1 // SPDX-License-Identifier: GPL-2.0
3 * arch-independent dma-mapping routines
5 * Copyright (c) 2006 SUSE Linux Products GmbH
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/kmsan.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
20 bool dma_default_coherent;
28 dma_addr_t dma_handle;
32 static void dmam_release(struct device *dev, void *res)
34 struct dma_devres *this = res;
36 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
40 static int dmam_match(struct device *dev, void *res, void *match_data)
42 struct dma_devres *this = res, *match = match_data;
44 if (this->vaddr == match->vaddr) {
45 WARN_ON(this->size != match->size ||
46 this->dma_handle != match->dma_handle);
53 * dmam_free_coherent - Managed dma_free_coherent()
54 * @dev: Device to free coherent memory for
55 * @size: Size of allocation
56 * @vaddr: Virtual address of the memory to free
57 * @dma_handle: DMA handle of the memory to free
59 * Managed dma_free_coherent().
61 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
62 dma_addr_t dma_handle)
64 struct dma_devres match_data = { size, vaddr, dma_handle };
66 dma_free_coherent(dev, size, vaddr, dma_handle);
67 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
69 EXPORT_SYMBOL(dmam_free_coherent);
72 * dmam_alloc_attrs - Managed dma_alloc_attrs()
73 * @dev: Device to allocate non_coherent memory for
74 * @size: Size of allocation
75 * @dma_handle: Out argument for allocated DMA handle
76 * @gfp: Allocation flags
77 * @attrs: Flags in the DMA_ATTR_* namespace.
79 * Managed dma_alloc_attrs(). Memory allocated using this function will be
80 * automatically released on driver detach.
83 * Pointer to allocated memory on success, NULL on failure.
85 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
86 gfp_t gfp, unsigned long attrs)
88 struct dma_devres *dr;
91 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
95 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
102 dr->dma_handle = *dma_handle;
110 EXPORT_SYMBOL(dmam_alloc_attrs);
112 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
113 const struct dma_map_ops *ops)
117 #ifdef CONFIG_DMA_OPS_BYPASS
118 if (dev->dma_ops_bypass)
119 return min_not_zero(mask, dev->bus_dma_limit) >=
120 dma_direct_get_required_mask(dev);
127 * Check if the devices uses a direct mapping for streaming DMA operations.
128 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
131 static inline bool dma_alloc_direct(struct device *dev,
132 const struct dma_map_ops *ops)
134 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
137 static inline bool dma_map_direct(struct device *dev,
138 const struct dma_map_ops *ops)
140 return dma_go_direct(dev, *dev->dma_mask, ops);
143 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
144 size_t offset, size_t size, enum dma_data_direction dir,
147 const struct dma_map_ops *ops = get_dma_ops(dev);
150 BUG_ON(!valid_dma_direction(dir));
152 if (WARN_ON_ONCE(!dev->dma_mask))
153 return DMA_MAPPING_ERROR;
155 if (dma_map_direct(dev, ops) ||
156 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
157 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
159 addr = ops->map_page(dev, page, offset, size, dir, attrs);
160 kmsan_handle_dma(page, offset, size, dir);
161 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
165 EXPORT_SYMBOL(dma_map_page_attrs);
167 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
168 enum dma_data_direction dir, unsigned long attrs)
170 const struct dma_map_ops *ops = get_dma_ops(dev);
172 BUG_ON(!valid_dma_direction(dir));
173 if (dma_map_direct(dev, ops) ||
174 arch_dma_unmap_page_direct(dev, addr + size))
175 dma_direct_unmap_page(dev, addr, size, dir, attrs);
176 else if (ops->unmap_page)
177 ops->unmap_page(dev, addr, size, dir, attrs);
178 debug_dma_unmap_page(dev, addr, size, dir);
180 EXPORT_SYMBOL(dma_unmap_page_attrs);
182 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
183 int nents, enum dma_data_direction dir, unsigned long attrs)
185 const struct dma_map_ops *ops = get_dma_ops(dev);
188 BUG_ON(!valid_dma_direction(dir));
190 if (WARN_ON_ONCE(!dev->dma_mask))
193 if (dma_map_direct(dev, ops) ||
194 arch_dma_map_sg_direct(dev, sg, nents))
195 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
197 ents = ops->map_sg(dev, sg, nents, dir, attrs);
200 kmsan_handle_dma_sg(sg, nents, dir);
201 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
202 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
203 ents != -EIO && ents != -EREMOTEIO)) {
211 * dma_map_sg_attrs - Map the given buffer for DMA
212 * @dev: The device for which to perform the DMA operation
213 * @sg: The sg_table object describing the buffer
214 * @nents: Number of entries to map
215 * @dir: DMA direction
216 * @attrs: Optional DMA attributes for the map operation
218 * Maps a buffer described by a scatterlist passed in the sg argument with
219 * nents segments for the @dir DMA operation by the @dev device.
