1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
7 * Copyright 2007 OpenVZ SWsoft Inc
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/mutex.h>
46 #include <linux/rbtree.h>
47 #include <linux/slab.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/eventfd.h>
52 #include <linux/poll.h>
53 #include <linux/sort.h>
55 #include <linux/seq_file.h>
56 #include <linux/vmpressure.h>
57 #include <linux/memremap.h>
58 #include <linux/mm_inline.h>
59 #include <linux/swap_cgroup.h>
60 #include <linux/cpu.h>
61 #include <linux/oom.h>
62 #include <linux/lockdep.h>
63 #include <linux/file.h>
64 #include <linux/resume_user_mode.h>
65 #include <linux/psi.h>
66 #include <linux/seq_buf.h>
67 #include <linux/sched/isolation.h>
68 #include <linux/kmemleak.h>
75 #include <linux/uaccess.h>
77 #include <trace/events/vmscan.h>
79 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
80 EXPORT_SYMBOL(memory_cgrp_subsys);
82 struct mem_cgroup *root_mem_cgroup __read_mostly;
84 /* Active memory cgroup to use from an interrupt context */
85 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
86 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88 /* Socket memory accounting disabled? */
89 static bool cgroup_memory_nosocket __ro_after_init;
91 /* Kernel memory accounting disabled? */
92 static bool cgroup_memory_nokmem __ro_after_init;
94 /* BPF memory accounting disabled? */
95 static bool cgroup_memory_nobpf __ro_after_init;
97 #ifdef CONFIG_CGROUP_WRITEBACK
98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
101 /* Whether legacy memory+swap accounting is active */
102 static bool do_memsw_account(void)
104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
107 #define THRESHOLDS_EVENTS_TARGET 128
108 #define SOFTLIMIT_EVENTS_TARGET 1024
111 * Cgroups above their limits are maintained in a RB-Tree, independent of
112 * their hierarchy representation
115 struct mem_cgroup_tree_per_node {
116 struct rb_root rb_root;
117 struct rb_node *rb_rightmost;
121 struct mem_cgroup_tree {
122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
125 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
128 struct mem_cgroup_eventfd_list {
129 struct list_head list;
130 struct eventfd_ctx *eventfd;
134 * cgroup_event represents events which userspace want to receive.
136 struct mem_cgroup_event {
138 * memcg which the event belongs to.
140 struct mem_cgroup *memcg;
142 * eventfd to signal userspace about the event.
144 struct eventfd_ctx *eventfd;
146 * Each of these stored in a list by the cgroup.
148 struct list_head list;
150 * register_event() callback will be used to add new userspace
151 * waiter for changes related to this event. Use eventfd_signal()
152 * on eventfd to send notification to userspace.
154 int (*register_event)(struct mem_cgroup *memcg,
155 struct eventfd_ctx *eventfd, const char *args);
157 * unregister_event() callback will be called when userspace closes
158 * the eventfd or on cgroup removing. This callback must be set,
159 * if you want provide notification functionality.
161 void (*unregister_event)(struct mem_cgroup *memcg,
162 struct eventfd_ctx *eventfd);
164 * All fields below needed to unregister event when
165 * userspace closes eventfd.
168 wait_queue_head_t *wqh;
169 wait_queue_entry_t wait;
170 struct work_struct remove;
173 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
176 /* Stuffs for move charges at task migration. */
178 * Types of charges to be moved.
180 #define MOVE_ANON 0x1U
181 #define MOVE_FILE 0x2U
182 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
184 /* "mc" and its members are protected by cgroup_mutex */
185 static struct move_charge_struct {
186 spinlock_t lock; /* for from, to */
187 struct mm_struct *mm;
188 struct mem_cgroup *from;
189 struct mem_cgroup *to;
191 unsigned long precharge;
192 unsigned long moved_charge;
193 unsigned long moved_swap;
194 struct task_struct *moving_task; /* a task moving charges */
195 wait_queue_head_t waitq; /* a waitq for other context */
197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
203 * limit reclaim to prevent infinite loops, if they ever occur.
205 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
206 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
208 /* for encoding cft->private value on file */
216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val) ((val) & 0xffff)
221 * Iteration constructs for visiting all cgroups (under a tree). If
222 * loops are exited prematurely (break), mem_cgroup_iter_break() must
223 * be used for reference counting.
225 #define for_each_mem_cgroup_tree(iter, root) \
226 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter = mem_cgroup_iter(root, iter, NULL))
230 #define for_each_mem_cgroup(iter) \
231 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter = mem_cgroup_iter(NULL, iter, NULL))
235 static inline bool task_is_dying(void)
237 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
238 (current->flags & PF_EXITING);
241 /* Some nice accessors for the vmpressure. */
242 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 memcg = root_mem_cgroup;
246 return &memcg->vmpressure;
249 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
251 return container_of(vmpr, struct mem_cgroup, vmpressure);
254 #define CURRENT_OBJCG_UPDATE_BIT 0
255 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
257 #ifdef CONFIG_MEMCG_KMEM
258 static DEFINE_SPINLOCK(objcg_lock);
260 bool mem_cgroup_kmem_disabled(void)
262 return cgroup_memory_nokmem;
265 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 unsigned int nr_pages);
268 static void obj_cgroup_release(struct percpu_ref *ref)
270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
271 unsigned int nr_bytes;
272 unsigned int nr_pages;
276 * At this point all allocated objects are freed, and
277 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
280 * The following sequence can lead to it:
281 * 1) CPU0: objcg == stock->cached_objcg
282 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 * PAGE_SIZE bytes are charged
284 * 3) CPU1: a process from another memcg is allocating something,
285 * the stock if flushed,
286 * objcg->nr_charged_bytes = PAGE_SIZE - 92
287 * 5) CPU0: we do release this object,
288 * 92 bytes are added to stock->nr_bytes
289 * 6) CPU0: stock is flushed,
290 * 92 bytes are added to objcg->nr_charged_bytes
292 * In the result, nr_charged_bytes == PAGE_SIZE.
293 * This page will be uncharged in obj_cgroup_release().
295 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 nr_pages = nr_bytes >> PAGE_SHIFT;
300 obj_cgroup_uncharge_pages(objcg, nr_pages);
302 spin_lock_irqsave(&objcg_lock, flags);
303 list_del(&objcg->list);
304 spin_unlock_irqrestore(&objcg_lock, flags);
306 percpu_ref_exit(ref);
307 kfree_rcu(objcg, rcu);
310 static struct obj_cgroup *obj_cgroup_alloc(void)
312 struct obj_cgroup *objcg;
315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
325 INIT_LIST_HEAD(&objcg->list);
329 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 struct mem_cgroup *parent)
332 struct obj_cgroup *objcg, *iter;
334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
336 spin_lock_irq(&objcg_lock);
338 /* 1) Ready to reparent active objcg. */
339 list_add(&objcg->list, &memcg->objcg_list);
340 /* 2) Reparent active objcg and already reparented objcgs to parent. */
341 list_for_each_entry(iter, &memcg->objcg_list, list)
342 WRITE_ONCE(iter->memcg, parent);
343 /* 3) Move already reparented objcgs to the parent's list */
344 list_splice(&memcg->objcg_list, &parent->objcg_list);
346 spin_unlock_irq(&objcg_lock);
348 percpu_ref_kill(&objcg->refcnt);
352 * A lot of the calls to the cache allocation functions are expected to be
353 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
354 * conditional to this static branch, we'll have to allow modules that does
355 * kmem_cache_alloc and the such to see this symbol as well
357 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
358 EXPORT_SYMBOL(memcg_kmem_online_key);
360 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
361 EXPORT_SYMBOL(memcg_bpf_enabled_key);
365 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
366 * @folio: folio of interest
368 * If memcg is bound to the default hierarchy, css of the memcg associated
369 * with @folio is returned. The returned css remains associated with @folio
370 * until it is released.
372 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
375 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
377 struct mem_cgroup *memcg = folio_memcg(folio);
379 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
380 memcg = root_mem_cgroup;
386 * page_cgroup_ino - return inode number of the memcg a page is charged to
389 * Look up the closest online ancestor of the memory cgroup @page is charged to
390 * and return its inode number or 0 if @page is not charged to any cgroup. It
391 * is safe to call this function without holding a reference to @page.
393 * Note, this function is inherently racy, because there is nothing to prevent
394 * the cgroup inode from getting torn down and potentially reallocated a moment
395 * after page_cgroup_ino() returns, so it only should be used by callers that
396 * do not care (such as procfs interfaces).
398 ino_t page_cgroup_ino(struct page *page)
400 struct mem_cgroup *memcg;
401 unsigned long ino = 0;
404 /* page_folio() is racy here, but the entire function is racy anyway */
405 memcg = folio_memcg_check(page_folio(page));
407 while (memcg && !(memcg->css.flags & CSS_ONLINE))
408 memcg = parent_mem_cgroup(memcg);
410 ino = cgroup_ino(memcg->css.cgroup);
415 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
416 struct mem_cgroup_tree_per_node *mctz,
417 unsigned long new_usage_in_excess)
419 struct rb_node **p = &mctz->rb_root.rb_node;
420 struct rb_node *parent = NULL;
421 struct mem_cgroup_per_node *mz_node;
422 bool rightmost = true;
427 mz->usage_in_excess = new_usage_in_excess;
428 if (!mz->usage_in_excess)
432 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
434 if (mz->usage_in_excess < mz_node->usage_in_excess) {
443 mctz->rb_rightmost = &mz->tree_node;
445 rb_link_node(&mz->tree_node, parent, p);
446 rb_insert_color(&mz->tree_node, &mctz->rb_root);
450 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
451 struct mem_cgroup_tree_per_node *mctz)
456 if (&mz->tree_node == mctz->rb_rightmost)
457 mctz->rb_rightmost = rb_prev(&mz->tree_node);
459 rb_erase(&mz->tree_node, &mctz->rb_root);
463 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
464 struct mem_cgroup_tree_per_node *mctz)
468 spin_lock_irqsave(&mctz->lock, flags);
469 __mem_cgroup_remove_exceeded(mz, mctz);
470 spin_unlock_irqrestore(&mctz->lock, flags);
473 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
475 unsigned long nr_pages = page_counter_read(&memcg->memory);
476 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
477 unsigned long excess = 0;
479 if (nr_pages > soft_limit)
480 excess = nr_pages - soft_limit;
485 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
487 unsigned long excess;
488 struct mem_cgroup_per_node *mz;
489 struct mem_cgroup_tree_per_node *mctz;
491 if (lru_gen_enabled()) {
492 if (soft_limit_excess(memcg))
493 lru_gen_soft_reclaim(memcg, nid);
497 mctz = soft_limit_tree.rb_tree_per_node[nid];
501 * Necessary to update all ancestors when hierarchy is used.
502 * because their event counter is not touched.
504 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
505 mz = memcg->nodeinfo[nid];
506 excess = soft_limit_excess(memcg);
508 * We have to update the tree if mz is on RB-tree or
509 * mem is over its softlimit.
511 if (excess || mz->on_tree) {
514 spin_lock_irqsave(&mctz->lock, flags);
515 /* if on-tree, remove it */
517 __mem_cgroup_remove_exceeded(mz, mctz);
519 * Insert again. mz->usage_in_excess will be updated.
520 * If excess is 0, no tree ops.
522 __mem_cgroup_insert_exceeded(mz, mctz, excess);
523 spin_unlock_irqrestore(&mctz->lock, flags);
528 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
530 struct mem_cgroup_tree_per_node *mctz;
531 struct mem_cgroup_per_node *mz;
535 mz = memcg->nodeinfo[nid];
536 mctz = soft_limit_tree.rb_tree_per_node[nid];
538 mem_cgroup_remove_exceeded(mz, mctz);
542 static struct mem_cgroup_per_node *
543 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
545 struct mem_cgroup_per_node *mz;
549 if (!mctz->rb_rightmost)
550 goto done; /* Nothing to reclaim from */
552 mz = rb_entry(mctz->rb_rightmost,
553 struct mem_cgroup_per_node, tree_node);
555 * Remove the node now but someone else can add it back,
556 * we will to add it back at the end of reclaim to its correct
557 * position in the tree.
559 __mem_cgroup_remove_exceeded(mz, mctz);
560 if (!soft_limit_excess(mz->memcg) ||
561 !css_tryget(&mz->memcg->css))
567 static struct mem_cgroup_per_node *
568 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
570 struct mem_cgroup_per_node *mz;
572 spin_lock_irq(&mctz->lock);
573 mz = __mem_cgroup_largest_soft_limit_node(mctz);
574 spin_unlock_irq(&mctz->lock);
578 /* Subset of node_stat_item for memcg stats */
579 static const unsigned int memcg_node_stat_items[] = {
585 NR_SLAB_RECLAIMABLE_B,
586 NR_SLAB_UNRECLAIMABLE_B,
587 WORKINGSET_REFAULT_ANON,
588 WORKINGSET_REFAULT_FILE,
589 WORKINGSET_ACTIVATE_ANON,
590 WORKINGSET_ACTIVATE_FILE,
591 WORKINGSET_RESTORE_ANON,
592 WORKINGSET_RESTORE_FILE,
593 WORKINGSET_NODERECLAIM,
605 NR_SECONDARY_PAGETABLE,
611 static const unsigned int memcg_stat_items[] = {
621 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
622 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
623 ARRAY_SIZE(memcg_stat_items))
624 static int8_t mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
626 static void init_memcg_stats(void)
630 BUILD_BUG_ON(MEMCG_NR_STAT >= S8_MAX);
632 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i)
633 mem_cgroup_stats_index[memcg_node_stat_items[i]] = ++j;
635 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i)
636 mem_cgroup_stats_index[memcg_stat_items[i]] = ++j;
639 static inline int memcg_stats_index(int idx)
641 return mem_cgroup_stats_index[idx] - 1;
644 struct lruvec_stats_percpu {
645 /* Local (CPU and cgroup) state */
646 long state[NR_MEMCG_NODE_STAT_ITEMS];
648 /* Delta calculation for lockless upward propagation */
649 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
652 struct lruvec_stats {
653 /* Aggregated (CPU and subtree) state */
654 long state[NR_MEMCG_NODE_STAT_ITEMS];
656 /* Non-hierarchical (CPU aggregated) state */
657 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
659 /* Pending child counts during tree propagation */
660 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
663 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
665 struct mem_cgroup_per_node *pn;
669 if (mem_cgroup_disabled())
670 return node_page_state(lruvec_pgdat(lruvec), idx);
672 i = memcg_stats_index(idx);
673 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
676 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
677 x = READ_ONCE(pn->lruvec_stats->state[i]);
685 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
686 enum node_stat_item idx)
688 struct mem_cgroup_per_node *pn;
692 if (mem_cgroup_disabled())
693 return node_page_state(lruvec_pgdat(lruvec), idx);
695 i = memcg_stats_index(idx);
696 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
699 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
700 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
708 /* Subset of vm_event_item to report for memcg event stats */
709 static const unsigned int memcg_vm_event_stat[] = {
725 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
738 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
739 static int8_t mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
741 static void init_memcg_events(void)
745 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= S8_MAX);
747 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
748 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
751 static inline int memcg_events_index(enum vm_event_item idx)
753 return mem_cgroup_events_index[idx] - 1;
756 struct memcg_vmstats_percpu {
757 /* Stats updates since the last flush */
758 unsigned int stats_updates;
760 /* Cached pointers for fast iteration in memcg_rstat_updated() */
761 struct memcg_vmstats_percpu *parent;
762 struct memcg_vmstats *vmstats;
764 /* The above should fit a single cacheline for memcg_rstat_updated() */
766 /* Local (CPU and cgroup) page state & events */
767 long state[MEMCG_VMSTAT_SIZE];
768 unsigned long events[NR_MEMCG_EVENTS];
770 /* Delta calculation for lockless upward propagation */
771 long state_prev[MEMCG_VMSTAT_SIZE];
772 unsigned long events_prev[NR_MEMCG_EVENTS];
774 /* Cgroup1: threshold notifications & softlimit tree updates */
775 unsigned long nr_page_events;
776 unsigned long targets[MEM_CGROUP_NTARGETS];
777 } ____cacheline_aligned;
779 struct memcg_vmstats {
780 /* Aggregated (CPU and subtree) page state & events */
781 long state[MEMCG_VMSTAT_SIZE];
782 unsigned long events[NR_MEMCG_EVENTS];
784 /* Non-hierarchical (CPU aggregated) page state & events */
785 long state_local[MEMCG_VMSTAT_SIZE];
786 unsigned long events_local[NR_MEMCG_EVENTS];
788 /* Pending child counts during tree propagation */
789 long state_pending[MEMCG_VMSTAT_SIZE];
790 unsigned long events_pending[NR_MEMCG_EVENTS];
792 /* Stats updates since the last flush */
793 atomic64_t stats_updates;
797 * memcg and lruvec stats flushing
799 * Many codepaths leading to stats update or read are performance sensitive and
800 * adding stats flushing in such codepaths is not desirable. So, to optimize the
801 * flushing the kernel does:
803 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
804 * rstat update tree grow unbounded.
806 * 2) Flush the stats synchronously on reader side only when there are more than
807 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
808 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
809 * only for 2 seconds due to (1).
811 static void flush_memcg_stats_dwork(struct work_struct *w);
812 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
813 static u64 flush_last_time;
815 #define FLUSH_TIME (2UL*HZ)
818 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
819 * not rely on this as part of an acquired spinlock_t lock. These functions are
820 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
823 static void memcg_stats_lock(void)
825 preempt_disable_nested();
826 VM_WARN_ON_IRQS_ENABLED();
829 static void __memcg_stats_lock(void)
831 preempt_disable_nested();
834 static void memcg_stats_unlock(void)
836 preempt_enable_nested();
840 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
842 return atomic64_read(&vmstats->stats_updates) >
843 MEMCG_CHARGE_BATCH * num_online_cpus();
846 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
848 struct memcg_vmstats_percpu *statc;
849 int cpu = smp_processor_id();
850 unsigned int stats_updates;
855 cgroup_rstat_updated(memcg->css.cgroup, cpu);
856 statc = this_cpu_ptr(memcg->vmstats_percpu);
857 for (; statc; statc = statc->parent) {
858 stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
859 WRITE_ONCE(statc->stats_updates, stats_updates);
860 if (stats_updates < MEMCG_CHARGE_BATCH)
864 * If @memcg is already flush-able, increasing stats_updates is
865 * redundant. Avoid the overhead of the atomic update.
867 if (!memcg_vmstats_needs_flush(statc->vmstats))
868 atomic64_add(stats_updates,
869 &statc->vmstats->stats_updates);
870 WRITE_ONCE(statc->stats_updates, 0);
874 static void do_flush_stats(struct mem_cgroup *memcg)
876 if (mem_cgroup_is_root(memcg))
877 WRITE_ONCE(flush_last_time, jiffies_64);
879 cgroup_rstat_flush(memcg->css.cgroup);
883 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
884 * @memcg: root of the subtree to flush
886 * Flushing is serialized by the underlying global rstat lock. There is also a
887 * minimum amount of work to be done even if there are no stat updates to flush.
888 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
889 * avoids unnecessary work and contention on the underlying lock.
891 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
893 if (mem_cgroup_disabled())
897 memcg = root_mem_cgroup;
899 if (memcg_vmstats_needs_flush(memcg->vmstats))
900 do_flush_stats(memcg);
903 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
905 /* Only flush if the periodic flusher is one full cycle late */
906 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
907 mem_cgroup_flush_stats(memcg);
910 static void flush_memcg_stats_dwork(struct work_struct *w)
913 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
914 * in latency-sensitive paths is as cheap as possible.
916 do_flush_stats(root_mem_cgroup);
917 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
920 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
923 int i = memcg_stats_index(idx);
925 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
928 x = READ_ONCE(memcg->vmstats->state[i]);
936 static int memcg_page_state_unit(int item);
939 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
940 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
942 static int memcg_state_val_in_pages(int idx, int val)
944 int unit = memcg_page_state_unit(idx);
946 if (!val || unit == PAGE_SIZE)
949 return max(val * unit / PAGE_SIZE, 1UL);
953 * __mod_memcg_state - update cgroup memory statistics
954 * @memcg: the memory cgroup
955 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
956 * @val: delta to add to the counter, can be negative
958 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
961 int i = memcg_stats_index(idx);
963 if (mem_cgroup_disabled())
966 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
969 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
970 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
973 /* idx can be of type enum memcg_stat_item or node_stat_item. */
974 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
977 int i = memcg_stats_index(idx);
979 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
982 x = READ_ONCE(memcg->vmstats->state_local[i]);
990 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
991 enum node_stat_item idx,
994 struct mem_cgroup_per_node *pn;
995 struct mem_cgroup *memcg;
996 int i = memcg_stats_index(idx);
998 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
1001 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1005 * The caller from rmap relies on disabled preemption because they never
1006 * update their counter from in-interrupt context. For these two
1007 * counters we check that the update is never performed from an
1008 * interrupt context while other caller need to have disabled interrupt.
1010 __memcg_stats_lock();
1011 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
1013 case NR_ANON_MAPPED:
1014 case NR_FILE_MAPPED:
1016 WARN_ON_ONCE(!in_task());
1019 VM_WARN_ON_IRQS_ENABLED();
1024 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
1027 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
1029 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
1030 memcg_stats_unlock();
1034 * __mod_lruvec_state - update lruvec memory statistics
1035 * @lruvec: the lruvec
1036 * @idx: the stat item
1037 * @val: delta to add to the counter, can be negative
1039 * The lruvec is the intersection of the NUMA node and a cgroup. This
1040 * function updates the all three counters that are affected by a
1041 * change of state at this level: per-node, per-cgroup, per-lruvec.
1043 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1047 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1049 /* Update memcg and lruvec */
1050 if (!mem_cgroup_disabled())
1051 __mod_memcg_lruvec_state(lruvec, idx, val);
1054 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
1057 struct mem_cgroup *memcg;
1058 pg_data_t *pgdat = folio_pgdat(folio);
1059 struct lruvec *lruvec;
1062 memcg = folio_memcg(folio);
1063 /* Untracked pages have no memcg, no lruvec. Update only the node */
1066 __mod_node_page_state(pgdat, idx, val);
1070 lruvec = mem_cgroup_lruvec(memcg, pgdat);
1071 __mod_lruvec_state(lruvec, idx, val);
1074 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
1076 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
1078 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
1079 struct mem_cgroup *memcg;
1080 struct lruvec *lruvec;
1083 memcg = mem_cgroup_from_slab_obj(p);
1086 * Untracked pages have no memcg, no lruvec. Update only the
1087 * node. If we reparent the slab objects to the root memcg,
1088 * when we free the slab object, we need to update the per-memcg
1089 * vmstats to keep it correct for the root memcg.
