1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains KASAN runtime code that manages shadow memory for
4 * generic and software tag-based KASAN modes.
6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
31 return kasan_check_range((void *)p, size, false, _RET_IP_);
33 EXPORT_SYMBOL(__kasan_check_read);
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
37 return kasan_check_range((void *)p, size, true, _RET_IP_);
39 EXPORT_SYMBOL(__kasan_check_write);
41 #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
43 * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44 * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45 * for the sites they want to instrument.
47 * If we have a compiler that can instrument meminstrinsics, never override
48 * these, so that non-instrumented files can safely consider them as builtins.
51 void *memset(void *addr, int c, size_t len)
53 if (!kasan_check_range(addr, len, true, _RET_IP_))
56 return __memset(addr, c, len);
59 #ifdef __HAVE_ARCH_MEMMOVE
61 void *memmove(void *dest, const void *src, size_t len)
63 if (!kasan_check_range(src, len, false, _RET_IP_) ||
64 !kasan_check_range(dest, len, true, _RET_IP_))
67 return __memmove(dest, src, len);
72 void *memcpy(void *dest, const void *src, size_t len)
74 if (!kasan_check_range(src, len, false, _RET_IP_) ||
75 !kasan_check_range(dest, len, true, _RET_IP_))
78 return __memcpy(dest, src, len);
82 void *__asan_memset(void *addr, int c, ssize_t len)
84 if (!kasan_check_range(addr, len, true, _RET_IP_))
87 return __memset(addr, c, len);
89 EXPORT_SYMBOL(__asan_memset);
91 #ifdef __HAVE_ARCH_MEMMOVE
92 void *__asan_memmove(void *dest, const void *src, ssize_t len)
94 if (!kasan_check_range(src, len, false, _RET_IP_) ||
95 !kasan_check_range(dest, len, true, _RET_IP_))
98 return __memmove(dest, src, len);
100 EXPORT_SYMBOL(__asan_memmove);
103 void *__asan_memcpy(void *dest, const void *src, ssize_t len)
105 if (!kasan_check_range(src, len, false, _RET_IP_) ||
106 !kasan_check_range(dest, len, true, _RET_IP_))
109 return __memcpy(dest, src, len);
111 EXPORT_SYMBOL(__asan_memcpy);
113 #ifdef CONFIG_KASAN_SW_TAGS
114 void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115 EXPORT_SYMBOL(__hwasan_memset);
116 #ifdef __HAVE_ARCH_MEMMOVE
117 void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118 EXPORT_SYMBOL(__hwasan_memmove);
120 void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121 EXPORT_SYMBOL(__hwasan_memcpy);
124 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
126 void *shadow_start, *shadow_end;
128 if (!kasan_arch_is_ready())
132 * Perform shadow offset calculation based on untagged address, as
133 * some of the callers (e.g. kasan_poison_new_object) pass tagged
134 * addresses to this function.
136 addr = kasan_reset_tag(addr);
138 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
140 if (WARN_ON(size & KASAN_GRANULE_MASK))
143 shadow_start = kasan_mem_to_shadow(addr);
144 shadow_end = kasan_mem_to_shadow(addr + size);
146 __memset(shadow_start, value, shadow_end - shadow_start);
148 EXPORT_SYMBOL_GPL(kasan_poison);
150 #ifdef CONFIG_KASAN_GENERIC
151 void kasan_poison_last_granule(const void *addr, size_t size)
153 if (!kasan_arch_is_ready())
156 if (size & KASAN_GRANULE_MASK) {
157 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
158 *shadow = size & KASAN_GRANULE_MASK;
163 void kasan_unpoison(const void *addr, size_t size, bool init)
165 u8 tag = get_tag(addr);
168 * Perform shadow offset calculation based on untagged address, as
169 * some of the callers (e.g. kasan_unpoison_new_object) pass tagged
170 * addresses to this function.
