1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
8 #include <linux/pgalloc_tag.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
37 struct anon_vma_chain;
42 extern int sysctl_page_lock_unfairness;
44 void mm_core_init(void);
45 void init_mm_internals(void);
47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
50 static inline void set_max_mapnr(unsigned long limit)
55 static inline void set_max_mapnr(unsigned long limit) { }
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
61 return (unsigned long)atomic_long_read(&_totalram_pages);
64 static inline void totalram_pages_inc(void)
66 atomic_long_inc(&_totalram_pages);
69 static inline void totalram_pages_dec(void)
71 atomic_long_dec(&_totalram_pages);
74 static inline void totalram_pages_add(long count)
76 atomic_long_add(count, &_totalram_pages);
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
84 extern int sysctl_legacy_va_layout;
86 #define sysctl_legacy_va_layout 0
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
101 # ifdef MAX_PHYSMEM_BITS
102 # define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
104 # define PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
108 #include <asm/page.h>
109 #include <asm/processor.h>
112 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
116 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
120 #define lm_alias(x) __va(__pa_symbol(x))
124 * To prevent common memory management code establishing
125 * a zero page mapping on a read fault.
126 * This macro should be defined within <asm/pgtable.h>.
127 * s390 does this to prevent multiplexing of hardware bits
128 * related to the physical page in case of virtualization.
130 #ifndef mm_forbids_zeropage
131 #define mm_forbids_zeropage(X) (0)
135 * On some architectures it is expensive to call memset() for small sizes.
136 * If an architecture decides to implement their own version of
137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138 * define their own version of this macro in <asm/pgtable.h>
140 #if BITS_PER_LONG == 64
141 /* This function must be updated when the size of struct page grows above 96
142 * or reduces below 56. The idea that compiler optimizes out switch()
143 * statement, and only leaves move/store instructions. Also the compiler can
144 * combine write statements if they are both assignments and can be reordered,
145 * this can result in several of the writes here being dropped.
147 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148 static inline void __mm_zero_struct_page(struct page *page)
150 unsigned long *_pp = (void *)page;
152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 BUILD_BUG_ON(sizeof(struct page) & 7);
154 BUILD_BUG_ON(sizeof(struct page) < 56);
155 BUILD_BUG_ON(sizeof(struct page) > 96);
157 switch (sizeof(struct page)) {
184 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
188 * Default maximum number of active map areas, this limits the number of vmas
189 * per mm struct. Users can overwrite this number by sysctl but there is a
192 * When a program's coredump is generated as ELF format, a section is created
193 * per a vma. In ELF, the number of sections is represented in unsigned short.
194 * This means the number of sections should be smaller than 65535 at coredump.
195 * Because the kernel adds some informative sections to a image of program at
196 * generating coredump, we need some margin. The number of extra sections is
197 * 1-3 now and depends on arch. We use "5" as safe margin, here.
199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200 * not a hard limit any more. Although some userspace tools can be surprised by
203 #define MAPCOUNT_ELF_CORE_MARGIN (5)
204 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
206 extern int sysctl_max_map_count;
208 extern unsigned long sysctl_user_reserve_kbytes;
209 extern unsigned long sysctl_admin_reserve_kbytes;
211 extern int sysctl_overcommit_memory;
212 extern int sysctl_overcommit_ratio;
213 extern unsigned long sysctl_overcommit_kbytes;
215 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
217 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
219 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
222 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
223 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
224 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
226 #define nth_page(page,n) ((page) + (n))
227 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
230 /* to align the pointer to the (next) page boundary */
231 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
233 /* to align the pointer to the (prev) page boundary */
234 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
239 static inline struct folio *lru_to_folio(struct list_head *head)
241 return list_entry((head)->prev, struct folio, lru);
244 void setup_initial_init_mm(void *start_code, void *end_code,
245 void *end_data, void *brk);
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
256 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258 void vm_area_free(struct vm_area_struct *);
259 /* Use only if VMA has no other users */
260 void __vm_area_free(struct vm_area_struct *vma);
263 extern struct rb_root nommu_region_tree;
264 extern struct rw_semaphore nommu_region_sem;
266 extern unsigned int kobjsize(const void *objp);
270 * vm_flags in vm_area_struct, see mm_types.h.
271 * When changing, update also include/trace/events/mmflags.h
273 #define VM_NONE 0x00000000
275 #define VM_READ 0x00000001 /* currently active flags */
276 #define VM_WRITE 0x00000002
277 #define VM_EXEC 0x00000004
278 #define VM_SHARED 0x00000008
280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
281 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
282 #define VM_MAYWRITE 0x00000020
283 #define VM_MAYEXEC 0x00000040
284 #define VM_MAYSHARE 0x00000080
286 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
288 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
289 #else /* CONFIG_MMU */
290 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
291 #define VM_UFFD_MISSING 0
292 #endif /* CONFIG_MMU */
293 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
294 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
296 #define VM_LOCKED 0x00002000
297 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
299 /* Used by sys_madvise() */
300 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
301 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
303 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
304 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
305 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
306 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
307 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
308 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
309 #define VM_SYNC 0x00800000 /* Synchronous page faults */
310 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
311 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
312 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
314 #ifdef CONFIG_MEM_SOFT_DIRTY
315 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
317 # define VM_SOFTDIRTY 0
320 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
321 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
322 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
323 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
334 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
335 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
336 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
337 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
338 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
339 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
340 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
342 #ifdef CONFIG_ARCH_HAS_PKEYS
343 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
344 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
345 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
346 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
347 #if CONFIG_ARCH_PKEY_BITS > 3
348 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
350 # define VM_PKEY_BIT3 0
352 #if CONFIG_ARCH_PKEY_BITS > 4
353 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
355 # define VM_PKEY_BIT4 0
357 #endif /* CONFIG_ARCH_HAS_PKEYS */
359 #ifdef CONFIG_X86_USER_SHADOW_STACK
361 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
364 * These VMAs will get a single end guard page. This helps userspace protect
365 * itself from attacks. A single page is enough for current shadow stack archs
366 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
367 * for more details on the guard size.
369 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
372 #if defined(CONFIG_ARM64_GCS)
374 * arm64's Guarded Control Stack implements similar functionality and
375 * has similar constraints to shadow stacks.
377 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
380 #ifndef VM_SHADOW_STACK
381 # define VM_SHADOW_STACK VM_NONE
384 #if defined(CONFIG_X86)
385 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
386 #elif defined(CONFIG_PPC64)
387 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
388 #elif defined(CONFIG_PARISC)
389 # define VM_GROWSUP VM_ARCH_1
390 #elif defined(CONFIG_SPARC64)
391 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
392 # define VM_ARCH_CLEAR VM_SPARC_ADI
393 #elif defined(CONFIG_ARM64)
394 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
395 # define VM_ARCH_CLEAR VM_ARM64_BTI
396 #elif !defined(CONFIG_MMU)
397 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
400 #if defined(CONFIG_ARM64_MTE)
401 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
402 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
404 # define VM_MTE VM_NONE
405 # define VM_MTE_ALLOWED VM_NONE
409 # define VM_GROWSUP VM_NONE
412 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
413 # define VM_UFFD_MINOR_BIT 38
414 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
415 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
416 # define VM_UFFD_MINOR VM_NONE
417 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
420 * This flag is used to connect VFIO to arch specific KVM code. It
421 * indicates that the memory under this VMA is safe for use with any
422 * non-cachable memory type inside KVM. Some VFIO devices, on some
423 * platforms, are thought to be unsafe and can cause machine crashes
424 * if KVM does not lock down the memory type.
427 #define VM_ALLOW_ANY_UNCACHED_BIT 39
428 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
430 #define VM_ALLOW_ANY_UNCACHED VM_NONE
434 #define VM_DROPPABLE_BIT 40
435 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
436 #elif defined(CONFIG_PPC32)
437 #define VM_DROPPABLE VM_ARCH_1
439 #define VM_DROPPABLE VM_NONE
443 /* VM is sealed, in vm_flags */
444 #define VM_SEALED _BITUL(63)
447 /* Bits set in the VMA until the stack is in its final location */
448 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
450 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
452 /* Common data flag combinations */
453 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
454 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
455 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
456 VM_MAYWRITE | VM_MAYEXEC)
457 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
458 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
460 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
461 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
464 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
465 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
468 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
470 #ifdef CONFIG_STACK_GROWSUP
471 #define VM_STACK VM_GROWSUP
472 #define VM_STACK_EARLY VM_GROWSDOWN
474 #define VM_STACK VM_GROWSDOWN
475 #define VM_STACK_EARLY 0
478 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
480 /* VMA basic access permission flags */
481 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
485 * Special vmas that are non-mergable, non-mlock()able.
487 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
489 /* This mask prevents VMA from being scanned with khugepaged */
490 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
492 /* This mask defines which mm->def_flags a process can inherit its parent */
493 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
495 /* This mask represents all the VMA flag bits used by mlock */
496 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
498 /* Arch-specific flags to clear when updating VM flags on protection change */
499 #ifndef VM_ARCH_CLEAR
500 # define VM_ARCH_CLEAR VM_NONE
502 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
505 * mapping from the currently active vm_flags protection bits (the
506 * low four bits) to a page protection mask..
510 * The default fault flags that should be used by most of the
511 * arch-specific page fault handlers.
513 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
514 FAULT_FLAG_KILLABLE | \
515 FAULT_FLAG_INTERRUPTIBLE)
518 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
519 * @flags: Fault flags.
521 * This is mostly used for places where we want to try to avoid taking
522 * the mmap_lock for too long a time when waiting for another condition
523 * to change, in which case we can try to be polite to release the
524 * mmap_lock in the first round to avoid potential starvation of other
525 * processes that would also want the mmap_lock.
527 * Return: true if the page fault allows retry and this is the first
528 * attempt of the fault handling; false otherwise.
530 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
532 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
533 (!(flags & FAULT_FLAG_TRIED));
536 #define FAULT_FLAG_TRACE \
537 { FAULT_FLAG_WRITE, "WRITE" }, \
538 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
539 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
540 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
541 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
542 { FAULT_FLAG_TRIED, "TRIED" }, \
543 { FAULT_FLAG_USER, "USER" }, \
544 { FAULT_FLAG_REMOTE, "REMOTE" }, \
545 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
546 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
547 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
550 * vm_fault is filled by the pagefault handler and passed to the vma's
551 * ->fault function. The vma's ->fault is responsible for returning a bitmask
552 * of VM_FAULT_xxx flags that give details about how the fault was handled.
554 * MM layer fills up gfp_mask for page allocations but fault handler might
555 * alter it if its implementation requires a different allocation context.
557 * pgoff should be used in favour of virtual_address, if possible.
561 struct vm_area_struct *vma; /* Target VMA */
562 gfp_t gfp_mask; /* gfp mask to be used for allocations */
563 pgoff_t pgoff; /* Logical page offset based on vma */
564 unsigned long address; /* Faulting virtual address - masked */
565 unsigned long real_address; /* Faulting virtual address - unmasked */
567 enum fault_flag flags; /* FAULT_FLAG_xxx flags
568 * XXX: should really be 'const' */
569 pmd_t *pmd; /* Pointer to pmd entry matching
571 pud_t *pud; /* Pointer to pud entry matching
575 pte_t orig_pte; /* Value of PTE at the time of fault */
576 pmd_t orig_pmd; /* Value of PMD at the time of fault,
577 * used by PMD fault only.
