->d_name.name,
2462 dentry->d_name.len);
2465 btrfs_abort_transaction(trans, ret);
2469 btrfs_record_root_in_trans(trans, dest);
2471 memset(&dest->root_item.drop_progress, 0,
2472 sizeof(dest->root_item.drop_progress));
2473 dest->root_item.drop_level = 0;
2474 btrfs_set_root_refs(&dest->root_item, 0);
2476 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2477 ret = btrfs_insert_orphan_item(trans,
2479 dest->root_key.objectid);
2481 btrfs_abort_transaction(trans, ret);
2487 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2488 BTRFS_UUID_KEY_SUBVOL,
2489 dest->root_key.objectid);
2490 if (ret && ret != -ENOENT) {
2491 btrfs_abort_transaction(trans, ret);
2495 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2496 ret = btrfs_uuid_tree_rem(trans, fs_info,
2497 dest->root_item.received_uuid,
2498 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2499 dest->root_key.objectid);
2500 if (ret && ret != -ENOENT) {
2501 btrfs_abort_transaction(trans, ret);
2508 trans->block_rsv = NULL;
2509 trans->bytes_reserved = 0;
2510 ret = btrfs_end_transaction(trans);
2513 inode->i_flags |= S_DEAD;
2515 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2517 up_write(&fs_info->subvol_sem);
2519 spin_lock(&dest->root_item_lock);
2520 root_flags = btrfs_root_flags(&dest->root_item);
2521 btrfs_set_root_flags(&dest->root_item,
2522 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2523 spin_unlock(&dest->root_item_lock);
2526 inode_unlock(inode);
2528 d_invalidate(dentry);
2529 btrfs_invalidate_inodes(dest);
2531 ASSERT(dest->send_in_progress == 0);
2534 if (dest->ino_cache_inode) {
2535 iput(dest->ino_cache_inode);
2536 dest->ino_cache_inode = NULL;
2544 mnt_drop_write_file(file);
2550 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2552 struct inode *inode = file_inode(file);
2553 struct btrfs_root *root = BTRFS_I(inode)->root;
2554 struct btrfs_ioctl_defrag_range_args *range;
2557 ret = mnt_want_write_file(file);
2561 if (btrfs_root_readonly(root)) {
2566 switch (inode->i_mode & S_IFMT) {
2568 if (!capable(CAP_SYS_ADMIN)) {
2572 ret = btrfs_defrag_root(root);
2575 if (!(file->f_mode & FMODE_WRITE)) {
2580 range = kzalloc(sizeof(*range), GFP_KERNEL);
2587 if (copy_from_user(range, argp,
2593 /* compression requires us to start the IO */
2594 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2595 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2596 range->extent_thresh = (u32)-1;
2599 /* the rest are all set to zero by kzalloc */
2600 range->len = (u64)-1;
2602 ret = btrfs_defrag_file(file_inode(file), file,
2612 mnt_drop_write_file(file);
2616 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2618 struct btrfs_ioctl_vol_args *vol_args;
2621 if (!capable(CAP_SYS_ADMIN))
2624 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2625 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2627 mutex_lock(&fs_info->volume_mutex);
2628 vol_args = memdup_user(arg, sizeof(*vol_args));
2629 if (IS_ERR(vol_args)) {
2630 ret = PTR_ERR(vol_args);
2634 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2635 ret = btrfs_init_new_device(fs_info, vol_args->name);
2638 btrfs_info(fs_info, "disk added %s", vol_args->name);
2642 mutex_unlock(&fs_info->volume_mutex);
2643 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2647 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2649 struct inode *inode = file_inode(file);
2650 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2651 struct btrfs_ioctl_vol_args_v2 *vol_args;
2654 if (!capable(CAP_SYS_ADMIN))
2657 ret = mnt_want_write_file(file);
2661 vol_args = memdup_user(arg, sizeof(*vol_args));
2662 if (IS_ERR(vol_args)) {
2663 ret = PTR_ERR(vol_args);
2667 /* Check for compatibility reject unknown flags */
2668 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2671 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2672 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2676 mutex_lock(&fs_info->volume_mutex);
2677 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2678 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2680 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2681 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2683 mutex_unlock(&fs_info->volume_mutex);
2684 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2687 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2688 btrfs_info(fs_info, "device deleted: id %llu",
2691 btrfs_info(fs_info, "device deleted: %s",
2697 mnt_drop_write_file(file);
2701 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2703 struct inode *inode = file_inode(file);
2704 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2705 struct btrfs_ioctl_vol_args *vol_args;
2708 if (!capable(CAP_SYS_ADMIN))
2711 ret = mnt_want_write_file(file);
2715 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2716 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2717 goto out_drop_write;
2720 vol_args = memdup_user(arg, sizeof(*vol_args));
2721 if (IS_ERR(vol_args)) {
2722 ret = PTR_ERR(vol_args);
2726 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2727 mutex_lock(&fs_info->volume_mutex);
2728 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2729 mutex_unlock(&fs_info->volume_mutex);
2732 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2735 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2737 mnt_drop_write_file(file);
2742 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2745 struct btrfs_ioctl_fs_info_args *fi_args;
2746 struct btrfs_device *device;
2747 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2750 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2754 mutex_lock(&fs_devices->device_list_mutex);
2755 fi_args->num_devices = fs_devices->num_devices;
2756 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2758 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2759 if (device->devid > fi_args->max_id)
2760 fi_args->max_id = device->devid;
2762 mutex_unlock(&fs_devices->device_list_mutex);
2764 fi_args->nodesize = fs_info->nodesize;
2765 fi_args->sectorsize = fs_info->sectorsize;
2766 fi_args->clone_alignment = fs_info->sectorsize;
2768 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2775 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2778 struct btrfs_ioctl_dev_info_args *di_args;
2779 struct btrfs_device *dev;
2780 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2782 char *s_uuid = NULL;
2784 di_args = memdup_user(arg, sizeof(*di_args));
2785 if (IS_ERR(di_args))
2786 return PTR_ERR(di_args);
2788 if (!btrfs_is_empty_uuid(di_args->uuid))
2789 s_uuid = di_args->uuid;
2791 mutex_lock(&fs_devices->device_list_mutex);
2792 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2799 di_args->devid = dev->devid;
2800 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2801 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2802 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2804 struct rcu_string *name;
2807 name = rcu_dereference(dev->name);
2808 strncpy(di_args->path, name->str, sizeof(di_args->path));
2810 di_args->path[sizeof(di_args->path) - 1] = 0;
2812 di_args->path[0] = '\0';
2816 mutex_unlock(&fs_devices->device_list_mutex);
2817 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2824 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2828 page = grab_cache_page(inode->i_mapping, index);
2830 return ERR_PTR(-ENOMEM);
2832 if (!PageUptodate(page)) {
2835 ret = btrfs_readpage(NULL, page);
2837 return ERR_PTR(ret);
2839 if (!PageUptodate(page)) {
2842 return ERR_PTR(-EIO);
2844 if (page->mapping != inode->i_mapping) {
2847 return ERR_PTR(-EAGAIN);
2854 static int gather_extent_pages(struct inode *inode, struct page **pages,
2855 int num_pages, u64 off)
2858 pgoff_t index = off >> PAGE_SHIFT;
2860 for (i = 0; i < num_pages; i++) {
2862 pages[i] = extent_same_get_page(inode, index + i);
2863 if (IS_ERR(pages[i])) {
2864 int err = PTR_ERR(pages[i]);
2875 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2876 bool retry_range_locking)
2879 * Do any pending delalloc/csum calculations on inode, one way or
2880 * another, and lock file content.