1092 __mod_node_page_state(pgdat, idx, val);
1094 lruvec = mem_cgroup_lruvec(memcg, pgdat);
1095 __mod_lruvec_state(lruvec, idx, val);
1101 * __count_memcg_events - account VM events in a cgroup
1102 * @memcg: the memory cgroup
1103 * @idx: the event item
1104 * @count: the number of events that occurred
1106 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1107 unsigned long count)
1109 int i = memcg_events_index(idx);
1111 if (mem_cgroup_disabled())
1114 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
1118 __this_cpu_add(memcg->vmstats_percpu->events[i], count);
1119 memcg_rstat_updated(memcg, count);
1120 memcg_stats_unlock();
1123 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
1125 int i = memcg_events_index(event);
1127 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event))
1130 return READ_ONCE(memcg->vmstats->events[i]);
1133 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
1135 int i = memcg_events_index(event);
1137 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event))
1140 return READ_ONCE(memcg->vmstats->events_local[i]);
1143 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
1146 /* pagein of a big page is an event. So, ignore page size */
1148 __count_memcg_events(memcg, PGPGIN, 1);
1150 __count_memcg_events(memcg, PGPGOUT, 1);
1151 nr_pages = -nr_pages; /* for event */
1154 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
1157 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1158 enum mem_cgroup_events_target target)
1160 unsigned long val, next;
1162 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
1163 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
1164 /* from time_after() in jiffies.h */
1165 if ((long)(next - val) < 0) {
1167 case MEM_CGROUP_TARGET_THRESH:
1168 next = val + THRESHOLDS_EVENTS_TARGET;
1170 case MEM_CGROUP_TARGET_SOFTLIMIT:
1171 next = val + SOFTLIMIT_EVENTS_TARGET;
1176 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
1183 * Check events in order.
1186 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1188 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1191 /* threshold event is triggered in finer grain than soft limit */
1192 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1193 MEM_CGROUP_TARGET_THRESH))) {
1196 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1197 MEM_CGROUP_TARGET_SOFTLIMIT);
1198 mem_cgroup_threshold(memcg);
1199 if (unlikely(do_softlimit))
1200 mem_cgroup_update_tree(memcg, nid);
1204 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1207 * mm_update_next_owner() may clear mm->owner to NULL
1208 * if it races with swapoff, page migration, etc.
1209 * So this can be called with p == NULL.
1214 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1216 EXPORT_SYMBOL(mem_cgroup_from_task);
1218 static __always_inline struct mem_cgroup *active_memcg(void)
1221 return this_cpu_read(int_active_memcg);
1223 return current->active_memcg;
1227 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1228 * @mm: mm from which memcg should be extracted. It can be NULL.
1230 * Obtain a reference on mm->memcg and returns it if successful. If mm
1231 * is NULL, then the memcg is chosen as follows:
1232 * 1) The active memcg, if set.
1233 * 2) current->mm->memcg, if available
1235 * If mem_cgroup is disabled, NULL is returned.
1237 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1239 struct mem_cgroup *memcg;
1241 if (mem_cgroup_disabled())
1245 * Page cache insertions can happen without an
1246 * actual mm context, e.g. during disk probing
1247 * on boot, loopback IO, acct() writes etc.
1249 * No need to css_get on root memcg as the reference
1250 * counting is disabled on the root level in the
1251 * cgroup core. See CSS_NO_REF.
1253 if (unlikely(!mm)) {
1254 memcg = active_memcg();
1255 if (unlikely(memcg)) {
1256 /* remote memcg must hold a ref */
1257 css_get(&memcg->css);
1262 return root_mem_cgroup;
1267 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1268 if (unlikely(!memcg))
1269 memcg = root_mem_cgroup;
1270 } while (!css_tryget(&memcg->css));
1274 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1277 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1279 struct mem_cgroup *get_mem_cgroup_from_current(void)
1281 struct mem_cgroup *memcg;
1283 if (mem_cgroup_disabled())
1288 memcg = mem_cgroup_from_task(current);
1289 if (!css_tryget(&memcg->css)) {
1298 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1299 * @root: hierarchy root
1300 * @prev: previously returned memcg, NULL on first invocation
1301 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1303 * Returns references to children of the hierarchy below @root, or
1304 * @root itself, or %NULL after a full round-trip.
1306 * Caller must pass the return value in @prev on subsequent
1307 * invocations for reference counting, or use mem_cgroup_iter_break()
1308 * to cancel a hierarchy walk before the round-trip is complete.
1310 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1311 * in the hierarchy among all concurrent reclaimers operating on the
1314 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1315 struct mem_cgroup *prev,
1316 struct mem_cgroup_reclaim_cookie *reclaim)
1318 struct mem_cgroup_reclaim_iter *iter;
1319 struct cgroup_subsys_state *css = NULL;
1320 struct mem_cgroup *memcg = NULL;
1321 struct mem_cgroup *pos = NULL;
1323 if (mem_cgroup_disabled())
1327 root = root_mem_cgroup;
1332 struct mem_cgroup_per_node *mz;
1334 mz = root->nodeinfo[reclaim->pgdat->node_id];
1338 * On start, join the current reclaim iteration cycle.
1339 * Exit when a concurrent walker completes it.
1342 reclaim->generation = iter->generation;
1343 else if (reclaim->generation != iter->generation)
1347 pos = READ_ONCE(iter->position);
1348 if (!pos || css_tryget(&pos->css))
1351 * css reference reached zero, so iter->position will
1352 * be cleared by ->css_released. However, we should not
1353 * rely on this happening soon, because ->css_released
1354 * is called from a work queue, and by busy-waiting we
1355 * might block it. So we clear iter->position right
1358 (void)cmpxchg(&iter->position, pos, NULL);
1368 css = css_next_descendant_pre(css, &root->css);
1371 * Reclaimers share the hierarchy walk, and a
1372 * new one might jump in right at the end of
1373 * the hierarchy - make sure they see at least
1374 * one group and restart from the beginning.
1382 * Verify the css and acquire a reference. The root
1383 * is provided by the caller, so we know it's alive
1384 * and kicking, and don't take an extra reference.
1386 if (css == &root->css || css_tryget(css)) {
1387 memcg = mem_cgroup_from_css(css);
1394 * The position could have already been updated by a competing
1395 * thread, so check that the value hasn't changed since we read
1396 * it to avoid reclaiming from the same cgroup twice.
1398 (void)cmpxchg(&iter->position, pos, memcg);
1409 if (prev && prev != root)
1410 css_put(&prev->css);
1416 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1417 * @root: hierarchy root
1418 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1420 void mem_cgroup_iter_break(struct mem_cgroup *root,
1421 struct mem_cgroup *prev)
1424 root = root_mem_cgroup;
1425 if (prev && prev != root)
1426 css_put(&prev->css);
1429 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1430 struct mem_cgroup *dead_memcg)
1432 struct mem_cgroup_reclaim_iter *iter;
1433 struct mem_cgroup_per_node *mz;
1436 for_each_node(nid) {
1437 mz = from->nodeinfo[nid];
1439 cmpxchg(&iter->position, dead_memcg, NULL);
1443 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1445 struct mem_cgroup *memcg = dead_memcg;
1446 struct mem_cgroup *last;
1449 __invalidate_reclaim_iterators(memcg, dead_memcg);
1451 } while ((memcg = parent_mem_cgroup(memcg)));
1454 * When cgroup1 non-hierarchy mode is used,
1455 * parent_mem_cgroup() does not walk all the way up to the
1456 * cgroup root (root_mem_cgroup). So we have to handle
1457 * dead_memcg from cgroup root separately.
1459 if (!mem_cgroup_is_root(last))
1460 __invalidate_reclaim_iterators(root_mem_cgroup,
1465 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1466 * @memcg: hierarchy root
1467 * @fn: function to call for each task
1468 * @arg: argument passed to @fn
1470 * This function iterates over tasks attached to @memcg or to any of its
1471 * descendants and calls @fn for each task. If @fn returns a non-zero
1472 * value, the function breaks the iteration loop. Otherwise, it will iterate
1473 * over all tasks and return 0.
1475 * This function must not be called for the root memory cgroup.
1477 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1478 int (*fn)(struct task_struct *, void *), void *arg)
1480 struct mem_cgroup *iter;
1483 BUG_ON(mem_cgroup_is_root(memcg));
1485 for_each_mem_cgroup_tree(iter, memcg) {
1486 struct css_task_iter it;
1487 struct task_struct *task;
1489 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1490 while (!ret && (task = css_task_iter_next(&it)))
1491 ret = fn(task, arg);
1492 css_task_iter_end(&it);
1494 mem_cgroup_iter_break(memcg, iter);
1500 #ifdef CONFIG_DEBUG_VM
1501 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1503 struct mem_cgroup *memcg;
1505 if (mem_cgroup_disabled())
1508 memcg = folio_memcg(folio);
1511 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1513 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1518 * folio_lruvec_lock - Lock the lruvec for a folio.
1519 * @folio: Pointer to the folio.
1521 * These functions are safe to use under any of the following conditions:
1523 * - folio_test_lru false
1524 * - folio_memcg_lock()
1525 * - folio frozen (refcount of 0)
1527 * Return: The lruvec this folio is on with its lock held.
1529 struct lruvec *folio_lruvec_lock(struct folio *folio)
1531 struct lruvec *lruvec = folio_lruvec(folio);
1533 spin_lock(&lruvec->lru_lock);
1534 lruvec_memcg_debug(lruvec, folio);
1540 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1541 * @folio: Pointer to the folio.
1543 * These functions are safe to use under any of the following conditions:
1545 * - folio_test_lru false
1546 * - folio_memcg_lock()
1547 * - folio frozen (refcount of 0)
1549 * Return: The lruvec this folio is on with its lock held and interrupts
1552 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1554 struct lruvec *lruvec = folio_lruvec(folio);
1556 spin_lock_irq(&lruvec->lru_lock);
1557 lruvec_memcg_debug(lruvec, folio);
1563 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1564 * @folio: Pointer to the folio.
1565 * @flags: Pointer to irqsave flags.
1567 * These functions are safe to use under any of the following conditions:
1569 * - folio_test_lru false
1570 * - folio_memcg_lock()
1571 * - folio frozen (refcount of 0)
1573 * Return: The lruvec this folio is on with its lock held and interrupts
1576 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1577 unsigned long *flags)
1579 struct lruvec *lruvec = folio_lruvec(folio);
1581 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1582 lruvec_memcg_debug(lruvec, folio);
1588 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1589 * @lruvec: mem_cgroup per zone lru vector
1590 * @lru: index of lru list the page is sitting on
1591 * @zid: zone id of the accounted pages
1592 * @nr_pages: positive when adding or negative when removing
1594 * This function must be called under lru_lock, just before a page is added
1595 * to or just after a page is removed from an lru list.
1597 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1598 int zid, int nr_pages)
1600 struct mem_cgroup_per_node *mz;
1601 unsigned long *lru_size;
1604 if (mem_cgroup_disabled())
1607 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1608 lru_size = &mz->lru_zone_size[zid][lru];
1611 *lru_size += nr_pages;
1614 if (WARN_ONCE(size < 0,
1615 "%s(%p, %d, %d): lru_size %ld\n",
1616 __func__, lruvec, lru, nr_pages, size)) {
1622 *lru_size += nr_pages;
1626 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1627 * @memcg: the memory cgroup
1629 * Returns the maximum amount of memory @mem can be charged with, in
1632 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1634 unsigned long margin = 0;
1635 unsigned long count;
1636 unsigned long limit;
1638 count = page_counter_read(&memcg->memory);
1639 limit = READ_ONCE(memcg->memory.max);
1641 margin = limit - count;
1643 if (do_memsw_account()) {
1644 count = page_counter_read(&memcg->memsw);
1645 limit = READ_ONCE(memcg->memsw.max);
1647 margin = min(margin, limit - count);
1656 * A routine for checking "mem" is under move_account() or not.
1658 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1659 * moving cgroups. This is for waiting at high-memory pressure
1662 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1664 struct mem_cgroup *from;
1665 struct mem_cgroup *to;
1668 * Unlike task_move routines, we access mc.to, mc.from not under
1669 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1671 spin_lock(&mc.lock);
1677 ret = mem_cgroup_is_descendant(from, memcg) ||
1678 mem_cgroup_is_descendant(to, memcg);
1680 spin_unlock(&mc.lock);
1684 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1686 if (mc.moving_task && current != mc.moving_task) {
1687 if (mem_cgroup_under_move(memcg)) {
1689 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1690 /* moving charge context might have finished. */
1693 finish_wait(&mc.waitq, &wait);
1700 struct memory_stat {
1705 static const struct memory_stat memory_stats[] = {
1706 { "anon", NR_ANON_MAPPED },
1707 { "file", NR_FILE_PAGES },
1708 { "kernel", MEMCG_KMEM },
1709 { "kernel_stack", NR_KERNEL_STACK_KB },
1710 { "pagetables", NR_PAGETABLE },
1711 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1712 { "percpu", MEMCG_PERCPU_B },
1713 { "sock", MEMCG_SOCK },
1714 { "vmalloc", MEMCG_VMALLOC },
1715 { "shmem", NR_SHMEM },
1716 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1717 { "zswap", MEMCG_ZSWAP_B },
1718 { "zswapped", MEMCG_ZSWAPPED },
1720 { "file_mapped", NR_FILE_MAPPED },
1721 { "file_dirty", NR_FILE_DIRTY },
1722 { "file_writeback", NR_WRITEBACK },
1724 { "swapcached", NR_SWAPCACHE },
1726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1727 { "anon_thp", NR_ANON_THPS },
1728 { "file_thp", NR_FILE_THPS },
1729 { "shmem_thp", NR_SHMEM_THPS },
1731 { "inactive_anon", NR_INACTIVE_ANON },
1732 { "active_anon", NR_ACTIVE_ANON },
1733 { "inactive_file", NR_INACTIVE_FILE },
1734 { "active_file", NR_ACTIVE_FILE },
1735 { "unevictable", NR_UNEVICTABLE },
1736 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1737 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1739 /* The memory events */
1740 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1741 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1742 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1743 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1744 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1745 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1746 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1749 /* The actual unit of the state item, not the same as the output unit */
1750 static int memcg_page_state_unit(int item)
1753 case MEMCG_PERCPU_B:
1755 case NR_SLAB_RECLAIMABLE_B:
1756 case NR_SLAB_UNRECLAIMABLE_B:
1758 case NR_KERNEL_STACK_KB:
1765 /* Translate stat items to the correct unit for memory.stat output */
1766 static int memcg_page_state_output_unit(int item)
1769 * Workingset state is actually in pages, but we export it to userspace
1770 * as a scalar count of events, so special case it here.
1773 case WORKINGSET_REFAULT_ANON:
1774 case WORKINGSET_REFAULT_FILE:
1775 case WORKINGSET_ACTIVATE_ANON:
1776 case WORKINGSET_ACTIVATE_FILE:
1777 case WORKINGSET_RESTORE_ANON:
1778 case WORKINGSET_RESTORE_FILE:
1779 case WORKINGSET_NODERECLAIM:
1782 return memcg_page_state_unit(item);
1786 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1789 return memcg_page_state(memcg, item) *
1790 memcg_page_state_output_unit(item);
1793 static inline unsigned long memcg_page_state_local_output(
1794 struct mem_cgroup *memcg, int item)
1796 return memcg_page_state_local(memcg, item) *
1797 memcg_page_state_output_unit(item);
1800 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1805 * Provide statistics on the state of the memory subsystem as
1806 * well as cumulative event counters that show past behavior.
1808 * This list is ordered following a combination of these gradients:
1809 * 1) generic big picture -> specifics and details
1810 * 2) reflecting userspace activity -> reflecting kernel heuristics
1812 * Current memory state:
1814 mem_cgroup_flush_stats(memcg);
1816 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1819 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1820 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1822 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1823 size += memcg_page_state_output(memcg,
1824 NR_SLAB_RECLAIMABLE_B);
1825 seq_buf_printf(s, "slab %llu\n", size);
1829 /* Accumulated memory events */
1830 seq_buf_printf(s, "pgscan %lu\n",
1831 memcg_events(memcg, PGSCAN_KSWAPD) +
1832 memcg_events(memcg, PGSCAN_DIRECT) +
1833 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1834 seq_buf_printf(s, "pgsteal %lu\n",
1835 memcg_events(memcg, PGSTEAL_KSWAPD) +
1836 memcg_events(memcg, PGSTEAL_DIRECT) +
1837 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1839 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1840 if (memcg_vm_event_stat[i] == PGPGIN ||
1841 memcg_vm_event_stat[i] == PGPGOUT)
1844 seq_buf_printf(s, "%s %lu\n",
1845 vm_event_name(memcg_vm_event_stat[i]),
1846 memcg_events(memcg, memcg_vm_event_stat[i]));
1849 /* The above should easily fit into one page */
1850 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1853 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1855 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1857 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1858 memcg_stat_format(memcg, s);
1860 memcg1_stat_format(memcg, s);
1861 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1865 * mem_cgroup_print_oom_context: Print OOM information relevant to
1866 * memory controller.
1867 * @memcg: The memory cgroup that went over limit
1868 * @p: Task that is going to be killed
1870 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1873 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1878 pr_cont(",oom_memcg=");
1879 pr_cont_cgroup_path(memcg->css.cgroup);
1881 pr_cont(",global_oom");
1883 pr_cont(",task_memcg=");
1884 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1890 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1891 * memory controller.
1892 * @memcg: The memory cgroup that went over limit
1894 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1896 /* Use static buffer, for the caller is holding oom_lock. */
1897 static char buf[PAGE_SIZE];
1900 lockdep_assert_held(&oom_lock);
1902 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1903 K((u64)page_counter_read(&memcg->memory)),
1904 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1905 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1906 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1907 K((u64)page_counter_read(&memcg->swap)),
1908 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1910 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1911 K((u64)page_counter_read(&memcg->memsw)),
1912 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1913 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1914 K((u64)page_counter_read(&memcg->kmem)),
1915 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1918 pr_info("Memory cgroup stats for ");
1919 pr_cont_cgroup_path(memcg->css.cgroup);
1921 seq_buf_init(&s, buf, sizeof(buf));
1922 memory_stat_format(memcg, &s);
1923 seq_buf_do_printk(&s, KERN_INFO);
1927 * Return the memory (and swap, if configured) limit for a memcg.
1929 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1931 unsigned long max = READ_ONCE(memcg->memory.max);
1933 if (do_memsw_account()) {
1934 if (mem_cgroup_swappiness(memcg)) {
1935 /* Calculate swap excess capacity from memsw limit */
1936 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1938 max += min(swap, (unsigned long)total_swap_pages);
1941 if (mem_cgroup_swappiness(memcg))
1942 max += min(READ_ONCE(memcg->swap.max),
1943 (unsigned long)total_swap_pages);
1948 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1950 return page_counter_read(&memcg->memory);
1953 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1956 struct oom_control oc = {
1960 .gfp_mask = gfp_mask,
1965 if (mutex_lock_killable(&oom_lock))
1968 if (mem_cgroup_margin(memcg) >= (1 << order))
1972 * A few threads which were not waiting at mutex_lock_killable() can
1973 * fail to bail out. Therefore, check again after holding oom_lock.
1975 ret = task_is_dying() || out_of_memory(&oc);
1978 mutex_unlock(&oom_lock);
1982 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1985 unsigned long *total_scanned)
1987 struct mem_cgroup *victim = NULL;
1990 unsigned long excess;
1991 unsigned long nr_scanned;
1992 struct mem_cgroup_reclaim_cookie reclaim = {
1996 excess = soft_limit_excess(root_memcg);
1999 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2004 * If we have not been able to reclaim
2005 * anything, it might because there are
2006 * no reclaimable pages under this hierarchy
2011 * We want to do more targeted reclaim.
2012 * excess >> 2 is not to excessive so as to
2013 * reclaim too much, nor too less that we keep
2014 * coming back to reclaim from this cgroup
2016 if (total >= (excess >> 2) ||
2017 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2022 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
2023 pgdat, &nr_scanned);
2024 *total_scanned += nr_scanned;
2025 if (!soft_limit_excess(root_memcg))
2028 mem_cgroup_iter_break(root_memcg, victim);
2032 #ifdef CONFIG_LOCKDEP
2033 static struct lockdep_map memcg_oom_lock_dep_map = {
2034 .name = "memcg_oom_lock",
2038 static DEFINE_SPINLOCK(memcg_oom_lock);
2041 * Check OOM-Killer is already running under our hierarchy.
2042 * If someone is running, return false.
2044 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2046 struct mem_cgroup *iter, *failed = NULL;
2048 spin_lock(&memcg_oom_lock);
2050 for_each_mem_cgroup_tree(iter, memcg) {
2051 if (iter->oom_lock) {
2053 * this subtree of our hierarchy is already locked
2054 * so we cannot give a lock.
2057 mem_cgroup_iter_break(memcg, iter);
2060 iter->oom_lock = true;
2065 * OK, we failed to lock the whole subtree so we have
2066 * to clean up what we set up to the failing subtree
2068 for_each_mem_cgroup_tree(iter, memcg) {
2069 if (iter == failed) {
2070 mem_cgroup_iter_break(memcg, iter);
2073 iter->oom_lock = false;
2076 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2078 spin_unlock(&memcg_oom_lock);
2083 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2085 struct mem_cgroup *iter;
2087 spin_lock(&memcg_oom_lock);
2088 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
2089 for_each_mem_cgroup_tree(iter, memcg)
2090 iter->oom_lock = false;
2091 spin_unlock(&memcg_oom_lock);
2094 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2096 struct mem_cgroup *iter;
2098 spin_lock(&memcg_oom_lock);
2099 for_each_mem_cgroup_tree(iter, memcg)
2101 spin_unlock(&memcg_oom_lock);
2104 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2106 struct mem_cgroup *iter;
2109 * Be careful about under_oom underflows because a child memcg
2110 * could have been added after mem_cgroup_mark_under_oom.
2112 spin_lock(&memcg_oom_lock);
2113 for_each_mem_cgroup_tree(iter, memcg)
2114 if (iter->under_oom > 0)
2116 spin_unlock(&memcg_oom_lock);
2119 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2121 struct oom_wait_info {
2122 struct mem_cgroup *memcg;
2123 wait_queue_entry_t wait;
2126 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
2127 unsigned mode, int sync, void *arg)
2129 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2130 struct mem_cgroup *oom_wait_memcg;
2131 struct oom_wait_info *oom_wait_info;
2133 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2134 oom_wait_memcg = oom_wait_info->memcg;
2136 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
2137 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
2139 return autoremove_wake_function(wait, mode, sync, arg);
2142 static void memcg_oom_recover(struct mem_cgroup *memcg)
2145 * For the following lockless ->under_oom test, the only required
2146 * guarantee is that it must see the state asserted by an OOM when
2147 * this function is called as a result of userland actions
2148 * triggered by the notification of the OOM. This is trivially
2149 * achieved by invoking mem_cgroup_mark_under_oom() before
2150 * triggering notification.
2152 if (memcg && memcg->under_oom)
2153 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2157 * Returns true if successfully killed one or more processes. Though in some
2158 * corner cases it can return true even without killing any process.