581 struct page *cow_page; /* Page handler may use for COW fault */
582 struct page *page; /* ->fault handlers should return a
583 * page here, unless VM_FAULT_NOPAGE
584 * is set (which is also implied by
587 /* These three entries are valid only while holding ptl lock */
588 pte_t *pte; /* Pointer to pte entry matching
589 * the 'address'. NULL if the page
590 * table hasn't been allocated.
592 spinlock_t *ptl; /* Page table lock.
593 * Protects pte page table if 'pte'
594 * is not NULL, otherwise pmd.
596 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
597 * vm_ops->map_pages() sets up a page
598 * table from atomic context.
599 * do_fault_around() pre-allocates
600 * page table to avoid allocation from
606 * These are the virtual MM functions - opening of an area, closing and
607 * unmapping it (needed to keep files on disk up-to-date etc), pointer
608 * to the functions called when a no-page or a wp-page exception occurs.
610 struct vm_operations_struct {
611 void (*open)(struct vm_area_struct * area);
613 * @close: Called when the VMA is being removed from the MM.
614 * Context: User context. May sleep. Caller holds mmap_lock.
616 void (*close)(struct vm_area_struct * area);
617 /* Called any time before splitting to check if it's allowed */
618 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
619 int (*mremap)(struct vm_area_struct *area);
621 * Called by mprotect() to make driver-specific permission
622 * checks before mprotect() is finalised. The VMA must not
623 * be modified. Returns 0 if mprotect() can proceed.
625 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
626 unsigned long end, unsigned long newflags);
627 vm_fault_t (*fault)(struct vm_fault *vmf);
628 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
629 vm_fault_t (*map_pages)(struct vm_fault *vmf,
630 pgoff_t start_pgoff, pgoff_t end_pgoff);
631 unsigned long (*pagesize)(struct vm_area_struct * area);
633 /* notification that a previously read-only page is about to become
634 * writable, if an error is returned it will cause a SIGBUS */
635 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
637 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
638 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
640 /* called by access_process_vm when get_user_pages() fails, typically
641 * for use by special VMAs. See also generic_access_phys() for a generic
642 * implementation useful for any iomem mapping.
644 int (*access)(struct vm_area_struct *vma, unsigned long addr,
645 void *buf, int len, int write);
647 /* Called by the /proc/PID/maps code to ask the vma whether it
648 * has a special name. Returning non-NULL will also cause this
649 * vma to be dumped unconditionally. */
650 const char *(*name)(struct vm_area_struct *vma);
654 * set_policy() op must add a reference to any non-NULL @new mempolicy
655 * to hold the policy upon return. Caller should pass NULL @new to
656 * remove a policy and fall back to surrounding context--i.e. do not
657 * install a MPOL_DEFAULT policy, nor the task or system default
660 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
663 * get_policy() op must add reference [mpol_get()] to any policy at
664 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
665 * in mm/mempolicy.c will do this automatically.
666 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
667 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
668 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
669 * must return NULL--i.e., do not "fallback" to task or system default
672 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
673 unsigned long addr, pgoff_t *ilx);
676 * Called by vm_normal_page() for special PTEs to find the
677 * page for @addr. This is useful if the default behavior
678 * (using pte_page()) would not find the correct page.
680 struct page *(*find_special_page)(struct vm_area_struct *vma,
684 #ifdef CONFIG_NUMA_BALANCING
685 static inline void vma_numab_state_init(struct vm_area_struct *vma)
687 vma->numab_state = NULL;
689 static inline void vma_numab_state_free(struct vm_area_struct *vma)
691 kfree(vma->numab_state);
694 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
695 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
696 #endif /* CONFIG_NUMA_BALANCING */
698 #ifdef CONFIG_PER_VMA_LOCK
700 * Try to read-lock a vma. The function is allowed to occasionally yield false
701 * locked result to avoid performance overhead, in which case we fall back to
702 * using mmap_lock. The function should never yield false unlocked result.
704 static inline bool vma_start_read(struct vm_area_struct *vma)
707 * Check before locking. A race might cause false locked result.
708 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
709 * ACQUIRE semantics, because this is just a lockless check whose result
710 * we don't rely on for anything - the mm_lock_seq read against which we
711 * need ordering is below.
713 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
716 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
720 * Overflow might produce false locked result.
721 * False unlocked result is impossible because we modify and check
722 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
723 * modification invalidates all existing locks.
725 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
726 * racing with vma_end_write_all(), we only start reading from the VMA
727 * after it has been unlocked.
728 * This pairs with RELEASE semantics in vma_end_write_all().
730 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
731 up_read(&vma->vm_lock->lock);
737 static inline void vma_end_read(struct vm_area_struct *vma)
739 rcu_read_lock(); /* keeps vma alive till the end of up_read */
740 up_read(&vma->vm_lock->lock);
744 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
745 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
747 mmap_assert_write_locked(vma->vm_mm);
750 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
751 * mm->mm_lock_seq can't be concurrently modified.
753 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
754 return (vma->vm_lock_seq == *mm_lock_seq);
758 * Begin writing to a VMA.
759 * Exclude concurrent readers under the per-VMA lock until the currently
760 * write-locked mmap_lock is dropped or downgraded.
762 static inline void vma_start_write(struct vm_area_struct *vma)
766 if (__is_vma_write_locked(vma, &mm_lock_seq))
769 down_write(&vma->vm_lock->lock);
771 * We should use WRITE_ONCE() here because we can have concurrent reads
772 * from the early lockless pessimistic check in vma_start_read().
773 * We don't really care about the correctness of that early check, but
774 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
776 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
777 up_write(&vma->vm_lock->lock);
780 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
784 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
787 static inline void vma_assert_locked(struct vm_area_struct *vma)
789 if (!rwsem_is_locked(&vma->vm_lock->lock))
790 vma_assert_write_locked(vma);
793 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
795 /* When detaching vma should be write-locked */
797 vma_assert_write_locked(vma);
798 vma->detached = detached;
801 static inline void release_fault_lock(struct vm_fault *vmf)
803 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
804 vma_end_read(vmf->vma);
806 mmap_read_unlock(vmf->vma->vm_mm);
809 static inline void assert_fault_locked(struct vm_fault *vmf)
811 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
812 vma_assert_locked(vmf->vma);
814 mmap_assert_locked(vmf->vma->vm_mm);
817 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
818 unsigned long address);
820 #else /* CONFIG_PER_VMA_LOCK */
822 static inline bool vma_start_read(struct vm_area_struct *vma)
824 static inline void vma_end_read(struct vm_area_struct *vma) {}
825 static inline void vma_start_write(struct vm_area_struct *vma) {}
826 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
827 { mmap_assert_write_locked(vma->vm_mm); }
828 static inline void vma_mark_detached(struct vm_area_struct *vma,
831 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
832 unsigned long address)
837 static inline void vma_assert_locked(struct vm_area_struct *vma)
839 mmap_assert_locked(vma->vm_mm);
842 static inline void release_fault_lock(struct vm_fault *vmf)
844 mmap_read_unlock(vmf->vma->vm_mm);
847 static inline void assert_fault_locked(struct vm_fault *vmf)
849 mmap_assert_locked(vmf->vma->vm_mm);
852 #endif /* CONFIG_PER_VMA_LOCK */
854 extern const struct vm_operations_struct vma_dummy_vm_ops;
857 * WARNING: vma_init does not initialize vma->vm_lock.
858 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
860 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
862 memset(vma, 0, sizeof(*vma));
864 vma->vm_ops = &vma_dummy_vm_ops;
865 INIT_LIST_HEAD(&vma->anon_vma_chain);
866 vma_mark_detached(vma, false);
867 vma_numab_state_init(vma);
870 /* Use when VMA is not part of the VMA tree and needs no locking */
871 static inline void vm_flags_init(struct vm_area_struct *vma,
874 ACCESS_PRIVATE(vma, __vm_flags) = flags;
878 * Use when VMA is part of the VMA tree and modifications need coordination
879 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
880 * it should be locked explicitly beforehand.
882 static inline void vm_flags_reset(struct vm_area_struct *vma,
885 vma_assert_write_locked(vma);
886 vm_flags_init(vma, flags);
889 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
892 vma_assert_write_locked(vma);
893 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
896 static inline void vm_flags_set(struct vm_area_struct *vma,
899 vma_start_write(vma);
900 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
903 static inline void vm_flags_clear(struct vm_area_struct *vma,
906 vma_start_write(vma);
907 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
911 * Use only if VMA is not part of the VMA tree or has no other users and
912 * therefore needs no locking.
914 static inline void __vm_flags_mod(struct vm_area_struct *vma,
915 vm_flags_t set, vm_flags_t clear)
917 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
921 * Use only when the order of set/clear operations is unimportant, otherwise
922 * use vm_flags_{set|clear} explicitly.
924 static inline void vm_flags_mod(struct vm_area_struct *vma,
925 vm_flags_t set, vm_flags_t clear)
927 vma_start_write(vma);
928 __vm_flags_mod(vma, set, clear);
931 static inline void vma_set_anonymous(struct vm_area_struct *vma)
936 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
942 * Indicate if the VMA is a heap for the given task; for
943 * /proc/PID/maps that is the heap of the main task.
945 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
947 return vma->vm_start < vma->vm_mm->brk &&
948 vma->vm_end > vma->vm_mm->start_brk;
952 * Indicate if the VMA is a stack for the given task; for
953 * /proc/PID/maps that is the stack of the main task.
955 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
958 * We make no effort to guess what a given thread considers to be
959 * its "stack". It's not even well-defined for programs written
962 return vma->vm_start <= vma->vm_mm->start_stack &&
963 vma->vm_end >= vma->vm_mm->start_stack;
966 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
968 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
973 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
974 VM_STACK_INCOMPLETE_SETUP)
980 static inline bool vma_is_foreign(struct vm_area_struct *vma)
985 if (current->mm != vma->vm_mm)
991 static inline bool vma_is_accessible(struct vm_area_struct *vma)
993 return vma->vm_flags & VM_ACCESS_FLAGS;
996 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
998 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
999 (VM_SHARED | VM_MAYWRITE);
1002 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1004 return is_shared_maywrite(vma->vm_flags);
1008 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1010 return mas_find(&vmi->mas, max - 1);
1013 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1016 * Uses mas_find() to get the first VMA when the iterator starts.
1017 * Calling mas_next() could skip the first entry.
1019 return mas_find(&vmi->mas, ULONG_MAX);
1023 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1025 return mas_next_range(&vmi->mas, ULONG_MAX);
1029 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1031 return mas_prev(&vmi->mas, 0);
1034 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1035 unsigned long start, unsigned long end, gfp_t gfp)
1037 __mas_set_range(&vmi->mas, start, end - 1);
1038 mas_store_gfp(&vmi->mas, NULL, gfp);
1039 if (unlikely(mas_is_err(&vmi->mas)))
1045 /* Free any unused preallocations */
1046 static inline void vma_iter_free(struct vma_iterator *vmi)
1048 mas_destroy(&vmi->mas);
1051 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1052 struct vm_area_struct *vma)
1054 vmi->mas.index = vma->vm_start;
1055 vmi->mas.last = vma->vm_end - 1;
1056 mas_store(&vmi->mas, vma);
1057 if (unlikely(mas_is_err(&vmi->mas)))
1063 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1065 mas_pause(&vmi->mas);
1068 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1070 mas_set(&vmi->mas, addr);
1073 #define for_each_vma(__vmi, __vma) \
1074 while (((__vma) = vma_next(&(__vmi))) != NULL)
1076 /* The MM code likes to work with exclusive end addresses */
1077 #define for_each_vma_range(__vmi, __vma, __end) \
1078 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1082 * The vma_is_shmem is not inline because it is used only by slow
1083 * paths in userfault.