2881 * The locking order is:
2884 * 2) range in the inode's io tree
2887 struct btrfs_ordered_extent *ordered;
2888 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2889 ordered = btrfs_lookup_first_ordered_extent(inode,
2892 ordered->file_offset + ordered->len <= off ||
2893 ordered->file_offset >= off + len) &&
2894 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2895 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2897 btrfs_put_ordered_extent(ordered);
2900 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2902 btrfs_put_ordered_extent(ordered);
2903 if (!retry_range_locking)
2905 btrfs_wait_ordered_range(inode, off, len);
2910 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2912 inode_unlock(inode1);
2913 inode_unlock(inode2);
2916 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2918 if (inode1 < inode2)
2919 swap(inode1, inode2);
2921 inode_lock_nested(inode1, I_MUTEX_PARENT);
2922 inode_lock_nested(inode2, I_MUTEX_CHILD);
2925 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2926 struct inode *inode2, u64 loff2, u64 len)
2928 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2929 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2932 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2933 struct inode *inode2, u64 loff2, u64 len,
2934 bool retry_range_locking)
2938 if (inode1 < inode2) {
2939 swap(inode1, inode2);
2942 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2945 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2947 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2954 struct page **src_pages;
2955 struct page **dst_pages;
2958 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2963 for (i = 0; i < cmp->num_pages; i++) {
2964 pg = cmp->src_pages[i];
2969 pg = cmp->dst_pages[i];
2975 kfree(cmp->src_pages);
2976 kfree(cmp->dst_pages);
2979 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2980 struct inode *dst, u64 dst_loff,
2981 u64 len, struct cmp_pages *cmp)
2984 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2985 struct page **src_pgarr, **dst_pgarr;
2988 * We must gather up all the pages before we initiate our
2989 * extent locking. We use an array for the page pointers. Size
2990 * of the array is bounded by len, which is in turn bounded by
2991 * BTRFS_MAX_DEDUPE_LEN.
2993 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2994 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2995 if (!src_pgarr || !dst_pgarr) {
3000 cmp->num_pages = num_pages;
3001 cmp->src_pages = src_pgarr;
3002 cmp->dst_pages = dst_pgarr;
3005 * If deduping ranges in the same inode, locking rules make it mandatory
3006 * to always lock pages in ascending order to avoid deadlocks with
3007 * concurrent tasks (such as starting writeback/delalloc).
3009 if (src == dst && dst_loff < loff) {
3010 swap(src_pgarr, dst_pgarr);
3011 swap(loff, dst_loff);
3014 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3018 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3022 btrfs_cmp_data_free(cmp);
3026 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3030 struct page *src_page, *dst_page;
3031 unsigned int cmp_len = PAGE_SIZE;
3032 void *addr, *dst_addr;
3036 if (len < PAGE_SIZE)
3039 BUG_ON(i >= cmp->num_pages);
3041 src_page = cmp->src_pages[i];
3042 dst_page = cmp->dst_pages[i];
3043 ASSERT(PageLocked(src_page));
3044 ASSERT(PageLocked(dst_page));
3046 addr = kmap_atomic(src_page);
3047 dst_addr = kmap_atomic(dst_page);
3049 flush_dcache_page(src_page);
3050 flush_dcache_page(dst_page);
3052 if (memcmp(addr, dst_addr, cmp_len))
3055 kunmap_atomic(addr);
3056 kunmap_atomic(dst_addr);
3068 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3072 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3074 if (off + olen > inode->i_size || off + olen < off)
3077 /* if we extend to eof, continue to block boundary */
3078 if (off + len == inode->i_size)
3079 *plen = len = ALIGN(inode->i_size, bs) - off;
3081 /* Check that we are block aligned - btrfs_clone() requires this */
3082 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3088 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3089 struct inode *dst, u64 dst_loff)
3093 struct cmp_pages cmp;
3094 bool same_inode = (src == dst);
3095 u64 same_lock_start = 0;
3096 u64 same_lock_len = 0;
3104 btrfs_double_inode_lock(src, dst);
3106 ret = extent_same_check_offsets(src, loff, &len, olen);
3110 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3116 * Single inode case wants the same checks, except we
3117 * don't want our length pushed out past i_size as
3118 * comparing that data range makes no sense.
3120 * extent_same_check_offsets() will do this for an
3121 * unaligned length at i_size, so catch it here and
3122 * reject the request.
3124 * This effectively means we require aligned extents
3125 * for the single-inode case, whereas the other cases
3126 * allow an unaligned length so long as it ends at
3134 /* Check for overlapping ranges */
3135 if (dst_loff + len > loff && dst_loff < loff + len) {
3140 same_lock_start = min_t(u64, loff, dst_loff);
3141 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3144 /* don't make the dst file partly checksummed */
3145 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3146 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3152 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3157 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3160 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3163 * If one of the inodes has dirty pages in the respective range or
3164 * ordered extents, we need to flush dellaloc and wait for all ordered
3165 * extents in the range. We must unlock the pages and the ranges in the
3166 * io trees to avoid deadlocks when flushing delalloc (requires locking
3167 * pages) and when waiting for ordered extents to complete (they require
3170 if (ret == -EAGAIN) {
3172 * Ranges in the io trees already unlocked. Now unlock all
3173 * pages before waiting for all IO to complete.
3175 btrfs_cmp_data_free(&cmp);
3177 btrfs_wait_ordered_range(src, same_lock_start,
3180 btrfs_wait_ordered_range(src, loff, len);
3181 btrfs_wait_ordered_range(dst, dst_loff, len);
3187 /* ranges in the io trees already unlocked */
3188 btrfs_cmp_data_free(&cmp);
3192 /* pass original length for comparison so we stay within i_size */
3193 ret = btrfs_cmp_data(olen, &cmp);
3195 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3198 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3199 same_lock_start + same_lock_len - 1);
3201 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3203 btrfs_cmp_data_free(&cmp);
3208 btrfs_double_inode_unlock(src, dst);
3213 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3215 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3216 struct file *dst_file, u64 dst_loff)
3218 struct inode *src = file_inode(src_file);
3219 struct inode *dst = file_inode(dst_file);
3220 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3223 if (olen > BTRFS_MAX_DEDUPE_LEN)
3224 olen = BTRFS_MAX_DEDUPE_LEN;
3226 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3228 * Btrfs does not support blocksize < page_size. As a
3229 * result, btrfs_cmp_data() won't correctly handle
3230 * this situation without an update.
3235 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3241 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3242 struct inode *inode,
3248 struct btrfs_root *root = BTRFS_I(inode)->root;
3251 inode_inc_iversion(inode);
3252 if (!no_time_update)
3253 inode->i_mtime = inode->i_ctime = current_time(inode);
3255 * We round up to the block size at eof when determining which
3256 * extents to clone above, but shouldn't round up the file size.
3258 if (endoff > destoff + olen)
3259 endoff = destoff + olen;
3260 if (endoff > inode->i_size)
3261 btrfs_i_size_write(BTRFS_I(inode), endoff);
3263 ret = btrfs_update_inode(trans, root, inode);
3265 btrfs_abort_transaction(trans, ret);
3266 btrfs_end_transaction(trans);
3269 ret = btrfs_end_transaction(trans);
3274 static void clone_update_extent_map(struct btrfs_inode *inode,
3275 const struct btrfs_trans_handle *trans,
3276 const struct btrfs_path *path,
3277 const u64 hole_offset,
3280 struct extent_map_tree *em_tree = &inode->extent_tree;
3281 struct extent_map *em;
3284 em = alloc_extent_map();
3286 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3291 struct btrfs_file_extent_item *fi;
3293 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3294 struct btrfs_file_extent_item);
3295 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3296 em->generation = -1;
3297 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3298 BTRFS_FILE_EXTENT_INLINE)
3299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3300 &inode->runtime_flags);
3302 em->start = hole_offset;
3304 em->ram_bytes = em->len;
3305 em->orig_start = hole_offset;
3306 em->block_start = EXTENT_MAP_HOLE;
3308 em->orig_block_len = 0;
3309 em->compress_type = BTRFS_COMPRESS_NONE;
3310 em->generation = trans->transid;
3314 write_lock(&em_tree->lock);
3315 ret = add_extent_mapping(em_tree, em, 1);
3316 write_unlock(&em_tree->lock);
3317 if (ret != -EEXIST) {
3318 free_extent_map(em);
3321 btrfs_drop_extent_cache(inode, em->start,
3322 em->start + em->len - 1, 0);
3326 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3330 * Make sure we do not end up inserting an inline extent into a file that has
3331 * already other (non-inline) extents. If a file has an inline extent it can
3332 * not have any other extents and the (single) inline extent must start at the
3333 * file offset 0. Failing to respect these rules will lead to file corruption,
3334 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3336 * We can have extents that have been already written to disk or we can have
3337 * dirty ranges still in delalloc, in which case the extent maps and items are
3338 * created only when we run delalloc, and the delalloc ranges might fall outside
3339 * the range we are currently locking in the inode's io tree. So we check the
3340 * inode's i_size because of that (i_size updates are done while holding the
3341 * i_mutex, which we are holding here).
3342 * We also check to see if the inode has a size not greater than "datal" but has
3343 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3344 * protected against such concurrent fallocate calls by the i_mutex).