2160 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2164 if (order > PAGE_ALLOC_COSTLY_ORDER)
2167 memcg_memory_event(memcg, MEMCG_OOM);
2170 * We are in the middle of the charge context here, so we
2171 * don't want to block when potentially sitting on a callstack
2172 * that holds all kinds of filesystem and mm locks.
2174 * cgroup1 allows disabling the OOM killer and waiting for outside
2175 * handling until the charge can succeed; remember the context and put
2176 * the task to sleep at the end of the page fault when all locks are
2179 * On the other hand, in-kernel OOM killer allows for an async victim
2180 * memory reclaim (oom_reaper) and that means that we are not solely
2181 * relying on the oom victim to make a forward progress and we can
2182 * invoke the oom killer here.
2184 * Please note that mem_cgroup_out_of_memory might fail to find a
2185 * victim and then we have to bail out from the charge path.
2187 if (READ_ONCE(memcg->oom_kill_disable)) {
2188 if (current->in_user_fault) {
2189 css_get(&memcg->css);
2190 current->memcg_in_oom = memcg;
2195 mem_cgroup_mark_under_oom(memcg);
2197 locked = mem_cgroup_oom_trylock(memcg);
2200 mem_cgroup_oom_notify(memcg);
2202 mem_cgroup_unmark_under_oom(memcg);
2203 ret = mem_cgroup_out_of_memory(memcg, mask, order);
2206 mem_cgroup_oom_unlock(memcg);
2212 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2213 * @handle: actually kill/wait or just clean up the OOM state
2215 * This has to be called at the end of a page fault if the memcg OOM
2216 * handler was enabled.
2218 * Memcg supports userspace OOM handling where failed allocations must
2219 * sleep on a waitqueue until the userspace task resolves the
2220 * situation. Sleeping directly in the charge context with all kinds
2221 * of locks held is not a good idea, instead we remember an OOM state
2222 * in the task and mem_cgroup_oom_synchronize() has to be called at
2223 * the end of the page fault to complete the OOM handling.
2225 * Returns %true if an ongoing memcg OOM situation was detected and
2226 * completed, %false otherwise.
2228 bool mem_cgroup_oom_synchronize(bool handle)
2230 struct mem_cgroup *memcg = current->memcg_in_oom;
2231 struct oom_wait_info owait;
2234 /* OOM is global, do not handle */
2241 owait.memcg = memcg;
2242 owait.wait.flags = 0;
2243 owait.wait.func = memcg_oom_wake_function;
2244 owait.wait.private = current;
2245 INIT_LIST_HEAD(&owait.wait.entry);
2247 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2248 mem_cgroup_mark_under_oom(memcg);
2250 locked = mem_cgroup_oom_trylock(memcg);
2253 mem_cgroup_oom_notify(memcg);
2256 mem_cgroup_unmark_under_oom(memcg);
2257 finish_wait(&memcg_oom_waitq, &owait.wait);
2260 mem_cgroup_oom_unlock(memcg);
2262 current->memcg_in_oom = NULL;
2263 css_put(&memcg->css);
2268 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2269 * @victim: task to be killed by the OOM killer
2270 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2272 * Returns a pointer to a memory cgroup, which has to be cleaned up
2273 * by killing all belonging OOM-killable tasks.
2275 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2277 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2278 struct mem_cgroup *oom_domain)
2280 struct mem_cgroup *oom_group = NULL;
2281 struct mem_cgroup *memcg;
2283 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2287 oom_domain = root_mem_cgroup;
2291 memcg = mem_cgroup_from_task(victim);
2292 if (mem_cgroup_is_root(memcg))
2296 * If the victim task has been asynchronously moved to a different
2297 * memory cgroup, we might end up killing tasks outside oom_domain.
2298 * In this case it's better to ignore memory.group.oom.
2300 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2304 * Traverse the memory cgroup hierarchy from the victim task's
2305 * cgroup up to the OOMing cgroup (or root) to find the
2306 * highest-level memory cgroup with oom.group set.
2308 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2309 if (READ_ONCE(memcg->oom_group))
2312 if (memcg == oom_domain)
2317 css_get(&oom_group->css);
2324 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2326 pr_info("Tasks in ");
2327 pr_cont_cgroup_path(memcg->css.cgroup);
2328 pr_cont(" are going to be killed due to memory.oom.group set\n");
2332 * folio_memcg_lock - Bind a folio to its memcg.
2333 * @folio: The folio.
2335 * This function prevents unlocked LRU folios from being moved to
2338 * It ensures lifetime of the bound memcg. The caller is responsible
2339 * for the lifetime of the folio.
2341 void folio_memcg_lock(struct folio *folio)
2343 struct mem_cgroup *memcg;
2344 unsigned long flags;
2347 * The RCU lock is held throughout the transaction. The fast
2348 * path can get away without acquiring the memcg->move_lock
2349 * because page moving starts with an RCU grace period.
2353 if (mem_cgroup_disabled())
2356 memcg = folio_memcg(folio);
2357 if (unlikely(!memcg))
2360 #ifdef CONFIG_PROVE_LOCKING
2361 local_irq_save(flags);
2362 might_lock(&memcg->move_lock);
2363 local_irq_restore(flags);
2366 if (atomic_read(&memcg->moving_account) <= 0)
2369 spin_lock_irqsave(&memcg->move_lock, flags);
2370 if (memcg != folio_memcg(folio)) {
2371 spin_unlock_irqrestore(&memcg->move_lock, flags);
2376 * When charge migration first begins, we can have multiple
2377 * critical sections holding the fast-path RCU lock and one
2378 * holding the slowpath move_lock. Track the task who has the
2379 * move_lock for folio_memcg_unlock().
2381 memcg->move_lock_task = current;
2382 memcg->move_lock_flags = flags;
2385 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2387 if (memcg && memcg->move_lock_task == current) {
2388 unsigned long flags = memcg->move_lock_flags;
2390 memcg->move_lock_task = NULL;
2391 memcg->move_lock_flags = 0;
2393 spin_unlock_irqrestore(&memcg->move_lock, flags);
2400 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2401 * @folio: The folio.
2403 * This releases the binding created by folio_memcg_lock(). This does
2404 * not change the accounting of this folio to its memcg, but it does
2405 * permit others to change it.
2407 void folio_memcg_unlock(struct folio *folio)
2409 __folio_memcg_unlock(folio_memcg(folio));
2412 struct memcg_stock_pcp {
2413 local_lock_t stock_lock;
2414 struct mem_cgroup *cached; /* this never be root cgroup */
2415 unsigned int nr_pages;
2417 #ifdef CONFIG_MEMCG_KMEM
2418 struct obj_cgroup *cached_objcg;
2419 struct pglist_data *cached_pgdat;
2420 unsigned int nr_bytes;
2421 int nr_slab_reclaimable_b;
2422 int nr_slab_unreclaimable_b;
2425 struct work_struct work;
2426 unsigned long flags;
2427 #define FLUSHING_CACHED_CHARGE 0
2429 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2430 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2432 static DEFINE_MUTEX(percpu_charge_mutex);
2434 #ifdef CONFIG_MEMCG_KMEM
2435 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2436 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2437 struct mem_cgroup *root_memcg);
2438 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2441 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2445 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2446 struct mem_cgroup *root_memcg)
2450 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2456 * consume_stock: Try to consume stocked charge on this cpu.
2457 * @memcg: memcg to consume from.
2458 * @nr_pages: how many pages to charge.
2460 * The charges will only happen if @memcg matches the current cpu's memcg
2461 * stock, and at least @nr_pages are available in that stock. Failure to
2462 * service an allocation will refill the stock.
2464 * returns true if successful, false otherwise.
2466 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2468 struct memcg_stock_pcp *stock;
2469 unsigned int stock_pages;
2470 unsigned long flags;
2473 if (nr_pages > MEMCG_CHARGE_BATCH)
2476 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2478 stock = this_cpu_ptr(&memcg_stock);
2479 stock_pages = READ_ONCE(stock->nr_pages);
2480 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
2481 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
2485 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2491 * Returns stocks cached in percpu and reset cached information.
2493 static void drain_stock(struct memcg_stock_pcp *stock)
2495 unsigned int stock_pages = READ_ONCE(stock->nr_pages);
2496 struct mem_cgroup *old = READ_ONCE(stock->cached);
2502 page_counter_uncharge(&old->memory, stock_pages);
2503 if (do_memsw_account())
2504 page_counter_uncharge(&old->memsw, stock_pages);
2506 WRITE_ONCE(stock->nr_pages, 0);
2510 WRITE_ONCE(stock->cached, NULL);
2513 static void drain_local_stock(struct work_struct *dummy)
2515 struct memcg_stock_pcp *stock;
2516 struct obj_cgroup *old = NULL;
2517 unsigned long flags;
2520 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2521 * drain_stock races is that we always operate on local CPU stock
2522 * here with IRQ disabled
2524 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2526 stock = this_cpu_ptr(&memcg_stock);
2527 old = drain_obj_stock(stock);
2529 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2531 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2532 obj_cgroup_put(old);
2536 * Cache charges(val) to local per_cpu area.
2537 * This will be consumed by consume_stock() function, later.
2539 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2541 struct memcg_stock_pcp *stock;
2542 unsigned int stock_pages;
2544 stock = this_cpu_ptr(&memcg_stock);
2545 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2547 css_get(&memcg->css);
2548 WRITE_ONCE(stock->cached, memcg);
2550 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
2551 WRITE_ONCE(stock->nr_pages, stock_pages);
2553 if (stock_pages > MEMCG_CHARGE_BATCH)
2557 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2559 unsigned long flags;
2561 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2562 __refill_stock(memcg, nr_pages);
2563 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2567 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2568 * of the hierarchy under it.
2570 static void drain_all_stock(struct mem_cgroup *root_memcg)
2574 /* If someone's already draining, avoid adding running more workers. */
2575 if (!mutex_trylock(&percpu_charge_mutex))
2578 * Notify other cpus that system-wide "drain" is running
2579 * We do not care about races with the cpu hotplug because cpu down
2580 * as well as workers from this path always operate on the local
2581 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2584 curcpu = smp_processor_id();
2585 for_each_online_cpu(cpu) {
2586 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2587 struct mem_cgroup *memcg;
2591 memcg = READ_ONCE(stock->cached);
2592 if (memcg && READ_ONCE(stock->nr_pages) &&
2593 mem_cgroup_is_descendant(memcg, root_memcg))
2595 else if (obj_stock_flush_required(stock, root_memcg))
2600 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2602 drain_local_stock(&stock->work);
2603 else if (!cpu_is_isolated(cpu))
2604 schedule_work_on(cpu, &stock->work);
2608 mutex_unlock(&percpu_charge_mutex);
2611 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2613 struct memcg_stock_pcp *stock;
2615 stock = &per_cpu(memcg_stock, cpu);
2621 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2622 unsigned int nr_pages,
2625 unsigned long nr_reclaimed = 0;
2628 unsigned long pflags;
2630 if (page_counter_read(&memcg->memory) <=
2631 READ_ONCE(memcg->memory.high))
2634 memcg_memory_event(memcg, MEMCG_HIGH);
2636 psi_memstall_enter(&pflags);
2637 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2639 MEMCG_RECLAIM_MAY_SWAP);
2640 psi_memstall_leave(&pflags);
2641 } while ((memcg = parent_mem_cgroup(memcg)) &&
2642 !mem_cgroup_is_root(memcg));
2644 return nr_reclaimed;
2647 static void high_work_func(struct work_struct *work)
2649 struct mem_cgroup *memcg;
2651 memcg = container_of(work, struct mem_cgroup, high_work);
2652 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2656 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2657 * enough to still cause a significant slowdown in most cases, while still
2658 * allowing diagnostics and tracing to proceed without becoming stuck.
2660 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2663 * When calculating the delay, we use these either side of the exponentiation to
2664 * maintain precision and scale to a reasonable number of jiffies (see the table
2667 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2668 * overage ratio to a delay.
2669 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2670 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2671 * to produce a reasonable delay curve.
2673 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2674 * reasonable delay curve compared to precision-adjusted overage, not
2675 * penalising heavily at first, but still making sure that growth beyond the
2676 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2677 * example, with a high of 100 megabytes:
2679 * +-------+------------------------+
2680 * | usage | time to allocate in ms |
2681 * +-------+------------------------+
2703 * +-------+------------------------+
2705 #define MEMCG_DELAY_PRECISION_SHIFT 20
2706 #define MEMCG_DELAY_SCALING_SHIFT 14
2708 static u64 calculate_overage(unsigned long usage, unsigned long high)
2716 * Prevent division by 0 in overage calculation by acting as if
2717 * it was a threshold of 1 page
2719 high = max(high, 1UL);
2721 overage = usage - high;
2722 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2723 return div64_u64(overage, high);
2726 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2728 u64 overage, max_overage = 0;
2731 overage = calculate_overage(page_counter_read(&memcg->memory),
2732 READ_ONCE(memcg->memory.high));
2733 max_overage = max(overage, max_overage);
2734 } while ((memcg = parent_mem_cgroup(memcg)) &&
2735 !mem_cgroup_is_root(memcg));
2740 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2742 u64 overage, max_overage = 0;
2745 overage = calculate_overage(page_counter_read(&memcg->swap),
2746 READ_ONCE(memcg->swap.high));
2748 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2749 max_overage = max(overage, max_overage);
2750 } while ((memcg = parent_mem_cgroup(memcg)) &&
2751 !mem_cgroup_is_root(memcg));
2757 * Get the number of jiffies that we should penalise a mischievous cgroup which
2758 * is exceeding its memory.high by checking both it and its ancestors.
2760 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2761 unsigned int nr_pages,
2764 unsigned long penalty_jiffies;
2770 * We use overage compared to memory.high to calculate the number of
2771 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2772 * fairly lenient on small overages, and increasingly harsh when the
2773 * memcg in question makes it clear that it has no intention of stopping
2774 * its crazy behaviour, so we exponentially increase the delay based on
2777 penalty_jiffies = max_overage * max_overage * HZ;
2778 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2779 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2782 * Factor in the task's own contribution to the overage, such that four
2783 * N-sized allocations are throttled approximately the same as one
2784 * 4N-sized allocation.
2786 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2787 * larger the current charge patch is than that.
2789 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2793 * Reclaims memory over the high limit. Called directly from
2794 * try_charge() (context permitting), as well as from the userland
2795 * return path where reclaim is always able to block.
2797 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2799 unsigned long penalty_jiffies;
2800 unsigned long pflags;
2801 unsigned long nr_reclaimed;
2802 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2803 int nr_retries = MAX_RECLAIM_RETRIES;
2804 struct mem_cgroup *memcg;
2805 bool in_retry = false;
2807 if (likely(!nr_pages))
2810 memcg = get_mem_cgroup_from_mm(current->mm);
2811 current->memcg_nr_pages_over_high = 0;
2815 * Bail if the task is already exiting. Unlike memory.max,
2816 * memory.high enforcement isn't as strict, and there is no
2817 * OOM killer involved, which means the excess could already
2818 * be much bigger (and still growing) than it could for
2819 * memory.max; the dying task could get stuck in fruitless
2820 * reclaim for a long time, which isn't desirable.
2822 if (task_is_dying())
2826 * The allocating task should reclaim at least the batch size, but for
2827 * subsequent retries we only want to do what's necessary to prevent oom
2828 * or breaching resource isolation.
2830 * This is distinct from memory.max or page allocator behaviour because
2831 * memory.high is currently batched, whereas memory.max and the page
2832 * allocator run every time an allocation is made.
2834 nr_reclaimed = reclaim_high(memcg,
2835 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2839 * memory.high is breached and reclaim is unable to keep up. Throttle
2840 * allocators proactively to slow down excessive growth.
2842 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2843 mem_find_max_overage(memcg));
2845 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2846 swap_find_max_overage(memcg));
2849 * Clamp the max delay per usermode return so as to still keep the
2850 * application moving forwards and also permit diagnostics, albeit
2853 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2856 * Don't sleep if the amount of jiffies this memcg owes us is so low
2857 * that it's not even worth doing, in an attempt to be nice to those who
2858 * go only a small amount over their memory.high value and maybe haven't
2859 * been aggressively reclaimed enough yet.
2861 if (penalty_jiffies <= HZ / 100)
2865 * If reclaim is making forward progress but we're still over
2866 * memory.high, we want to encourage that rather than doing allocator
2869 if (nr_reclaimed || nr_retries--) {
2875 * Reclaim didn't manage to push usage below the limit, slow
2876 * this allocating task down.
2878 * If we exit early, we're guaranteed to die (since
2879 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2880 * need to account for any ill-begotten jiffies to pay them off later.
2882 psi_memstall_enter(&pflags);
2883 schedule_timeout_killable(penalty_jiffies);
2884 psi_memstall_leave(&pflags);
2887 css_put(&memcg->css);
2890 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2891 unsigned int nr_pages)
2893 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2894 int nr_retries = MAX_RECLAIM_RETRIES;
2895 struct mem_cgroup *mem_over_limit;
2896 struct page_counter *counter;
2897 unsigned long nr_reclaimed;
2898 bool passed_oom = false;
2899 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2900 bool drained = false;
2901 bool raised_max_event = false;
2902 unsigned long pflags;
2905 if (consume_stock(memcg, nr_pages))
2908 if (!do_memsw_account() ||
2909 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2910 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2912 if (do_memsw_account())
2913 page_counter_uncharge(&memcg->memsw, batch);
2914 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2916 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2917 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2920 if (batch > nr_pages) {
2926 * Prevent unbounded recursion when reclaim operations need to
2927 * allocate memory. This might exceed the limits temporarily,
2928 * but we prefer facilitating memory reclaim and getting back
2929 * under the limit over triggering OOM kills in these cases.
2931 if (unlikely(current->flags & PF_MEMALLOC))
2934 if (unlikely(task_in_memcg_oom(current)))
2937 if (!gfpflags_allow_blocking(gfp_mask))
2940 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2941 raised_max_event = true;
2943 psi_memstall_enter(&pflags);
2944 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2945 gfp_mask, reclaim_options);
2946 psi_memstall_leave(&pflags);
2948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2952 drain_all_stock(mem_over_limit);
2957 if (gfp_mask & __GFP_NORETRY)
2960 * Even though the limit is exceeded at this point, reclaim
2961 * may have been able to free some pages. Retry the charge
2962 * before killing the task.
2964 * Only for regular pages, though: huge pages are rather
2965 * unlikely to succeed so close to the limit, and we fall back
2966 * to regular pages anyway in case of failure.
2968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2971 * At task move, charge accounts can be doubly counted. So, it's
2972 * better to wait until the end of task_move if something is going on.
2974 if (mem_cgroup_wait_acct_move(mem_over_limit))
2980 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2983 /* Avoid endless loop for tasks bypassed by the oom killer */
2984 if (passed_oom && task_is_dying())
2988 * keep retrying as long as the memcg oom killer is able to make
2989 * a forward progress or bypass the charge if the oom killer
2990 * couldn't make any progress.
2992 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2993 get_order(nr_pages * PAGE_SIZE))) {
2995 nr_retries = MAX_RECLAIM_RETRIES;
3000 * Memcg doesn't have a dedicated reserve for atomic
3001 * allocations. But like the global atomic pool, we need to
3002 * put the burden of reclaim on regular allocation requests
3003 * and let these go through as privileged allocations.
3005 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3009 * If the allocation has to be enforced, don't forget to raise
3010 * a MEMCG_MAX event.
3012 if (!raised_max_event)
3013 memcg_memory_event(mem_over_limit, MEMCG_MAX);
3016 * The allocation either can't fail or will lead to more memory
3017 * being freed very soon. Allow memory usage go over the limit
3018 * temporarily by force charging it.
3020 page_counter_charge(&memcg->memory, nr_pages);
3021 if (do_memsw_account())
3022 page_counter_charge(&memcg->memsw, nr_pages);
3027 if (batch > nr_pages)
3028 refill_stock(memcg, batch - nr_pages);
3031 * If the hierarchy is above the normal consumption range, schedule
3032 * reclaim on returning to userland. We can perform reclaim here
3033 * if __GFP_RECLAIM but let's always punt for simplicity and so that
3034 * GFP_KERNEL can consistently be used during reclaim. @memcg is
3035 * not recorded as it most likely matches current's and won't
3036 * change in the meantime. As high limit is checked again before
3037 * reclaim, the cost of mismatch is negligible.
3040 bool mem_high, swap_high;
3042 mem_high = page_counter_read(&memcg->memory) >
3043 READ_ONCE(memcg->memory.high);
3044 swap_high = page_counter_read(&memcg->swap) >
3045 READ_ONCE(memcg->swap.high);
3047 /* Don't bother a random interrupted task */
3050 schedule_work(&memcg->high_work);
3056 if (mem_high || swap_high) {
3058 * The allocating tasks in this cgroup will need to do
3059 * reclaim or be throttled to prevent further growth
3060 * of the memory or swap footprints.
3062 * Target some best-effort fairness between the tasks,
3063 * and distribute reclaim work and delay penalties
3064 * based on how much each task is actually allocating.
3066 current->memcg_nr_pages_over_high += batch;
3067 set_notify_resume(current);
3070 } while ((memcg = parent_mem_cgroup(memcg)));
3073 * Reclaim is set up above to be called from the userland
3074 * return path. But also attempt synchronous reclaim to avoid
3075 * excessive overrun while the task is still inside the
3076 * kernel. If this is successful, the return path will see it
3077 * when it rechecks the overage and simply bail out.
3079 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
3080 !(current->flags & PF_MEMALLOC) &&
3081 gfpflags_allow_blocking(gfp_mask))
3082 mem_cgroup_handle_over_high(gfp_mask);
3086 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
3087 unsigned int nr_pages)
3089 if (mem_cgroup_is_root(memcg))
3092 return try_charge_memcg(memcg, gfp_mask, nr_pages);
3096 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
3097 * @memcg: memcg previously charged.
3098 * @nr_pages: number of pages previously charged.
3100 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
3102 if (mem_cgroup_is_root(memcg))
3105 page_counter_uncharge(&memcg->memory, nr_pages);
3106 if (do_memsw_account())
3107 page_counter_uncharge(&memcg->memsw, nr_pages);
3110 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
3112 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
3114 * Any of the following ensures page's memcg stability:
3118 * - folio_memcg_lock()
3119 * - exclusive reference
3120 * - mem_cgroup_trylock_pages()
3122 folio->memcg_data = (unsigned long)memcg;
3126 * mem_cgroup_commit_charge - commit a previously successful try_charge().
3127 * @folio: folio to commit the charge to.
3128 * @memcg: memcg previously charged.
3130 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
3132 css_get(&memcg->css);
3133 commit_charge(folio, memcg);
3135 local_irq_disable();
3136 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
3137 memcg_check_events(memcg, folio_nid(folio));
3141 #ifdef CONFIG_MEMCG_KMEM
3143 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
3144 struct pglist_data *pgdat,
3145 enum node_stat_item idx, int nr)
3147 struct mem_cgroup *memcg;
3148 struct lruvec *lruvec;
3151 memcg = obj_cgroup_memcg(objcg);
3152 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3153 __mod_memcg_lruvec_state(lruvec, idx, nr);
3157 static __always_inline
3158 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
3161 * Slab objects are accounted individually, not per-page.