221 * Returns the number of mapped entries (which can be less than nents)
222 * on success. Zero is returned for any error.
224 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
225 * original sg and original nents (not the value returned by this funciton).
227 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
228 int nents, enum dma_data_direction dir, unsigned long attrs)
232 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
237 EXPORT_SYMBOL(dma_map_sg_attrs);
240 * dma_map_sgtable - Map the given buffer for DMA
241 * @dev: The device for which to perform the DMA operation
242 * @sgt: The sg_table object describing the buffer
243 * @dir: DMA direction
244 * @attrs: Optional DMA attributes for the map operation
246 * Maps a buffer described by a scatterlist stored in the given sg_table
247 * object for the @dir DMA operation by the @dev device. After success, the
248 * ownership for the buffer is transferred to the DMA domain. One has to
249 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
250 * ownership of the buffer back to the CPU domain before touching the
253 * Returns 0 on success or a negative error code on error. The following
254 * error codes are supported with the given meaning:
256 * -EINVAL An invalid argument, unaligned access or other error
257 * in usage. Will not succeed if retried.
258 * -ENOMEM Insufficient resources (like memory or IOVA space) to
259 * complete the mapping. Should succeed if retried later.
260 * -EIO Legacy error code with an unknown meaning. eg. this is
261 * returned if a lower level call returned
263 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
264 * in the sg_table. This will not succeed if retried.
266 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
267 enum dma_data_direction dir, unsigned long attrs)
271 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
277 EXPORT_SYMBOL_GPL(dma_map_sgtable);
279 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
280 int nents, enum dma_data_direction dir,
283 const struct dma_map_ops *ops = get_dma_ops(dev);
285 BUG_ON(!valid_dma_direction(dir));
286 debug_dma_unmap_sg(dev, sg, nents, dir);
287 if (dma_map_direct(dev, ops) ||
288 arch_dma_unmap_sg_direct(dev, sg, nents))
289 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
290 else if (ops->unmap_sg)
291 ops->unmap_sg(dev, sg, nents, dir, attrs);
293 EXPORT_SYMBOL(dma_unmap_sg_attrs);
295 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
296 size_t size, enum dma_data_direction dir, unsigned long attrs)
298 const struct dma_map_ops *ops = get_dma_ops(dev);
299 dma_addr_t addr = DMA_MAPPING_ERROR;
301 BUG_ON(!valid_dma_direction(dir));
303 if (WARN_ON_ONCE(!dev->dma_mask))
304 return DMA_MAPPING_ERROR;
306 if (dma_map_direct(dev, ops))
307 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
308 else if (ops->map_resource)
309 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
311 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
314 EXPORT_SYMBOL(dma_map_resource);
316 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
317 enum dma_data_direction dir, unsigned long attrs)
319 const struct dma_map_ops *ops = get_dma_ops(dev);
321 BUG_ON(!valid_dma_direction(dir));
322 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
323 ops->unmap_resource(dev, addr, size, dir, attrs);
324 debug_dma_unmap_resource(dev, addr, size, dir);
326 EXPORT_SYMBOL(dma_unmap_resource);
328 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
329 enum dma_data_direction dir)
331 const struct dma_map_ops *ops = get_dma_ops(dev);
333 BUG_ON(!valid_dma_direction(dir));
334 if (dma_map_direct(dev, ops))
335 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
336 else if (ops->sync_single_for_cpu)
337 ops->sync_single_for_cpu(dev, addr, size, dir);
338 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
340 EXPORT_SYMBOL(dma_sync_single_for_cpu);
342 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
343 size_t size, enum dma_data_direction dir)
345 const struct dma_map_ops *ops = get_dma_ops(dev);
347 BUG_ON(!valid_dma_direction(dir));
348 if (dma_map_direct(dev, ops))
349 dma_direct_sync_single_for_device(dev, addr, size, dir);
350 else if (ops->sync_single_for_device)
351 ops->sync_single_for_device(dev, addr, size, dir);
352 debug_dma_sync_single_for_device(dev, addr, size, dir);
354 EXPORT_SYMBOL(dma_sync_single_for_device);