3346 * If the file has no extents but a size greater than datal, do not allow the
3347 * copy because we would need turn the inline extent into a non-inline one (even
3348 * with NO_HOLES enabled). If we find our destination inode only has one inline
3349 * extent, just overwrite it with the source inline extent if its size is less
3350 * than the source extent's size, or we could copy the source inline extent's
3351 * data into the destination inode's inline extent if the later is greater then
3354 static int clone_copy_inline_extent(struct inode *dst,
3355 struct btrfs_trans_handle *trans,
3356 struct btrfs_path *path,
3357 struct btrfs_key *new_key,
3358 const u64 drop_start,
3364 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3365 struct btrfs_root *root = BTRFS_I(dst)->root;
3366 const u64 aligned_end = ALIGN(new_key->offset + datal,
3367 fs_info->sectorsize);
3369 struct btrfs_key key;
3371 if (new_key->offset > 0)
3374 key.objectid = btrfs_ino(BTRFS_I(dst));
3375 key.type = BTRFS_EXTENT_DATA_KEY;
3377 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3380 } else if (ret > 0) {
3381 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3382 ret = btrfs_next_leaf(root, path);
3386 goto copy_inline_extent;
3388 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3389 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3390 key.type == BTRFS_EXTENT_DATA_KEY) {
3391 ASSERT(key.offset > 0);
3394 } else if (i_size_read(dst) <= datal) {
3395 struct btrfs_file_extent_item *ei;
3399 * If the file size is <= datal, make sure there are no other
3400 * extents following (can happen do to an fallocate call with
3401 * the flag FALLOC_FL_KEEP_SIZE).
3403 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3404 struct btrfs_file_extent_item);
3406 * If it's an inline extent, it can not have other extents
3409 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3410 BTRFS_FILE_EXTENT_INLINE)
3411 goto copy_inline_extent;
3413 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3414 if (ext_len > aligned_end)
3417 ret = btrfs_next_item(root, path);
3420 } else if (ret == 0) {
3421 btrfs_item_key_to_cpu(path->nodes[0], &key,
3423 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3424 key.type == BTRFS_EXTENT_DATA_KEY)
3431 * We have no extent items, or we have an extent at offset 0 which may
3432 * or may not be inlined. All these cases are dealt the same way.
3434 if (i_size_read(dst) > datal) {
3436 * If the destination inode has an inline extent...
3437 * This would require copying the data from the source inline
3438 * extent into the beginning of the destination's inline extent.
3439 * But this is really complex, both extents can be compressed
3440 * or just one of them, which would require decompressing and
3441 * re-compressing data (which could increase the new compressed
3442 * size, not allowing the compressed data to fit anymore in an
3444 * So just don't support this case for now (it should be rare,
3445 * we are not really saving space when cloning inline extents).
3450 btrfs_release_path(path);
3451 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3454 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3459 const u32 start = btrfs_file_extent_calc_inline_size(0);
3461 memmove(inline_data + start, inline_data + start + skip, datal);
3464 write_extent_buffer(path->nodes[0], inline_data,
3465 btrfs_item_ptr_offset(path->nodes[0],
3468 inode_add_bytes(dst, datal);
3474 * btrfs_clone() - clone a range from inode file to another
3476 * @src: Inode to clone from
3477 * @inode: Inode to clone to
3478 * @off: Offset within source to start clone from
3479 * @olen: Original length, passed by user, of range to clone
3480 * @olen_aligned: Block-aligned value of olen
3481 * @destoff: Offset within @inode to start clone
3482 * @no_time_update: Whether to update mtime/ctime on the target inode
3484 static int btrfs_clone(struct inode *src, struct inode *inode,
3485 const u64 off, const u64 olen, const u64 olen_aligned,
3486 const u64 destoff, int no_time_update)
3488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3489 struct btrfs_root *root = BTRFS_I(inode)->root;
3490 struct btrfs_path *path = NULL;
3491 struct extent_buffer *leaf;
3492 struct btrfs_trans_handle *trans;
3494 struct btrfs_key key;
3498 const u64 len = olen_aligned;
3499 u64 last_dest_end = destoff;
3502 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3506 path = btrfs_alloc_path();
3512 path->reada = READA_FORWARD;
3514 key.objectid = btrfs_ino(BTRFS_I(src));
3515 key.type = BTRFS_EXTENT_DATA_KEY;
3519 u64 next_key_min_offset = key.offset + 1;
3522 * note the key will change type as we walk through the
3525 path->leave_spinning = 1;
3526 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3531 * First search, if no extent item that starts at offset off was
3532 * found but the previous item is an extent item, it's possible
3533 * it might overlap our target range, therefore process it.
3535 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3536 btrfs_item_key_to_cpu(path->nodes[0], &key,
3537 path->slots[0] - 1);
3538 if (key.type == BTRFS_EXTENT_DATA_KEY)
3542 nritems = btrfs_header_nritems(path->nodes[0]);
3544 if (path->slots[0] >= nritems) {
3545 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3550 nritems = btrfs_header_nritems(path->nodes[0]);
3552 leaf = path->nodes[0];
3553 slot = path->slots[0];
3555 btrfs_item_key_to_cpu(leaf, &key, slot);
3556 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3557 key.objectid != btrfs_ino(BTRFS_I(src)))
3560 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3561 struct btrfs_file_extent_item *extent;
3564 struct btrfs_key new_key;
3565 u64 disko = 0, diskl = 0;
3566 u64 datao = 0, datal = 0;
3570 extent = btrfs_item_ptr(leaf, slot,
3571 struct btrfs_file_extent_item);
3572 comp = btrfs_file_extent_compression(leaf, extent);
3573 type = btrfs_file_extent_type(leaf, extent);
3574 if (type == BTRFS_FILE_EXTENT_REG ||
3575 type == BTRFS_FILE_EXTENT_PREALLOC) {
3576 disko = btrfs_file_extent_disk_bytenr(leaf,
3578 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3580 datao = btrfs_file_extent_offset(leaf, extent);
3581 datal = btrfs_file_extent_num_bytes(leaf,
3583 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3584 /* take upper bound, may be compressed */
3585 datal = btrfs_file_extent_ram_bytes(leaf,
3590 * The first search might have left us at an extent
3591 * item that ends before our target range's start, can
3592 * happen if we have holes and NO_HOLES feature enabled.
3594 if (key.offset + datal <= off) {
3597 } else if (key.offset >= off + len) {
3600 next_key_min_offset = key.offset + datal;
3601 size = btrfs_item_size_nr(leaf, slot);
3602 read_extent_buffer(leaf, buf,
3603 btrfs_item_ptr_offset(leaf, slot),
3606 btrfs_release_path(path);
3607 path->leave_spinning = 0;
3609 memcpy(&new_key, &key, sizeof(new_key));
3610 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3611 if (off <= key.offset)
3612 new_key.offset = key.offset + destoff - off;
3614 new_key.offset = destoff;
3617 * Deal with a hole that doesn't have an extent item
3618 * that represents it (NO_HOLES feature enabled).
3619 * This hole is either in the middle of the cloning
3620 * range or at the beginning (fully overlaps it or
3621 * partially overlaps it).