3162 * Memcg membership data for each individual object is saved in
3165 if (folio_test_slab(folio)) {
3166 struct slabobj_ext *obj_exts;
3170 slab = folio_slab(folio);
3171 obj_exts = slab_obj_exts(slab);
3175 off = obj_to_index(slab->slab_cache, slab, p);
3176 if (obj_exts[off].objcg)
3177 return obj_cgroup_memcg(obj_exts[off].objcg);
3183 * folio_memcg_check() is used here, because in theory we can encounter
3184 * a folio where the slab flag has been cleared already, but
3185 * slab->obj_exts has not been freed yet
3186 * folio_memcg_check() will guarantee that a proper memory
3187 * cgroup pointer or NULL will be returned.
3189 return folio_memcg_check(folio);
3193 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3195 * A passed kernel object can be a slab object, vmalloc object or a generic
3196 * kernel page, so different mechanisms for getting the memory cgroup pointer
3199 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3200 * can not know for sure how the kernel object is implemented.
3201 * mem_cgroup_from_obj() can be safely used in such cases.
3203 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3204 * cgroup_mutex, etc.
3206 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3208 struct folio *folio;
3210 if (mem_cgroup_disabled())
3213 if (unlikely(is_vmalloc_addr(p)))
3214 folio = page_folio(vmalloc_to_page(p));
3216 folio = virt_to_folio(p);
3218 return mem_cgroup_from_obj_folio(folio, p);
3222 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3223 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3224 * allocated using vmalloc().
3226 * A passed kernel object must be a slab object or a generic kernel page.
3228 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3229 * cgroup_mutex, etc.
3231 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3233 if (mem_cgroup_disabled())
3236 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3239 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3241 struct obj_cgroup *objcg = NULL;
3243 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3244 objcg = rcu_dereference(memcg->objcg);
3245 if (likely(objcg && obj_cgroup_tryget(objcg)))
3252 static struct obj_cgroup *current_objcg_update(void)
3254 struct mem_cgroup *memcg;
3255 struct obj_cgroup *old, *objcg = NULL;
3258 /* Atomically drop the update bit. */
3259 old = xchg(¤t->objcg, NULL);
3261 old = (struct obj_cgroup *)
3262 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3263 obj_cgroup_put(old);
3268 /* If new objcg is NULL, no reason for the second atomic update. */
3269 if (!current->mm || (current->flags & PF_KTHREAD))
3273 * Release the objcg pointer from the previous iteration,
3274 * if try_cmpxcg() below fails.
3276 if (unlikely(objcg)) {
3277 obj_cgroup_put(objcg);
3282 * Obtain the new objcg pointer. The current task can be
3283 * asynchronously moved to another memcg and the previous
3284 * memcg can be offlined. So let's get the memcg pointer
3285 * and try get a reference to objcg under a rcu read lock.
3289 memcg = mem_cgroup_from_task(current);
3290 objcg = __get_obj_cgroup_from_memcg(memcg);
3294 * Try set up a new objcg pointer atomically. If it
3295 * fails, it means the update flag was set concurrently, so
3296 * the whole procedure should be repeated.
3298 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
3303 __always_inline struct obj_cgroup *current_obj_cgroup(void)
3305 struct mem_cgroup *memcg;
3306 struct obj_cgroup *objcg;
3309 memcg = current->active_memcg;
3310 if (unlikely(memcg))
3313 objcg = READ_ONCE(current->objcg);
3314 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3315 objcg = current_objcg_update();
3317 * Objcg reference is kept by the task, so it's safe
3318 * to use the objcg by the current task.
3323 memcg = this_cpu_read(int_active_memcg);
3324 if (unlikely(memcg))
3331 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3333 * Memcg pointer is protected by scope (see set_active_memcg())
3334 * and is pinning the corresponding objcg, so objcg can't go
3335 * away and can be used within the scope without any additional
3338 objcg = rcu_dereference_check(memcg->objcg, 1);
3346 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3348 struct obj_cgroup *objcg;
3350 if (!memcg_kmem_online())
3353 if (folio_memcg_kmem(folio)) {
3354 objcg = __folio_objcg(folio);
3355 obj_cgroup_get(objcg);
3357 struct mem_cgroup *memcg;
3360 memcg = __folio_memcg(folio);
3362 objcg = __get_obj_cgroup_from_memcg(memcg);
3370 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3372 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3373 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3375 page_counter_charge(&memcg->kmem, nr_pages);
3377 page_counter_uncharge(&memcg->kmem, -nr_pages);
3383 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3384 * @objcg: object cgroup to uncharge
3385 * @nr_pages: number of pages to uncharge
3387 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3388 unsigned int nr_pages)
3390 struct mem_cgroup *memcg;
3392 memcg = get_mem_cgroup_from_objcg(objcg);
3394 memcg_account_kmem(memcg, -nr_pages);
3395 refill_stock(memcg, nr_pages);
3397 css_put(&memcg->css);
3401 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3402 * @objcg: object cgroup to charge
3403 * @gfp: reclaim mode
3404 * @nr_pages: number of pages to charge
3406 * Returns 0 on success, an error code on failure.
3408 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3409 unsigned int nr_pages)
3411 struct mem_cgroup *memcg;
3414 memcg = get_mem_cgroup_from_objcg(objcg);
3416 ret = try_charge_memcg(memcg, gfp, nr_pages);
3420 memcg_account_kmem(memcg, nr_pages);
3422 css_put(&memcg->css);
3428 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3429 * @page: page to charge
3430 * @gfp: reclaim mode
3431 * @order: allocation order
3433 * Returns 0 on success, an error code on failure.
3435 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3437 struct obj_cgroup *objcg;
3440 objcg = current_obj_cgroup();
3442 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3444 obj_cgroup_get(objcg);
3445 page->memcg_data = (unsigned long)objcg |
3454 * __memcg_kmem_uncharge_page: uncharge a kmem page
3455 * @page: page to uncharge
3456 * @order: allocation order
3458 void __memcg_kmem_uncharge_page(struct page *page, int order)
3460 struct folio *folio = page_folio(page);
3461 struct obj_cgroup *objcg;
3462 unsigned int nr_pages = 1 << order;
3464 if (!folio_memcg_kmem(folio))
3467 objcg = __folio_objcg(folio);
3468 obj_cgroup_uncharge_pages(objcg, nr_pages);
3469 folio->memcg_data = 0;
3470 obj_cgroup_put(objcg);
3473 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3474 enum node_stat_item idx, int nr)
3476 struct memcg_stock_pcp *stock;
3477 struct obj_cgroup *old = NULL;
3478 unsigned long flags;
3481 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3482 stock = this_cpu_ptr(&memcg_stock);
3485 * Save vmstat data in stock and skip vmstat array update unless
3486 * accumulating over a page of vmstat data or when pgdat or idx
3489 if (READ_ONCE(stock->cached_objcg) != objcg) {
3490 old = drain_obj_stock(stock);
3491 obj_cgroup_get(objcg);
3492 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3493 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3494 WRITE_ONCE(stock->cached_objcg, objcg);
3495 stock->cached_pgdat = pgdat;
3496 } else if (stock->cached_pgdat != pgdat) {
3497 /* Flush the existing cached vmstat data */
3498 struct pglist_data *oldpg = stock->cached_pgdat;
3500 if (stock->nr_slab_reclaimable_b) {
3501 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3502 stock->nr_slab_reclaimable_b);
3503 stock->nr_slab_reclaimable_b = 0;
3505 if (stock->nr_slab_unreclaimable_b) {
3506 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3507 stock->nr_slab_unreclaimable_b);
3508 stock->nr_slab_unreclaimable_b = 0;
3510 stock->cached_pgdat = pgdat;
3513 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3514 : &stock->nr_slab_unreclaimable_b;
3516 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3517 * cached locally at least once before pushing it out.
3524 if (abs(*bytes) > PAGE_SIZE) {
3532 __mod_objcg_mlstate(objcg, pgdat, idx, nr);
3534 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3535 obj_cgroup_put(old);
3538 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3540 struct memcg_stock_pcp *stock;
3541 unsigned long flags;
3544 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3546 stock = this_cpu_ptr(&memcg_stock);
3547 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3548 stock->nr_bytes -= nr_bytes;
3552 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3557 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3559 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3564 if (stock->nr_bytes) {
3565 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3566 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3569 struct mem_cgroup *memcg;
3571 memcg = get_mem_cgroup_from_objcg(old);
3573 memcg_account_kmem(memcg, -nr_pages);
3574 __refill_stock(memcg, nr_pages);
3576 css_put(&memcg->css);
3580 * The leftover is flushed to the centralized per-memcg value.
3581 * On the next attempt to refill obj stock it will be moved
3582 * to a per-cpu stock (probably, on an other CPU), see
3583 * refill_obj_stock().
3585 * How often it's flushed is a trade-off between the memory
3586 * limit enforcement accuracy and potential CPU contention,
3587 * so it might be changed in the future.
3589 atomic_add(nr_bytes, &old->nr_charged_bytes);
3590 stock->nr_bytes = 0;
3594 * Flush the vmstat data in current stock
3596 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3597 if (stock->nr_slab_reclaimable_b) {
3598 __mod_objcg_mlstate(old, stock->cached_pgdat,
3599 NR_SLAB_RECLAIMABLE_B,
3600 stock->nr_slab_reclaimable_b);
3601 stock->nr_slab_reclaimable_b = 0;
3603 if (stock->nr_slab_unreclaimable_b) {
3604 __mod_objcg_mlstate(old, stock->cached_pgdat,
3605 NR_SLAB_UNRECLAIMABLE_B,
3606 stock->nr_slab_unreclaimable_b);
3607 stock->nr_slab_unreclaimable_b = 0;
3609 stock->cached_pgdat = NULL;
3612 WRITE_ONCE(stock->cached_objcg, NULL);
3614 * The `old' objects needs to be released by the caller via
3615 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3620 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3621 struct mem_cgroup *root_memcg)
3623 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3624 struct mem_cgroup *memcg;
3627 memcg = obj_cgroup_memcg(objcg);
3628 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3635 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3636 bool allow_uncharge)
3638 struct memcg_stock_pcp *stock;
3639 struct obj_cgroup *old = NULL;
3640 unsigned long flags;
3641 unsigned int nr_pages = 0;
3643 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3645 stock = this_cpu_ptr(&memcg_stock);
3646 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3647 old = drain_obj_stock(stock);
3648 obj_cgroup_get(objcg);
3649 WRITE_ONCE(stock->cached_objcg, objcg);
3650 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3651 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3652 allow_uncharge = true; /* Allow uncharge when objcg changes */
3654 stock->nr_bytes += nr_bytes;
3656 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3657 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3658 stock->nr_bytes &= (PAGE_SIZE - 1);
3661 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3662 obj_cgroup_put(old);
3665 obj_cgroup_uncharge_pages(objcg, nr_pages);
3668 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3670 unsigned int nr_pages, nr_bytes;
3673 if (consume_obj_stock(objcg, size))
3677 * In theory, objcg->nr_charged_bytes can have enough
3678 * pre-charged bytes to satisfy the allocation. However,
3679 * flushing objcg->nr_charged_bytes requires two atomic
3680 * operations, and objcg->nr_charged_bytes can't be big.
3681 * The shared objcg->nr_charged_bytes can also become a
3682 * performance bottleneck if all tasks of the same memcg are
3683 * trying to update it. So it's better to ignore it and try
3684 * grab some new pages. The stock's nr_bytes will be flushed to
3685 * objcg->nr_charged_bytes later on when objcg changes.
3687 * The stock's nr_bytes may contain enough pre-charged bytes
3688 * to allow one less page from being charged, but we can't rely
3689 * on the pre-charged bytes not being changed outside of
3690 * consume_obj_stock() or refill_obj_stock(). So ignore those
3691 * pre-charged bytes as well when charging pages. To avoid a
3692 * page uncharge right after a page charge, we set the
3693 * allow_uncharge flag to false when calling refill_obj_stock()
3694 * to temporarily allow the pre-charged bytes to exceed the page
3695 * size limit. The maximum reachable value of the pre-charged
3696 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3699 nr_pages = size >> PAGE_SHIFT;
3700 nr_bytes = size & (PAGE_SIZE - 1);
3705 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3706 if (!ret && nr_bytes)
3707 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3712 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3714 refill_obj_stock(objcg, size, true);
3717 static inline size_t obj_full_size(struct kmem_cache *s)
3720 * For each accounted object there is an extra space which is used
3721 * to store obj_cgroup membership. Charge it too.
3723 return s->size + sizeof(struct obj_cgroup *);
3726 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3727 gfp_t flags, size_t size, void **p)
3729 struct obj_cgroup *objcg;
3735 * The obtained objcg pointer is safe to use within the current scope,
3736 * defined by current task or set_active_memcg() pair.
3737 * obj_cgroup_get() is used to get a permanent reference.
3739 objcg = current_obj_cgroup();
3744 * slab_alloc_node() avoids the NULL check, so we might be called with a
3745 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3746 * the whole requested size.
3747 * return success as there's nothing to free back
3749 if (unlikely(*p == NULL))
3752 flags &= gfp_allowed_mask;
3756 struct mem_cgroup *memcg;
3758 memcg = get_mem_cgroup_from_objcg(objcg);
3759 ret = memcg_list_lru_alloc(memcg, lru, flags);
3760 css_put(&memcg->css);
3766 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
3769 for (i = 0; i < size; i++) {
3770 slab = virt_to_slab(p[i]);
3772 if (!slab_obj_exts(slab) &&
3773 alloc_slab_obj_exts(slab, s, flags, false)) {
3774 obj_cgroup_uncharge(objcg, obj_full_size(s));
3778 off = obj_to_index(s, slab, p[i]);
3779 obj_cgroup_get(objcg);
3780 slab_obj_exts(slab)[off].objcg = objcg;
3781 mod_objcg_state(objcg, slab_pgdat(slab),
3782 cache_vmstat_idx(s), obj_full_size(s));
3788 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3789 void **p, int objects, struct slabobj_ext *obj_exts)
3791 for (int i = 0; i < objects; i++) {
3792 struct obj_cgroup *objcg;
3795 off = obj_to_index(s, slab, p[i]);
3796 objcg = obj_exts[off].objcg;
3800 obj_exts[off].objcg = NULL;
3801 obj_cgroup_uncharge(objcg, obj_full_size(s));
3802 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3804 obj_cgroup_put(objcg);
3807 #endif /* CONFIG_MEMCG_KMEM */
3810 * Because page_memcg(head) is not set on tails, set it now.
3812 void split_page_memcg(struct page *head, int old_order, int new_order)
3814 struct folio *folio = page_folio(head);
3815 struct mem_cgroup *memcg = folio_memcg(folio);
3817 unsigned int old_nr = 1 << old_order;
3818 unsigned int new_nr = 1 << new_order;
3820 if (mem_cgroup_disabled() || !memcg)
3823 for (i = new_nr; i < old_nr; i += new_nr)
3824 folio_page(folio, i)->memcg_data = folio->memcg_data;
3826 if (folio_memcg_kmem(folio))
3827 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3829 css_get_many(&memcg->css, old_nr / new_nr - 1);
3834 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3835 * @entry: swap entry to be moved
3836 * @from: mem_cgroup which the entry is moved from
3837 * @to: mem_cgroup which the entry is moved to
3839 * It succeeds only when the swap_cgroup's record for this entry is the same
3840 * as the mem_cgroup's id of @from.
3842 * Returns 0 on success, -EINVAL on failure.
3844 * The caller must have charged to @to, IOW, called page_counter_charge() about
3845 * both res and memsw, and called css_get().
3847 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3848 struct mem_cgroup *from, struct mem_cgroup *to)
3850 unsigned short old_id, new_id;
3852 old_id = mem_cgroup_id(from);
3853 new_id = mem_cgroup_id(to);
3855 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3856 mod_memcg_state(from, MEMCG_SWAP, -1);
3857 mod_memcg_state(to, MEMCG_SWAP, 1);
3863 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3864 struct mem_cgroup *from, struct mem_cgroup *to)
3870 static DEFINE_MUTEX(memcg_max_mutex);
3872 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3873 unsigned long max, bool memsw)
3875 bool enlarge = false;
3876 bool drained = false;
3878 bool limits_invariant;
3879 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3882 if (signal_pending(current)) {
3887 mutex_lock(&memcg_max_mutex);
3889 * Make sure that the new limit (memsw or memory limit) doesn't
3890 * break our basic invariant rule memory.max <= memsw.max.
3892 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3893 max <= memcg->memsw.max;
3894 if (!limits_invariant) {
3895 mutex_unlock(&memcg_max_mutex);
3899 if (max > counter->max)
3901 ret = page_counter_set_max(counter, max);
3902 mutex_unlock(&memcg_max_mutex);
3908 drain_all_stock(memcg);
3913 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3914 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3920 if (!ret && enlarge)
3921 memcg_oom_recover(memcg);
3926 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3928 unsigned long *total_scanned)
3930 unsigned long nr_reclaimed = 0;
3931 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3932 unsigned long reclaimed;
3934 struct mem_cgroup_tree_per_node *mctz;
3935 unsigned long excess;
3937 if (lru_gen_enabled())
3943 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3946 * Do not even bother to check the largest node if the root
3947 * is empty. Do it lockless to prevent lock bouncing. Races
3948 * are acceptable as soft limit is best effort anyway.
3950 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3954 * This loop can run a while, specially if mem_cgroup's continuously
3955 * keep exceeding their soft limit and putting the system under
3962 mz = mem_cgroup_largest_soft_limit_node(mctz);
3966 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3967 gfp_mask, total_scanned);
3968 nr_reclaimed += reclaimed;
3969 spin_lock_irq(&mctz->lock);
3972 * If we failed to reclaim anything from this memory cgroup
3973 * it is time to move on to the next cgroup
3977 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3979 excess = soft_limit_excess(mz->memcg);
3981 * One school of thought says that we should not add
3982 * back the node to the tree if reclaim returns 0.
3983 * But our reclaim could return 0, simply because due
3984 * to priority we are exposing a smaller subset of
3985 * memory to reclaim from. Consider this as a longer
3988 /* If excess == 0, no tree ops */
3989 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3990 spin_unlock_irq(&mctz->lock);
3991 css_put(&mz->memcg->css);
3994 * Could not reclaim anything and there are no more
3995 * mem cgroups to try or we seem to be looping without
3996 * reclaiming anything.
3998 if (!nr_reclaimed &&
4000 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4002 } while (!nr_reclaimed);
4004 css_put(&next_mz->memcg->css);
4005 return nr_reclaimed;
4009 * Reclaims as many pages from the given memcg as possible.
4011 * Caller is responsible for holding css reference for memcg.
4013 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4015 int nr_retries = MAX_RECLAIM_RETRIES;
4017 /* we call try-to-free pages for make this cgroup empty */
4018 lru_add_drain_all();
4020 drain_all_stock(memcg);
4022 /* try to free all pages in this cgroup */
4023 while (nr_retries && page_counter_read(&memcg->memory)) {
4024 if (signal_pending(current))
4027 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
4028 MEMCG_RECLAIM_MAY_SWAP))
4035 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4036 char *buf, size_t nbytes,
4039 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4041 if (mem_cgroup_is_root(memcg))
4043 return mem_cgroup_force_empty(memcg) ?: nbytes;
4046 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4052 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4053 struct cftype *cft, u64 val)
4058 pr_warn_once("Non-hierarchical mode is deprecated. "
4060 "depend on this functionality.\n");
4065 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4069 if (mem_cgroup_is_root(memcg)) {
4071 * Approximate root's usage from global state. This isn't
4072 * perfect, but the root usage was always an approximation.
4074 val = global_node_page_state(NR_FILE_PAGES) +
4075 global_node_page_state(NR_ANON_MAPPED);
4077 val += total_swap_pages - get_nr_swap_pages();
4080 val = page_counter_read(&memcg->memory);
4082 val = page_counter_read(&memcg->memsw);
4095 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4098 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4099 struct page_counter *counter;
4101 switch (MEMFILE_TYPE(cft->private)) {
4103 counter = &memcg->memory;
4106 counter = &memcg->memsw;
4109 counter = &memcg->kmem;
4112 counter = &memcg->tcpmem;
4118 switch (MEMFILE_ATTR(cft->private)) {
4120 if (counter == &memcg->memory)
4121 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
4122 if (counter == &memcg->memsw)
4123 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
4124 return (u64)page_counter_read(counter) * PAGE_SIZE;
4126 return (u64)counter->max * PAGE_SIZE;
4128 return (u64)counter->watermark * PAGE_SIZE;
4130 return counter->failcnt;
4131 case RES_SOFT_LIMIT:
4132 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
4139 * This function doesn't do anything useful. Its only job is to provide a read
4140 * handler for a file so that cgroup_file_mode() will add read permissions.
4142 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
4143 __always_unused void *v)
4148 #ifdef CONFIG_MEMCG_KMEM
4149 static int memcg_online_kmem(struct mem_cgroup *memcg)
4151 struct obj_cgroup *objcg;
4153 if (mem_cgroup_kmem_disabled())
4156 if (unlikely(mem_cgroup_is_root(memcg)))
4159 objcg = obj_cgroup_alloc();
4163 objcg->memcg = memcg;
4164 rcu_assign_pointer(memcg->objcg, objcg);
4165 obj_cgroup_get(objcg);
4166 memcg->orig_objcg = objcg;
4168 static_branch_enable(&memcg_kmem_online_key);
4170 memcg->kmemcg_id = memcg->id.id;
4175 static void memcg_offline_kmem(struct mem_cgroup *memcg)
4177 struct mem_cgroup *parent;
4179 if (mem_cgroup_kmem_disabled())
4182 if (unlikely(mem_cgroup_is_root(memcg)))
4185 parent = parent_mem_cgroup(memcg);
4187 parent = root_mem_cgroup;
4189 memcg_reparent_objcgs(memcg, parent);
4192 * After we have finished memcg_reparent_objcgs(), all list_lrus
4193 * corresponding to this cgroup are guaranteed to remain empty.
4194 * The ordering is imposed by list_lru_node->lock taken by
4195 * memcg_reparent_list_lrus().
4197 memcg_reparent_list_lrus(memcg, parent);
4200 static int memcg_online_kmem(struct mem_cgroup *memcg)
4204 static void memcg_offline_kmem(struct mem_cgroup *memcg)
4207 #endif /* CONFIG_MEMCG_KMEM */
4209 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
4213 mutex_lock(&memcg_max_mutex);
4215 ret = page_counter_set_max(&memcg->tcpmem, max);
4219 if (!memcg->tcpmem_active) {
4221 * The active flag needs to be written after the static_key
4222 * update. This is what guarantees that the socket activation
4223 * function is the last one to run. See mem_cgroup_sk_alloc()
4224 * for details, and note that we don't mark any socket as
4225 * belonging to this memcg until that flag is up.