1085 bool vma_is_shmem(struct vm_area_struct *vma);
1086 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1088 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1089 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1092 int vma_is_stack_for_current(struct vm_area_struct *vma);
1094 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1095 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1101 * compound_order() can be called without holding a reference, which means
1102 * that niceties like page_folio() don't work. These callers should be
1103 * prepared to handle wild return values. For example, PG_head may be
1104 * set before the order is initialised, or this may be a tail page.
1105 * See compaction.c for some good examples.
1107 static inline unsigned int compound_order(struct page *page)
1109 struct folio *folio = (struct folio *)page;
1111 if (!test_bit(PG_head, &folio->flags))
1113 return folio->_flags_1 & 0xff;
1117 * folio_order - The allocation order of a folio.
1118 * @folio: The folio.
1120 * A folio is composed of 2^order pages. See get_order() for the definition
1123 * Return: The order of the folio.
1125 static inline unsigned int folio_order(const struct folio *folio)
1127 if (!folio_test_large(folio))
1129 return folio->_flags_1 & 0xff;
1132 #include <linux/huge_mm.h>
1135 * Methods to modify the page usage count.
1137 * What counts for a page usage:
1138 * - cache mapping (page->mapping)
1139 * - private data (page->private)
1140 * - page mapped in a task's page tables, each mapping
1141 * is counted separately
1143 * Also, many kernel routines increase the page count before a critical
1144 * routine so they can be sure the page doesn't go away from under them.
1148 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1150 static inline int put_page_testzero(struct page *page)
1152 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1153 return page_ref_dec_and_test(page);
1156 static inline int folio_put_testzero(struct folio *folio)
1158 return put_page_testzero(&folio->page);
1162 * Try to grab a ref unless the page has a refcount of zero, return false if
1164 * This can be called when MMU is off so it must not access
1165 * any of the virtual mappings.
1167 static inline bool get_page_unless_zero(struct page *page)
1169 return page_ref_add_unless(page, 1, 0);
1172 static inline struct folio *folio_get_nontail_page(struct page *page)
1174 if (unlikely(!get_page_unless_zero(page)))
1176 return (struct folio *)page;
1179 extern int page_is_ram(unsigned long pfn);
1187 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1188 unsigned long desc);
1190 /* Support for virtually mapped pages */
1191 struct page *vmalloc_to_page(const void *addr);
1192 unsigned long vmalloc_to_pfn(const void *addr);
1195 * Determine if an address is within the vmalloc range
1197 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1198 * is no special casing required.
1201 extern bool is_vmalloc_addr(const void *x);
1202 extern int is_vmalloc_or_module_addr(const void *x);
1204 static inline bool is_vmalloc_addr(const void *x)
1208 static inline int is_vmalloc_or_module_addr(const void *x)
1215 * How many times the entire folio is mapped as a single unit (eg by a
1216 * PMD or PUD entry). This is probably not what you want, except for
1217 * debugging purposes or implementation of other core folio_*() primitives.
1219 static inline int folio_entire_mapcount(const struct folio *folio)
1221 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1222 return atomic_read(&folio->_entire_mapcount) + 1;
1225 static inline int folio_large_mapcount(const struct folio *folio)
1227 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1228 return atomic_read(&folio->_large_mapcount) + 1;
1232 * folio_mapcount() - Number of mappings of this folio.
1233 * @folio: The folio.
1235 * The folio mapcount corresponds to the number of present user page table
1236 * entries that reference any part of a folio. Each such present user page
1237 * table entry must be paired with exactly on folio reference.
1239 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1242 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1243 * references the entire folio counts exactly once, even when such special
1244 * page table entries are comprised of multiple ordinary page table entries.
1246 * Will report 0 for pages which cannot be mapped into userspace, such as
1247 * slab, page tables and similar.
1249 * Return: The number of times this folio is mapped.
1251 static inline int folio_mapcount(const struct folio *folio)
1255 if (likely(!folio_test_large(folio))) {
1256 mapcount = atomic_read(&folio->_mapcount) + 1;
1257 if (page_mapcount_is_type(mapcount))
1261 return folio_large_mapcount(folio);
1265 * folio_mapped - Is this folio mapped into userspace?
1266 * @folio: The folio.
1268 * Return: True if any page in this folio is referenced by user page tables.
1270 static inline bool folio_mapped(const struct folio *folio)
1272 return folio_mapcount(folio) >= 1;
1276 * Return true if this page is mapped into pagetables.
1277 * For compound page it returns true if any sub-page of compound page is mapped,
1278 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1280 static inline bool page_mapped(const struct page *page)
1282 return folio_mapped(page_folio(page));
1285 static inline struct page *virt_to_head_page(const void *x)
1287 struct page *page = virt_to_page(x);
1289 return compound_head(page);
1292 static inline struct folio *virt_to_folio(const void *x)
1294 struct page *page = virt_to_page(x);
1296 return page_folio(page);
1299 void __folio_put(struct folio *folio);
1301 void put_pages_list(struct list_head *pages);
1303 void split_page(struct page *page, unsigned int order);
1304 void folio_copy(struct folio *dst, struct folio *src);
1305 int folio_mc_copy(struct folio *dst, struct folio *src);
1307 unsigned long nr_free_buffer_pages(void);
1309 /* Returns the number of bytes in this potentially compound page. */
1310 static inline unsigned long page_size(struct page *page)
1312 return PAGE_SIZE << compound_order(page);
1315 /* Returns the number of bits needed for the number of bytes in a page */
1316 static inline unsigned int page_shift(struct page *page)
1318 return PAGE_SHIFT + compound_order(page);
1322 * thp_order - Order of a transparent huge page.
1323 * @page: Head page of a transparent huge page.
1325 static inline unsigned int thp_order(struct page *page)
1327 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1328 return compound_order(page);
1332 * thp_size - Size of a transparent huge page.
1333 * @page: Head page of a transparent huge page.
1335 * Return: Number of bytes in this page.
1337 static inline unsigned long thp_size(struct page *page)
1339 return PAGE_SIZE << thp_order(page);
1344 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1345 * servicing faults for write access. In the normal case, do always want
1346 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1347 * that do not have writing enabled, when used by access_process_vm.
1349 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1351 if (likely(vma->vm_flags & VM_WRITE))
1352 pte = pte_mkwrite(pte, vma);
1356 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1357 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1358 struct page *page, unsigned int nr, unsigned long addr);
1360 vm_fault_t finish_fault(struct vm_fault *vmf);
1364 * Multiple processes may "see" the same page. E.g. for untouched
1365 * mappings of /dev/null, all processes see the same page full of
1366 * zeroes, and text pages of executables and shared libraries have
1367 * only one copy in memory, at most, normally.
1369 * For the non-reserved pages, page_count(page) denotes a reference count.
1370 * page_count() == 0 means the page is free. page->lru is then used for
1371 * freelist management in the buddy allocator.
1372 * page_count() > 0 means the page has been allocated.
1374 * Pages are allocated by the slab allocator in order to provide memory
1375 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1376 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1377 * unless a particular usage is carefully commented. (the responsibility of
1378 * freeing the kmalloc memory is the caller's, of course).
1380 * A page may be used by anyone else who does a __get_free_page().
1381 * In this case, page_count still tracks the references, and should only
1382 * be used through the normal accessor functions. The top bits of page->flags
1383 * and page->virtual store page management information, but all other fields
1384 * are unused and could be used privately, carefully. The management of this
1385 * page is the responsibility of the one who allocated it, and those who have
1386 * subsequently been given references to it.
1388 * The other pages (we may call them "pagecache pages") are completely
1389 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1390 * The following discussion applies only to them.
1392 * A pagecache page contains an opaque `private' member, which belongs to the
1393 * page's address_space. Usually, this is the address of a circular list of
1394 * the page's disk buffers. PG_private must be set to tell the VM to call
1395 * into the filesystem to release these pages.
1397 * A page may belong to an inode's memory mapping. In this case, page->mapping
1398 * is the pointer to the inode, and page->index is the file offset of the page,
1399 * in units of PAGE_SIZE.
1401 * If pagecache pages are not associated with an inode, they are said to be
1402 * anonymous pages. These may become associated with the swapcache, and in that
1403 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1405 * In either case (swapcache or inode backed), the pagecache itself holds one
1406 * reference to the page. Setting PG_private should also increment the
1407 * refcount. The each user mapping also has a reference to the page.
1409 * The pagecache pages are stored in a per-mapping radix tree, which is
1410 * rooted at mapping->i_pages, and indexed by offset.
1411 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1412 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1414 * All pagecache pages may be subject to I/O:
1415 * - inode pages may need to be read from disk,
1416 * - inode pages which have been modified and are MAP_SHARED may need
1417 * to be written back to the inode on disk,
1418 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1419 * modified may need to be swapped out to swap space and (later) to be read
1423 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1424 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1426 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1427 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1429 if (!static_branch_unlikely(&devmap_managed_key))
1431 if (!folio_is_zone_device(folio))
1433 return __put_devmap_managed_folio_refs(folio, refs);
1435 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1436 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1440 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1442 /* 127: arbitrary random number, small enough to assemble well */
1443 #define folio_ref_zero_or_close_to_overflow(folio) \
1444 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1447 * folio_get - Increment the reference count on a folio.
1448 * @folio: The folio.
1450 * Context: May be called in any context, as long as you know that
1451 * you have a refcount on the folio. If you do not already have one,
1452 * folio_try_get() may be the right interface for you to use.
1454 static inline void folio_get(struct folio *folio)
1456 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1457 folio_ref_inc(folio);
1460 static inline void get_page(struct page *page)
1462 folio_get(page_folio(page));
1465 static inline __must_check bool try_get_page(struct page *page)
1467 page = compound_head(page);
1468 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1475 * folio_put - Decrement the reference count on a folio.
1476 * @folio: The folio.
1478 * If the folio's reference count reaches zero, the memory will be
1479 * released back to the page allocator and may be used by another
1480 * allocation immediately. Do not access the memory or the struct folio
1481 * after calling folio_put() unless you can be sure that it wasn't the
1484 * Context: May be called in process or interrupt context, but not in NMI
1485 * context. May be called while holding a spinlock.
1487 static inline void folio_put(struct folio *folio)
1489 if (folio_put_testzero(folio))
1494 * folio_put_refs - Reduce the reference count on a folio.
1495 * @folio: The folio.
1496 * @refs: The amount to subtract from the folio's reference count.
1498 * If the folio's reference count reaches zero, the memory will be
1499 * released back to the page allocator and may be used by another
1500 * allocation immediately. Do not access the memory or the struct folio
1501 * after calling folio_put_refs() unless you can be sure that these weren't
1502 * the last references.
1504 * Context: May be called in process or interrupt context, but not in NMI
1505 * context. May be called while holding a spinlock.
1507 static inline void folio_put_refs(struct folio *folio, int refs)
1509 if (folio_ref_sub_and_test(folio, refs))
1513 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1516 * union release_pages_arg - an array of pages or folios
1518 * release_pages() releases a simple array of multiple pages, and
1519 * accepts various different forms of said page array: either
1520 * a regular old boring array of pages, an array of folios, or
1521 * an array of encoded page pointers.