3623 if (new_key.offset != last_dest_end)
3624 drop_start = last_dest_end;
3626 drop_start = new_key.offset;
3629 * 1 - adjusting old extent (we may have to split it)
3630 * 1 - add new extent
3633 trans = btrfs_start_transaction(root, 3);
3634 if (IS_ERR(trans)) {
3635 ret = PTR_ERR(trans);
3639 if (type == BTRFS_FILE_EXTENT_REG ||
3640 type == BTRFS_FILE_EXTENT_PREALLOC) {
3642 * a | --- range to clone ---| b
3643 * | ------------- extent ------------- |
3646 /* subtract range b */
3647 if (key.offset + datal > off + len)
3648 datal = off + len - key.offset;
3650 /* subtract range a */
3651 if (off > key.offset) {
3652 datao += off - key.offset;
3653 datal -= off - key.offset;
3656 ret = btrfs_drop_extents(trans, root, inode,
3658 new_key.offset + datal,
3661 if (ret != -EOPNOTSUPP)
3662 btrfs_abort_transaction(trans,
3664 btrfs_end_transaction(trans);
3668 ret = btrfs_insert_empty_item(trans, root, path,
3671 btrfs_abort_transaction(trans, ret);
3672 btrfs_end_transaction(trans);
3676 leaf = path->nodes[0];
3677 slot = path->slots[0];
3678 write_extent_buffer(leaf, buf,
3679 btrfs_item_ptr_offset(leaf, slot),
3682 extent = btrfs_item_ptr(leaf, slot,
3683 struct btrfs_file_extent_item);
3685 /* disko == 0 means it's a hole */
3689 btrfs_set_file_extent_offset(leaf, extent,
3691 btrfs_set_file_extent_num_bytes(leaf, extent,
3695 inode_add_bytes(inode, datal);
3696 ret = btrfs_inc_extent_ref(trans,
3699 root->root_key.objectid,
3700 btrfs_ino(BTRFS_I(inode)),
3701 new_key.offset - datao);
3703 btrfs_abort_transaction(trans,
3705 btrfs_end_transaction(trans);
3710 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3714 if (off > key.offset) {
3715 skip = off - key.offset;
3716 new_key.offset += skip;
3719 if (key.offset + datal > off + len)
3720 trim = key.offset + datal - (off + len);
3722 if (comp && (skip || trim)) {
3724 btrfs_end_transaction(trans);
3727 size -= skip + trim;
3728 datal -= skip + trim;
3730 ret = clone_copy_inline_extent(inode,
3737 if (ret != -EOPNOTSUPP)
3738 btrfs_abort_transaction(trans,
3740 btrfs_end_transaction(trans);
3743 leaf = path->nodes[0];
3744 slot = path->slots[0];
3747 /* If we have an implicit hole (NO_HOLES feature). */
3748 if (drop_start < new_key.offset)
3749 clone_update_extent_map(BTRFS_I(inode), trans,
3751 new_key.offset - drop_start);
3753 clone_update_extent_map(BTRFS_I(inode), trans,
3756 btrfs_mark_buffer_dirty(leaf);
3757 btrfs_release_path(path);
3759 last_dest_end = ALIGN(new_key.offset + datal,
3760 fs_info->sectorsize);
3761 ret = clone_finish_inode_update(trans, inode,
3767 if (new_key.offset + datal >= destoff + len)
3770 btrfs_release_path(path);
3771 key.offset = next_key_min_offset;
3773 if (fatal_signal_pending(current)) {
3780 if (last_dest_end < destoff + len) {
3782 * We have an implicit hole (NO_HOLES feature is enabled) that
3783 * fully or partially overlaps our cloning range at its end.
3785 btrfs_release_path(path);
3788 * 1 - remove extent(s)
3791 trans = btrfs_start_transaction(root, 2);
3792 if (IS_ERR(trans)) {
3793 ret = PTR_ERR(trans);
3796 ret = btrfs_drop_extents(trans, root, inode,
3797 last_dest_end, destoff + len, 1);
3799 if (ret != -EOPNOTSUPP)
3800 btrfs_abort_transaction(trans, ret);
3801 btrfs_end_transaction(trans);
3804 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3806 destoff + len - last_dest_end);
3807 ret = clone_finish_inode_update(trans, inode, destoff + len,
3808 destoff, olen, no_time_update);
3812 btrfs_free_path(path);
3817 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3818 u64 off, u64 olen, u64 destoff)
3820 struct inode *inode = file_inode(file);
3821 struct inode *src = file_inode(file_src);
3822 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3823 struct btrfs_root *root = BTRFS_I(inode)->root;
3826 u64 bs = fs_info->sb->s_blocksize;
3827 int same_inode = src == inode;
3831 * - split compressed inline extents. annoying: we need to
3832 * decompress into destination's address_space (the file offset
3833 * may change, so source mapping won't do), then recompress (or
3834 * otherwise reinsert) a subrange.
3836 * - split destination inode's inline extents. The inline extents can
3837 * be either compressed or non-compressed.
3840 if (btrfs_root_readonly(root))
3843 if (file_src->f_path.mnt != file->f_path.mnt ||
3844 src->i_sb != inode->i_sb)
3847 /* don't make the dst file partly checksummed */
3848 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3849 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3852 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3856 btrfs_double_inode_lock(src, inode);
3861 /* determine range to clone */
3863 if (off + len > src->i_size || off + len < off)
3866 olen = len = src->i_size - off;
3867 /* if we extend to eof, continue to block boundary */
3868 if (off + len == src->i_size)
3869 len = ALIGN(src->i_size, bs) - off;
3876 /* verify the end result is block aligned */
3877 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3878 !IS_ALIGNED(destoff, bs))
3881 /* verify if ranges are overlapped within the same file */
3883 if (destoff + len > off && destoff < off + len)
3887 if (destoff > inode->i_size) {
3888 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3894 * Lock the target range too. Right after we replace the file extent
3895 * items in the fs tree (which now point to the cloned data), we might
3896 * have a worker replace them with extent items relative to a write
3897 * operation that was issued before this clone operation (i.e. confront
3898 * with inode.c:btrfs_finish_ordered_io).
3901 u64 lock_start = min_t(u64, off, destoff);
3902 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3904 ret = lock_extent_range(src, lock_start, lock_len, true);
3906 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3911 /* ranges in the io trees already unlocked */
3915 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3918 u64 lock_start = min_t(u64, off, destoff);
3919 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3921 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3923 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3926 * Truncate page cache pages so that future reads will see the cloned
3927 * data immediately and not the previous data.
3929 truncate_inode_pages_range(&inode->i_data,
3930 round_down(destoff, PAGE_SIZE),
3931 round_up(destoff + len, PAGE_SIZE) - 1);
3934 btrfs_double_inode_unlock(src, inode);
3940 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3941 struct file *dst_file, loff_t destoff, u64 len)
3943 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3947 * there are many ways the trans_start and trans_end ioctls can lead
3948 * to deadlocks. They should only be used by applications that
3949 * basically own the machine, and have a very in depth understanding
3950 * of all the possible deadlocks and enospc problems.
3952 static long btrfs_ioctl_trans_start(struct file *file)
3954 struct inode *inode = file_inode(file);
3955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3956 struct btrfs_root *root = BTRFS_I(inode)->root;
3957 struct btrfs_trans_handle *trans;
3958 struct btrfs_file_private *private;
3960 static bool warned = false;
3963 if (!capable(CAP_SYS_ADMIN))
3968 "Userspace transaction mechanism is considered "
3969 "deprecated and slated to be removed in 4.17. "
3970 "If you have a valid use case please "
3971 "speak up on the mailing list");
3977 private = file->private_data;
3978 if (private && private->trans)
3981 private = kzalloc(sizeof(struct btrfs_file_private),
3985 file->private_data = private;
3989 if (btrfs_root_readonly(root))
3992 ret = mnt_want_write_file(file);
3996 atomic_inc(&fs_info->open_ioctl_trans);
3999 trans = btrfs_start_ioctl_transaction(root);
4003 private->trans = trans;
4007 atomic_dec(&fs_info->open_ioctl_trans);
4008 mnt_drop_write_file(file);
4013 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4015 struct inode *inode = file_inode(file);
4016 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4017 struct btrfs_root *root = BTRFS_I(inode)->root;
4018 struct btrfs_root *new_root;
4019 struct btrfs_dir_item *di;
4020 struct btrfs_trans_handle *trans;
4021 struct btrfs_path *path;
4022 struct btrfs_key location;
4023 struct btrfs_disk_key disk_key;
4028 if (!capable(CAP_SYS_ADMIN))
4031 ret = mnt_want_write_file(file);
4035 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4041 objectid = BTRFS_FS_TREE_OBJECTID;
4043 location.objectid = objectid;