4227 * We need to do this, because static_keys will span multiple
4228 * sites, but we can't control their order. If we mark a socket
4229 * as accounted, but the accounting functions are not patched in
4230 * yet, we'll lose accounting.
4232 * We never race with the readers in mem_cgroup_sk_alloc(),
4233 * because when this value change, the code to process it is not
4236 static_branch_inc(&memcg_sockets_enabled_key);
4237 memcg->tcpmem_active = true;
4240 mutex_unlock(&memcg_max_mutex);
4245 * The user of this function is...
4248 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4249 char *buf, size_t nbytes, loff_t off)
4251 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4252 unsigned long nr_pages;
4255 buf = strstrip(buf);
4256 ret = page_counter_memparse(buf, "-1", &nr_pages);
4260 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4262 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4266 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4268 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
4271 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
4274 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4275 "Writing any value to this file has no effect. "
4277 "depend on this functionality.\n");
4281 ret = memcg_update_tcp_max(memcg, nr_pages);
4285 case RES_SOFT_LIMIT:
4286 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4289 WRITE_ONCE(memcg->soft_limit, nr_pages);
4294 return ret ?: nbytes;
4297 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4298 size_t nbytes, loff_t off)
4300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4301 struct page_counter *counter;
4303 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4305 counter = &memcg->memory;
4308 counter = &memcg->memsw;
4311 counter = &memcg->kmem;
4314 counter = &memcg->tcpmem;
4320 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4322 page_counter_reset_watermark(counter);
4325 counter->failcnt = 0;
4334 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4337 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4341 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4342 struct cftype *cft, u64 val)
4344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4346 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4348 "depend on this functionality.\n");
4350 if (val & ~MOVE_MASK)
4354 * No kind of locking is needed in here, because ->can_attach() will
4355 * check this value once in the beginning of the process, and then carry
4356 * on with stale data. This means that changes to this value will only
4357 * affect task migrations starting after the change.
4359 memcg->move_charge_at_immigrate = val;
4363 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4364 struct cftype *cft, u64 val)
4372 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4373 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4374 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4376 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4377 int nid, unsigned int lru_mask, bool tree)
4379 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4380 unsigned long nr = 0;
4383 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4386 if (!(BIT(lru) & lru_mask))
4389 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4391 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4396 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4397 unsigned int lru_mask,
4400 unsigned long nr = 0;
4404 if (!(BIT(lru) & lru_mask))
4407 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4409 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4414 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4418 unsigned int lru_mask;
4421 static const struct numa_stat stats[] = {
4422 { "total", LRU_ALL },
4423 { "file", LRU_ALL_FILE },
4424 { "anon", LRU_ALL_ANON },
4425 { "unevictable", BIT(LRU_UNEVICTABLE) },
4427 const struct numa_stat *stat;
4429 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4431 mem_cgroup_flush_stats(memcg);
4433 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4434 seq_printf(m, "%s=%lu", stat->name,
4435 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4437 for_each_node_state(nid, N_MEMORY)
4438 seq_printf(m, " N%d=%lu", nid,
4439 mem_cgroup_node_nr_lru_pages(memcg, nid,
4440 stat->lru_mask, false));
4444 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4446 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4447 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4449 for_each_node_state(nid, N_MEMORY)
4450 seq_printf(m, " N%d=%lu", nid,
4451 mem_cgroup_node_nr_lru_pages(memcg, nid,
4452 stat->lru_mask, true));
4458 #endif /* CONFIG_NUMA */
4460 static const unsigned int memcg1_stats[] = {
4463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4470 WORKINGSET_REFAULT_ANON,
4471 WORKINGSET_REFAULT_FILE,
4478 static const char *const memcg1_stat_names[] = {
4481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4488 "workingset_refault_anon",
4489 "workingset_refault_file",
4496 /* Universal VM events cgroup1 shows, original sort order */
4497 static const unsigned int memcg1_events[] = {
4504 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4506 unsigned long memory, memsw;
4507 struct mem_cgroup *mi;
4510 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4512 mem_cgroup_flush_stats(memcg);
4514 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4517 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4518 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
4521 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4522 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4523 memcg_events_local(memcg, memcg1_events[i]));
4525 for (i = 0; i < NR_LRU_LISTS; i++)
4526 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4527 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4530 /* Hierarchical information */
4531 memory = memsw = PAGE_COUNTER_MAX;
4532 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4533 memory = min(memory, READ_ONCE(mi->memory.max));
4534 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4536 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4537 (u64)memory * PAGE_SIZE);
4538 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4539 (u64)memsw * PAGE_SIZE);
4541 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4544 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
4545 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4549 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4550 seq_buf_printf(s, "total_%s %llu\n",
4551 vm_event_name(memcg1_events[i]),
4552 (u64)memcg_events(memcg, memcg1_events[i]));
4554 for (i = 0; i < NR_LRU_LISTS; i++)
4555 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4556 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4559 #ifdef CONFIG_DEBUG_VM
4562 struct mem_cgroup_per_node *mz;
4563 unsigned long anon_cost = 0;
4564 unsigned long file_cost = 0;
4566 for_each_online_pgdat(pgdat) {
4567 mz = memcg->nodeinfo[pgdat->node_id];
4569 anon_cost += mz->lruvec.anon_cost;
4570 file_cost += mz->lruvec.file_cost;
4572 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4573 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4578 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4583 return mem_cgroup_swappiness(memcg);
4586 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4587 struct cftype *cft, u64 val)
4589 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4594 if (!mem_cgroup_is_root(memcg))
4595 WRITE_ONCE(memcg->swappiness, val);
4597 WRITE_ONCE(vm_swappiness, val);
4602 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4604 struct mem_cgroup_threshold_ary *t;
4605 unsigned long usage;
4610 t = rcu_dereference(memcg->thresholds.primary);
4612 t = rcu_dereference(memcg->memsw_thresholds.primary);
4617 usage = mem_cgroup_usage(memcg, swap);
4620 * current_threshold points to threshold just below or equal to usage.
4621 * If it's not true, a threshold was crossed after last
4622 * call of __mem_cgroup_threshold().
4624 i = t->current_threshold;
4627 * Iterate backward over array of thresholds starting from
4628 * current_threshold and check if a threshold is crossed.
4629 * If none of thresholds below usage is crossed, we read
4630 * only one element of the array here.
4632 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4633 eventfd_signal(t->entries[i].eventfd);
4635 /* i = current_threshold + 1 */
4639 * Iterate forward over array of thresholds starting from
4640 * current_threshold+1 and check if a threshold is crossed.
4641 * If none of thresholds above usage is crossed, we read
4642 * only one element of the array here.
4644 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4645 eventfd_signal(t->entries[i].eventfd);
4647 /* Update current_threshold */
4648 t->current_threshold = i - 1;
4653 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4656 __mem_cgroup_threshold(memcg, false);
4657 if (do_memsw_account())
4658 __mem_cgroup_threshold(memcg, true);
4660 memcg = parent_mem_cgroup(memcg);
4664 static int compare_thresholds(const void *a, const void *b)
4666 const struct mem_cgroup_threshold *_a = a;
4667 const struct mem_cgroup_threshold *_b = b;
4669 if (_a->threshold > _b->threshold)
4672 if (_a->threshold < _b->threshold)
4678 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4680 struct mem_cgroup_eventfd_list *ev;
4682 spin_lock(&memcg_oom_lock);
4684 list_for_each_entry(ev, &memcg->oom_notify, list)
4685 eventfd_signal(ev->eventfd);
4687 spin_unlock(&memcg_oom_lock);
4691 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4693 struct mem_cgroup *iter;
4695 for_each_mem_cgroup_tree(iter, memcg)
4696 mem_cgroup_oom_notify_cb(iter);
4699 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4700 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4702 struct mem_cgroup_thresholds *thresholds;
4703 struct mem_cgroup_threshold_ary *new;
4704 unsigned long threshold;
4705 unsigned long usage;
4708 ret = page_counter_memparse(args, "-1", &threshold);
4712 mutex_lock(&memcg->thresholds_lock);
4715 thresholds = &memcg->thresholds;
4716 usage = mem_cgroup_usage(memcg, false);
4717 } else if (type == _MEMSWAP) {
4718 thresholds = &memcg->memsw_thresholds;
4719 usage = mem_cgroup_usage(memcg, true);
4723 /* Check if a threshold crossed before adding a new one */
4724 if (thresholds->primary)
4725 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4727 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4729 /* Allocate memory for new array of thresholds */
4730 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4737 /* Copy thresholds (if any) to new array */
4738 if (thresholds->primary)
4739 memcpy(new->entries, thresholds->primary->entries,
4740 flex_array_size(new, entries, size - 1));
4742 /* Add new threshold */
4743 new->entries[size - 1].eventfd = eventfd;
4744 new->entries[size - 1].threshold = threshold;
4746 /* Sort thresholds. Registering of new threshold isn't time-critical */
4747 sort(new->entries, size, sizeof(*new->entries),
4748 compare_thresholds, NULL);
4750 /* Find current threshold */
4751 new->current_threshold = -1;
4752 for (i = 0; i < size; i++) {
4753 if (new->entries[i].threshold <= usage) {
4755 * new->current_threshold will not be used until
4756 * rcu_assign_pointer(), so it's safe to increment
4759 ++new->current_threshold;
4764 /* Free old spare buffer and save old primary buffer as spare */
4765 kfree(thresholds->spare);
4766 thresholds->spare = thresholds->primary;
4768 rcu_assign_pointer(thresholds->primary, new);
4770 /* To be sure that nobody uses thresholds */
4774 mutex_unlock(&memcg->thresholds_lock);
4779 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4780 struct eventfd_ctx *eventfd, const char *args)
4782 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4785 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4786 struct eventfd_ctx *eventfd, const char *args)
4788 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4791 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4792 struct eventfd_ctx *eventfd, enum res_type type)
4794 struct mem_cgroup_thresholds *thresholds;
4795 struct mem_cgroup_threshold_ary *new;
4796 unsigned long usage;
4797 int i, j, size, entries;
4799 mutex_lock(&memcg->thresholds_lock);
4802 thresholds = &memcg->thresholds;
4803 usage = mem_cgroup_usage(memcg, false);
4804 } else if (type == _MEMSWAP) {
4805 thresholds = &memcg->memsw_thresholds;
4806 usage = mem_cgroup_usage(memcg, true);
4810 if (!thresholds->primary)
4813 /* Check if a threshold crossed before removing */
4814 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4816 /* Calculate new number of threshold */
4818 for (i = 0; i < thresholds->primary->size; i++) {
4819 if (thresholds->primary->entries[i].eventfd != eventfd)
4825 new = thresholds->spare;
4827 /* If no items related to eventfd have been cleared, nothing to do */
4831 /* Set thresholds array to NULL if we don't have thresholds */
4840 /* Copy thresholds and find current threshold */
4841 new->current_threshold = -1;
4842 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4843 if (thresholds->primary->entries[i].eventfd == eventfd)
4846 new->entries[j] = thresholds->primary->entries[i];
4847 if (new->entries[j].threshold <= usage) {
4849 * new->current_threshold will not be used
4850 * until rcu_assign_pointer(), so it's safe to increment
4853 ++new->current_threshold;
4859 /* Swap primary and spare array */
4860 thresholds->spare = thresholds->primary;
4862 rcu_assign_pointer(thresholds->primary, new);
4864 /* To be sure that nobody uses thresholds */
4867 /* If all events are unregistered, free the spare array */
4869 kfree(thresholds->spare);
4870 thresholds->spare = NULL;
4873 mutex_unlock(&memcg->thresholds_lock);
4876 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4877 struct eventfd_ctx *eventfd)
4879 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4882 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4883 struct eventfd_ctx *eventfd)
4885 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4888 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4889 struct eventfd_ctx *eventfd, const char *args)
4891 struct mem_cgroup_eventfd_list *event;
4893 event = kmalloc(sizeof(*event), GFP_KERNEL);
4897 spin_lock(&memcg_oom_lock);
4899 event->eventfd = eventfd;
4900 list_add(&event->list, &memcg->oom_notify);
4902 /* already in OOM ? */
4903 if (memcg->under_oom)
4904 eventfd_signal(eventfd);
4905 spin_unlock(&memcg_oom_lock);
4910 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4911 struct eventfd_ctx *eventfd)
4913 struct mem_cgroup_eventfd_list *ev, *tmp;
4915 spin_lock(&memcg_oom_lock);
4917 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4918 if (ev->eventfd == eventfd) {
4919 list_del(&ev->list);
4924 spin_unlock(&memcg_oom_lock);
4927 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4929 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4931 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4932 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4933 seq_printf(sf, "oom_kill %lu\n",
4934 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4938 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4939 struct cftype *cft, u64 val)
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4943 /* cannot set to root cgroup and only 0 and 1 are allowed */
4944 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4947 WRITE_ONCE(memcg->oom_kill_disable, val);
4949 memcg_oom_recover(memcg);
4954 #ifdef CONFIG_CGROUP_WRITEBACK
4956 #include <trace/events/writeback.h>
4958 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4960 return wb_domain_init(&memcg->cgwb_domain, gfp);
4963 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4965 wb_domain_exit(&memcg->cgwb_domain);
4968 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4970 wb_domain_size_changed(&memcg->cgwb_domain);
4973 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4975 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4977 if (!memcg->css.parent)
4980 return &memcg->cgwb_domain;
4984 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4985 * @wb: bdi_writeback in question
4986 * @pfilepages: out parameter for number of file pages
4987 * @pheadroom: out parameter for number of allocatable pages according to memcg
4988 * @pdirty: out parameter for number of dirty pages
4989 * @pwriteback: out parameter for number of pages under writeback
4991 * Determine the numbers of file, headroom, dirty, and writeback pages in
4992 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4993 * is a bit more involved.
4995 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4996 * headroom is calculated as the lowest headroom of itself and the
4997 * ancestors. Note that this doesn't consider the actual amount of
4998 * available memory in the system. The caller should further cap
4999 * *@pheadroom accordingly.
5001 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
5002 unsigned long *pheadroom, unsigned long *pdirty,
5003 unsigned long *pwriteback)
5005 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
5006 struct mem_cgroup *parent;
5008 mem_cgroup_flush_stats_ratelimited(memcg);
5010 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
5011 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
5012 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
5013 memcg_page_state(memcg, NR_ACTIVE_FILE);
5015 *pheadroom = PAGE_COUNTER_MAX;
5016 while ((parent = parent_mem_cgroup(memcg))) {
5017 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
5018 READ_ONCE(memcg->memory.high));
5019 unsigned long used = page_counter_read(&memcg->memory);
5021 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
5027 * Foreign dirty flushing
5029 * There's an inherent mismatch between memcg and writeback. The former
5030 * tracks ownership per-page while the latter per-inode. This was a
5031 * deliberate design decision because honoring per-page ownership in the
5032 * writeback path is complicated, may lead to higher CPU and IO overheads
5033 * and deemed unnecessary given that write-sharing an inode across
5034 * different cgroups isn't a common use-case.
5036 * Combined with inode majority-writer ownership switching, this works well
5037 * enough in most cases but there are some pathological cases. For
5038 * example, let's say there are two cgroups A and B which keep writing to
5039 * different but confined parts of the same inode. B owns the inode and
5040 * A's memory is limited far below B's. A's dirty ratio can rise enough to
5041 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
5042 * triggering background writeback. A will be slowed down without a way to
5043 * make writeback of the dirty pages happen.
5045 * Conditions like the above can lead to a cgroup getting repeatedly and
5046 * severely throttled after making some progress after each
5047 * dirty_expire_interval while the underlying IO device is almost
5050 * Solving this problem completely requires matching the ownership tracking
5051 * granularities between memcg and writeback in either direction. However,
5052 * the more egregious behaviors can be avoided by simply remembering the
5053 * most recent foreign dirtying events and initiating remote flushes on
5054 * them when local writeback isn't enough to keep the memory clean enough.
5056 * The following two functions implement such mechanism. When a foreign
5057 * page - a page whose memcg and writeback ownerships don't match - is
5058 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
5059 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
5060 * decides that the memcg needs to sleep due to high dirty ratio, it calls
5061 * mem_cgroup_flush_foreign() which queues writeback on the recorded
5062 * foreign bdi_writebacks which haven't expired. Both the numbers of
5063 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
5064 * limited to MEMCG_CGWB_FRN_CNT.
5066 * The mechanism only remembers IDs and doesn't hold any object references.
5067 * As being wrong occasionally doesn't matter, updates and accesses to the
5068 * records are lockless and racy.
5070 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
5071 struct bdi_writeback *wb)
5073 struct mem_cgroup *memcg = folio_memcg(folio);
5074 struct memcg_cgwb_frn *frn;
5075 u64 now = get_jiffies_64();
5076 u64 oldest_at = now;
5080 trace_track_foreign_dirty(folio, wb);
5083 * Pick the slot to use. If there is already a slot for @wb, keep
5084 * using it. If not replace the oldest one which isn't being
5087 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
5088 frn = &memcg->cgwb_frn[i];
5089 if (frn->bdi_id == wb->bdi->id &&
5090 frn->memcg_id == wb->memcg_css->id)
5092 if (time_before64(frn->at, oldest_at) &&
5093 atomic_read(&frn->done.cnt) == 1) {
5095 oldest_at = frn->at;
5099 if (i < MEMCG_CGWB_FRN_CNT) {
5101 * Re-using an existing one. Update timestamp lazily to
5102 * avoid making the cacheline hot. We want them to be
5103 * reasonably up-to-date and significantly shorter than
5104 * dirty_expire_interval as that's what expires the record.
5105 * Use the shorter of 1s and dirty_expire_interval / 8.
5107 unsigned long update_intv =
5108 min_t(unsigned long, HZ,
5109 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
5111 if (time_before64(frn->at, now - update_intv))
5113 } else if (oldest >= 0) {
5114 /* replace the oldest free one */
5115 frn = &memcg->cgwb_frn[oldest];
5116 frn->bdi_id = wb->bdi->id;
5117 frn->memcg_id = wb->memcg_css->id;
5122 /* issue foreign writeback flushes for recorded foreign dirtying events */
5123 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
5125 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
5126 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
5127 u64 now = jiffies_64;
5130 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
5131 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
5134 * If the record is older than dirty_expire_interval,
5135 * writeback on it has already started. No need to kick it
5136 * off again. Also, don't start a new one if there's
5137 * already one in flight.
5139 if (time_after64(frn->at, now - intv) &&
5140 atomic_read(&frn->done.cnt) == 1) {
5142 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
5143 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
5144 WB_REASON_FOREIGN_FLUSH,
5150 #else /* CONFIG_CGROUP_WRITEBACK */
5152 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
5157 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
5161 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
5165 #endif /* CONFIG_CGROUP_WRITEBACK */
5168 * DO NOT USE IN NEW FILES.
5170 * "cgroup.event_control" implementation.
5172 * This is way over-engineered. It tries to support fully configurable
5173 * events for each user. Such level of flexibility is completely
5174 * unnecessary especially in the light of the planned unified hierarchy.
5176 * Please deprecate this and replace with something simpler if at all
5181 * Unregister event and free resources.
5183 * Gets called from workqueue.
5185 static void memcg_event_remove(struct work_struct *work)
5187 struct mem_cgroup_event *event =
5188 container_of(work, struct mem_cgroup_event, remove);
5189 struct mem_cgroup *memcg = event->memcg;
5191 remove_wait_queue(event->wqh, &event->wait);
5193 event->unregister_event(memcg, event->eventfd);
5195 /* Notify userspace the event is going away. */
5196 eventfd_signal(event->eventfd);
5198 eventfd_ctx_put(event->eventfd);
5200 css_put(&memcg->css);
5204 * Gets called on EPOLLHUP on eventfd when user closes it.
5206 * Called with wqh->lock held and interrupts disabled.
5208 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
5209 int sync, void *key)
5211 struct mem_cgroup_event *event =
5212 container_of(wait, struct mem_cgroup_event, wait);
5213 struct mem_cgroup *memcg = event->memcg;
5214 __poll_t flags = key_to_poll(key);
5216 if (flags & EPOLLHUP) {
5218 * If the event has been detached at cgroup removal, we
5219 * can simply return knowing the other side will cleanup
5222 * We can't race against event freeing since the other
5223 * side will require wqh->lock via remove_wait_queue(),
5226 spin_lock(&memcg->event_list_lock);
5227 if (!list_empty(&event->list)) {
5228 list_del_init(&event->list);
5230 * We are in atomic context, but cgroup_event_remove()
5231 * may sleep, so we have to call it in workqueue.
5233 schedule_work(&event->remove);
5235 spin_unlock(&memcg->event_list_lock);
5241 static void memcg_event_ptable_queue_proc(struct file *file,
5242 wait_queue_head_t *wqh, poll_table *pt)
5244 struct mem_cgroup_event *event =
5245 container_of(pt, struct mem_cgroup_event, pt);
5248 add_wait_queue(wqh, &event->wait);
5252 * DO NOT USE IN NEW FILES.
5254 * Parse input and register new cgroup event handler.
5256 * Input must be in format '<event_fd> <control_fd> <args>'.
5257 * Interpretation of args is defined by control file implementation.
5259 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5260 char *buf, size_t nbytes, loff_t off)
5262 struct cgroup_subsys_state *css = of_css(of);
5263 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5264 struct mem_cgroup_event *event;
5265 struct cgroup_subsys_state *cfile_css;
5266 unsigned int efd, cfd;
5269 struct dentry *cdentry;
5274 if (IS_ENABLED(CONFIG_PREEMPT_RT))
5277 buf = strstrip(buf);
5279 efd = simple_strtoul(buf, &endp, 10);
5284 cfd = simple_strtoul(buf, &endp, 10);
5285 if ((*endp != ' ') && (*endp != '\0'))
5289 event = kzalloc(sizeof(*event), GFP_KERNEL);
5293 event->memcg = memcg;
5294 INIT_LIST_HEAD(&event->list);
5295 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5296 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5297 INIT_WORK(&event->remove, memcg_event_remove);
5305 event->eventfd = eventfd_ctx_fileget(efile.file);
5306 if (IS_ERR(event->eventfd)) {
5307 ret = PTR_ERR(event->eventfd);
5314 goto out_put_eventfd;
5317 /* the process need read permission on control file */
5318 /* AV: shouldn't we check that it's been opened for read instead? */
5319 ret = file_permission(cfile.file, MAY_READ);
5324 * The control file must be a regular cgroup1 file. As a regular cgroup
5325 * file can't be renamed, it's safe to access its name afterwards.
5327 cdentry = cfile.file->f_path.dentry;
5328 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5334 * Determine the event callbacks and set them in @event. This used
5335 * to be done via struct cftype but cgroup core no longer knows
5336 * about these events. The following is crude but the whole thing
5337 * is for compatibility anyway.
5339 * DO NOT ADD NEW FILES.