1523 * The transparent union syntax for this kind of "any of these
1524 * argument types" is all kinds of ugly, so look away.
1527 struct page **pages;
1528 struct folio **folios;
1529 struct encoded_page **encoded_pages;
1530 } release_pages_arg __attribute__ ((__transparent_union__));
1532 void release_pages(release_pages_arg, int nr);
1535 * folios_put - Decrement the reference count on an array of folios.
1536 * @folios: The folios.
1538 * Like folio_put(), but for a batch of folios. This is more efficient
1539 * than writing the loop yourself as it will optimise the locks which need
1540 * to be taken if the folios are freed. The folios batch is returned
1541 * empty and ready to be reused for another batch; there is no need to
1544 * Context: May be called in process or interrupt context, but not in NMI
1545 * context. May be called while holding a spinlock.
1547 static inline void folios_put(struct folio_batch *folios)
1549 folios_put_refs(folios, NULL);
1552 static inline void put_page(struct page *page)
1554 struct folio *folio = page_folio(page);
1557 * For some devmap managed pages we need to catch refcount transition
1560 if (put_devmap_managed_folio_refs(folio, 1))
1566 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1567 * the page's refcount so that two separate items are tracked: the original page
1568 * reference count, and also a new count of how many pin_user_pages() calls were
1569 * made against the page. ("gup-pinned" is another term for the latter).
1571 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1572 * distinct from normal pages. As such, the unpin_user_page() call (and its
1573 * variants) must be used in order to release gup-pinned pages.
1577 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1578 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1579 * simpler, due to the fact that adding an even power of two to the page
1580 * refcount has the effect of using only the upper N bits, for the code that
1581 * counts up using the bias value. This means that the lower bits are left for
1582 * the exclusive use of the original code that increments and decrements by one
1583 * (or at least, by much smaller values than the bias value).
1585 * Of course, once the lower bits overflow into the upper bits (and this is
1586 * OK, because subtraction recovers the original values), then visual inspection
1587 * no longer suffices to directly view the separate counts. However, for normal
1588 * applications that don't have huge page reference counts, this won't be an
1591 * Locking: the lockless algorithm described in folio_try_get_rcu()
1592 * provides safe operation for get_user_pages(), folio_mkclean() and
1593 * other calls that race to set up page table entries.
1595 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1597 void unpin_user_page(struct page *page);
1598 void unpin_folio(struct folio *folio);
1599 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1601 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1603 void unpin_user_pages(struct page **pages, unsigned long npages);
1604 void unpin_user_folio(struct folio *folio, unsigned long npages);
1605 void unpin_folios(struct folio **folios, unsigned long nfolios);
1607 static inline bool is_cow_mapping(vm_flags_t flags)
1609 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1613 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1616 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1617 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1618 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1619 * underlying memory if ptrace is active, so this is only possible if
1620 * ptrace does not apply. Note that there is no mprotect() to upgrade
1621 * write permissions later.
1623 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1627 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1628 #define SECTION_IN_PAGE_FLAGS
1632 * The identification function is mainly used by the buddy allocator for
1633 * determining if two pages could be buddies. We are not really identifying
1634 * the zone since we could be using the section number id if we do not have
1635 * node id available in page flags.
1636 * We only guarantee that it will return the same value for two combinable
1639 static inline int page_zone_id(struct page *page)
1641 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1644 #ifdef NODE_NOT_IN_PAGE_FLAGS
1645 int page_to_nid(const struct page *page);
1647 static inline int page_to_nid(const struct page *page)
1649 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1653 static inline int folio_nid(const struct folio *folio)
1655 return page_to_nid(&folio->page);
1658 #ifdef CONFIG_NUMA_BALANCING
1659 /* page access time bits needs to hold at least 4 seconds */
1660 #define PAGE_ACCESS_TIME_MIN_BITS 12
1661 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1662 #define PAGE_ACCESS_TIME_BUCKETS \
1663 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1665 #define PAGE_ACCESS_TIME_BUCKETS 0
1668 #define PAGE_ACCESS_TIME_MASK \
1669 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1671 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1673 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1676 static inline int cpupid_to_pid(int cpupid)
1678 return cpupid & LAST__PID_MASK;
1681 static inline int cpupid_to_cpu(int cpupid)
1683 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1686 static inline int cpupid_to_nid(int cpupid)
1688 return cpu_to_node(cpupid_to_cpu(cpupid));
1691 static inline bool cpupid_pid_unset(int cpupid)
1693 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1696 static inline bool cpupid_cpu_unset(int cpupid)
1698 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1701 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1703 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1706 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1707 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1708 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1710 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1713 static inline int folio_last_cpupid(struct folio *folio)
1715 return folio->_last_cpupid;
1717 static inline void page_cpupid_reset_last(struct page *page)
1719 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1722 static inline int folio_last_cpupid(struct folio *folio)
1724 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1727 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1729 static inline void page_cpupid_reset_last(struct page *page)
1731 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1733 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1735 static inline int folio_xchg_access_time(struct folio *folio, int time)
1739 last_time = folio_xchg_last_cpupid(folio,
1740 time >> PAGE_ACCESS_TIME_BUCKETS);
1741 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1744 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1746 unsigned int pid_bit;
1748 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1749 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1750 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1754 bool folio_use_access_time(struct folio *folio);
1755 #else /* !CONFIG_NUMA_BALANCING */
1756 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1758 return folio_nid(folio); /* XXX */
1761 static inline int folio_xchg_access_time(struct folio *folio, int time)
1766 static inline int folio_last_cpupid(struct folio *folio)
1768 return folio_nid(folio); /* XXX */
1771 static inline int cpupid_to_nid(int cpupid)
1776 static inline int cpupid_to_pid(int cpupid)
1781 static inline int cpupid_to_cpu(int cpupid)
1786 static inline int cpu_pid_to_cpupid(int nid, int pid)
1791 static inline bool cpupid_pid_unset(int cpupid)
1796 static inline void page_cpupid_reset_last(struct page *page)
1800 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1805 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1808 static inline bool folio_use_access_time(struct folio *folio)
1812 #endif /* CONFIG_NUMA_BALANCING */
1814 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1817 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1818 * setting tags for all pages to native kernel tag value 0xff, as the default
1819 * value 0x00 maps to 0xff.
1822 static inline u8 page_kasan_tag(const struct page *page)
1824 u8 tag = KASAN_TAG_KERNEL;
1826 if (kasan_enabled()) {
1827 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1834 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1836 unsigned long old_flags, flags;
1838 if (!kasan_enabled())
1842 old_flags = READ_ONCE(page->flags);
1845 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1846 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1847 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1850 static inline void page_kasan_tag_reset(struct page *page)
1852 if (kasan_enabled())
1853 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1856 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1858 static inline u8 page_kasan_tag(const struct page *page)
1863 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1864 static inline void page_kasan_tag_reset(struct page *page) { }
1866 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1868 static inline struct zone *page_zone(const struct page *page)
1870 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1873 static inline pg_data_t *page_pgdat(const struct page *page)
1875 return NODE_DATA(page_to_nid(page));
1878 static inline struct zone *folio_zone(const struct folio *folio)
1880 return page_zone(&folio->page);
1883 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1885 return page_pgdat(&folio->page);
1888 #ifdef SECTION_IN_PAGE_FLAGS
1889 static inline void set_page_section(struct page *page, unsigned long section)
1891 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1892 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1895 static inline unsigned long page_to_section(const struct page *page)
1897 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1902 * folio_pfn - Return the Page Frame Number of a folio.
1903 * @folio: The folio.
1905 * A folio may contain multiple pages. The pages have consecutive
1906 * Page Frame Numbers.
1908 * Return: The Page Frame Number of the first page in the folio.
1910 static inline unsigned long folio_pfn(struct folio *folio)
1912 return page_to_pfn(&folio->page);
1915 static inline struct folio *pfn_folio(unsigned long pfn)
1917 return page_folio(pfn_to_page(pfn));
1921 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1922 * @folio: The folio.
1924 * This function checks if a folio has been pinned via a call to
1925 * a function in the pin_user_pages() family.
1927 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1928 * because it means "definitely not pinned for DMA", but true means "probably
1929 * pinned for DMA, but possibly a false positive due to having at least
1930 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1932 * False positives are OK, because: a) it's unlikely for a folio to
1933 * get that many refcounts, and b) all the callers of this routine are
1934 * expected to be able to deal gracefully with a false positive.
1936 * For large folios, the result will be exactly correct. That's because
1937 * we have more tracking data available: the _pincount field is used
1938 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1940 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1942 * Return: True, if it is likely that the folio has been "dma-pinned".
1943 * False, if the folio is definitely not dma-pinned.
1945 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1947 if (folio_test_large(folio))
1948 return atomic_read(&folio->_pincount) > 0;
1951 * folio_ref_count() is signed. If that refcount overflows, then
1952 * folio_ref_count() returns a negative value, and callers will avoid
1953 * further incrementing the refcount.
1955 * Here, for that overflow case, use the sign bit to count a little
1956 * bit higher via unsigned math, and thus still get an accurate result.
1958 return ((unsigned int)folio_ref_count(folio)) >=
1959 GUP_PIN_COUNTING_BIAS;
1963 * This should most likely only be called during fork() to see whether we
1964 * should break the cow immediately for an anon page on the src mm.
1966 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1968 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1969 struct folio *folio)
1971 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1973 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1976 return folio_maybe_dma_pinned(folio);
1980 * is_zero_page - Query if a page is a zero page
1981 * @page: The page to query
1983 * This returns true if @page is one of the permanent zero pages.
1985 static inline bool is_zero_page(const struct page *page)
1987 return is_zero_pfn(page_to_pfn(page));
1991 * is_zero_folio - Query if a folio is a zero page
1992 * @folio: The folio to query
1994 * This returns true if @folio is one of the permanent zero pages.
1996 static inline bool is_zero_folio(const struct folio *folio)
1998 return is_zero_page(&folio->page);
2001 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2002 #ifdef CONFIG_MIGRATION
2003 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2006 int mt = folio_migratetype(folio);
2008 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2011 /* The zero page can be "pinned" but gets special handling. */
2012 if (is_zero_folio(folio))
2015 /* Coherent device memory must always allow eviction. */
2016 if (folio_is_device_coherent(folio))
2019 /* Otherwise, non-movable zone folios can be pinned. */
2020 return !folio_is_zone_movable(folio);
2024 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2030 static inline void set_page_zone(struct page *page, enum zone_type zone)
2032 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2033 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2036 static inline void set_page_node(struct page *page, unsigned long node)
2038 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2039 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2042 static inline void set_page_links(struct page *page, enum zone_type zone,
2043 unsigned long node, unsigned long pfn)
2045 set_page_zone(page, zone);
2046 set_page_node(page, node);
2047 #ifdef SECTION_IN_PAGE_FLAGS
2048 set_page_section(page, pfn_to_section_nr(pfn));
2053 * folio_nr_pages - The number of pages in the folio.
2054 * @folio: The folio.
2056 * Return: A positive power of two.
2058 static inline long folio_nr_pages(const struct folio *folio)
2060 if (!folio_test_large(folio))
2063 return folio->_folio_nr_pages;
2065 return 1L << (folio->_flags_1 & 0xff);
2069 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2070 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2071 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2073 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2077 * compound_nr() returns the number of pages in this potentially compound
2078 * page. compound_nr() can be called on a tail page, and is defined to
2079 * return 1 in that case.