4044 location.type = BTRFS_ROOT_ITEM_KEY;
4045 location.offset = (u64)-1;
4047 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4048 if (IS_ERR(new_root)) {
4049 ret = PTR_ERR(new_root);
4052 if (!is_fstree(new_root->objectid)) {
4057 path = btrfs_alloc_path();
4062 path->leave_spinning = 1;
4064 trans = btrfs_start_transaction(root, 1);
4065 if (IS_ERR(trans)) {
4066 btrfs_free_path(path);
4067 ret = PTR_ERR(trans);
4071 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4072 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4073 dir_id, "default", 7, 1);
4074 if (IS_ERR_OR_NULL(di)) {
4075 btrfs_free_path(path);
4076 btrfs_end_transaction(trans);
4078 "Umm, you don't have the default diritem, this isn't going to work");
4083 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4084 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4085 btrfs_mark_buffer_dirty(path->nodes[0]);
4086 btrfs_free_path(path);
4088 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4089 btrfs_end_transaction(trans);
4091 mnt_drop_write_file(file);
4095 void btrfs_get_block_group_info(struct list_head *groups_list,
4096 struct btrfs_ioctl_space_info *space)
4098 struct btrfs_block_group_cache *block_group;
4100 space->total_bytes = 0;
4101 space->used_bytes = 0;
4103 list_for_each_entry(block_group, groups_list, list) {
4104 space->flags = block_group->flags;
4105 space->total_bytes += block_group->key.offset;
4106 space->used_bytes +=
4107 btrfs_block_group_used(&block_group->item);
4111 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4114 struct btrfs_ioctl_space_args space_args;
4115 struct btrfs_ioctl_space_info space;
4116 struct btrfs_ioctl_space_info *dest;
4117 struct btrfs_ioctl_space_info *dest_orig;
4118 struct btrfs_ioctl_space_info __user *user_dest;
4119 struct btrfs_space_info *info;
4120 static const u64 types[] = {
4121 BTRFS_BLOCK_GROUP_DATA,
4122 BTRFS_BLOCK_GROUP_SYSTEM,
4123 BTRFS_BLOCK_GROUP_METADATA,
4124 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4132 if (copy_from_user(&space_args,
4133 (struct btrfs_ioctl_space_args __user *)arg,
4134 sizeof(space_args)))
4137 for (i = 0; i < num_types; i++) {
4138 struct btrfs_space_info *tmp;
4142 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4144 if (tmp->flags == types[i]) {
4154 down_read(&info->groups_sem);
4155 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4156 if (!list_empty(&info->block_groups[c]))
4159 up_read(&info->groups_sem);
4163 * Global block reserve, exported as a space_info
4167 /* space_slots == 0 means they are asking for a count */
4168 if (space_args.space_slots == 0) {
4169 space_args.total_spaces = slot_count;
4173 slot_count = min_t(u64, space_args.space_slots, slot_count);
4175 alloc_size = sizeof(*dest) * slot_count;
4177 /* we generally have at most 6 or so space infos, one for each raid
4178 * level. So, a whole page should be more than enough for everyone
4180 if (alloc_size > PAGE_SIZE)
4183 space_args.total_spaces = 0;
4184 dest = kmalloc(alloc_size, GFP_KERNEL);
4189 /* now we have a buffer to copy into */
4190 for (i = 0; i < num_types; i++) {
4191 struct btrfs_space_info *tmp;
4198 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4200 if (tmp->flags == types[i]) {
4209 down_read(&info->groups_sem);
4210 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4211 if (!list_empty(&info->block_groups[c])) {
4212 btrfs_get_block_group_info(
4213 &info->block_groups[c], &space);
4214 memcpy(dest, &space, sizeof(space));
4216 space_args.total_spaces++;
4222 up_read(&info->groups_sem);
4226 * Add global block reserve
4229 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4231 spin_lock(&block_rsv->lock);
4232 space.total_bytes = block_rsv->size;
4233 space.used_bytes = block_rsv->size - block_rsv->reserved;
4234 spin_unlock(&block_rsv->lock);
4235 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4236 memcpy(dest, &space, sizeof(space));
4237 space_args.total_spaces++;
4240 user_dest = (struct btrfs_ioctl_space_info __user *)
4241 (arg + sizeof(struct btrfs_ioctl_space_args));
4243 if (copy_to_user(user_dest, dest_orig, alloc_size))
4248 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4255 * there are many ways the trans_start and trans_end ioctls can lead
4256 * to deadlocks. They should only be used by applications that
4257 * basically own the machine, and have a very in depth understanding
4258 * of all the possible deadlocks and enospc problems.
4260 long btrfs_ioctl_trans_end(struct file *file)
4262 struct inode *inode = file_inode(file);
4263 struct btrfs_root *root = BTRFS_I(inode)->root;
4264 struct btrfs_file_private *private = file->private_data;
4266 if (!private || !private->trans)
4269 btrfs_end_transaction(private->trans);
4270 private->trans = NULL;
4272 atomic_dec(&root->fs_info->open_ioctl_trans);
4274 mnt_drop_write_file(file);
4278 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4281 struct btrfs_trans_handle *trans;
4285 trans = btrfs_attach_transaction_barrier(root);
4286 if (IS_ERR(trans)) {
4287 if (PTR_ERR(trans) != -ENOENT)
4288 return PTR_ERR(trans);
4290 /* No running transaction, don't bother */
4291 transid = root->fs_info->last_trans_committed;
4294 transid = trans->transid;
4295 ret = btrfs_commit_transaction_async(trans, 0);
4297 btrfs_end_transaction(trans);
4302 if (copy_to_user(argp, &transid, sizeof(transid)))
4307 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4313 if (copy_from_user(&transid, argp, sizeof(transid)))
4316 transid = 0; /* current trans */
4318 return btrfs_wait_for_commit(fs_info, transid);
4321 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4323 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4324 struct btrfs_ioctl_scrub_args *sa;
4327 if (!capable(CAP_SYS_ADMIN))
4330 sa = memdup_user(arg, sizeof(*sa));
4334 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4335 ret = mnt_want_write_file(file);
4340 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4341 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4344 if (copy_to_user(arg, sa, sizeof(*sa)))
4347 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4348 mnt_drop_write_file(file);
4354 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4356 if (!capable(CAP_SYS_ADMIN))
4359 return btrfs_scrub_cancel(fs_info);
4362 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4365 struct btrfs_ioctl_scrub_args *sa;
4368 if (!capable(CAP_SYS_ADMIN))
4371 sa = memdup_user(arg, sizeof(*sa));
4375 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4377 if (copy_to_user(arg, sa, sizeof(*sa)))
4384 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4387 struct btrfs_ioctl_get_dev_stats *sa;
4390 sa = memdup_user(arg, sizeof(*sa));
4394 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4399 ret = btrfs_get_dev_stats(fs_info, sa);
4401 if (copy_to_user(arg, sa, sizeof(*sa)))
4408 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4411 struct btrfs_ioctl_dev_replace_args *p;
4414 if (!capable(CAP_SYS_ADMIN))
4417 p = memdup_user(arg, sizeof(*p));
4422 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4423 if (sb_rdonly(fs_info->sb)) {
4427 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4428 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4430 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4431 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4434 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4435 btrfs_dev_replace_status(fs_info, p);
4438 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4439 ret = btrfs_dev_replace_cancel(fs_info, p);
4446 if (copy_to_user(arg, p, sizeof(*p)))
4453 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4459 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4460 struct inode_fs_paths *ipath = NULL;
4461 struct btrfs_path *path;
4463 if (!capable(CAP_DAC_READ_SEARCH))
4466 path = btrfs_alloc_path();
4472 ipa = memdup_user(arg, sizeof(*ipa));
4479 size = min_t(u32, ipa->size, 4096);
4480 ipath = init_ipath(size, root, path);
4481 if (IS_ERR(ipath)) {
4482 ret = PTR_ERR(ipath);
4487 ret = paths_from_inode(ipa->inum, ipath);
4491 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4492 rel_ptr = ipath->fspath->val[i] -
4493 (u64)(unsigned long)ipath->fspath->val;
4494 ipath->fspath->val[i] = rel_ptr;
4497 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4498 ipath->fspath, size);
4505 btrfs_free_path(path);
4512 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4514 struct btrfs_data_container *inodes = ctx;