5341 name = cdentry->d_name.name;
5343 if (!strcmp(name, "memory.usage_in_bytes")) {
5344 event->register_event = mem_cgroup_usage_register_event;
5345 event->unregister_event = mem_cgroup_usage_unregister_event;
5346 } else if (!strcmp(name, "memory.oom_control")) {
5347 event->register_event = mem_cgroup_oom_register_event;
5348 event->unregister_event = mem_cgroup_oom_unregister_event;
5349 } else if (!strcmp(name, "memory.pressure_level")) {
5350 event->register_event = vmpressure_register_event;
5351 event->unregister_event = vmpressure_unregister_event;
5352 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5353 event->register_event = memsw_cgroup_usage_register_event;
5354 event->unregister_event = memsw_cgroup_usage_unregister_event;
5361 * Verify @cfile should belong to @css. Also, remaining events are
5362 * automatically removed on cgroup destruction but the removal is
5363 * asynchronous, so take an extra ref on @css.
5365 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5366 &memory_cgrp_subsys);
5368 if (IS_ERR(cfile_css))
5370 if (cfile_css != css) {
5375 ret = event->register_event(memcg, event->eventfd, buf);
5379 vfs_poll(efile.file, &event->pt);
5381 spin_lock_irq(&memcg->event_list_lock);
5382 list_add(&event->list, &memcg->event_list);
5383 spin_unlock_irq(&memcg->event_list_lock);
5395 eventfd_ctx_put(event->eventfd);
5404 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5405 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5409 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5415 static int memory_stat_show(struct seq_file *m, void *v);
5417 static struct cftype mem_cgroup_legacy_files[] = {
5419 .name = "usage_in_bytes",
5420 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5421 .read_u64 = mem_cgroup_read_u64,
5424 .name = "max_usage_in_bytes",
5425 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5426 .write = mem_cgroup_reset,
5427 .read_u64 = mem_cgroup_read_u64,
5430 .name = "limit_in_bytes",
5431 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5432 .write = mem_cgroup_write,
5433 .read_u64 = mem_cgroup_read_u64,
5436 .name = "soft_limit_in_bytes",
5437 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5438 .write = mem_cgroup_write,
5439 .read_u64 = mem_cgroup_read_u64,
5443 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5444 .write = mem_cgroup_reset,
5445 .read_u64 = mem_cgroup_read_u64,
5449 .seq_show = memory_stat_show,
5452 .name = "force_empty",
5453 .write = mem_cgroup_force_empty_write,
5456 .name = "use_hierarchy",
5457 .write_u64 = mem_cgroup_hierarchy_write,
5458 .read_u64 = mem_cgroup_hierarchy_read,
5461 .name = "cgroup.event_control", /* XXX: for compat */
5462 .write = memcg_write_event_control,
5463 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5466 .name = "swappiness",
5467 .read_u64 = mem_cgroup_swappiness_read,
5468 .write_u64 = mem_cgroup_swappiness_write,
5471 .name = "move_charge_at_immigrate",
5472 .read_u64 = mem_cgroup_move_charge_read,
5473 .write_u64 = mem_cgroup_move_charge_write,
5476 .name = "oom_control",
5477 .seq_show = mem_cgroup_oom_control_read,
5478 .write_u64 = mem_cgroup_oom_control_write,
5481 .name = "pressure_level",
5482 .seq_show = mem_cgroup_dummy_seq_show,
5486 .name = "numa_stat",
5487 .seq_show = memcg_numa_stat_show,
5491 .name = "kmem.limit_in_bytes",
5492 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5493 .write = mem_cgroup_write,
5494 .read_u64 = mem_cgroup_read_u64,
5497 .name = "kmem.usage_in_bytes",
5498 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5499 .read_u64 = mem_cgroup_read_u64,
5502 .name = "kmem.failcnt",
5503 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5504 .write = mem_cgroup_reset,
5505 .read_u64 = mem_cgroup_read_u64,
5508 .name = "kmem.max_usage_in_bytes",
5509 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5510 .write = mem_cgroup_reset,
5511 .read_u64 = mem_cgroup_read_u64,
5513 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5515 .name = "kmem.slabinfo",
5516 .seq_show = mem_cgroup_slab_show,
5520 .name = "kmem.tcp.limit_in_bytes",
5521 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5522 .write = mem_cgroup_write,
5523 .read_u64 = mem_cgroup_read_u64,
5526 .name = "kmem.tcp.usage_in_bytes",
5527 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5528 .read_u64 = mem_cgroup_read_u64,
5531 .name = "kmem.tcp.failcnt",
5532 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5533 .write = mem_cgroup_reset,
5534 .read_u64 = mem_cgroup_read_u64,
5537 .name = "kmem.tcp.max_usage_in_bytes",
5538 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5539 .write = mem_cgroup_reset,
5540 .read_u64 = mem_cgroup_read_u64,
5542 { }, /* terminate */
5546 * Private memory cgroup IDR
5548 * Swap-out records and page cache shadow entries need to store memcg
5549 * references in constrained space, so we maintain an ID space that is
5550 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5551 * memory-controlled cgroups to 64k.
5553 * However, there usually are many references to the offline CSS after
5554 * the cgroup has been destroyed, such as page cache or reclaimable
5555 * slab objects, that don't need to hang on to the ID. We want to keep
5556 * those dead CSS from occupying IDs, or we might quickly exhaust the
5557 * relatively small ID space and prevent the creation of new cgroups
5558 * even when there are much fewer than 64k cgroups - possibly none.
5560 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5561 * be freed and recycled when it's no longer needed, which is usually
5562 * when the CSS is offlined.
5564 * The only exception to that are records of swapped out tmpfs/shmem
5565 * pages that need to be attributed to live ancestors on swapin. But
5566 * those references are manageable from userspace.
5569 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5570 static DEFINE_IDR(mem_cgroup_idr);
5572 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5574 if (memcg->id.id > 0) {
5575 idr_remove(&mem_cgroup_idr, memcg->id.id);
5580 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5583 refcount_add(n, &memcg->id.ref);
5586 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5588 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5589 mem_cgroup_id_remove(memcg);
5591 /* Memcg ID pins CSS */
5592 css_put(&memcg->css);
5596 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5598 mem_cgroup_id_put_many(memcg, 1);
5602 * mem_cgroup_from_id - look up a memcg from a memcg id
5603 * @id: the memcg id to look up
5605 * Caller must hold rcu_read_lock().
5607 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5609 WARN_ON_ONCE(!rcu_read_lock_held());
5610 return idr_find(&mem_cgroup_idr, id);
5613 #ifdef CONFIG_SHRINKER_DEBUG
5614 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5616 struct cgroup *cgrp;
5617 struct cgroup_subsys_state *css;
5618 struct mem_cgroup *memcg;
5620 cgrp = cgroup_get_from_id(ino);
5622 return ERR_CAST(cgrp);
5624 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5626 memcg = container_of(css, struct mem_cgroup, css);
5628 memcg = ERR_PTR(-ENOENT);
5636 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5638 struct mem_cgroup_per_node *pn;
5640 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5644 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
5645 GFP_KERNEL_ACCOUNT, node);
5646 if (!pn->lruvec_stats)
5649 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5650 GFP_KERNEL_ACCOUNT);
5651 if (!pn->lruvec_stats_percpu)
5654 lruvec_init(&pn->lruvec);
5657 memcg->nodeinfo[node] = pn;
5660 kfree(pn->lruvec_stats);
5665 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5667 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5672 free_percpu(pn->lruvec_stats_percpu);
5673 kfree(pn->lruvec_stats);
5677 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5681 obj_cgroup_put(memcg->orig_objcg);
5684 free_mem_cgroup_per_node_info(memcg, node);
5685 kfree(memcg->vmstats);
5686 free_percpu(memcg->vmstats_percpu);
5690 static void mem_cgroup_free(struct mem_cgroup *memcg)
5692 lru_gen_exit_memcg(memcg);
5693 memcg_wb_domain_exit(memcg);
5694 __mem_cgroup_free(memcg);
5697 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
5699 struct memcg_vmstats_percpu *statc, *pstatc;
5700 struct mem_cgroup *memcg;
5702 int __maybe_unused i;
5703 long error = -ENOMEM;
5705 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5707 return ERR_PTR(error);
5709 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5710 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5711 if (memcg->id.id < 0) {
5712 error = memcg->id.id;
5716 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
5717 GFP_KERNEL_ACCOUNT);
5718 if (!memcg->vmstats)
5721 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5722 GFP_KERNEL_ACCOUNT);
5723 if (!memcg->vmstats_percpu)
5726 for_each_possible_cpu(cpu) {
5728 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
5729 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5730 statc->parent = parent ? pstatc : NULL;
5731 statc->vmstats = memcg->vmstats;
5735 if (!alloc_mem_cgroup_per_node_info(memcg, node))
5738 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5741 INIT_WORK(&memcg->high_work, high_work_func);
5742 INIT_LIST_HEAD(&memcg->oom_notify);
5743 mutex_init(&memcg->thresholds_lock);
5744 spin_lock_init(&memcg->move_lock);
5745 vmpressure_init(&memcg->vmpressure);
5746 INIT_LIST_HEAD(&memcg->event_list);
5747 spin_lock_init(&memcg->event_list_lock);
5748 memcg->socket_pressure = jiffies;
5749 #ifdef CONFIG_MEMCG_KMEM
5750 memcg->kmemcg_id = -1;
5751 INIT_LIST_HEAD(&memcg->objcg_list);
5753 #ifdef CONFIG_CGROUP_WRITEBACK
5754 INIT_LIST_HEAD(&memcg->cgwb_list);
5755 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5756 memcg->cgwb_frn[i].done =
5757 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5760 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5761 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5762 memcg->deferred_split_queue.split_queue_len = 0;
5764 lru_gen_init_memcg(memcg);
5767 mem_cgroup_id_remove(memcg);
5768 __mem_cgroup_free(memcg);
5769 return ERR_PTR(error);
5772 static struct cgroup_subsys_state * __ref
5773 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5775 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5776 struct mem_cgroup *memcg, *old_memcg;
5778 old_memcg = set_active_memcg(parent);
5779 memcg = mem_cgroup_alloc(parent);
5780 set_active_memcg(old_memcg);
5782 return ERR_CAST(memcg);
5784 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5785 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5786 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5787 memcg->zswap_max = PAGE_COUNTER_MAX;
5788 WRITE_ONCE(memcg->zswap_writeback,
5789 !parent || READ_ONCE(parent->zswap_writeback));
5791 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5793 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5794 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5796 page_counter_init(&memcg->memory, &parent->memory);
5797 page_counter_init(&memcg->swap, &parent->swap);
5798 page_counter_init(&memcg->kmem, &parent->kmem);
5799 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5802 init_memcg_events();
5803 page_counter_init(&memcg->memory, NULL);
5804 page_counter_init(&memcg->swap, NULL);
5805 page_counter_init(&memcg->kmem, NULL);
5806 page_counter_init(&memcg->tcpmem, NULL);
5808 root_mem_cgroup = memcg;
5812 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5813 static_branch_inc(&memcg_sockets_enabled_key);
5815 #if defined(CONFIG_MEMCG_KMEM)
5816 if (!cgroup_memory_nobpf)
5817 static_branch_inc(&memcg_bpf_enabled_key);
5823 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5825 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5827 if (memcg_online_kmem(memcg))
5831 * A memcg must be visible for expand_shrinker_info()
5832 * by the time the maps are allocated. So, we allocate maps
5833 * here, when for_each_mem_cgroup() can't skip it.
5835 if (alloc_shrinker_info(memcg))
5838 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
5839 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5841 lru_gen_online_memcg(memcg);
5843 /* Online state pins memcg ID, memcg ID pins CSS */
5844 refcount_set(&memcg->id.ref, 1);
5848 * Ensure mem_cgroup_from_id() works once we're fully online.
5850 * We could do this earlier and require callers to filter with
5851 * css_tryget_online(). But right now there are no users that
5852 * need earlier access, and the workingset code relies on the
5853 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5854 * publish it here at the end of onlining. This matches the
5855 * regular ID destruction during offlining.
5857 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5861 memcg_offline_kmem(memcg);
5863 mem_cgroup_id_remove(memcg);
5867 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5869 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5870 struct mem_cgroup_event *event, *tmp;
5873 * Unregister events and notify userspace.
5874 * Notify userspace about cgroup removing only after rmdir of cgroup
5875 * directory to avoid race between userspace and kernelspace.
5877 spin_lock_irq(&memcg->event_list_lock);
5878 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5879 list_del_init(&event->list);
5880 schedule_work(&event->remove);
5882 spin_unlock_irq(&memcg->event_list_lock);
5884 page_counter_set_min(&memcg->memory, 0);
5885 page_counter_set_low(&memcg->memory, 0);
5887 zswap_memcg_offline_cleanup(memcg);
5889 memcg_offline_kmem(memcg);
5890 reparent_shrinker_deferred(memcg);
5891 wb_memcg_offline(memcg);
5892 lru_gen_offline_memcg(memcg);
5894 drain_all_stock(memcg);
5896 mem_cgroup_id_put(memcg);
5899 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5901 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5903 invalidate_reclaim_iterators(memcg);
5904 lru_gen_release_memcg(memcg);
5907 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5909 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5910 int __maybe_unused i;
5912 #ifdef CONFIG_CGROUP_WRITEBACK
5913 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5914 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5916 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5917 static_branch_dec(&memcg_sockets_enabled_key);
5919 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5920 static_branch_dec(&memcg_sockets_enabled_key);
5922 #if defined(CONFIG_MEMCG_KMEM)
5923 if (!cgroup_memory_nobpf)
5924 static_branch_dec(&memcg_bpf_enabled_key);
5927 vmpressure_cleanup(&memcg->vmpressure);
5928 cancel_work_sync(&memcg->high_work);
5929 mem_cgroup_remove_from_trees(memcg);
5930 free_shrinker_info(memcg);
5931 mem_cgroup_free(memcg);
5935 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5936 * @css: the target css
5938 * Reset the states of the mem_cgroup associated with @css. This is
5939 * invoked when the userland requests disabling on the default hierarchy
5940 * but the memcg is pinned through dependency. The memcg should stop
5941 * applying policies and should revert to the vanilla state as it may be
5942 * made visible again.
5944 * The current implementation only resets the essential configurations.
5945 * This needs to be expanded to cover all the visible parts.
5947 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5949 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5951 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5952 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5953 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5954 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5955 page_counter_set_min(&memcg->memory, 0);
5956 page_counter_set_low(&memcg->memory, 0);
5957 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5958 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5959 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5960 memcg_wb_domain_size_changed(memcg);
5963 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5965 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5966 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5967 struct memcg_vmstats_percpu *statc;
5968 long delta, delta_cpu, v;
5971 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5973 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) {
5975 * Collect the aggregated propagation counts of groups
5976 * below us. We're in a per-cpu loop here and this is
5977 * a global counter, so the first cycle will get them.
5979 delta = memcg->vmstats->state_pending[i];
5981 memcg->vmstats->state_pending[i] = 0;
5983 /* Add CPU changes on this level since the last flush */
5985 v = READ_ONCE(statc->state[i]);
5986 if (v != statc->state_prev[i]) {
5987 delta_cpu = v - statc->state_prev[i];
5989 statc->state_prev[i] = v;
5992 /* Aggregate counts on this level and propagate upwards */
5994 memcg->vmstats->state_local[i] += delta_cpu;
5997 memcg->vmstats->state[i] += delta;
5999 parent->vmstats->state_pending[i] += delta;
6003 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
6004 delta = memcg->vmstats->events_pending[i];
6006 memcg->vmstats->events_pending[i] = 0;
6009 v = READ_ONCE(statc->events[i]);
6010 if (v != statc->events_prev[i]) {
6011 delta_cpu = v - statc->events_prev[i];
6013 statc->events_prev[i] = v;
6017 memcg->vmstats->events_local[i] += delta_cpu;
6020 memcg->vmstats->events[i] += delta;
6022 parent->vmstats->events_pending[i] += delta;
6026 for_each_node_state(nid, N_MEMORY) {
6027 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
6028 struct lruvec_stats *lstats = pn->lruvec_stats;
6029 struct lruvec_stats *plstats = NULL;
6030 struct lruvec_stats_percpu *lstatc;
6033 plstats = parent->nodeinfo[nid]->lruvec_stats;
6035 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
6037 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) {
6038 delta = lstats->state_pending[i];
6040 lstats->state_pending[i] = 0;
6043 v = READ_ONCE(lstatc->state[i]);
6044 if (v != lstatc->state_prev[i]) {
6045 delta_cpu = v - lstatc->state_prev[i];
6047 lstatc->state_prev[i] = v;
6051 lstats->state_local[i] += delta_cpu;
6054 lstats->state[i] += delta;
6056 plstats->state_pending[i] += delta;
6060 WRITE_ONCE(statc->stats_updates, 0);
6061 /* We are in a per-cpu loop here, only do the atomic write once */
6062 if (atomic64_read(&memcg->vmstats->stats_updates))
6063 atomic64_set(&memcg->vmstats->stats_updates, 0);
6067 /* Handlers for move charge at task migration. */
6068 static int mem_cgroup_do_precharge(unsigned long count)
6072 /* Try a single bulk charge without reclaim first, kswapd may wake */
6073 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
6075 mc.precharge += count;
6079 /* Try charges one by one with reclaim, but do not retry */
6081 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
6091 struct folio *folio;
6095 enum mc_target_type {
6102 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6103 unsigned long addr, pte_t ptent)
6105 struct page *page = vm_normal_page(vma, addr, ptent);
6109 if (PageAnon(page)) {
6110 if (!(mc.flags & MOVE_ANON))
6113 if (!(mc.flags & MOVE_FILE))
6121 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
6122 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6123 pte_t ptent, swp_entry_t *entry)
6125 struct page *page = NULL;
6126 swp_entry_t ent = pte_to_swp_entry(ptent);
6128 if (!(mc.flags & MOVE_ANON))
6132 * Handle device private pages that are not accessible by the CPU, but
6133 * stored as special swap entries in the page table.
6135 if (is_device_private_entry(ent)) {
6136 page = pfn_swap_entry_to_page(ent);
6137 if (!get_page_unless_zero(page))
6142 if (non_swap_entry(ent))
6146 * Because swap_cache_get_folio() updates some statistics counter,
6147 * we call find_get_page() with swapper_space directly.
6149 page = find_get_page(swap_address_space(ent), swp_offset(ent));
6150 entry->val = ent.val;
6155 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6156 pte_t ptent, swp_entry_t *entry)
6162 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6163 unsigned long addr, pte_t ptent)
6165 unsigned long index;
6166 struct folio *folio;
6168 if (!vma->vm_file) /* anonymous vma */
6170 if (!(mc.flags & MOVE_FILE))
6173 /* folio is moved even if it's not RSS of this task(page-faulted). */
6174 /* shmem/tmpfs may report page out on swap: account for that too. */
6175 index = linear_page_index(vma, addr);
6176 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
6179 return folio_file_page(folio, index);
6183 * mem_cgroup_move_account - move account of the folio
6184 * @folio: The folio.
6185 * @compound: charge the page as compound or small page
6186 * @from: mem_cgroup which the folio is moved from.
6187 * @to: mem_cgroup which the folio is moved to. @from != @to.
6189 * The folio must be locked and not on the LRU.
6191 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
6194 static int mem_cgroup_move_account(struct folio *folio,
6196 struct mem_cgroup *from,
6197 struct mem_cgroup *to)
6199 struct lruvec *from_vec, *to_vec;
6200 struct pglist_data *pgdat;
6201 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
6204 VM_BUG_ON(from == to);
6205 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
6206 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6207 VM_BUG_ON(compound && !folio_test_large(folio));
6210 if (folio_memcg(folio) != from)
6213 pgdat = folio_pgdat(folio);
6214 from_vec = mem_cgroup_lruvec(from, pgdat);
6215 to_vec = mem_cgroup_lruvec(to, pgdat);
6217 folio_memcg_lock(folio);
6219 if (folio_test_anon(folio)) {
6220 if (folio_mapped(folio)) {
6221 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
6222 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6223 if (folio_test_pmd_mappable(folio)) {
6224 __mod_lruvec_state(from_vec, NR_ANON_THPS,
6226 __mod_lruvec_state(to_vec, NR_ANON_THPS,
6231 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
6232 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
6234 if (folio_test_swapbacked(folio)) {
6235 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
6236 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
6239 if (folio_mapped(folio)) {
6240 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
6241 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
6244 if (folio_test_dirty(folio)) {
6245 struct address_space *mapping = folio_mapping(folio);
6247 if (mapping_can_writeback(mapping)) {
6248 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6250 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6257 if (folio_test_swapcache(folio)) {
6258 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6259 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6262 if (folio_test_writeback(folio)) {
6263 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6264 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
6268 * All state has been migrated, let's switch to the new memcg.
6270 * It is safe to change page's memcg here because the page
6271 * is referenced, charged, isolated, and locked: we can't race
6272 * with (un)charging, migration, LRU putback, or anything else
6273 * that would rely on a stable page's memory cgroup.
6275 * Note that folio_memcg_lock is a memcg lock, not a page lock,
6276 * to save space. As soon as we switch page's memory cgroup to a
6277 * new memcg that isn't locked, the above state can change
6278 * concurrently again. Make sure we're truly done with it.
6283 css_put(&from->css);
6285 folio->memcg_data = (unsigned long)to;
6287 __folio_memcg_unlock(from);
6290 nid = folio_nid(folio);
6292 local_irq_disable();
6293 mem_cgroup_charge_statistics(to, nr_pages);
6294 memcg_check_events(to, nid);
6295 mem_cgroup_charge_statistics(from, -nr_pages);
6296 memcg_check_events(from, nid);
6303 * get_mctgt_type - get target type of moving charge
6304 * @vma: the vma the pte to be checked belongs
6305 * @addr: the address corresponding to the pte to be checked
6306 * @ptent: the pte to be checked
6307 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6309 * Context: Called with pte lock held.
6311 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6312 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6313 * move charge. If @target is not NULL, the folio is stored in target->folio
6314 * with extra refcnt taken (Caller should release it).
6315 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6316 * target for charge migration. If @target is not NULL, the entry is
6317 * stored in target->ent.
6318 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6319 * thus not on the lru. For now such page is charged like a regular page
6320 * would be as it is just special memory taking the place of a regular page.
6321 * See Documentations/vm/hmm.txt and include/linux/hmm.h
6323 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6324 unsigned long addr, pte_t ptent, union mc_target *target)
6326 struct page *page = NULL;
6327 struct folio *folio;
6328 enum mc_target_type ret = MC_TARGET_NONE;
6329 swp_entry_t ent = { .val = 0 };
6331 if (pte_present(ptent))
6332 page = mc_handle_present_pte(vma, addr, ptent);
6333 else if (pte_none_mostly(ptent))
6335 * PTE markers should be treated as a none pte here, separated
6336 * from other swap handling below.
6338 page = mc_handle_file_pte(vma, addr, ptent);
6339 else if (is_swap_pte(ptent))
6340 page = mc_handle_swap_pte(vma, ptent, &ent);
6343 folio = page_folio(page);
6344 if (target && page) {
6345 if (!folio_trylock(folio)) {
6350 * page_mapped() must be stable during the move. This
6351 * pte is locked, so if it's present, the page cannot
6352 * become unmapped. If it isn't, we have only partial
6353 * control over the mapped state: the page lock will
6354 * prevent new faults against pagecache and swapcache,
6355 * so an unmapped page cannot become mapped. However,
6356 * if the page is already mapped elsewhere, it can
6357 * unmap, and there is nothing we can do about it.