2081 static inline unsigned long compound_nr(struct page *page)
2083 struct folio *folio = (struct folio *)page;
2085 if (!test_bit(PG_head, &folio->flags))
2088 return folio->_folio_nr_pages;
2090 return 1L << (folio->_flags_1 & 0xff);
2095 * thp_nr_pages - The number of regular pages in this huge page.
2096 * @page: The head page of a huge page.
2098 static inline int thp_nr_pages(struct page *page)
2100 return folio_nr_pages((struct folio *)page);
2104 * folio_next - Move to the next physical folio.
2105 * @folio: The folio we're currently operating on.
2107 * If you have physically contiguous memory which may span more than
2108 * one folio (eg a &struct bio_vec), use this function to move from one
2109 * folio to the next. Do not use it if the memory is only virtually
2110 * contiguous as the folios are almost certainly not adjacent to each
2111 * other. This is the folio equivalent to writing ``page++``.
2113 * Context: We assume that the folios are refcounted and/or locked at a
2114 * higher level and do not adjust the reference counts.
2115 * Return: The next struct folio.
2117 static inline struct folio *folio_next(struct folio *folio)
2119 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2123 * folio_shift - The size of the memory described by this folio.
2124 * @folio: The folio.
2126 * A folio represents a number of bytes which is a power-of-two in size.
2127 * This function tells you which power-of-two the folio is. See also
2128 * folio_size() and folio_order().
2130 * Context: The caller should have a reference on the folio to prevent
2131 * it from being split. It is not necessary for the folio to be locked.
2132 * Return: The base-2 logarithm of the size of this folio.
2134 static inline unsigned int folio_shift(const struct folio *folio)
2136 return PAGE_SHIFT + folio_order(folio);
2140 * folio_size - The number of bytes in a folio.
2141 * @folio: The folio.
2143 * Context: The caller should have a reference on the folio to prevent
2144 * it from being split. It is not necessary for the folio to be locked.
2145 * Return: The number of bytes in this folio.
2147 static inline size_t folio_size(const struct folio *folio)
2149 return PAGE_SIZE << folio_order(folio);
2153 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2154 * tables of more than one MM
2155 * @folio: The folio.
2157 * This function checks if the folio is currently mapped into more than one
2158 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2159 * ("mapped exclusively").
2161 * For KSM folios, this function also returns "mapped shared" when a folio is
2162 * mapped multiple times into the same MM, because the individual page mappings
2165 * As precise information is not easily available for all folios, this function
2166 * estimates the number of MMs ("sharers") that are currently mapping a folio
2167 * using the number of times the first page of the folio is currently mapped
2170 * For small anonymous folios and anonymous hugetlb folios, the return
2171 * value will be exactly correct: non-KSM folios can only be mapped at most once
2172 * into an MM, and they cannot be partially mapped. KSM folios are
2173 * considered shared even if mapped multiple times into the same MM.
2175 * For other folios, the result can be fuzzy:
2176 * #. For partially-mappable large folios (THP), the return value can wrongly
2177 * indicate "mapped exclusively" (false negative) when the folio is
2178 * only partially mapped into at least one MM.
2179 * #. For pagecache folios (including hugetlb), the return value can wrongly
2180 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2181 * cover the same file range.
2183 * Further, this function only considers current page table mappings that
2184 * are tracked using the folio mapcount(s).
2186 * This function does not consider:
2187 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2188 * pagecache, temporary unmapping for migration).
2189 * #. If the folio is mapped differently (VM_PFNMAP).
2190 * #. If hugetlb page table sharing applies. Callers might want to check
2191 * hugetlb_pmd_shared().
2193 * Return: Whether the folio is estimated to be mapped into more than one MM.
2195 static inline bool folio_likely_mapped_shared(struct folio *folio)
2197 int mapcount = folio_mapcount(folio);
2199 /* Only partially-mappable folios require more care. */
2200 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2201 return mapcount > 1;
2203 /* A single mapping implies "mapped exclusively". */
2207 /* If any page is mapped more than once we treat it "mapped shared". */
2208 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2211 /* Let's guess based on the first subpage. */
2212 return atomic_read(&folio->_mapcount) > 0;
2215 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2216 static inline int arch_make_folio_accessible(struct folio *folio)
2223 * Some inline functions in vmstat.h depend on page_zone()
2225 #include <linux/vmstat.h>
2227 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2228 #define HASHED_PAGE_VIRTUAL
2231 #if defined(WANT_PAGE_VIRTUAL)
2232 static inline void *page_address(const struct page *page)
2234 return page->virtual;
2236 static inline void set_page_address(struct page *page, void *address)
2238 page->virtual = address;
2240 #define page_address_init() do { } while(0)
2243 #if defined(HASHED_PAGE_VIRTUAL)
2244 void *page_address(const struct page *page);
2245 void set_page_address(struct page *page, void *virtual);
2246 void page_address_init(void);
2249 static __always_inline void *lowmem_page_address(const struct page *page)
2251 return page_to_virt(page);
2254 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2255 #define page_address(page) lowmem_page_address(page)
2256 #define set_page_address(page, address) do { } while(0)
2257 #define page_address_init() do { } while(0)
2260 static inline void *folio_address(const struct folio *folio)
2262 return page_address(&folio->page);
2266 * Return true only if the page has been allocated with
2267 * ALLOC_NO_WATERMARKS and the low watermark was not
2268 * met implying that the system is under some pressure.
2270 static inline bool page_is_pfmemalloc(const struct page *page)
2273 * lru.next has bit 1 set if the page is allocated from the
2274 * pfmemalloc reserves. Callers may simply overwrite it if
2275 * they do not need to preserve that information.
2277 return (uintptr_t)page->lru.next & BIT(1);
2281 * Return true only if the folio has been allocated with
2282 * ALLOC_NO_WATERMARKS and the low watermark was not
2283 * met implying that the system is under some pressure.
2285 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2288 * lru.next has bit 1 set if the page is allocated from the
2289 * pfmemalloc reserves. Callers may simply overwrite it if
2290 * they do not need to preserve that information.
2292 return (uintptr_t)folio->lru.next & BIT(1);
2296 * Only to be called by the page allocator on a freshly allocated
2299 static inline void set_page_pfmemalloc(struct page *page)
2301 page->lru.next = (void *)BIT(1);
2304 static inline void clear_page_pfmemalloc(struct page *page)
2306 page->lru.next = NULL;
2310 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2312 extern void pagefault_out_of_memory(void);
2314 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2315 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2316 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2319 * Parameter block passed down to zap_pte_range in exceptional cases.
2321 struct zap_details {
2322 struct folio *single_folio; /* Locked folio to be unmapped */
2323 bool even_cows; /* Zap COWed private pages too? */
2324 zap_flags_t zap_flags; /* Extra flags for zapping */
2328 * Whether to drop the pte markers, for example, the uffd-wp information for
2329 * file-backed memory. This should only be specified when we will completely
2330 * drop the page in the mm, either by truncation or unmapping of the vma. By
2331 * default, the flag is not set.
2333 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2334 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2335 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2337 #ifdef CONFIG_SCHED_MM_CID
2338 void sched_mm_cid_before_execve(struct task_struct *t);
2339 void sched_mm_cid_after_execve(struct task_struct *t);
2340 void sched_mm_cid_fork(struct task_struct *t);
2341 void sched_mm_cid_exit_signals(struct task_struct *t);
2342 static inline int task_mm_cid(struct task_struct *t)
2347 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2348 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2349 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2350 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2351 static inline int task_mm_cid(struct task_struct *t)
2354 * Use the processor id as a fall-back when the mm cid feature is
2355 * disabled. This provides functional per-cpu data structure accesses
2356 * in user-space, althrough it won't provide the memory usage benefits.
2358 return raw_smp_processor_id();
2363 extern bool can_do_mlock(void);
2365 static inline bool can_do_mlock(void) { return false; }
2367 extern int user_shm_lock(size_t, struct ucounts *);
2368 extern void user_shm_unlock(size_t, struct ucounts *);
2370 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2372 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2374 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2375 unsigned long addr, pmd_t pmd);
2376 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2379 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2380 unsigned long size);
2381 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2382 unsigned long size, struct zap_details *details);
2383 static inline void zap_vma_pages(struct vm_area_struct *vma)
2385 zap_page_range_single(vma, vma->vm_start,
2386 vma->vm_end - vma->vm_start, NULL);
2388 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2389 struct vm_area_struct *start_vma, unsigned long start,
2390 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2392 struct mmu_notifier_range;
2394 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2395 unsigned long end, unsigned long floor, unsigned long ceiling);
2397 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2398 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2399 void *buf, int len, int write);
2401 struct follow_pfnmap_args {
2404 * @vma: Pointer to @vm_area_struct struct
2405 * @address: the virtual address to walk
2407 struct vm_area_struct *vma;
2408 unsigned long address;
2412 * The caller shouldn't touch any of these.
2419 * @pfn: the PFN of the address
2420 * @pgprot: the pgprot_t of the mapping
2421 * @writable: whether the mapping is writable
2422 * @special: whether the mapping is a special mapping (real PFN maps)
2429 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2430 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2432 extern void truncate_pagecache(struct inode *inode, loff_t new);
2433 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2434 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2435 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2436 int generic_error_remove_folio(struct address_space *mapping,
2437 struct folio *folio);
2439 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2440 unsigned long address, struct pt_regs *regs);
2443 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2444 unsigned long address, unsigned int flags,
2445 struct pt_regs *regs);
2446 extern int fixup_user_fault(struct mm_struct *mm,
2447 unsigned long address, unsigned int fault_flags,
2449 void unmap_mapping_pages(struct address_space *mapping,
2450 pgoff_t start, pgoff_t nr, bool even_cows);
2451 void unmap_mapping_range(struct address_space *mapping,
2452 loff_t const holebegin, loff_t const holelen, int even_cows);
2454 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2455 unsigned long address, unsigned int flags,
2456 struct pt_regs *regs)
2458 /* should never happen if there's no MMU */
2460 return VM_FAULT_SIGBUS;
2462 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2463 unsigned int fault_flags, bool *unlocked)
2465 /* should never happen if there's no MMU */
2469 static inline void unmap_mapping_pages(struct address_space *mapping,
2470 pgoff_t start, pgoff_t nr, bool even_cows) { }
2471 static inline void unmap_mapping_range(struct address_space *mapping,
2472 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2475 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2476 loff_t const holebegin, loff_t const holelen)
2478 unmap_mapping_range(mapping, holebegin, holelen, 0);
2481 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2482 unsigned long addr);
2484 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2485 void *buf, int len, unsigned int gup_flags);
2486 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2487 void *buf, int len, unsigned int gup_flags);
2489 long get_user_pages_remote(struct mm_struct *mm,
2490 unsigned long start, unsigned long nr_pages,
2491 unsigned int gup_flags, struct page **pages,
2493 long pin_user_pages_remote(struct mm_struct *mm,
2494 unsigned long start, unsigned long nr_pages,
2495 unsigned int gup_flags, struct page **pages,
2499 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2501 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2504 struct vm_area_struct **vmap)
2507 struct vm_area_struct *vma;
2510 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2511 return ERR_PTR(-EINVAL);
2513 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2516 return ERR_PTR(got);
2518 vma = vma_lookup(mm, addr);
2519 if (WARN_ON_ONCE(!vma)) {
2521 return ERR_PTR(-EINVAL);
2528 long get_user_pages(unsigned long start, unsigned long nr_pages,
2529 unsigned int gup_flags, struct page **pages);
2530 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2531 unsigned int gup_flags, struct page **pages);
2532 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2533 struct page **pages, unsigned int gup_flags);
2534 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2535 struct page **pages, unsigned int gup_flags);
2536 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2537 struct folio **folios, unsigned int max_folios,
2539 int folio_add_pins(struct folio *folio, unsigned int pins);
2541 int get_user_pages_fast(unsigned long start, int nr_pages,
2542 unsigned int gup_flags, struct page **pages);
2543 int pin_user_pages_fast(unsigned long start, int nr_pages,
2544 unsigned int gup_flags, struct page **pages);
2545 void folio_add_pin(struct folio *folio);
2547 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2548 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2549 struct task_struct *task, bool bypass_rlim);
2552 struct page *get_dump_page(unsigned long addr);
2554 bool folio_mark_dirty(struct folio *folio);
2555 bool set_page_dirty(struct page *page);
2556 int set_page_dirty_lock(struct page *page);
2558 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2561 * Flags used by change_protection(). For now we make it a bitmap so
2562 * that we can pass in multiple flags just like parameters. However
2563 * for now all the callers are only use one of the flags at the same
2567 * Whether we should manually check if we can map individual PTEs writable,
2568 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2569 * PTEs automatically in a writable mapping.