172 addr = kasan_reset_tag(addr);
174 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
177 /* Unpoison all granules that cover the object. */
178 kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
180 /* Partially poison the last granule for the generic mode. */
181 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
182 kasan_poison_last_granule(addr, size);
185 #ifdef CONFIG_MEMORY_HOTPLUG
186 static bool shadow_mapped(unsigned long addr)
188 pgd_t *pgd = pgd_offset_k(addr);
196 p4d = p4d_offset(pgd, addr);
199 pud = pud_offset(p4d, addr);
204 pmd = pmd_offset(pud, addr);
209 pte = pte_offset_kernel(pmd, addr);
210 return !pte_none(ptep_get(pte));
213 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
214 unsigned long action, void *data)
216 struct memory_notify *mem_data = data;
217 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
218 unsigned long shadow_end, shadow_size;
220 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
221 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
222 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
223 shadow_size = nr_shadow_pages << PAGE_SHIFT;
224 shadow_end = shadow_start + shadow_size;
226 if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
227 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
231 case MEM_GOING_ONLINE: {
235 * If shadow is mapped already than it must have been mapped
236 * during the boot. This could happen if we onlining previously
239 if (shadow_mapped(shadow_start))
242 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
243 shadow_end, GFP_KERNEL,
244 PAGE_KERNEL, VM_NO_GUARD,
245 pfn_to_nid(mem_data->start_pfn),
246 __builtin_return_address(0));
250 kmemleak_ignore(ret);
253 case MEM_CANCEL_ONLINE:
255 struct vm_struct *vm;
258 * shadow_start was either mapped during boot by kasan_init()
259 * or during memory online by __vmalloc_node_range().
260 * In the latter case we can use vfree() to free shadow.
261 * Non-NULL result of the find_vm_area() will tell us if
262 * that was the second case.
264 * Currently it's not possible to free shadow mapped
265 * during boot by kasan_init(). It's because the code
266 * to do that hasn't been written yet. So we'll just
269 vm = find_vm_area((void *)shadow_start);
271 vfree((void *)shadow_start);
278 static int __init kasan_memhotplug_init(void)
280 hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
285 core_initcall(kasan_memhotplug_init);
288 #ifdef CONFIG_KASAN_VMALLOC
290 void __init __weak kasan_populate_early_vm_area_shadow(void *start,
295 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
301 if (likely(!pte_none(ptep_get(ptep))))
304 page = __get_free_page(GFP_KERNEL);
308 __memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
309 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
311 spin_lock(&init_mm.page_table_lock);
312 if (likely(pte_none(ptep_get(ptep)))) {
313 set_pte_at(&init_mm, addr, ptep, pte);
316 spin_unlock(&init_mm.page_table_lock);
322 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
324 unsigned long shadow_start, shadow_end;
327 if (!kasan_arch_is_ready())
330 if (!is_vmalloc_or_module_addr((void *)addr))
333 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
334 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
337 * User Mode Linux maps enough shadow memory for all of virtual memory
338 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
340 * The remaining CONFIG_UML checks in this file exist for the same
343 if (IS_ENABLED(CONFIG_UML)) {
344 __memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
348 shadow_start = PAGE_ALIGN_DOWN(shadow_start);
349 shadow_end = PAGE_ALIGN(shadow_end);
351 ret = apply_to_page_range(&init_mm, shadow_start,
352 shadow_end - shadow_start,
353 kasan_populate_vmalloc_pte, NULL);
357 flush_cache_vmap(shadow_start, shadow_end);
360 * We need to be careful about inter-cpu effects here. Consider:
363 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
366 * With compiler instrumentation, that ends up looking like this:
369 * // vmalloc() allocates memory
370 * // let a = area->addr
371 * // we reach kasan_populate_vmalloc
372 * // and call kasan_unpoison:
373 * STORE shadow(a), unpoison_val
375 * STORE shadow(a+99), unpoison_val x = LOAD p
376 * // rest of vmalloc process <data dependency>
377 * STORE p, a LOAD shadow(x+99)
379 * If there is no barrier between the end of unpoisoning the shadow
380 * and the store of the result to p, the stores could be committed
381 * in a different order by CPU#0, and CPU#1 could erroneously observe
382 * poison in the shadow.
384 * We need some sort of barrier between the stores.
386 * In the vmalloc() case, this is provided by a smp_wmb() in
387 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
388 * get_vm_area() and friends, the caller gets shadow allocated but
389 * doesn't have any pages mapped into the virtual address space that
390 * has been reserved. Mapping those pages in will involve taking and
391 * releasing a page-table lock, which will provide the barrier.
397 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
402 page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT);
404 spin_lock(&init_mm.page_table_lock);
406 if (likely(!pte_none(ptep_get(ptep)))) {
407 pte_clear(&init_mm, addr, ptep);
410 spin_unlock(&init_mm.page_table_lock);
416 * Release the backing for the vmalloc region [start, end), which
417 * lies within the free region [free_region_start, free_region_end).
419 * This can be run lazily, long after the region was freed. It runs
420 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
423 * How does this work?
424 * -------------------
426 * We have a region that is page aligned, labeled as A.