6358 * Alas, skip moving the page in this case.
6360 if (!pte_present(ptent) && page_mapped(page)) {
6361 folio_unlock(folio);
6367 if (!page && !ent.val)
6371 * Do only loose check w/o serialization.
6372 * mem_cgroup_move_account() checks the page is valid or
6373 * not under LRU exclusion.
6375 if (folio_memcg(folio) == mc.from) {
6376 ret = MC_TARGET_PAGE;
6377 if (folio_is_device_private(folio) ||
6378 folio_is_device_coherent(folio))
6379 ret = MC_TARGET_DEVICE;
6381 target->folio = folio;
6383 if (!ret || !target) {
6385 folio_unlock(folio);
6390 * There is a swap entry and a page doesn't exist or isn't charged.
6391 * But we cannot move a tail-page in a THP.
6393 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6394 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6395 ret = MC_TARGET_SWAP;
6402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6404 * We don't consider PMD mapped swapping or file mapped pages because THP does
6405 * not support them for now.
6406 * Caller should make sure that pmd_trans_huge(pmd) is true.
6408 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6409 unsigned long addr, pmd_t pmd, union mc_target *target)
6411 struct page *page = NULL;
6412 struct folio *folio;
6413 enum mc_target_type ret = MC_TARGET_NONE;
6415 if (unlikely(is_swap_pmd(pmd))) {
6416 VM_BUG_ON(thp_migration_supported() &&
6417 !is_pmd_migration_entry(pmd));
6420 page = pmd_page(pmd);
6421 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6422 folio = page_folio(page);
6423 if (!(mc.flags & MOVE_ANON))
6425 if (folio_memcg(folio) == mc.from) {
6426 ret = MC_TARGET_PAGE;
6429 if (!folio_trylock(folio)) {
6431 return MC_TARGET_NONE;
6433 target->folio = folio;
6439 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6440 unsigned long addr, pmd_t pmd, union mc_target *target)
6442 return MC_TARGET_NONE;
6446 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6447 unsigned long addr, unsigned long end,
6448 struct mm_walk *walk)
6450 struct vm_area_struct *vma = walk->vma;
6454 ptl = pmd_trans_huge_lock(pmd, vma);
6457 * Note their can not be MC_TARGET_DEVICE for now as we do not
6458 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6459 * this might change.
6461 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6462 mc.precharge += HPAGE_PMD_NR;
6467 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6470 for (; addr != end; pte++, addr += PAGE_SIZE)
6471 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6472 mc.precharge++; /* increment precharge temporarily */
6473 pte_unmap_unlock(pte - 1, ptl);
6479 static const struct mm_walk_ops precharge_walk_ops = {
6480 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6481 .walk_lock = PGWALK_RDLOCK,
6484 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6486 unsigned long precharge;
6489 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6490 mmap_read_unlock(mm);
6492 precharge = mc.precharge;
6498 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6500 unsigned long precharge = mem_cgroup_count_precharge(mm);
6502 VM_BUG_ON(mc.moving_task);
6503 mc.moving_task = current;
6504 return mem_cgroup_do_precharge(precharge);
6507 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6508 static void __mem_cgroup_clear_mc(void)
6510 struct mem_cgroup *from = mc.from;
6511 struct mem_cgroup *to = mc.to;
6513 /* we must uncharge all the leftover precharges from mc.to */
6515 mem_cgroup_cancel_charge(mc.to, mc.precharge);
6519 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6520 * we must uncharge here.
6522 if (mc.moved_charge) {
6523 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6524 mc.moved_charge = 0;
6526 /* we must fixup refcnts and charges */
6527 if (mc.moved_swap) {
6528 /* uncharge swap account from the old cgroup */
6529 if (!mem_cgroup_is_root(mc.from))
6530 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6532 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6535 * we charged both to->memory and to->memsw, so we
6536 * should uncharge to->memory.
6538 if (!mem_cgroup_is_root(mc.to))
6539 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6543 memcg_oom_recover(from);
6544 memcg_oom_recover(to);
6545 wake_up_all(&mc.waitq);
6548 static void mem_cgroup_clear_mc(void)
6550 struct mm_struct *mm = mc.mm;
6553 * we must clear moving_task before waking up waiters at the end of
6556 mc.moving_task = NULL;
6557 __mem_cgroup_clear_mc();
6558 spin_lock(&mc.lock);
6562 spin_unlock(&mc.lock);
6567 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6569 struct cgroup_subsys_state *css;
6570 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6571 struct mem_cgroup *from;
6572 struct task_struct *leader, *p;
6573 struct mm_struct *mm;
6574 unsigned long move_flags;
6577 /* charge immigration isn't supported on the default hierarchy */
6578 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6582 * Multi-process migrations only happen on the default hierarchy
6583 * where charge immigration is not used. Perform charge
6584 * immigration if @tset contains a leader and whine if there are
6588 cgroup_taskset_for_each_leader(leader, css, tset) {
6591 memcg = mem_cgroup_from_css(css);
6597 * We are now committed to this value whatever it is. Changes in this
6598 * tunable will only affect upcoming migrations, not the current one.
6599 * So we need to save it, and keep it going.
6601 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6605 from = mem_cgroup_from_task(p);
6607 VM_BUG_ON(from == memcg);
6609 mm = get_task_mm(p);
6612 /* We move charges only when we move a owner of the mm */
6613 if (mm->owner == p) {
6616 VM_BUG_ON(mc.precharge);
6617 VM_BUG_ON(mc.moved_charge);
6618 VM_BUG_ON(mc.moved_swap);
6620 spin_lock(&mc.lock);
6624 mc.flags = move_flags;
6625 spin_unlock(&mc.lock);
6626 /* We set mc.moving_task later */
6628 ret = mem_cgroup_precharge_mc(mm);
6630 mem_cgroup_clear_mc();
6637 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6640 mem_cgroup_clear_mc();
6643 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6644 unsigned long addr, unsigned long end,
6645 struct mm_walk *walk)
6648 struct vm_area_struct *vma = walk->vma;
6651 enum mc_target_type target_type;
6652 union mc_target target;
6653 struct folio *folio;
6655 ptl = pmd_trans_huge_lock(pmd, vma);
6657 if (mc.precharge < HPAGE_PMD_NR) {
6661 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6662 if (target_type == MC_TARGET_PAGE) {
6663 folio = target.folio;
6664 if (folio_isolate_lru(folio)) {
6665 if (!mem_cgroup_move_account(folio, true,
6667 mc.precharge -= HPAGE_PMD_NR;
6668 mc.moved_charge += HPAGE_PMD_NR;
6670 folio_putback_lru(folio);
6672 folio_unlock(folio);
6674 } else if (target_type == MC_TARGET_DEVICE) {
6675 folio = target.folio;
6676 if (!mem_cgroup_move_account(folio, true,
6678 mc.precharge -= HPAGE_PMD_NR;
6679 mc.moved_charge += HPAGE_PMD_NR;
6681 folio_unlock(folio);
6689 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6692 for (; addr != end; addr += PAGE_SIZE) {
6693 pte_t ptent = ptep_get(pte++);
6694 bool device = false;
6700 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6701 case MC_TARGET_DEVICE:
6704 case MC_TARGET_PAGE:
6705 folio = target.folio;
6707 * We can have a part of the split pmd here. Moving it
6708 * can be done but it would be too convoluted so simply
6709 * ignore such a partial THP and keep it in original
6710 * memcg. There should be somebody mapping the head.
6712 if (folio_test_large(folio))
6714 if (!device && !folio_isolate_lru(folio))
6716 if (!mem_cgroup_move_account(folio, false,
6719 /* we uncharge from mc.from later. */
6723 folio_putback_lru(folio);
6724 put: /* get_mctgt_type() gets & locks the page */
6725 folio_unlock(folio);
6728 case MC_TARGET_SWAP:
6730 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6732 mem_cgroup_id_get_many(mc.to, 1);
6733 /* we fixup other refcnts and charges later. */
6741 pte_unmap_unlock(pte - 1, ptl);
6746 * We have consumed all precharges we got in can_attach().
6747 * We try charge one by one, but don't do any additional
6748 * charges to mc.to if we have failed in charge once in attach()
6751 ret = mem_cgroup_do_precharge(1);
6759 static const struct mm_walk_ops charge_walk_ops = {
6760 .pmd_entry = mem_cgroup_move_charge_pte_range,
6761 .walk_lock = PGWALK_RDLOCK,
6764 static void mem_cgroup_move_charge(void)
6766 lru_add_drain_all();
6768 * Signal folio_memcg_lock() to take the memcg's move_lock
6769 * while we're moving its pages to another memcg. Then wait
6770 * for already started RCU-only updates to finish.
6772 atomic_inc(&mc.from->moving_account);
6775 if (unlikely(!mmap_read_trylock(mc.mm))) {
6777 * Someone who are holding the mmap_lock might be waiting in
6778 * waitq. So we cancel all extra charges, wake up all waiters,
6779 * and retry. Because we cancel precharges, we might not be able
6780 * to move enough charges, but moving charge is a best-effort
6781 * feature anyway, so it wouldn't be a big problem.
6783 __mem_cgroup_clear_mc();
6788 * When we have consumed all precharges and failed in doing
6789 * additional charge, the page walk just aborts.
6791 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6792 mmap_read_unlock(mc.mm);
6793 atomic_dec(&mc.from->moving_account);
6796 static void mem_cgroup_move_task(void)
6799 mem_cgroup_move_charge();
6800 mem_cgroup_clear_mc();
6804 #else /* !CONFIG_MMU */
6805 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6809 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6812 static void mem_cgroup_move_task(void)
6817 #ifdef CONFIG_MEMCG_KMEM
6818 static void mem_cgroup_fork(struct task_struct *task)
6821 * Set the update flag to cause task->objcg to be initialized lazily
6822 * on the first allocation. It can be done without any synchronization
6823 * because it's always performed on the current task, so does
6824 * current_objcg_update().
6826 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6829 static void mem_cgroup_exit(struct task_struct *task)
6831 struct obj_cgroup *objcg = task->objcg;
6833 objcg = (struct obj_cgroup *)
6834 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6835 obj_cgroup_put(objcg);
6838 * Some kernel allocations can happen after this point,
6839 * but let's ignore them. It can be done without any synchronization
6840 * because it's always performed on the current task, so does
6841 * current_objcg_update().
6847 #ifdef CONFIG_LRU_GEN
6848 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6850 struct task_struct *task;
6851 struct cgroup_subsys_state *css;
6853 /* find the first leader if there is any */
6854 cgroup_taskset_for_each_leader(task, css, tset)
6861 if (task->mm && READ_ONCE(task->mm->owner) == task)
6862 lru_gen_migrate_mm(task->mm);
6866 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6867 #endif /* CONFIG_LRU_GEN */
6869 #ifdef CONFIG_MEMCG_KMEM
6870 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6872 struct task_struct *task;
6873 struct cgroup_subsys_state *css;
6875 cgroup_taskset_for_each(task, css, tset) {
6876 /* atomically set the update bit */
6877 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6881 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6882 #endif /* CONFIG_MEMCG_KMEM */
6884 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6885 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6887 mem_cgroup_lru_gen_attach(tset);
6888 mem_cgroup_kmem_attach(tset);
6892 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6894 if (value == PAGE_COUNTER_MAX)
6895 seq_puts(m, "max\n");
6897 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6902 static u64 memory_current_read(struct cgroup_subsys_state *css,
6905 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6907 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6910 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6913 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6915 return (u64)memcg->memory.watermark * PAGE_SIZE;
6918 static int memory_min_show(struct seq_file *m, void *v)
6920 return seq_puts_memcg_tunable(m,
6921 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6924 static ssize_t memory_min_write(struct kernfs_open_file *of,
6925 char *buf, size_t nbytes, loff_t off)
6927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6931 buf = strstrip(buf);
6932 err = page_counter_memparse(buf, "max", &min);
6936 page_counter_set_min(&memcg->memory, min);
6941 static int memory_low_show(struct seq_file *m, void *v)
6943 return seq_puts_memcg_tunable(m,
6944 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6947 static ssize_t memory_low_write(struct kernfs_open_file *of,
6948 char *buf, size_t nbytes, loff_t off)
6950 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6954 buf = strstrip(buf);
6955 err = page_counter_memparse(buf, "max", &low);
6959 page_counter_set_low(&memcg->memory, low);
6964 static int memory_high_show(struct seq_file *m, void *v)
6966 return seq_puts_memcg_tunable(m,
6967 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6970 static ssize_t memory_high_write(struct kernfs_open_file *of,
6971 char *buf, size_t nbytes, loff_t off)
6973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6974 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6975 bool drained = false;
6979 buf = strstrip(buf);
6980 err = page_counter_memparse(buf, "max", &high);
6984 page_counter_set_high(&memcg->memory, high);
6987 unsigned long nr_pages = page_counter_read(&memcg->memory);
6988 unsigned long reclaimed;
6990 if (nr_pages <= high)
6993 if (signal_pending(current))
6997 drain_all_stock(memcg);
7002 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
7003 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
7005 if (!reclaimed && !nr_retries--)
7009 memcg_wb_domain_size_changed(memcg);
7013 static int memory_max_show(struct seq_file *m, void *v)
7015 return seq_puts_memcg_tunable(m,
7016 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
7019 static ssize_t memory_max_write(struct kernfs_open_file *of,
7020 char *buf, size_t nbytes, loff_t off)
7022 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7023 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
7024 bool drained = false;
7028 buf = strstrip(buf);
7029 err = page_counter_memparse(buf, "max", &max);
7033 xchg(&memcg->memory.max, max);
7036 unsigned long nr_pages = page_counter_read(&memcg->memory);
7038 if (nr_pages <= max)
7041 if (signal_pending(current))
7045 drain_all_stock(memcg);
7051 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
7052 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
7057 memcg_memory_event(memcg, MEMCG_OOM);
7058 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
7062 memcg_wb_domain_size_changed(memcg);
7067 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
7068 * if any new events become available.
7070 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
7072 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
7073 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
7074 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
7075 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
7076 seq_printf(m, "oom_kill %lu\n",
7077 atomic_long_read(&events[MEMCG_OOM_KILL]));
7078 seq_printf(m, "oom_group_kill %lu\n",
7079 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
7082 static int memory_events_show(struct seq_file *m, void *v)
7084 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7086 __memory_events_show(m, memcg->memory_events);
7090 static int memory_events_local_show(struct seq_file *m, void *v)
7092 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7094 __memory_events_show(m, memcg->memory_events_local);
7098 static int memory_stat_show(struct seq_file *m, void *v)
7100 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7101 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
7106 seq_buf_init(&s, buf, PAGE_SIZE);
7107 memory_stat_format(memcg, &s);
7114 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
7117 return lruvec_page_state(lruvec, item) *
7118 memcg_page_state_output_unit(item);
7121 static int memory_numa_stat_show(struct seq_file *m, void *v)
7124 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7126 mem_cgroup_flush_stats(memcg);
7128 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
7131 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
7134 seq_printf(m, "%s", memory_stats[i].name);
7135 for_each_node_state(nid, N_MEMORY) {
7137 struct lruvec *lruvec;
7139 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
7140 size = lruvec_page_state_output(lruvec,
7141 memory_stats[i].idx);
7142 seq_printf(m, " N%d=%llu", nid, size);
7151 static int memory_oom_group_show(struct seq_file *m, void *v)
7153 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7155 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
7160 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
7161 char *buf, size_t nbytes, loff_t off)
7163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7166 buf = strstrip(buf);
7170 ret = kstrtoint(buf, 0, &oom_group);
7174 if (oom_group != 0 && oom_group != 1)
7177 WRITE_ONCE(memcg->oom_group, oom_group);
7182 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
7183 size_t nbytes, loff_t off)
7185 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7186 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7187 unsigned long nr_to_reclaim, nr_reclaimed = 0;
7188 unsigned int reclaim_options;
7191 buf = strstrip(buf);
7192 err = page_counter_memparse(buf, "", &nr_to_reclaim);
7196 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
7197 while (nr_reclaimed < nr_to_reclaim) {
7198 /* Will converge on zero, but reclaim enforces a minimum */
7199 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
7200 unsigned long reclaimed;
7202 if (signal_pending(current))
7206 * This is the final attempt, drain percpu lru caches in the
7207 * hope of introducing more evictable pages for
7208 * try_to_free_mem_cgroup_pages().
7211 lru_add_drain_all();
7213 reclaimed = try_to_free_mem_cgroup_pages(memcg,
7214 batch_size, GFP_KERNEL, reclaim_options);
7216 if (!reclaimed && !nr_retries--)
7219 nr_reclaimed += reclaimed;
7225 static struct cftype memory_files[] = {
7228 .flags = CFTYPE_NOT_ON_ROOT,
7229 .read_u64 = memory_current_read,
7233 .flags = CFTYPE_NOT_ON_ROOT,
7234 .read_u64 = memory_peak_read,
7238 .flags = CFTYPE_NOT_ON_ROOT,
7239 .seq_show = memory_min_show,
7240 .write = memory_min_write,
7244 .flags = CFTYPE_NOT_ON_ROOT,
7245 .seq_show = memory_low_show,
7246 .write = memory_low_write,
7250 .flags = CFTYPE_NOT_ON_ROOT,
7251 .seq_show = memory_high_show,
7252 .write = memory_high_write,
7256 .flags = CFTYPE_NOT_ON_ROOT,
7257 .seq_show = memory_max_show,
7258 .write = memory_max_write,
7262 .flags = CFTYPE_NOT_ON_ROOT,
7263 .file_offset = offsetof(struct mem_cgroup, events_file),
7264 .seq_show = memory_events_show,
7267 .name = "events.local",
7268 .flags = CFTYPE_NOT_ON_ROOT,
7269 .file_offset = offsetof(struct mem_cgroup, events_local_file),
7270 .seq_show = memory_events_local_show,
7274 .seq_show = memory_stat_show,
7278 .name = "numa_stat",
7279 .seq_show = memory_numa_stat_show,
7283 .name = "oom.group",
7284 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7285 .seq_show = memory_oom_group_show,
7286 .write = memory_oom_group_write,
7290 .flags = CFTYPE_NS_DELEGATABLE,
7291 .write = memory_reclaim,
7296 struct cgroup_subsys memory_cgrp_subsys = {
7297 .css_alloc = mem_cgroup_css_alloc,
7298 .css_online = mem_cgroup_css_online,
7299 .css_offline = mem_cgroup_css_offline,
7300 .css_released = mem_cgroup_css_released,
7301 .css_free = mem_cgroup_css_free,
7302 .css_reset = mem_cgroup_css_reset,
7303 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7304 .can_attach = mem_cgroup_can_attach,
7305 #if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7306 .attach = mem_cgroup_attach,
7308 .cancel_attach = mem_cgroup_cancel_attach,
7309 .post_attach = mem_cgroup_move_task,
7310 #ifdef CONFIG_MEMCG_KMEM
7311 .fork = mem_cgroup_fork,
7312 .exit = mem_cgroup_exit,
7314 .dfl_cftypes = memory_files,
7315 .legacy_cftypes = mem_cgroup_legacy_files,
7320 * This function calculates an individual cgroup's effective
7321 * protection which is derived from its own memory.min/low, its
7322 * parent's and siblings' settings, as well as the actual memory
7323 * distribution in the tree.
7325 * The following rules apply to the effective protection values:
7327 * 1. At the first level of reclaim, effective protection is equal to
7328 * the declared protection in memory.min and memory.low.
7330 * 2. To enable safe delegation of the protection configuration, at
7331 * subsequent levels the effective protection is capped to the
7332 * parent's effective protection.
7334 * 3. To make complex and dynamic subtrees easier to configure, the
7335 * user is allowed to overcommit the declared protection at a given
7336 * level. If that is the case, the parent's effective protection is
7337 * distributed to the children in proportion to how much protection
7338 * they have declared and how much of it they are utilizing.
7340 * This makes distribution proportional, but also work-conserving:
7341 * if one cgroup claims much more protection than it uses memory,
7342 * the unused remainder is available to its siblings.
7344 * 4. Conversely, when the declared protection is undercommitted at a
7345 * given level, the distribution of the larger parental protection
7346 * budget is NOT proportional. A cgroup's protection from a sibling
7347 * is capped to its own memory.min/low setting.
7349 * 5. However, to allow protecting recursive subtrees from each other
7350 * without having to declare each individual cgroup's fixed share
7351 * of the ancestor's claim to protection, any unutilized -
7352 * "floating" - protection from up the tree is distributed in
7353 * proportion to each cgroup's *usage*. This makes the protection
7354 * neutral wrt sibling cgroups and lets them compete freely over
7355 * the shared parental protection budget, but it protects the
7356 * subtree as a whole from neighboring subtrees.
7358 * Note that 4. and 5. are not in conflict: 4. is about protecting
7359 * against immediate siblings whereas 5. is about protecting against
7360 * neighboring subtrees.
7362 static unsigned long effective_protection(unsigned long usage,
7363 unsigned long parent_usage,
7364 unsigned long setting,
7365 unsigned long parent_effective,
7366 unsigned long siblings_protected)
7368 unsigned long protected;
7371 protected = min(usage, setting);
7373 * If all cgroups at this level combined claim and use more
7374 * protection than what the parent affords them, distribute
7375 * shares in proportion to utilization.
7377 * We are using actual utilization rather than the statically
7378 * claimed protection in order to be work-conserving: claimed
7379 * but unused protection is available to siblings that would
7380 * otherwise get a smaller chunk than what they claimed.
7382 if (siblings_protected > parent_effective)
7383 return protected * parent_effective / siblings_protected;
7386 * Ok, utilized protection of all children is within what the
7387 * parent affords them, so we know whatever this child claims
7388 * and utilizes is effectively protected.
7390 * If there is unprotected usage beyond this value, reclaim
7391 * will apply pressure in proportion to that amount.
7393 * If there is unutilized protection, the cgroup will be fully
7394 * shielded from reclaim, but we do return a smaller value for
7395 * protection than what the group could enjoy in theory. This
7396 * is okay. With the overcommit distribution above, effective
7397 * protection is always dependent on how memory is actually
7398 * consumed among the siblings anyway.
7403 * If the children aren't claiming (all of) the protection
7404 * afforded to them by the parent, distribute the remainder in
7405 * proportion to the (unprotected) memory of each cgroup. That
7406 * way, cgroups that aren't explicitly prioritized wrt each
7407 * other compete freely over the allowance, but they are
7408 * collectively protected from neighboring trees.
7410 * We're using unprotected memory for the weight so that if
7411 * some cgroups DO claim explicit protection, we don't protect
7412 * the same bytes twice.
7414 * Check both usage and parent_usage against the respective
7415 * protected values. One should imply the other, but they
7416 * aren't read atomically - make sure the division is sane.