4515 const size_t c = 3 * sizeof(u64);
4517 if (inodes->bytes_left >= c) {
4518 inodes->bytes_left -= c;
4519 inodes->val[inodes->elem_cnt] = inum;
4520 inodes->val[inodes->elem_cnt + 1] = offset;
4521 inodes->val[inodes->elem_cnt + 2] = root;
4522 inodes->elem_cnt += 3;
4524 inodes->bytes_missing += c - inodes->bytes_left;
4525 inodes->bytes_left = 0;
4526 inodes->elem_missed += 3;
4532 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4537 struct btrfs_ioctl_logical_ino_args *loi;
4538 struct btrfs_data_container *inodes = NULL;
4539 struct btrfs_path *path = NULL;
4541 if (!capable(CAP_SYS_ADMIN))
4544 loi = memdup_user(arg, sizeof(*loi));
4546 return PTR_ERR(loi);
4548 path = btrfs_alloc_path();
4554 size = min_t(u32, loi->size, SZ_64K);
4555 inodes = init_data_container(size);
4556 if (IS_ERR(inodes)) {
4557 ret = PTR_ERR(inodes);
4562 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4563 build_ino_list, inodes);
4569 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4575 btrfs_free_path(path);
4582 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4583 struct btrfs_ioctl_balance_args *bargs)
4585 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4587 bargs->flags = bctl->flags;
4589 if (atomic_read(&fs_info->balance_running))
4590 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4591 if (atomic_read(&fs_info->balance_pause_req))
4592 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4593 if (atomic_read(&fs_info->balance_cancel_req))
4594 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4596 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4597 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4598 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4601 spin_lock(&fs_info->balance_lock);
4602 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4603 spin_unlock(&fs_info->balance_lock);
4605 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4609 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4611 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4612 struct btrfs_fs_info *fs_info = root->fs_info;
4613 struct btrfs_ioctl_balance_args *bargs;
4614 struct btrfs_balance_control *bctl;
4615 bool need_unlock; /* for mut. excl. ops lock */
4618 if (!capable(CAP_SYS_ADMIN))
4621 ret = mnt_want_write_file(file);
4626 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4627 mutex_lock(&fs_info->volume_mutex);
4628 mutex_lock(&fs_info->balance_mutex);
4634 * mut. excl. ops lock is locked. Three possibilities:
4635 * (1) some other op is running
4636 * (2) balance is running
4637 * (3) balance is paused -- special case (think resume)
4639 mutex_lock(&fs_info->balance_mutex);
4640 if (fs_info->balance_ctl) {
4641 /* this is either (2) or (3) */
4642 if (!atomic_read(&fs_info->balance_running)) {
4643 mutex_unlock(&fs_info->balance_mutex);
4644 if (!mutex_trylock(&fs_info->volume_mutex))
4646 mutex_lock(&fs_info->balance_mutex);
4648 if (fs_info->balance_ctl &&
4649 !atomic_read(&fs_info->balance_running)) {
4651 need_unlock = false;
4655 mutex_unlock(&fs_info->balance_mutex);
4656 mutex_unlock(&fs_info->volume_mutex);
4660 mutex_unlock(&fs_info->balance_mutex);
4666 mutex_unlock(&fs_info->balance_mutex);
4667 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4672 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4675 bargs = memdup_user(arg, sizeof(*bargs));
4676 if (IS_ERR(bargs)) {
4677 ret = PTR_ERR(bargs);
4681 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4682 if (!fs_info->balance_ctl) {
4687 bctl = fs_info->balance_ctl;
4688 spin_lock(&fs_info->balance_lock);
4689 bctl->flags |= BTRFS_BALANCE_RESUME;
4690 spin_unlock(&fs_info->balance_lock);
4698 if (fs_info->balance_ctl) {
4703 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4709 bctl->fs_info = fs_info;
4711 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4712 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4713 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4715 bctl->flags = bargs->flags;
4717 /* balance everything - no filters */
4718 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4721 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4728 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4729 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4730 * or, if restriper was paused all the way until unmount, in
4731 * free_fs_info. The flag is cleared in __cancel_balance.
4733 need_unlock = false;
4735 ret = btrfs_balance(bctl, bargs);
4739 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4748 mutex_unlock(&fs_info->balance_mutex);
4749 mutex_unlock(&fs_info->volume_mutex);
4751 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4753 mnt_drop_write_file(file);
4757 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4759 if (!capable(CAP_SYS_ADMIN))
4763 case BTRFS_BALANCE_CTL_PAUSE:
4764 return btrfs_pause_balance(fs_info);
4765 case BTRFS_BALANCE_CTL_CANCEL:
4766 return btrfs_cancel_balance(fs_info);
4772 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4775 struct btrfs_ioctl_balance_args *bargs;
4778 if (!capable(CAP_SYS_ADMIN))
4781 mutex_lock(&fs_info->balance_mutex);
4782 if (!fs_info->balance_ctl) {
4787 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4793 update_ioctl_balance_args(fs_info, 1, bargs);
4795 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4800 mutex_unlock(&fs_info->balance_mutex);
4804 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4806 struct inode *inode = file_inode(file);
4807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4808 struct btrfs_ioctl_quota_ctl_args *sa;
4809 struct btrfs_trans_handle *trans = NULL;
4813 if (!capable(CAP_SYS_ADMIN))
4816 ret = mnt_want_write_file(file);
4820 sa = memdup_user(arg, sizeof(*sa));
4826 down_write(&fs_info->subvol_sem);
4827 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4828 if (IS_ERR(trans)) {
4829 ret = PTR_ERR(trans);
4834 case BTRFS_QUOTA_CTL_ENABLE:
4835 ret = btrfs_quota_enable(trans, fs_info);
4837 case BTRFS_QUOTA_CTL_DISABLE:
4838 ret = btrfs_quota_disable(trans, fs_info);
4845 err = btrfs_commit_transaction(trans);
4850 up_write(&fs_info->subvol_sem);
4852 mnt_drop_write_file(file);
4856 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4858 struct inode *inode = file_inode(file);
4859 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4860 struct btrfs_root *root = BTRFS_I(inode)->root;
4861 struct btrfs_ioctl_qgroup_assign_args *sa;
4862 struct btrfs_trans_handle *trans;
4866 if (!capable(CAP_SYS_ADMIN))
4869 ret = mnt_want_write_file(file);
4873 sa = memdup_user(arg, sizeof(*sa));
4879 trans = btrfs_join_transaction(root);
4880 if (IS_ERR(trans)) {
4881 ret = PTR_ERR(trans);
4886 ret = btrfs_add_qgroup_relation(trans, fs_info,
4889 ret = btrfs_del_qgroup_relation(trans, fs_info,
4893 /* update qgroup status and info */
4894 err = btrfs_run_qgroups(trans, fs_info);
4896 btrfs_handle_fs_error(fs_info, err,
4897 "failed to update qgroup status and info");
4898 err = btrfs_end_transaction(trans);
4905 mnt_drop_write_file(file);
4909 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4911 struct inode *inode = file_inode(file);
4912 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4913 struct btrfs_root *root = BTRFS_I(inode)->root;
4914 struct btrfs_ioctl_qgroup_create_args *sa;
4915 struct btrfs_trans_handle *trans;
4919 if (!capable(CAP_SYS_ADMIN))
4922 ret = mnt_want_write_file(file);
4926 sa = memdup_user(arg, sizeof(*sa));
4932 if (!sa->qgroupid) {
4937 trans = btrfs_join_transaction(root);
4938 if (IS_ERR(trans)) {
4939 ret = PTR_ERR(trans);
4944 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4946 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4949 err = btrfs_end_transaction(trans);
4956 mnt_drop_write_file(file);
4960 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4962 struct inode *inode = file_inode(file);
4963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4964 struct btrfs_root *root = BTRFS_I(inode)->root;
4965 struct btrfs_ioctl_qgroup_limit_args *sa;
4966 struct btrfs_trans_handle *trans;
4971 if (!capable(CAP_SYS_ADMIN))
4974 ret = mnt_want_write_file(file);
4978 sa = memdup_user(arg, sizeof(*sa));
4984 trans = btrfs_join_transaction(root);
4985 if (IS_ERR(trans)) {
4986 ret = PTR_ERR(trans);
4990 qgroupid = sa->qgroupid;
4992 /* take the current subvol as qgroup */
4993 qgroupid = root->root_key.objectid;
4996 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