427 * That might not map onto the shadow in a way that is page-aligned:
431 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
432 * -------- -------- -------- -------- --------
435 * \-------\|/------/ |/---------------/
437 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
440 * First we align the start upwards and the end downwards, so that the
441 * shadow of the region aligns with shadow page boundaries. In the
442 * example, this gives us the shadow page (2). This is the shadow entirely
443 * covered by this allocation.
445 * Then we have the tricky bits. We want to know if we can free the
446 * partially covered shadow pages - (1) and (3) in the example. For this,
447 * we are given the start and end of the free region that contains this
448 * allocation. Extending our previous example, we could have:
450 * free_region_start free_region_end
453 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
454 * -------- -------- -------- -------- --------
457 * \-------\|/------/ |/---------------/
459 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
462 * Once again, we align the start of the free region up, and the end of
463 * the free region down so that the shadow is page aligned. So we can free
464 * page (1) - we know no allocation currently uses anything in that page,
465 * because all of it is in the vmalloc free region. But we cannot free
466 * page (3), because we can't be sure that the rest of it is unused.
468 * We only consider pages that contain part of the original region for
469 * freeing: we don't try to free other pages from the free region or we'd
470 * end up trying to free huge chunks of virtual address space.
475 * How do we know that we're not freeing a page that is simultaneously
476 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
478 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
479 * at the same time. While we run under free_vmap_area_lock, the population
482 * free_vmap_area_lock instead operates to ensure that the larger range
483 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
484 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
485 * no space identified as free will become used while we are running. This
486 * means that so long as we are careful with alignment and only free shadow
487 * pages entirely covered by the free region, we will not run in to any
488 * trouble - any simultaneous allocations will be for disjoint regions.
490 void kasan_release_vmalloc(unsigned long start, unsigned long end,
491 unsigned long free_region_start,
492 unsigned long free_region_end)
494 void *shadow_start, *shadow_end;
495 unsigned long region_start, region_end;
498 if (!kasan_arch_is_ready())
501 region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
502 region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
504 free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
506 if (start != region_start &&
507 free_region_start < region_start)
508 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
510 free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
512 if (end != region_end &&
513 free_region_end > region_end)
514 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
516 shadow_start = kasan_mem_to_shadow((void *)region_start);
517 shadow_end = kasan_mem_to_shadow((void *)region_end);
519 if (shadow_end > shadow_start) {
520 size = shadow_end - shadow_start;
521 if (IS_ENABLED(CONFIG_UML)) {
522 __memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
525 apply_to_existing_page_range(&init_mm,
526 (unsigned long)shadow_start,
527 size, kasan_depopulate_vmalloc_pte,
529 flush_tlb_kernel_range((unsigned long)shadow_start,
530 (unsigned long)shadow_end);
534 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
535 kasan_vmalloc_flags_t flags)
538 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
539 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
540 * Software KASAN modes can't optimize zeroing memory by combining it
541 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
544 if (!kasan_arch_is_ready())
545 return (void *)start;
547 if (!is_vmalloc_or_module_addr(start))
548 return (void *)start;
551 * Don't tag executable memory with the tag-based mode.
552 * The kernel doesn't tolerate having the PC register tagged.
554 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
555 !(flags & KASAN_VMALLOC_PROT_NORMAL))
556 return (void *)start;
558 start = set_tag(start, kasan_random_tag());
559 kasan_unpoison(start, size, false);
560 return (void *)start;
564 * Poison the shadow for a vmalloc region. Called as part of the
565 * freeing process at the time the region is freed.
567 void __kasan_poison_vmalloc(const void *start, unsigned long size)
569 if (!kasan_arch_is_ready())
572 if (!is_vmalloc_or_module_addr(start))
575 size = round_up(size, KASAN_GRANULE_SIZE);
576 kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
579 #else /* CONFIG_KASAN_VMALLOC */
581 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
586 unsigned long shadow_start;
588 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
589 scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
590 KASAN_SHADOW_SCALE_SHIFT;
591 shadow_size = round_up(scaled_size, PAGE_SIZE);
593 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
596 if (IS_ENABLED(CONFIG_UML)) {
597 __memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
601 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
602 shadow_start + shadow_size,
604 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
605 __builtin_return_address(0));
608 struct vm_struct *vm = find_vm_area(addr);
609 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
610 vm->flags |= VM_KASAN;
611 kmemleak_ignore(ret);
613 if (vm->flags & VM_DEFER_KMEMLEAK)
614 kmemleak_vmalloc(vm, size, gfp_mask);
622 void kasan_free_module_shadow(const struct vm_struct *vm)
624 if (IS_ENABLED(CONFIG_UML))
627 if (vm->flags & VM_KASAN)
628 vfree(kasan_mem_to_shadow(vm->addr));