2571 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2572 /* Whether this protection change is for NUMA hints */
2573 #define MM_CP_PROT_NUMA (1UL << 1)
2574 /* Whether this change is for write protecting */
2575 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2576 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2577 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2578 MM_CP_UFFD_WP_RESOLVE)
2580 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2582 extern long change_protection(struct mmu_gather *tlb,
2583 struct vm_area_struct *vma, unsigned long start,
2584 unsigned long end, unsigned long cp_flags);
2585 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2586 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2587 unsigned long start, unsigned long end, unsigned long newflags);
2590 * doesn't attempt to fault and will return short.
2592 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2593 unsigned int gup_flags, struct page **pages);
2595 static inline bool get_user_page_fast_only(unsigned long addr,
2596 unsigned int gup_flags, struct page **pagep)
2598 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2601 * per-process(per-mm_struct) statistics.
2603 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2605 return percpu_counter_read_positive(&mm->rss_stat[member]);
2608 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2610 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2612 percpu_counter_add(&mm->rss_stat[member], value);
2614 mm_trace_rss_stat(mm, member);
2617 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2619 percpu_counter_inc(&mm->rss_stat[member]);
2621 mm_trace_rss_stat(mm, member);
2624 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2626 percpu_counter_dec(&mm->rss_stat[member]);
2628 mm_trace_rss_stat(mm, member);
2631 /* Optimized variant when folio is already known not to be anon */
2632 static inline int mm_counter_file(struct folio *folio)
2634 if (folio_test_swapbacked(folio))
2635 return MM_SHMEMPAGES;
2636 return MM_FILEPAGES;
2639 static inline int mm_counter(struct folio *folio)
2641 if (folio_test_anon(folio))
2642 return MM_ANONPAGES;
2643 return mm_counter_file(folio);
2646 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2648 return get_mm_counter(mm, MM_FILEPAGES) +
2649 get_mm_counter(mm, MM_ANONPAGES) +
2650 get_mm_counter(mm, MM_SHMEMPAGES);
2653 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2655 return max(mm->hiwater_rss, get_mm_rss(mm));
2658 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2660 return max(mm->hiwater_vm, mm->total_vm);
2663 static inline void update_hiwater_rss(struct mm_struct *mm)
2665 unsigned long _rss = get_mm_rss(mm);
2667 if ((mm)->hiwater_rss < _rss)
2668 (mm)->hiwater_rss = _rss;
2671 static inline void update_hiwater_vm(struct mm_struct *mm)
2673 if (mm->hiwater_vm < mm->total_vm)
2674 mm->hiwater_vm = mm->total_vm;
2677 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2679 mm->hiwater_rss = get_mm_rss(mm);
2682 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2683 struct mm_struct *mm)
2685 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2687 if (*maxrss < hiwater_rss)
2688 *maxrss = hiwater_rss;
2691 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2692 static inline int pte_special(pte_t pte)
2697 static inline pte_t pte_mkspecial(pte_t pte)
2703 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2704 static inline bool pmd_special(pmd_t pmd)
2709 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2713 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2715 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2716 static inline bool pud_special(pud_t pud)
2721 static inline pud_t pud_mkspecial(pud_t pud)
2725 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2727 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2728 static inline int pte_devmap(pte_t pte)
2734 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2736 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2740 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2744 #ifdef __PAGETABLE_P4D_FOLDED
2745 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2746 unsigned long address)
2751 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2754 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2755 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2756 unsigned long address)
2760 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2761 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2764 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2766 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2768 if (mm_pud_folded(mm))
2770 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2773 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2775 if (mm_pud_folded(mm))
2777 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2781 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2782 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2783 unsigned long address)
2788 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2789 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2792 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2794 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2796 if (mm_pmd_folded(mm))
2798 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2801 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2803 if (mm_pmd_folded(mm))
2805 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2810 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2812 atomic_long_set(&mm->pgtables_bytes, 0);
2815 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2817 return atomic_long_read(&mm->pgtables_bytes);
2820 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2822 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2825 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2827 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2831 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2832 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2837 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2838 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2841 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2842 int __pte_alloc_kernel(pmd_t *pmd);
2844 #if defined(CONFIG_MMU)
2846 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2847 unsigned long address)
2849 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2850 NULL : p4d_offset(pgd, address);
2853 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2854 unsigned long address)
2856 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2857 NULL : pud_offset(p4d, address);
2860 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2862 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2863 NULL: pmd_offset(pud, address);
2865 #endif /* CONFIG_MMU */
2867 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2869 return page_ptdesc(virt_to_page(x));
2872 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2874 return page_to_virt(ptdesc_page(pt));
2877 static inline void *ptdesc_address(const struct ptdesc *pt)
2879 return folio_address(ptdesc_folio(pt));
2882 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2884 return folio_test_reserved(ptdesc_folio(pt));
2888 * pagetable_alloc - Allocate pagetables
2890 * @order: desired pagetable order
2892 * pagetable_alloc allocates memory for page tables as well as a page table
2893 * descriptor to describe that memory.
2895 * Return: The ptdesc describing the allocated page tables.
2897 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2899 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2901 return page_ptdesc(page);
2903 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2906 * pagetable_free - Free pagetables
2907 * @pt: The page table descriptor
2909 * pagetable_free frees the memory of all page tables described by a page
2910 * table descriptor and the memory for the descriptor itself.
2912 static inline void pagetable_free(struct ptdesc *pt)
2914 struct page *page = ptdesc_page(pt);
2916 __free_pages(page, compound_order(page));
2919 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2920 #if ALLOC_SPLIT_PTLOCKS
2921 void __init ptlock_cache_init(void);
2922 bool ptlock_alloc(struct ptdesc *ptdesc);
2923 void ptlock_free(struct ptdesc *ptdesc);
2925 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2929 #else /* ALLOC_SPLIT_PTLOCKS */
2930 static inline void ptlock_cache_init(void)
2934 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2939 static inline void ptlock_free(struct ptdesc *ptdesc)
2943 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2945 return &ptdesc->ptl;
2947 #endif /* ALLOC_SPLIT_PTLOCKS */
2949 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2951 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2954 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2956 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2957 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2958 return ptlock_ptr(virt_to_ptdesc(pte));
2961 static inline bool ptlock_init(struct ptdesc *ptdesc)
2964 * prep_new_page() initialize page->private (and therefore page->ptl)
2965 * with 0. Make sure nobody took it in use in between.
2967 * It can happen if arch try to use slab for page table allocation:
2968 * slab code uses page->slab_cache, which share storage with page->ptl.
2970 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2971 if (!ptlock_alloc(ptdesc))
2973 spin_lock_init(ptlock_ptr(ptdesc));
2977 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2979 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2981 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2983 return &mm->page_table_lock;
2985 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2987 return &mm->page_table_lock;
2989 static inline void ptlock_cache_init(void) {}
2990 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2991 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2992 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2994 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2996 struct folio *folio = ptdesc_folio(ptdesc);
2998 if (!ptlock_init(ptdesc))
3000 __folio_set_pgtable(folio);
3001 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3005 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
3007 struct folio *folio = ptdesc_folio(ptdesc);
3009 ptlock_free(ptdesc);
3010 __folio_clear_pgtable(folio);
3011 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3014 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3015 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3017 return __pte_offset_map(pmd, addr, NULL);
3020 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3021 unsigned long addr, spinlock_t **ptlp);
3022 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3023 unsigned long addr, spinlock_t **ptlp)
3027 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3031 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3032 unsigned long addr, spinlock_t **ptlp);
3034 #define pte_unmap_unlock(pte, ptl) do { \
3039 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3041 #define pte_alloc_map(mm, pmd, address) \
3042 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3044 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3045 (pte_alloc(mm, pmd) ? \
3046 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3048 #define pte_alloc_kernel(pmd, address) \
3049 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3050 NULL: pte_offset_kernel(pmd, address))
3052 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3054 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3056 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3057 return virt_to_page((void *)((unsigned long) pmd & mask));
3060 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3062 return page_ptdesc(pmd_pgtable_page(pmd));
3065 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3067 return ptlock_ptr(pmd_ptdesc(pmd));
3070 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3072 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3073 ptdesc->pmd_huge_pte = NULL;
3075 return ptlock_init(ptdesc);
3078 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3080 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3081 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3083 ptlock_free(ptdesc);
3086 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3090 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3092 return &mm->page_table_lock;
3095 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3096 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3098 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3102 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3104 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3109 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3111 struct folio *folio = ptdesc_folio(ptdesc);
3113 if (!pmd_ptlock_init(ptdesc))
3115 __folio_set_pgtable(folio);
3116 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3120 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3122 struct folio *folio = ptdesc_folio(ptdesc);
3124 pmd_ptlock_free(ptdesc);
3125 __folio_clear_pgtable(folio);
3126 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3130 * No scalability reason to split PUD locks yet, but follow the same pattern
3131 * as the PMD locks to make it easier if we decide to. The VM should not be
3132 * considered ready to switch to split PUD locks yet; there may be places
3133 * which need to be converted from page_table_lock.
3135 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3137 return &mm->page_table_lock;
3140 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3142 spinlock_t *ptl = pud_lockptr(mm, pud);
3148 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3150 struct folio *folio = ptdesc_folio(ptdesc);
3152 __folio_set_pgtable(folio);
3153 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3156 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3158 struct folio *folio = ptdesc_folio(ptdesc);
3160 __folio_clear_pgtable(folio);
3161 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3164 extern void __init pagecache_init(void);
3165 extern void free_initmem(void);
3168 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3169 * into the buddy system. The freed pages will be poisoned with pattern
3170 * "poison" if it's within range [0, UCHAR_MAX].
3171 * Return pages freed into the buddy system.
3173 extern unsigned long free_reserved_area(void *start, void *end,
3174 int poison, const char *s);
3176 extern void adjust_managed_page_count(struct page *page, long count);
3178 extern void reserve_bootmem_region(phys_addr_t start,
3179 phys_addr_t end, int nid);
3181 /* Free the reserved page into the buddy system, so it gets managed. */
3182 void free_reserved_page(struct page *page);
3183 #define free_highmem_page(page) free_reserved_page(page)
3185 static inline void mark_page_reserved(struct page *page)
3187 SetPageReserved(page);
3188 adjust_managed_page_count(page, -1);
3191 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3193 free_reserved_page(ptdesc_page(pt));
3197 * Default method to free all the __init memory into the buddy system.