4998 err = btrfs_end_transaction(trans);
5005 mnt_drop_write_file(file);
5009 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5011 struct inode *inode = file_inode(file);
5012 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5013 struct btrfs_ioctl_quota_rescan_args *qsa;
5016 if (!capable(CAP_SYS_ADMIN))
5019 ret = mnt_want_write_file(file);
5023 qsa = memdup_user(arg, sizeof(*qsa));
5034 ret = btrfs_qgroup_rescan(fs_info);
5039 mnt_drop_write_file(file);
5043 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5045 struct inode *inode = file_inode(file);
5046 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5047 struct btrfs_ioctl_quota_rescan_args *qsa;
5050 if (!capable(CAP_SYS_ADMIN))
5053 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5057 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5059 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5062 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5069 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5071 struct inode *inode = file_inode(file);
5072 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5074 if (!capable(CAP_SYS_ADMIN))
5077 return btrfs_qgroup_wait_for_completion(fs_info, true);
5080 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5081 struct btrfs_ioctl_received_subvol_args *sa)
5083 struct inode *inode = file_inode(file);
5084 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5085 struct btrfs_root *root = BTRFS_I(inode)->root;
5086 struct btrfs_root_item *root_item = &root->root_item;
5087 struct btrfs_trans_handle *trans;
5088 struct timespec ct = current_time(inode);
5090 int received_uuid_changed;
5092 if (!inode_owner_or_capable(inode))
5095 ret = mnt_want_write_file(file);
5099 down_write(&fs_info->subvol_sem);
5101 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5106 if (btrfs_root_readonly(root)) {
5113 * 2 - uuid items (received uuid + subvol uuid)
5115 trans = btrfs_start_transaction(root, 3);
5116 if (IS_ERR(trans)) {
5117 ret = PTR_ERR(trans);
5122 sa->rtransid = trans->transid;
5123 sa->rtime.sec = ct.tv_sec;
5124 sa->rtime.nsec = ct.tv_nsec;
5126 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5128 if (received_uuid_changed &&
5129 !btrfs_is_empty_uuid(root_item->received_uuid))
5130 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5131 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5132 root->root_key.objectid);
5133 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5134 btrfs_set_root_stransid(root_item, sa->stransid);
5135 btrfs_set_root_rtransid(root_item, sa->rtransid);
5136 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5137 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5138 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5139 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5141 ret = btrfs_update_root(trans, fs_info->tree_root,
5142 &root->root_key, &root->root_item);
5144 btrfs_end_transaction(trans);
5147 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5148 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5149 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5150 root->root_key.objectid);
5151 if (ret < 0 && ret != -EEXIST) {
5152 btrfs_abort_transaction(trans, ret);
5153 btrfs_end_transaction(trans);
5157 ret = btrfs_commit_transaction(trans);
5159 up_write(&fs_info->subvol_sem);
5160 mnt_drop_write_file(file);
5165 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5168 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5169 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5172 args32 = memdup_user(arg, sizeof(*args32));
5174 return PTR_ERR(args32);
5176 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5182 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5183 args64->stransid = args32->stransid;
5184 args64->rtransid = args32->rtransid;
5185 args64->stime.sec = args32->stime.sec;
5186 args64->stime.nsec = args32->stime.nsec;
5187 args64->rtime.sec = args32->rtime.sec;
5188 args64->rtime.nsec = args32->rtime.nsec;
5189 args64->flags = args32->flags;
5191 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5195 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5196 args32->stransid = args64->stransid;
5197 args32->rtransid = args64->rtransid;
5198 args32->stime.sec = args64->stime.sec;
5199 args32->stime.nsec = args64->stime.nsec;
5200 args32->rtime.sec = args64->rtime.sec;
5201 args32->rtime.nsec = args64->rtime.nsec;
5202 args32->flags = args64->flags;
5204 ret = copy_to_user(arg, args32, sizeof(*args32));
5215 static long btrfs_ioctl_set_received_subvol(struct file *file,
5218 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5221 sa = memdup_user(arg, sizeof(*sa));
5225 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5230 ret = copy_to_user(arg, sa, sizeof(*sa));
5239 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5241 struct inode *inode = file_inode(file);
5242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5245 char label[BTRFS_LABEL_SIZE];
5247 spin_lock(&fs_info->super_lock);
5248 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5249 spin_unlock(&fs_info->super_lock);
5251 len = strnlen(label, BTRFS_LABEL_SIZE);
5253 if (len == BTRFS_LABEL_SIZE) {
5255 "label is too long, return the first %zu bytes",
5259 ret = copy_to_user(arg, label, len);
5261 return ret ? -EFAULT : 0;
5264 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5266 struct inode *inode = file_inode(file);
5267 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5268 struct btrfs_root *root = BTRFS_I(inode)->root;
5269 struct btrfs_super_block *super_block = fs_info->super_copy;
5270 struct btrfs_trans_handle *trans;
5271 char label[BTRFS_LABEL_SIZE];
5274 if (!capable(CAP_SYS_ADMIN))
5277 if (copy_from_user(label, arg, sizeof(label)))
5280 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5282 "unable to set label with more than %d bytes",
5283 BTRFS_LABEL_SIZE - 1);
5287 ret = mnt_want_write_file(file);
5291 trans = btrfs_start_transaction(root, 0);
5292 if (IS_ERR(trans)) {
5293 ret = PTR_ERR(trans);
5297 spin_lock(&fs_info->super_lock);
5298 strcpy(super_block->label, label);
5299 spin_unlock(&fs_info->super_lock);
5300 ret = btrfs_commit_transaction(trans);
5303 mnt_drop_write_file(file);
5307 #define INIT_FEATURE_FLAGS(suffix) \
5308 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5309 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5310 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5312 int btrfs_ioctl_get_supported_features(void __user *arg)
5314 static const struct btrfs_ioctl_feature_flags features[3] = {
5315 INIT_FEATURE_FLAGS(SUPP),
5316 INIT_FEATURE_FLAGS(SAFE_SET),
5317 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5320 if (copy_to_user(arg, &features, sizeof(features)))
5326 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5328 struct inode *inode = file_inode(file);
5329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5330 struct btrfs_super_block *super_block = fs_info->super_copy;
5331 struct btrfs_ioctl_feature_flags features;
5333 features.compat_flags = btrfs_super_compat_flags(super_block);
5334 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5335 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5337 if (copy_to_user(arg, &features, sizeof(features)))
5343 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5344 enum btrfs_feature_set set,
5345 u64 change_mask, u64 flags, u64 supported_flags,
5346 u64 safe_set, u64 safe_clear)
5348 const char *type = btrfs_feature_set_names[set];
5350 u64 disallowed, unsupported;
5351 u64 set_mask = flags & change_mask;
5352 u64 clear_mask = ~flags & change_mask;
5354 unsupported = set_mask & ~supported_flags;
5356 names = btrfs_printable_features(set, unsupported);
5359 "this kernel does not support the %s feature bit%s",
5360 names, strchr(names, ',') ? "s" : "");
5364 "this kernel does not support %s bits 0x%llx",
5369 disallowed = set_mask & ~safe_set;
5371 names = btrfs_printable_features(set, disallowed);
5374 "can't set the %s feature bit%s while mounted",
5375 names, strchr(names, ',') ? "s" : "");
5379 "can't set %s bits 0x%llx while mounted",
5384 disallowed = clear_mask & ~safe_clear;
5386 names = btrfs_printable_features(set, disallowed);
5389 "can't clear the %s feature bit%s while mounted",
5390 names, strchr(names, ',') ? "s" : "");
5394 "can't clear %s bits 0x%llx while mounted",
5402 #define check_feature(fs_info, change_mask, flags, mask_base) \