7418 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7420 if (parent_effective > siblings_protected &&
7421 parent_usage > siblings_protected &&
7422 usage > protected) {
7423 unsigned long unclaimed;
7425 unclaimed = parent_effective - siblings_protected;
7426 unclaimed *= usage - protected;
7427 unclaimed /= parent_usage - siblings_protected;
7436 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7437 * @root: the top ancestor of the sub-tree being checked
7438 * @memcg: the memory cgroup to check
7440 * WARNING: This function is not stateless! It can only be used as part
7441 * of a top-down tree iteration, not for isolated queries.
7443 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7444 struct mem_cgroup *memcg)
7446 unsigned long usage, parent_usage;
7447 struct mem_cgroup *parent;
7449 if (mem_cgroup_disabled())
7453 root = root_mem_cgroup;
7456 * Effective values of the reclaim targets are ignored so they
7457 * can be stale. Have a look at mem_cgroup_protection for more
7459 * TODO: calculation should be more robust so that we do not need
7460 * that special casing.
7465 usage = page_counter_read(&memcg->memory);
7469 parent = parent_mem_cgroup(memcg);
7471 if (parent == root) {
7472 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7473 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7477 parent_usage = page_counter_read(&parent->memory);
7479 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7480 READ_ONCE(memcg->memory.min),
7481 READ_ONCE(parent->memory.emin),
7482 atomic_long_read(&parent->memory.children_min_usage)));
7484 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7485 READ_ONCE(memcg->memory.low),
7486 READ_ONCE(parent->memory.elow),
7487 atomic_long_read(&parent->memory.children_low_usage)));
7490 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7495 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
7499 mem_cgroup_commit_charge(folio, memcg);
7504 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7506 struct mem_cgroup *memcg;
7509 memcg = get_mem_cgroup_from_mm(mm);
7510 ret = charge_memcg(folio, memcg, gfp);
7511 css_put(&memcg->css);
7517 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7518 * @memcg: memcg to charge.
7519 * @gfp: reclaim mode.
7520 * @nr_pages: number of pages to charge.
7522 * This function is called when allocating a huge page folio to determine if
7523 * the memcg has the capacity for it. It does not commit the charge yet,
7524 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7526 * Once we have obtained the hugetlb folio, we can call
7527 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7528 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7531 * Returns 0 on success. Otherwise, an error code is returned.
7533 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7537 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7538 * but do not attempt to commit charge later (or cancel on error) either.
7540 if (mem_cgroup_disabled() || !memcg ||
7541 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7542 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7545 if (try_charge(memcg, gfp, nr_pages))
7552 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7553 * @folio: folio to charge.
7554 * @mm: mm context of the victim
7555 * @gfp: reclaim mode
7556 * @entry: swap entry for which the folio is allocated
7558 * This function charges a folio allocated for swapin. Please call this before
7559 * adding the folio to the swapcache.
7561 * Returns 0 on success. Otherwise, an error code is returned.
7563 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7564 gfp_t gfp, swp_entry_t entry)
7566 struct mem_cgroup *memcg;
7570 if (mem_cgroup_disabled())
7573 id = lookup_swap_cgroup_id(entry);
7575 memcg = mem_cgroup_from_id(id);
7576 if (!memcg || !css_tryget_online(&memcg->css))
7577 memcg = get_mem_cgroup_from_mm(mm);
7580 ret = charge_memcg(folio, memcg, gfp);
7582 css_put(&memcg->css);
7587 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7588 * @entry: swap entry for which the page is charged
7590 * Call this function after successfully adding the charged page to swapcache.
7592 * Note: This function assumes the page for which swap slot is being uncharged
7595 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7598 * Cgroup1's unified memory+swap counter has been charged with the
7599 * new swapcache page, finish the transfer by uncharging the swap
7600 * slot. The swap slot would also get uncharged when it dies, but
7601 * it can stick around indefinitely and we'd count the page twice
7604 * Cgroup2 has separate resource counters for memory and swap,
7605 * so this is a non-issue here. Memory and swap charge lifetimes
7606 * correspond 1:1 to page and swap slot lifetimes: we charge the
7607 * page to memory here, and uncharge swap when the slot is freed.
7609 if (!mem_cgroup_disabled() && do_memsw_account()) {
7611 * The swap entry might not get freed for a long time,
7612 * let's not wait for it. The page already received a
7613 * memory+swap charge, drop the swap entry duplicate.
7615 mem_cgroup_uncharge_swap(entry, 1);
7619 struct uncharge_gather {
7620 struct mem_cgroup *memcg;
7621 unsigned long nr_memory;
7622 unsigned long pgpgout;
7623 unsigned long nr_kmem;
7627 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7629 memset(ug, 0, sizeof(*ug));
7632 static void uncharge_batch(const struct uncharge_gather *ug)
7634 unsigned long flags;
7636 if (ug->nr_memory) {
7637 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7638 if (do_memsw_account())
7639 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7641 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7642 memcg_oom_recover(ug->memcg);
7645 local_irq_save(flags);
7646 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7647 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7648 memcg_check_events(ug->memcg, ug->nid);
7649 local_irq_restore(flags);
7651 /* drop reference from uncharge_folio */
7652 css_put(&ug->memcg->css);
7655 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7658 struct mem_cgroup *memcg;
7659 struct obj_cgroup *objcg;
7661 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7662 VM_BUG_ON_FOLIO(folio_order(folio) > 1 &&
7663 !folio_test_hugetlb(folio) &&
7664 !list_empty(&folio->_deferred_list), folio);
7667 * Nobody should be changing or seriously looking at
7668 * folio memcg or objcg at this point, we have fully
7669 * exclusive access to the folio.
7671 if (folio_memcg_kmem(folio)) {
7672 objcg = __folio_objcg(folio);
7674 * This get matches the put at the end of the function and
7675 * kmem pages do not hold memcg references anymore.
7677 memcg = get_mem_cgroup_from_objcg(objcg);
7679 memcg = __folio_memcg(folio);
7685 if (ug->memcg != memcg) {
7688 uncharge_gather_clear(ug);
7691 ug->nid = folio_nid(folio);
7693 /* pairs with css_put in uncharge_batch */
7694 css_get(&memcg->css);
7697 nr_pages = folio_nr_pages(folio);
7699 if (folio_memcg_kmem(folio)) {
7700 ug->nr_memory += nr_pages;
7701 ug->nr_kmem += nr_pages;
7703 folio->memcg_data = 0;
7704 obj_cgroup_put(objcg);
7706 /* LRU pages aren't accounted at the root level */
7707 if (!mem_cgroup_is_root(memcg))
7708 ug->nr_memory += nr_pages;
7711 folio->memcg_data = 0;
7714 css_put(&memcg->css);
7717 void __mem_cgroup_uncharge(struct folio *folio)
7719 struct uncharge_gather ug;
7721 /* Don't touch folio->lru of any random page, pre-check: */
7722 if (!folio_memcg(folio))
7725 uncharge_gather_clear(&ug);
7726 uncharge_folio(folio, &ug);
7727 uncharge_batch(&ug);
7730 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
7732 struct uncharge_gather ug;
7735 uncharge_gather_clear(&ug);
7736 for (i = 0; i < folios->nr; i++)
7737 uncharge_folio(folios->folios[i], &ug);
7739 uncharge_batch(&ug);
7743 * mem_cgroup_replace_folio - Charge a folio's replacement.
7744 * @old: Currently circulating folio.
7745 * @new: Replacement folio.
7747 * Charge @new as a replacement folio for @old. @old will
7748 * be uncharged upon free.
7750 * Both folios must be locked, @new->mapping must be set up.
7752 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7754 struct mem_cgroup *memcg;
7755 long nr_pages = folio_nr_pages(new);
7756 unsigned long flags;
7758 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7759 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7760 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7761 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7763 if (mem_cgroup_disabled())
7766 /* Page cache replacement: new folio already charged? */
7767 if (folio_memcg(new))
7770 memcg = folio_memcg(old);
7771 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7775 /* Force-charge the new page. The old one will be freed soon */
7776 if (!mem_cgroup_is_root(memcg)) {
7777 page_counter_charge(&memcg->memory, nr_pages);
7778 if (do_memsw_account())
7779 page_counter_charge(&memcg->memsw, nr_pages);
7782 css_get(&memcg->css);
7783 commit_charge(new, memcg);
7785 local_irq_save(flags);
7786 mem_cgroup_charge_statistics(memcg, nr_pages);
7787 memcg_check_events(memcg, folio_nid(new));
7788 local_irq_restore(flags);
7792 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7793 * @old: Currently circulating folio.
7794 * @new: Replacement folio.
7796 * Transfer the memcg data from the old folio to the new folio for migration.
7797 * The old folio's data info will be cleared. Note that the memory counters
7798 * will remain unchanged throughout the process.
7800 * Both folios must be locked, @new->mapping must be set up.
7802 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7804 struct mem_cgroup *memcg;
7806 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7807 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7808 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7809 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7811 if (mem_cgroup_disabled())
7814 memcg = folio_memcg(old);
7816 * Note that it is normal to see !memcg for a hugetlb folio.
7817 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7820 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7824 /* Transfer the charge and the css ref */
7825 commit_charge(new, memcg);
7826 old->memcg_data = 0;
7829 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7830 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7832 void mem_cgroup_sk_alloc(struct sock *sk)
7834 struct mem_cgroup *memcg;
7836 if (!mem_cgroup_sockets_enabled)
7839 /* Do not associate the sock with unrelated interrupted task's memcg. */
7844 memcg = mem_cgroup_from_task(current);
7845 if (mem_cgroup_is_root(memcg))
7847 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7849 if (css_tryget(&memcg->css))
7850 sk->sk_memcg = memcg;
7855 void mem_cgroup_sk_free(struct sock *sk)
7858 css_put(&sk->sk_memcg->css);
7862 * mem_cgroup_charge_skmem - charge socket memory
7863 * @memcg: memcg to charge
7864 * @nr_pages: number of pages to charge
7865 * @gfp_mask: reclaim mode
7867 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7868 * @memcg's configured limit, %false if it doesn't.
7870 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7873 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7874 struct page_counter *fail;
7876 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7877 memcg->tcpmem_pressure = 0;
7880 memcg->tcpmem_pressure = 1;
7881 if (gfp_mask & __GFP_NOFAIL) {
7882 page_counter_charge(&memcg->tcpmem, nr_pages);
7888 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7889 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7897 * mem_cgroup_uncharge_skmem - uncharge socket memory
7898 * @memcg: memcg to uncharge
7899 * @nr_pages: number of pages to uncharge
7901 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7903 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7904 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7908 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7910 refill_stock(memcg, nr_pages);
7913 static int __init cgroup_memory(char *s)
7917 while ((token = strsep(&s, ",")) != NULL) {
7920 if (!strcmp(token, "nosocket"))
7921 cgroup_memory_nosocket = true;
7922 if (!strcmp(token, "nokmem"))
7923 cgroup_memory_nokmem = true;
7924 if (!strcmp(token, "nobpf"))
7925 cgroup_memory_nobpf = true;
7929 __setup("cgroup.memory=", cgroup_memory);
7932 * subsys_initcall() for memory controller.
7934 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7935 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7936 * basically everything that doesn't depend on a specific mem_cgroup structure
7937 * should be initialized from here.
7939 static int __init mem_cgroup_init(void)
7944 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7945 * used for per-memcg-per-cpu caching of per-node statistics. In order
7946 * to work fine, we should make sure that the overfill threshold can't
7947 * exceed S32_MAX / PAGE_SIZE.
7949 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7951 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7952 memcg_hotplug_cpu_dead);
7954 for_each_possible_cpu(cpu)
7955 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7958 for_each_node(node) {
7959 struct mem_cgroup_tree_per_node *rtpn;
7961 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7963 rtpn->rb_root = RB_ROOT;
7964 rtpn->rb_rightmost = NULL;
7965 spin_lock_init(&rtpn->lock);
7966 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7971 subsys_initcall(mem_cgroup_init);
7974 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7976 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7978 * The root cgroup cannot be destroyed, so it's refcount must
7981 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7985 memcg = parent_mem_cgroup(memcg);
7987 memcg = root_mem_cgroup;
7993 * mem_cgroup_swapout - transfer a memsw charge to swap
7994 * @folio: folio whose memsw charge to transfer
7995 * @entry: swap entry to move the charge to
7997 * Transfer the memsw charge of @folio to @entry.
7999 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
8001 struct mem_cgroup *memcg, *swap_memcg;
8002 unsigned int nr_entries;
8003 unsigned short oldid;
8005 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
8006 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
8008 if (mem_cgroup_disabled())
8011 if (!do_memsw_account())
8014 memcg = folio_memcg(folio);
8016 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
8021 * In case the memcg owning these pages has been offlined and doesn't
8022 * have an ID allocated to it anymore, charge the closest online
8023 * ancestor for the swap instead and transfer the memory+swap charge.
8025 swap_memcg = mem_cgroup_id_get_online(memcg);
8026 nr_entries = folio_nr_pages(folio);
8027 /* Get references for the tail pages, too */
8029 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
8030 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
8032 VM_BUG_ON_FOLIO(oldid, folio);
8033 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
8035 folio->memcg_data = 0;
8037 if (!mem_cgroup_is_root(memcg))
8038 page_counter_uncharge(&memcg->memory, nr_entries);
8040 if (memcg != swap_memcg) {
8041 if (!mem_cgroup_is_root(swap_memcg))
8042 page_counter_charge(&swap_memcg->memsw, nr_entries);
8043 page_counter_uncharge(&memcg->memsw, nr_entries);
8047 * Interrupts should be disabled here because the caller holds the
8048 * i_pages lock which is taken with interrupts-off. It is
8049 * important here to have the interrupts disabled because it is the
8050 * only synchronisation we have for updating the per-CPU variables.
8053 mem_cgroup_charge_statistics(memcg, -nr_entries);
8054 memcg_stats_unlock();
8055 memcg_check_events(memcg, folio_nid(folio));
8057 css_put(&memcg->css);
8061 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
8062 * @folio: folio being added to swap
8063 * @entry: swap entry to charge
8065 * Try to charge @folio's memcg for the swap space at @entry.
8067 * Returns 0 on success, -ENOMEM on failure.
8069 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
8071 unsigned int nr_pages = folio_nr_pages(folio);
8072 struct page_counter *counter;
8073 struct mem_cgroup *memcg;
8074 unsigned short oldid;
8076 if (do_memsw_account())
8079 memcg = folio_memcg(folio);
8081 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
8086 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
8090 memcg = mem_cgroup_id_get_online(memcg);
8092 if (!mem_cgroup_is_root(memcg) &&
8093 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
8094 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
8095 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
8096 mem_cgroup_id_put(memcg);
8100 /* Get references for the tail pages, too */
8102 mem_cgroup_id_get_many(memcg, nr_pages - 1);
8103 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
8104 VM_BUG_ON_FOLIO(oldid, folio);
8105 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
8111 * __mem_cgroup_uncharge_swap - uncharge swap space
8112 * @entry: swap entry to uncharge
8113 * @nr_pages: the amount of swap space to uncharge
8115 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
8117 struct mem_cgroup *memcg;
8120 id = swap_cgroup_record(entry, 0, nr_pages);
8122 memcg = mem_cgroup_from_id(id);
8124 if (!mem_cgroup_is_root(memcg)) {
8125 if (do_memsw_account())
8126 page_counter_uncharge(&memcg->memsw, nr_pages);
8128 page_counter_uncharge(&memcg->swap, nr_pages);
8130 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
8131 mem_cgroup_id_put_many(memcg, nr_pages);
8136 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
8138 long nr_swap_pages = get_nr_swap_pages();
8140 if (mem_cgroup_disabled() || do_memsw_account())
8141 return nr_swap_pages;
8142 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
8143 nr_swap_pages = min_t(long, nr_swap_pages,
8144 READ_ONCE(memcg->swap.max) -
8145 page_counter_read(&memcg->swap));
8146 return nr_swap_pages;
8149 bool mem_cgroup_swap_full(struct folio *folio)
8151 struct mem_cgroup *memcg;
8153 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
8157 if (do_memsw_account())
8160 memcg = folio_memcg(folio);
8164 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
8165 unsigned long usage = page_counter_read(&memcg->swap);
8167 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
8168 usage * 2 >= READ_ONCE(memcg->swap.max))
8175 static int __init setup_swap_account(char *s)
8179 if (!kstrtobool(s, &res) && !res)
8180 pr_warn_once("The swapaccount=0 commandline option is deprecated "
8181 "in favor of configuring swap control via cgroupfs. "
8183 "depend on this functionality.\n");
8186 __setup("swapaccount=", setup_swap_account);
8188 static u64 swap_current_read(struct cgroup_subsys_state *css,
8191 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8193 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
8196 static u64 swap_peak_read(struct cgroup_subsys_state *css,
8199 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8201 return (u64)memcg->swap.watermark * PAGE_SIZE;
8204 static int swap_high_show(struct seq_file *m, void *v)
8206 return seq_puts_memcg_tunable(m,
8207 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
8210 static ssize_t swap_high_write(struct kernfs_open_file *of,
8211 char *buf, size_t nbytes, loff_t off)
8213 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8217 buf = strstrip(buf);
8218 err = page_counter_memparse(buf, "max", &high);
8222 page_counter_set_high(&memcg->swap, high);
8227 static int swap_max_show(struct seq_file *m, void *v)
8229 return seq_puts_memcg_tunable(m,
8230 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
8233 static ssize_t swap_max_write(struct kernfs_open_file *of,
8234 char *buf, size_t nbytes, loff_t off)
8236 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8240 buf = strstrip(buf);
8241 err = page_counter_memparse(buf, "max", &max);
8245 xchg(&memcg->swap.max, max);
8250 static int swap_events_show(struct seq_file *m, void *v)
8252 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8254 seq_printf(m, "high %lu\n",
8255 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
8256 seq_printf(m, "max %lu\n",
8257 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8258 seq_printf(m, "fail %lu\n",
8259 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8264 static struct cftype swap_files[] = {
8266 .name = "swap.current",
8267 .flags = CFTYPE_NOT_ON_ROOT,
8268 .read_u64 = swap_current_read,
8271 .name = "swap.high",
8272 .flags = CFTYPE_NOT_ON_ROOT,
8273 .seq_show = swap_high_show,
8274 .write = swap_high_write,
8278 .flags = CFTYPE_NOT_ON_ROOT,
8279 .seq_show = swap_max_show,
8280 .write = swap_max_write,
8283 .name = "swap.peak",
8284 .flags = CFTYPE_NOT_ON_ROOT,
8285 .read_u64 = swap_peak_read,
8288 .name = "swap.events",
8289 .flags = CFTYPE_NOT_ON_ROOT,
8290 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
8291 .seq_show = swap_events_show,
8296 static struct cftype memsw_files[] = {
8298 .name = "memsw.usage_in_bytes",
8299 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8300 .read_u64 = mem_cgroup_read_u64,
8303 .name = "memsw.max_usage_in_bytes",
8304 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8305 .write = mem_cgroup_reset,
8306 .read_u64 = mem_cgroup_read_u64,
8309 .name = "memsw.limit_in_bytes",
8310 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8311 .write = mem_cgroup_write,
8312 .read_u64 = mem_cgroup_read_u64,
8315 .name = "memsw.failcnt",
8316 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8317 .write = mem_cgroup_reset,
8318 .read_u64 = mem_cgroup_read_u64,
8320 { }, /* terminate */
8323 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8325 * obj_cgroup_may_zswap - check if this cgroup can zswap
8326 * @objcg: the object cgroup
8328 * Check if the hierarchical zswap limit has been reached.
8330 * This doesn't check for specific headroom, and it is not atomic
8331 * either. But with zswap, the size of the allocation is only known
8332 * once compression has occurred, and this optimistic pre-check avoids
8333 * spending cycles on compression when there is already no room left
8334 * or zswap is disabled altogether somewhere in the hierarchy.
8336 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8338 struct mem_cgroup *memcg, *original_memcg;
8341 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8344 original_memcg = get_mem_cgroup_from_objcg(objcg);
8345 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8346 memcg = parent_mem_cgroup(memcg)) {
8347 unsigned long max = READ_ONCE(memcg->zswap_max);
8348 unsigned long pages;
8350 if (max == PAGE_COUNTER_MAX)
8358 * mem_cgroup_flush_stats() ignores small changes. Use
8359 * do_flush_stats() directly to get accurate stats for charging.
8361 do_flush_stats(memcg);
8362 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8368 mem_cgroup_put(original_memcg);
8373 * obj_cgroup_charge_zswap - charge compression backend memory
8374 * @objcg: the object cgroup
8375 * @size: size of compressed object
8377 * This forces the charge after obj_cgroup_may_zswap() allowed
8378 * compression and storage in zwap for this cgroup to go ahead.
8380 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8382 struct mem_cgroup *memcg;
8384 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8387 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8389 /* PF_MEMALLOC context, charging must succeed */
8390 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8394 memcg = obj_cgroup_memcg(objcg);
8395 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8396 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8401 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8402 * @objcg: the object cgroup
8403 * @size: size of compressed object
8405 * Uncharges zswap memory on page in.
8407 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8409 struct mem_cgroup *memcg;
8411 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8414 obj_cgroup_uncharge(objcg, size);
8417 memcg = obj_cgroup_memcg(objcg);
8418 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8419 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8423 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8425 /* if zswap is disabled, do not block pages going to the swapping device */
8426 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8429 static u64 zswap_current_read(struct cgroup_subsys_state *css,
8432 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8434 mem_cgroup_flush_stats(memcg);
8435 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
8438 static int zswap_max_show(struct seq_file *m, void *v)
8440 return seq_puts_memcg_tunable(m,
8441 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8444 static ssize_t zswap_max_write(struct kernfs_open_file *of,
8445 char *buf, size_t nbytes, loff_t off)
8447 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8451 buf = strstrip(buf);
8452 err = page_counter_memparse(buf, "max", &max);
8456 xchg(&memcg->zswap_max, max);
8461 static int zswap_writeback_show(struct seq_file *m, void *v)
8463 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8465 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8469 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8470 char *buf, size_t nbytes, loff_t off)
8472 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8473 int zswap_writeback;
8474 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8479 if (zswap_writeback != 0 && zswap_writeback != 1)
8482 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8486 static struct cftype zswap_files[] = {
8488 .name = "zswap.current",
8489 .flags = CFTYPE_NOT_ON_ROOT,
8490 .read_u64 = zswap_current_read,
8493 .name = "zswap.max",
8494 .flags = CFTYPE_NOT_ON_ROOT,
8495 .seq_show = zswap_max_show,
8496 .write = zswap_max_write,
8499 .name = "zswap.writeback",
8500 .seq_show = zswap_writeback_show,
8501 .write = zswap_writeback_write,
8505 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8507 static int __init mem_cgroup_swap_init(void)
8509 if (mem_cgroup_disabled())
8512 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8513 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8514 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8515 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8519 subsys_initcall(mem_cgroup_swap_init);
8521 #endif /* CONFIG_SWAP */