3198 * The freed pages will be poisoned with pattern "poison" if it's within
3199 * range [0, UCHAR_MAX].
3200 * Return pages freed into the buddy system.
3202 static inline unsigned long free_initmem_default(int poison)
3204 extern char __init_begin[], __init_end[];
3206 return free_reserved_area(&__init_begin, &__init_end,
3207 poison, "unused kernel image (initmem)");
3210 static inline unsigned long get_num_physpages(void)
3213 unsigned long phys_pages = 0;
3215 for_each_online_node(nid)
3216 phys_pages += node_present_pages(nid);
3222 * Using memblock node mappings, an architecture may initialise its
3223 * zones, allocate the backing mem_map and account for memory holes in an
3224 * architecture independent manner.
3226 * An architecture is expected to register range of page frames backed by
3227 * physical memory with memblock_add[_node]() before calling
3228 * free_area_init() passing in the PFN each zone ends at. At a basic
3229 * usage, an architecture is expected to do something like
3231 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3233 * for_each_valid_physical_page_range()
3234 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3235 * free_area_init(max_zone_pfns);
3237 void free_area_init(unsigned long *max_zone_pfn);
3238 unsigned long node_map_pfn_alignment(void);
3239 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3240 unsigned long end_pfn);
3241 extern void get_pfn_range_for_nid(unsigned int nid,
3242 unsigned long *start_pfn, unsigned long *end_pfn);
3245 static inline int early_pfn_to_nid(unsigned long pfn)
3250 /* please see mm/page_alloc.c */
3251 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3254 extern void mem_init(void);
3255 extern void __init mmap_init(void);
3257 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3258 static inline void show_mem(void)
3260 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3262 extern long si_mem_available(void);
3263 extern void si_meminfo(struct sysinfo * val);
3264 extern void si_meminfo_node(struct sysinfo *val, int nid);
3266 extern __printf(3, 4)
3267 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3269 extern void setup_per_cpu_pageset(void);
3272 extern atomic_long_t mmap_pages_allocated;
3273 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3275 /* interval_tree.c */
3276 void vma_interval_tree_insert(struct vm_area_struct *node,
3277 struct rb_root_cached *root);
3278 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3279 struct vm_area_struct *prev,
3280 struct rb_root_cached *root);
3281 void vma_interval_tree_remove(struct vm_area_struct *node,
3282 struct rb_root_cached *root);
3283 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3284 unsigned long start, unsigned long last);
3285 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3286 unsigned long start, unsigned long last);
3288 #define vma_interval_tree_foreach(vma, root, start, last) \
3289 for (vma = vma_interval_tree_iter_first(root, start, last); \
3290 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3292 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3293 struct rb_root_cached *root);
3294 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3295 struct rb_root_cached *root);
3296 struct anon_vma_chain *
3297 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3298 unsigned long start, unsigned long last);
3299 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3300 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3301 #ifdef CONFIG_DEBUG_VM_RB
3302 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3305 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3306 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3307 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3310 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3311 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3312 extern void exit_mmap(struct mm_struct *);
3313 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3315 static inline int check_data_rlimit(unsigned long rlim,
3317 unsigned long start,
3318 unsigned long end_data,
3319 unsigned long start_data)
3321 if (rlim < RLIM_INFINITY) {
3322 if (((new - start) + (end_data - start_data)) > rlim)
3329 extern int mm_take_all_locks(struct mm_struct *mm);
3330 extern void mm_drop_all_locks(struct mm_struct *mm);
3332 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3333 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3334 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3335 extern struct file *get_task_exe_file(struct task_struct *task);
3337 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3338 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3340 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3341 const struct vm_special_mapping *sm);
3342 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3343 unsigned long addr, unsigned long len,
3344 unsigned long flags,
3345 const struct vm_special_mapping *spec);
3347 unsigned long randomize_stack_top(unsigned long stack_top);
3348 unsigned long randomize_page(unsigned long start, unsigned long range);
3351 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3352 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3354 static inline unsigned long
3355 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3356 unsigned long pgoff, unsigned long flags)
3358 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3361 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3362 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3363 struct list_head *uf);
3364 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3365 unsigned long len, unsigned long prot, unsigned long flags,
3366 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3367 struct list_head *uf);
3368 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3369 unsigned long start, size_t len, struct list_head *uf,
3371 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3372 struct mm_struct *mm, unsigned long start,
3373 unsigned long end, struct list_head *uf, bool unlock);
3374 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3375 struct list_head *uf);
3376 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3379 extern int __mm_populate(unsigned long addr, unsigned long len,
3381 static inline void mm_populate(unsigned long addr, unsigned long len)
3384 (void) __mm_populate(addr, len, 1);
3387 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3390 /* This takes the mm semaphore itself */
3391 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3392 extern int vm_munmap(unsigned long, size_t);
3393 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3394 unsigned long, unsigned long,
3395 unsigned long, unsigned long);
3397 struct vm_unmapped_area_info {
3398 #define VM_UNMAPPED_AREA_TOPDOWN 1
3399 unsigned long flags;
3400 unsigned long length;
3401 unsigned long low_limit;
3402 unsigned long high_limit;
3403 unsigned long align_mask;
3404 unsigned long align_offset;
3405 unsigned long start_gap;
3408 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3411 extern void truncate_inode_pages(struct address_space *, loff_t);
3412 extern void truncate_inode_pages_range(struct address_space *,
3413 loff_t lstart, loff_t lend);
3414 extern void truncate_inode_pages_final(struct address_space *);
3416 /* generic vm_area_ops exported for stackable file systems */
3417 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3418 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3419 pgoff_t start_pgoff, pgoff_t end_pgoff);
3420 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3422 extern unsigned long stack_guard_gap;
3423 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3424 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3425 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3427 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3428 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3430 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3431 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3432 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3433 struct vm_area_struct **pprev);
3436 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3437 * NULL if none. Assume start_addr < end_addr.
3439 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3440 unsigned long start_addr, unsigned long end_addr);
3443 * vma_lookup() - Find a VMA at a specific address
3444 * @mm: The process address space.
3445 * @addr: The user address.
3447 * Return: The vm_area_struct at the given address, %NULL otherwise.
3450 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3452 return mtree_load(&mm->mm_mt, addr);
3455 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3457 if (vma->vm_flags & VM_GROWSDOWN)
3458 return stack_guard_gap;
3460 /* See reasoning around the VM_SHADOW_STACK definition */
3461 if (vma->vm_flags & VM_SHADOW_STACK)
3467 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3469 unsigned long gap = stack_guard_start_gap(vma);
3470 unsigned long vm_start = vma->vm_start;
3473 if (vm_start > vma->vm_start)
3478 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3480 unsigned long vm_end = vma->vm_end;
3482 if (vma->vm_flags & VM_GROWSUP) {
3483 vm_end += stack_guard_gap;
3484 if (vm_end < vma->vm_end)
3485 vm_end = -PAGE_SIZE;
3490 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3492 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3495 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3496 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3497 unsigned long vm_start, unsigned long vm_end)
3499 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3501 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3507 static inline bool range_in_vma(struct vm_area_struct *vma,
3508 unsigned long start, unsigned long end)
3510 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3514 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3515 void vma_set_page_prot(struct vm_area_struct *vma);
3517 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3521 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3527 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3529 #ifdef CONFIG_NUMA_BALANCING
3530 unsigned long change_prot_numa(struct vm_area_struct *vma,
3531 unsigned long start, unsigned long end);
3534 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3535 unsigned long addr);
3536 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3537 unsigned long pfn, unsigned long size, pgprot_t);
3538 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3539 unsigned long pfn, unsigned long size, pgprot_t prot);
3540 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3541 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3542 struct page **pages, unsigned long *num);
3543 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3545 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3547 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3549 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3550 unsigned long pfn, pgprot_t pgprot);
3551 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3553 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3554 unsigned long addr, pfn_t pfn);
3555 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3557 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3558 unsigned long addr, struct page *page)
3560 int err = vm_insert_page(vma, addr, page);
3563 return VM_FAULT_OOM;
3564 if (err < 0 && err != -EBUSY)
3565 return VM_FAULT_SIGBUS;
3567 return VM_FAULT_NOPAGE;
3570 #ifndef io_remap_pfn_range
3571 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3572 unsigned long addr, unsigned long pfn,
3573 unsigned long size, pgprot_t prot)
3575 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3579 static inline vm_fault_t vmf_error(int err)
3582 return VM_FAULT_OOM;
3583 else if (err == -EHWPOISON)
3584 return VM_FAULT_HWPOISON;
3585 return VM_FAULT_SIGBUS;
3589 * Convert errno to return value for ->page_mkwrite() calls.
3591 * This should eventually be merged with vmf_error() above, but will need a
3592 * careful audit of all vmf_error() callers.
3594 static inline vm_fault_t vmf_fs_error(int err)
3597 return VM_FAULT_LOCKED;
3598 if (err == -EFAULT || err == -EAGAIN)
3599 return VM_FAULT_NOPAGE;
3601 return VM_FAULT_OOM;
3602 /* -ENOSPC, -EDQUOT, -EIO ... */
3603 return VM_FAULT_SIGBUS;
3606 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3608 if (vm_fault & VM_FAULT_OOM)
3610 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3611 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3612 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3618 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3619 * a (NUMA hinting) fault is required.
3621 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3625 * If callers don't want to honor NUMA hinting faults, no need to
3626 * determine if we would actually have to trigger a NUMA hinting fault.
3628 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3632 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3634 * Requiring a fault here even for inaccessible VMAs would mean that
3635 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3636 * refuses to process NUMA hinting faults in inaccessible VMAs.
3638 return !vma_is_accessible(vma);
3641 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3642 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3643 unsigned long size, pte_fn_t fn, void *data);
3644 extern int apply_to_existing_page_range(struct mm_struct *mm,
3645 unsigned long address, unsigned long size,
3646 pte_fn_t fn, void *data);
3648 #ifdef CONFIG_PAGE_POISONING
3649 extern void __kernel_poison_pages(struct page *page, int numpages);
3650 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3651 extern bool _page_poisoning_enabled_early;
3652 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3653 static inline bool page_poisoning_enabled(void)
3655 return _page_poisoning_enabled_early;
3658 * For use in fast paths after init_mem_debugging() has run, or when a
3659 * false negative result is not harmful when called too early.
3661 static inline bool page_poisoning_enabled_static(void)
3663 return static_branch_unlikely(&_page_poisoning_enabled);
3665 static inline void kernel_poison_pages(struct page *page, int numpages)
3667 if (page_poisoning_enabled_static())
3668 __kernel_poison_pages(page, numpages);
3670 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3672 if (page_poisoning_enabled_static())
3673 __kernel_unpoison_pages(page, numpages);
3676 static inline bool page_poisoning_enabled(void) { return false; }
3677 static inline bool page_poisoning_enabled_static(void) { return false; }
3678 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3679 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3680 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3683 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3684 static inline bool want_init_on_alloc(gfp_t flags)
3686 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3689 return flags & __GFP_ZERO;
3692 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3693 static inline bool want_init_on_free(void)
3695 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3699 extern bool _debug_pagealloc_enabled_early;
3700 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3702 static inline bool debug_pagealloc_enabled(void)
3704 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3705 _debug_pagealloc_enabled_early;
3709 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3710 * or when a false negative result is not harmful when called too early.