5403 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5404 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5405 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5406 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5408 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5410 struct inode *inode = file_inode(file);
5411 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5412 struct btrfs_root *root = BTRFS_I(inode)->root;
5413 struct btrfs_super_block *super_block = fs_info->super_copy;
5414 struct btrfs_ioctl_feature_flags flags[2];
5415 struct btrfs_trans_handle *trans;
5419 if (!capable(CAP_SYS_ADMIN))
5422 if (copy_from_user(flags, arg, sizeof(flags)))
5426 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5427 !flags[0].incompat_flags)
5430 ret = check_feature(fs_info, flags[0].compat_flags,
5431 flags[1].compat_flags, COMPAT);
5435 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5436 flags[1].compat_ro_flags, COMPAT_RO);
5440 ret = check_feature(fs_info, flags[0].incompat_flags,
5441 flags[1].incompat_flags, INCOMPAT);
5445 ret = mnt_want_write_file(file);
5449 trans = btrfs_start_transaction(root, 0);
5450 if (IS_ERR(trans)) {
5451 ret = PTR_ERR(trans);
5452 goto out_drop_write;
5455 spin_lock(&fs_info->super_lock);
5456 newflags = btrfs_super_compat_flags(super_block);
5457 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5458 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5459 btrfs_set_super_compat_flags(super_block, newflags);
5461 newflags = btrfs_super_compat_ro_flags(super_block);
5462 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5463 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5464 btrfs_set_super_compat_ro_flags(super_block, newflags);
5466 newflags = btrfs_super_incompat_flags(super_block);
5467 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5468 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5469 btrfs_set_super_incompat_flags(super_block, newflags);
5470 spin_unlock(&fs_info->super_lock);
5472 ret = btrfs_commit_transaction(trans);
5474 mnt_drop_write_file(file);
5479 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5481 struct btrfs_ioctl_send_args *arg;
5485 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5486 struct btrfs_ioctl_send_args_32 args32;
5488 ret = copy_from_user(&args32, argp, sizeof(args32));
5491 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5494 arg->send_fd = args32.send_fd;
5495 arg->clone_sources_count = args32.clone_sources_count;
5496 arg->clone_sources = compat_ptr(args32.clone_sources);
5497 arg->parent_root = args32.parent_root;
5498 arg->flags = args32.flags;
5499 memcpy(arg->reserved, args32.reserved,
5500 sizeof(args32.reserved));
5505 arg = memdup_user(argp, sizeof(*arg));
5507 return PTR_ERR(arg);
5509 ret = btrfs_ioctl_send(file, arg);
5514 long btrfs_ioctl(struct file *file, unsigned int
5515 cmd, unsigned long arg)
5517 struct inode *inode = file_inode(file);
5518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5519 struct btrfs_root *root = BTRFS_I(inode)->root;
5520 void __user *argp = (void __user *)arg;
5523 case FS_IOC_GETFLAGS:
5524 return btrfs_ioctl_getflags(file, argp);
5525 case FS_IOC_SETFLAGS:
5526 return btrfs_ioctl_setflags(file, argp);
5527 case FS_IOC_GETVERSION:
5528 return btrfs_ioctl_getversion(file, argp);
5530 return btrfs_ioctl_fitrim(file, argp);
5531 case BTRFS_IOC_SNAP_CREATE:
5532 return btrfs_ioctl_snap_create(file, argp, 0);
5533 case BTRFS_IOC_SNAP_CREATE_V2:
5534 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5535 case BTRFS_IOC_SUBVOL_CREATE:
5536 return btrfs_ioctl_snap_create(file, argp, 1);
5537 case BTRFS_IOC_SUBVOL_CREATE_V2:
5538 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5539 case BTRFS_IOC_SNAP_DESTROY:
5540 return btrfs_ioctl_snap_destroy(file, argp);
5541 case BTRFS_IOC_SUBVOL_GETFLAGS:
5542 return btrfs_ioctl_subvol_getflags(file, argp);
5543 case BTRFS_IOC_SUBVOL_SETFLAGS:
5544 return btrfs_ioctl_subvol_setflags(file, argp);
5545 case BTRFS_IOC_DEFAULT_SUBVOL:
5546 return btrfs_ioctl_default_subvol(file, argp);
5547 case BTRFS_IOC_DEFRAG:
5548 return btrfs_ioctl_defrag(file, NULL);
5549 case BTRFS_IOC_DEFRAG_RANGE:
5550 return btrfs_ioctl_defrag(file, argp);
5551 case BTRFS_IOC_RESIZE:
5552 return btrfs_ioctl_resize(file, argp);
5553 case BTRFS_IOC_ADD_DEV:
5554 return btrfs_ioctl_add_dev(fs_info, argp);
5555 case BTRFS_IOC_RM_DEV:
5556 return btrfs_ioctl_rm_dev(file, argp);
5557 case BTRFS_IOC_RM_DEV_V2:
5558 return btrfs_ioctl_rm_dev_v2(file, argp);
5559 case BTRFS_IOC_FS_INFO:
5560 return btrfs_ioctl_fs_info(fs_info, argp);
5561 case BTRFS_IOC_DEV_INFO:
5562 return btrfs_ioctl_dev_info(fs_info, argp);
5563 case BTRFS_IOC_BALANCE:
5564 return btrfs_ioctl_balance(file, NULL);
5565 case BTRFS_IOC_TRANS_START:
5566 return btrfs_ioctl_trans_start(file);
5567 case BTRFS_IOC_TRANS_END:
5568 return btrfs_ioctl_trans_end(file);
5569 case BTRFS_IOC_TREE_SEARCH:
5570 return btrfs_ioctl_tree_search(file, argp);
5571 case BTRFS_IOC_TREE_SEARCH_V2:
5572 return btrfs_ioctl_tree_search_v2(file, argp);
5573 case BTRFS_IOC_INO_LOOKUP:
5574 return btrfs_ioctl_ino_lookup(file, argp);
5575 case BTRFS_IOC_INO_PATHS:
5576 return btrfs_ioctl_ino_to_path(root, argp);
5577 case BTRFS_IOC_LOGICAL_INO:
5578 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5579 case BTRFS_IOC_SPACE_INFO:
5580 return btrfs_ioctl_space_info(fs_info, argp);
5581 case BTRFS_IOC_SYNC: {
5584 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5587 ret = btrfs_sync_fs(inode->i_sb, 1);
5589 * The transaction thread may want to do more work,
5590 * namely it pokes the cleaner kthread that will start
5591 * processing uncleaned subvols.
5593 wake_up_process(fs_info->transaction_kthread);
5596 case BTRFS_IOC_START_SYNC:
5597 return btrfs_ioctl_start_sync(root, argp);
5598 case BTRFS_IOC_WAIT_SYNC:
5599 return btrfs_ioctl_wait_sync(fs_info, argp);
5600 case BTRFS_IOC_SCRUB:
5601 return btrfs_ioctl_scrub(file, argp);
5602 case BTRFS_IOC_SCRUB_CANCEL:
5603 return btrfs_ioctl_scrub_cancel(fs_info);
5604 case BTRFS_IOC_SCRUB_PROGRESS:
5605 return btrfs_ioctl_scrub_progress(fs_info, argp);
5606 case BTRFS_IOC_BALANCE_V2:
5607 return btrfs_ioctl_balance(file, argp);
5608 case BTRFS_IOC_BALANCE_CTL:
5609 return btrfs_ioctl_balance_ctl(fs_info, arg);
5610 case BTRFS_IOC_BALANCE_PROGRESS:
5611 return btrfs_ioctl_balance_progress(fs_info, argp);
5612 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5613 return btrfs_ioctl_set_received_subvol(file, argp);
5615 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5616 return btrfs_ioctl_set_received_subvol_32(file, argp);
5618 case BTRFS_IOC_SEND:
5619 return _btrfs_ioctl_send(file, argp, false);
5620 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5621 case BTRFS_IOC_SEND_32:
5622 return _btrfs_ioctl_send(file, argp, true);
5624 case BTRFS_IOC_GET_DEV_STATS:
5625 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5626 case BTRFS_IOC_QUOTA_CTL:
5627 return btrfs_ioctl_quota_ctl(file, argp);
5628 case BTRFS_IOC_QGROUP_ASSIGN:
5629 return btrfs_ioctl_qgroup_assign(file, argp);
5630 case BTRFS_IOC_QGROUP_CREATE:
5631 return btrfs_ioctl_qgroup_create(file, argp);
5632 case BTRFS_IOC_QGROUP_LIMIT:
5633 return btrfs_ioctl_qgroup_limit(file, argp);
5634 case BTRFS_IOC_QUOTA_RESCAN:
5635 return btrfs_ioctl_quota_rescan(file, argp);
5636 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5637 return btrfs_ioctl_quota_rescan_status(file, argp);
5638 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5639 return btrfs_ioctl_quota_rescan_wait(file, argp);
5640 case BTRFS_IOC_DEV_REPLACE:
5641 return btrfs_ioctl_dev_replace(fs_info, argp);
5642 case BTRFS_IOC_GET_FSLABEL:
5643 return btrfs_ioctl_get_fslabel(file, argp);
5644 case BTRFS_IOC_SET_FSLABEL:
5645 return btrfs_ioctl_set_fslabel(file, argp);
5646 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5647 return btrfs_ioctl_get_supported_features(argp);
5648 case BTRFS_IOC_GET_FEATURES:
5649 return btrfs_ioctl_get_features(file, argp);
5650 case BTRFS_IOC_SET_FEATURES:
5651 return btrfs_ioctl_set_features(file, argp);
5657 #ifdef CONFIG_COMPAT
5658 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5661 * These all access 32-bit values anyway so no further
5662 * handling is necessary.
5665 case FS_IOC32_GETFLAGS:
5666 cmd = FS_IOC_GETFLAGS;
5668 case FS_IOC32_SETFLAGS:
5669 cmd = FS_IOC_SETFLAGS;
5671 case FS_IOC32_GETVERSION:
5672 cmd = FS_IOC_GETVERSION;
5676 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));