356 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
357 int nelems, enum dma_data_direction dir)
359 const struct dma_map_ops *ops = get_dma_ops(dev);
361 BUG_ON(!valid_dma_direction(dir));
362 if (dma_map_direct(dev, ops))
363 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
364 else if (ops->sync_sg_for_cpu)
365 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
366 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
368 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
370 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
371 int nelems, enum dma_data_direction dir)
373 const struct dma_map_ops *ops = get_dma_ops(dev);
375 BUG_ON(!valid_dma_direction(dir));
376 if (dma_map_direct(dev, ops))
377 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
378 else if (ops->sync_sg_for_device)
379 ops->sync_sg_for_device(dev, sg, nelems, dir);
380 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
382 EXPORT_SYMBOL(dma_sync_sg_for_device);
385 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
386 * that the intention is to allow exporting memory allocated via the
387 * coherent DMA APIs through the dma_buf API, which only accepts a
388 * scattertable. This presents a couple of problems:
389 * 1. Not all memory allocated via the coherent DMA APIs is backed by
391 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
392 * as we will try to flush the memory through a different alias to that
393 * actually being used (and the flushes are redundant.)
395 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
396 void *cpu_addr, dma_addr_t dma_addr, size_t size,
399 const struct dma_map_ops *ops = get_dma_ops(dev);
401 if (dma_alloc_direct(dev, ops))
402 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
404 if (!ops->get_sgtable)
406 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
408 EXPORT_SYMBOL(dma_get_sgtable_attrs);
412 * Return the page attributes used for mapping dma_alloc_* memory, either in
413 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
415 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
417 if (dev_is_dma_coherent(dev))
419 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
420 if (attrs & DMA_ATTR_WRITE_COMBINE)
421 return pgprot_writecombine(prot);
423 return pgprot_dmacoherent(prot);
425 #endif /* CONFIG_MMU */
428 * dma_can_mmap - check if a given device supports dma_mmap_*
429 * @dev: device to check
431 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
432 * map DMA allocations to userspace.
434 bool dma_can_mmap(struct device *dev)
436 const struct dma_map_ops *ops = get_dma_ops(dev);
438 if (dma_alloc_direct(dev, ops))
439 return dma_direct_can_mmap(dev);
440 return ops->mmap != NULL;
442 EXPORT_SYMBOL_GPL(dma_can_mmap);
445 * dma_mmap_attrs - map a coherent DMA allocation into user space
446 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
447 * @vma: vm_area_struct describing requested user mapping
448 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
449 * @dma_addr: device-view address returned from dma_alloc_attrs
450 * @size: size of memory originally requested in dma_alloc_attrs
451 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
453 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
454 * space. The coherent DMA buffer must not be freed by the driver until the
455 * user space mapping has been released.
457 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
458 void *cpu_addr, dma_addr_t dma_addr, size_t size,
461 const struct dma_map_ops *ops = get_dma_ops(dev);
463 if (dma_alloc_direct(dev, ops))
464 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
468 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
470 EXPORT_SYMBOL(dma_mmap_attrs);
472 u64 dma_get_required_mask(struct device *dev)
474 const struct dma_map_ops *ops = get_dma_ops(dev);
476 if (dma_alloc_direct(dev, ops))
477 return dma_direct_get_required_mask(dev);
478 if (ops->get_required_mask)
479 return ops->get_required_mask(dev);
482 * We require every DMA ops implementation to at least support a 32-bit
483 * DMA mask (and use bounce buffering if that isn't supported in
484 * hardware). As the direct mapping code has its own routine to
485 * actually report an optimal mask we default to 32-bit here as that
486 * is the right thing for most IOMMUs, and at least not actively
487 * harmful in general.