3712 static inline bool debug_pagealloc_enabled_static(void)
3714 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3717 return static_branch_unlikely(&_debug_pagealloc_enabled);
3721 * To support DEBUG_PAGEALLOC architecture must ensure that
3722 * __kernel_map_pages() never fails
3724 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3725 #ifdef CONFIG_DEBUG_PAGEALLOC
3726 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3728 if (debug_pagealloc_enabled_static())
3729 __kernel_map_pages(page, numpages, 1);
3732 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3734 if (debug_pagealloc_enabled_static())
3735 __kernel_map_pages(page, numpages, 0);
3738 extern unsigned int _debug_guardpage_minorder;
3739 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3741 static inline unsigned int debug_guardpage_minorder(void)
3743 return _debug_guardpage_minorder;
3746 static inline bool debug_guardpage_enabled(void)
3748 return static_branch_unlikely(&_debug_guardpage_enabled);
3751 static inline bool page_is_guard(struct page *page)
3753 if (!debug_guardpage_enabled())
3756 return PageGuard(page);
3759 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3760 static inline bool set_page_guard(struct zone *zone, struct page *page,
3763 if (!debug_guardpage_enabled())
3765 return __set_page_guard(zone, page, order);
3768 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3769 static inline void clear_page_guard(struct zone *zone, struct page *page,
3772 if (!debug_guardpage_enabled())
3774 __clear_page_guard(zone, page, order);
3777 #else /* CONFIG_DEBUG_PAGEALLOC */
3778 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3779 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3780 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3781 static inline bool debug_guardpage_enabled(void) { return false; }
3782 static inline bool page_is_guard(struct page *page) { return false; }
3783 static inline bool set_page_guard(struct zone *zone, struct page *page,
3784 unsigned int order) { return false; }
3785 static inline void clear_page_guard(struct zone *zone, struct page *page,
3786 unsigned int order) {}
3787 #endif /* CONFIG_DEBUG_PAGEALLOC */
3789 #ifdef __HAVE_ARCH_GATE_AREA
3790 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3791 extern int in_gate_area_no_mm(unsigned long addr);
3792 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3794 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3798 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3799 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3803 #endif /* __HAVE_ARCH_GATE_AREA */
3805 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3807 #ifdef CONFIG_SYSCTL
3808 extern int sysctl_drop_caches;
3809 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3813 void drop_slab(void);
3816 #define randomize_va_space 0
3818 extern int randomize_va_space;
3821 const char * arch_vma_name(struct vm_area_struct *vma);
3823 void print_vma_addr(char *prefix, unsigned long rip);
3825 static inline void print_vma_addr(char *prefix, unsigned long rip)
3830 void *sparse_buffer_alloc(unsigned long size);
3831 struct page * __populate_section_memmap(unsigned long pfn,
3832 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3833 struct dev_pagemap *pgmap);
3834 void pud_init(void *addr);
3835 void pmd_init(void *addr);
3836 void kernel_pte_init(void *addr);
3837 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3838 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3839 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3840 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3841 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3842 struct vmem_altmap *altmap, struct page *reuse);
3843 void *vmemmap_alloc_block(unsigned long size, int node);
3845 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3846 struct vmem_altmap *altmap);
3847 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3848 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3849 unsigned long addr, unsigned long next);
3850 int vmemmap_check_pmd(pmd_t *pmd, int node,
3851 unsigned long addr, unsigned long next);
3852 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3853 int node, struct vmem_altmap *altmap);
3854 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3855 int node, struct vmem_altmap *altmap);
3856 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3857 struct vmem_altmap *altmap);
3858 void vmemmap_populate_print_last(void);
3859 #ifdef CONFIG_MEMORY_HOTPLUG
3860 void vmemmap_free(unsigned long start, unsigned long end,
3861 struct vmem_altmap *altmap);
3864 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3865 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3867 /* number of pfns from base where pfn_to_page() is valid */
3869 return altmap->reserve + altmap->free;
3873 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3874 unsigned long nr_pfns)
3876 altmap->alloc -= nr_pfns;
3879 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3884 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3885 unsigned long nr_pfns)
3890 #define VMEMMAP_RESERVE_NR 2
3891 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3892 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3893 struct dev_pagemap *pgmap)
3895 unsigned long nr_pages;
3896 unsigned long nr_vmemmap_pages;
3898 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3901 nr_pages = pgmap_vmemmap_nr(pgmap);
3902 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3904 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3905 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3907 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3910 * If we don't have an architecture override, use the generic rule
3912 #ifndef vmemmap_can_optimize
3913 #define vmemmap_can_optimize __vmemmap_can_optimize
3917 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3918 struct dev_pagemap *pgmap)
3924 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3925 unsigned long nr_pages);
3928 MF_COUNT_INCREASED = 1 << 0,
3929 MF_ACTION_REQUIRED = 1 << 1,
3930 MF_MUST_KILL = 1 << 2,
3931 MF_SOFT_OFFLINE = 1 << 3,
3932 MF_UNPOISON = 1 << 4,
3933 MF_SW_SIMULATED = 1 << 5,
3934 MF_NO_RETRY = 1 << 6,
3935 MF_MEM_PRE_REMOVE = 1 << 7,
3937 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3938 unsigned long count, int mf_flags);
3939 extern int memory_failure(unsigned long pfn, int flags);
3940 extern void memory_failure_queue_kick(int cpu);
3941 extern int unpoison_memory(unsigned long pfn);
3942 extern atomic_long_t num_poisoned_pages __read_mostly;
3943 extern int soft_offline_page(unsigned long pfn, int flags);
3944 #ifdef CONFIG_MEMORY_FAILURE
3946 * Sysfs entries for memory failure handling statistics.
3948 extern const struct attribute_group memory_failure_attr_group;
3949 extern void memory_failure_queue(unsigned long pfn, int flags);
3950 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3951 bool *migratable_cleared);
3952 void num_poisoned_pages_inc(unsigned long pfn);
3953 void num_poisoned_pages_sub(unsigned long pfn, long i);
3955 static inline void memory_failure_queue(unsigned long pfn, int flags)
3959 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3960 bool *migratable_cleared)
3965 static inline void num_poisoned_pages_inc(unsigned long pfn)
3969 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3974 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3975 extern void memblk_nr_poison_inc(unsigned long pfn);
3976 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3978 static inline void memblk_nr_poison_inc(unsigned long pfn)
3982 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3987 #ifndef arch_memory_failure
3988 static inline int arch_memory_failure(unsigned long pfn, int flags)
3994 #ifndef arch_is_platform_page
3995 static inline bool arch_is_platform_page(u64 paddr)
4002 * Error handlers for various types of pages.
4005 MF_IGNORED, /* Error: cannot be handled */
4006 MF_FAILED, /* Error: handling failed */
4007 MF_DELAYED, /* Will be handled later */
4008 MF_RECOVERED, /* Successfully recovered */
4011 enum mf_action_page_type {
4013 MF_MSG_KERNEL_HIGH_ORDER,
4014 MF_MSG_DIFFERENT_COMPOUND,
4017 MF_MSG_GET_HWPOISON,
4018 MF_MSG_UNMAP_FAILED,
4019 MF_MSG_DIRTY_SWAPCACHE,
4020 MF_MSG_CLEAN_SWAPCACHE,
4021 MF_MSG_DIRTY_MLOCKED_LRU,
4022 MF_MSG_CLEAN_MLOCKED_LRU,
4023 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4024 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4027 MF_MSG_TRUNCATED_LRU,
4031 MF_MSG_ALREADY_POISONED,
4035 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4036 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4037 int copy_user_large_folio(struct folio *dst, struct folio *src,
4038 unsigned long addr_hint,
4039 struct vm_area_struct *vma);
4040 long copy_folio_from_user(struct folio *dst_folio,
4041 const void __user *usr_src,
4042 bool allow_pagefault);
4045 * vma_is_special_huge - Are transhuge page-table entries considered special?
4046 * @vma: Pointer to the struct vm_area_struct to consider
4048 * Whether transhuge page-table entries are considered "special" following
4049 * the definition in vm_normal_page().
4051 * Return: true if transhuge page-table entries should be considered special,
4054 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4056 return vma_is_dax(vma) || (vma->vm_file &&
4057 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4060 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4062 #if MAX_NUMNODES > 1
4063 void __init setup_nr_node_ids(void);
4065 static inline void setup_nr_node_ids(void) {}
4068 extern int memcmp_pages(struct page *page1, struct page *page2);
4070 static inline int pages_identical(struct page *page1, struct page *page2)
4072 return !memcmp_pages(page1, page2);
4075 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4076 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4077 pgoff_t first_index, pgoff_t nr,
4078 pgoff_t bitmap_pgoff,
4079 unsigned long *bitmap,
4083 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4084 pgoff_t first_index, pgoff_t nr);
4087 extern int sysctl_nr_trim_pages;
4089 #ifdef CONFIG_PRINTK
4090 void mem_dump_obj(void *object);
4092 static inline void mem_dump_obj(void *object) {}
4096 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4098 * @seals: the seals to check
4099 * @vma: the vma to operate on
4101 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4102 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4104 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4106 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4108 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4109 * write seals are active.
4111 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4115 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4116 * MAP_SHARED and read-only, take care to not allow mprotect to
4117 * revert protections on such mappings. Do this only for shared
4118 * mappings. For private mappings, don't need to mask
4119 * VM_MAYWRITE as we still want them to be COW-writable.
4121 if (vma->vm_flags & VM_SHARED)
4122 vm_flags_clear(vma, VM_MAYWRITE);
4128 #ifdef CONFIG_ANON_VMA_NAME
4129 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4130 unsigned long len_in,
4131 struct anon_vma_name *anon_name);
4134 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4135 unsigned long len_in, struct anon_vma_name *anon_name) {
4140 #ifdef CONFIG_UNACCEPTED_MEMORY
4142 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4143 void accept_memory(phys_addr_t start, unsigned long size);
4147 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4153 static inline void accept_memory(phys_addr_t start, unsigned long size)
4159 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4161 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4164 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4165 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4167 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4170 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4172 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4174 /* noop on 32 bit */
4179 #ifdef CONFIG_MEM_ALLOC_PROFILING
4180 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4183 struct alloc_tag *tag;
4184 unsigned int nr_pages = 1 << new_order;
4186 if (!mem_alloc_profiling_enabled())
4189 tag = pgalloc_tag_get(&folio->page);
4193 for (i = nr_pages; i < (1 << old_order); i += nr_pages) {
4194 union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i));
4197 /* Set new reference to point to the original tag */
4198 alloc_tag_ref_set(ref, tag);
4199 put_page_tag_ref(ref);
4204 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4206 struct alloc_tag *tag;
4207 union codetag_ref *ref;
4209 tag = pgalloc_tag_get(&old->page);
4213 ref = get_page_tag_ref(&new->page);
4217 /* Clear the old ref to the original allocation tag. */
4218 clear_page_tag_ref(&old->page);
4219 /* Decrement the counters of the tag on get_new_folio. */
4220 alloc_tag_sub(ref, folio_nr_pages(new));
4222 __alloc_tag_ref_set(ref, tag);
4224 put_page_tag_ref(ref);
4226 #else /* !CONFIG_MEM_ALLOC_PROFILING */
4227 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4231 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4234 #endif /* CONFIG_MEM_ALLOC_PROFILING */
4236 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4237 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4238 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4240 #endif /* _LINUX_MM_H */