489 return DMA_BIT_MASK(32);
491 EXPORT_SYMBOL_GPL(dma_get_required_mask);
493 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
494 gfp_t flag, unsigned long attrs)
496 const struct dma_map_ops *ops = get_dma_ops(dev);
499 WARN_ON_ONCE(!dev->coherent_dma_mask);
502 * DMA allocations can never be turned back into a page pointer, so
503 * requesting compound pages doesn't make sense (and can't even be
504 * supported at all by various backends).
506 if (WARN_ON_ONCE(flag & __GFP_COMP))
509 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
512 /* let the implementation decide on the zone to allocate from: */
513 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
515 if (dma_alloc_direct(dev, ops))
516 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
518 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
522 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
525 EXPORT_SYMBOL(dma_alloc_attrs);
527 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
528 dma_addr_t dma_handle, unsigned long attrs)
530 const struct dma_map_ops *ops = get_dma_ops(dev);
532 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
535 * On non-coherent platforms which implement DMA-coherent buffers via
536 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
537 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
538 * sleep on some machines, and b) an indication that the driver is
539 * probably misusing the coherent API anyway.
541 WARN_ON(irqs_disabled());
546 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
547 if (dma_alloc_direct(dev, ops))
548 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
550 ops->free(dev, size, cpu_addr, dma_handle, attrs);
552 EXPORT_SYMBOL(dma_free_attrs);
554 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
555 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
557 const struct dma_map_ops *ops = get_dma_ops(dev);
559 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
561 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
563 if (WARN_ON_ONCE(gfp & __GFP_COMP))
566 size = PAGE_ALIGN(size);
567 if (dma_alloc_direct(dev, ops))
568 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
569 if (!ops->alloc_pages)
571 return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
574 struct page *dma_alloc_pages(struct device *dev, size_t size,
575 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
577 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
580 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
583 EXPORT_SYMBOL_GPL(dma_alloc_pages);
585 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
586 dma_addr_t dma_handle, enum dma_data_direction dir)
588 const struct dma_map_ops *ops = get_dma_ops(dev);
590 size = PAGE_ALIGN(size);
591 if (dma_alloc_direct(dev, ops))
592 dma_direct_free_pages(dev, size, page, dma_handle, dir);
593 else if (ops->free_pages)
594 ops->free_pages(dev, size, page, dma_handle, dir);
597 void dma_free_pages(struct device *dev, size_t size, struct page *page,
598 dma_addr_t dma_handle, enum dma_data_direction dir)
600 debug_dma_unmap_page(dev, dma_handle, size, dir);
601 __dma_free_pages(dev, size, page, dma_handle, dir);
603 EXPORT_SYMBOL_GPL(dma_free_pages);
605 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
606 size_t size, struct page *page)
608 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
610 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
612 return remap_pfn_range(vma, vma->vm_start,
613 page_to_pfn(page) + vma->vm_pgoff,
614 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
616 EXPORT_SYMBOL_GPL(dma_mmap_pages);
618 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
619 enum dma_data_direction dir, gfp_t gfp)
621 struct sg_table *sgt;
624 sgt = kmalloc(sizeof(*sgt), gfp);
627 if (sg_alloc_table(sgt, 1, gfp))
629 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
632 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
633 sg_dma_len(sgt->sgl) = sgt->sgl->length;
642 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
643 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
645 const struct dma_map_ops *ops = get_dma_ops(dev);
646 struct sg_table *sgt;
648 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
650 if (WARN_ON_ONCE(gfp & __GFP_COMP))
653 if (ops && ops->alloc_noncontiguous)
654 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
656 sgt = alloc_single_sgt(dev, size, dir, gfp);
660 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
664 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
666 static void free_single_sgt(struct device *dev, size_t size,
667 struct sg_table *sgt, enum dma_data_direction dir)
669 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
675 void dma_free_noncontiguous(struct device *dev, size_t size,
676 struct sg_table *sgt, enum dma_data_direction dir)
678 const struct dma_map_ops *ops = get_dma_ops(dev);
680 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
681 if (ops && ops->free_noncontiguous)
682 ops->free_noncontiguous(dev, size, sgt, dir);
684 free_single_sgt(dev, size, sgt, dir);
686 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
688 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
689 struct sg_table *sgt)
691 const struct dma_map_ops *ops = get_dma_ops(dev);
692 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
694 if (ops && ops->alloc_noncontiguous)
695 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
696 return page_address(sg_page(sgt->sgl));
698 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
700 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
702 const struct dma_map_ops *ops = get_dma_ops(dev);
704 if (ops && ops->alloc_noncontiguous)
707 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
709 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
710 size_t size, struct sg_table *sgt)
712 const struct dma_map_ops *ops = get_dma_ops(dev);
714 if (ops && ops->alloc_noncontiguous) {
715 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
717 if (vma->vm_pgoff >= count ||
718 vma_pages(vma) > count - vma->vm_pgoff)
720 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
722 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
724 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
726 static int dma_supported(struct device *dev, u64 mask)
728 const struct dma_map_ops *ops = get_dma_ops(dev);
731 * ->dma_supported sets the bypass flag, so we must always call
732 * into the method here unless the device is truly direct mapped.
735 return dma_direct_supported(dev, mask);
736 if (!ops->dma_supported)
738 return ops->dma_supported(dev, mask);
741 bool dma_pci_p2pdma_supported(struct device *dev)
743 const struct dma_map_ops *ops = get_dma_ops(dev);
745 /* if ops is not set, dma direct will be used which supports P2PDMA */
750 * Note: dma_ops_bypass is not checked here because P2PDMA should
751 * not be used with dma mapping ops that do not have support even
752 * if the specific device is bypassing them.
755 return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
757 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
759 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
760 void arch_dma_set_mask(struct device *dev, u64 mask);
762 #define arch_dma_set_mask(dev, mask) do { } while (0)
765 int dma_set_mask(struct device *dev, u64 mask)
768 * Truncate the mask to the actually supported dma_addr_t width to
769 * avoid generating unsupportable addresses.
771 mask = (dma_addr_t)mask;
773 if (!dev->dma_mask || !dma_supported(dev, mask))
776 arch_dma_set_mask(dev, mask);
777 *dev->dma_mask = mask;
780 EXPORT_SYMBOL(dma_set_mask);
782 int dma_set_coherent_mask(struct device *dev, u64 mask)
785 * Truncate the mask to the actually supported dma_addr_t width to
786 * avoid generating unsupportable addresses.
788 mask = (dma_addr_t)mask;
790 if (!dma_supported(dev, mask))
793 dev->coherent_dma_mask = mask;
796 EXPORT_SYMBOL(dma_set_coherent_mask);
798 size_t dma_max_mapping_size(struct device *dev)
800 const struct dma_map_ops *ops = get_dma_ops(dev);
801 size_t size = SIZE_MAX;
803 if (dma_map_direct(dev, ops))
804 size = dma_direct_max_mapping_size(dev);
805 else if (ops && ops->max_mapping_size)
806 size = ops->max_mapping_size(dev);
810 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
812 size_t dma_opt_mapping_size(struct device *dev)
814 const struct dma_map_ops *ops = get_dma_ops(dev);
815 size_t size = SIZE_MAX;
817 if (ops && ops->opt_mapping_size)
818 size = ops->opt_mapping_size();
820 return min(dma_max_mapping_size(dev), size);
822 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
824 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
826 const struct dma_map_ops *ops = get_dma_ops(dev);
828 if (dma_map_direct(dev, ops))
829 return dma_direct_need_sync(dev, dma_addr);
830 return ops->sync_single_for_cpu || ops->sync_single_for_device;
832 EXPORT_SYMBOL_GPL(dma_need_sync);
834 unsigned long dma_get_merge_boundary(struct device *dev)
836 const struct dma_map_ops *ops = get_dma_ops(dev);
838 if (!ops || !ops->get_merge_boundary)
839 return 0; /* can't merge */
841 return ops->get_merge_boundary(dev);
843 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);