2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
19 #include <linux/iversion.h>
23 #include "xfs_shared.h"
24 #include "xfs_format.h"
25 #include "xfs_log_format.h"
26 #include "xfs_trans_resv.h"
28 #include "xfs_mount.h"
29 #include "xfs_defer.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
34 #include "xfs_attr_sf.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_errortag.h"
44 #include "xfs_error.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 #include "xfs_symlink.h"
51 #include "xfs_trans_priv.h"
53 #include "xfs_bmap_btree.h"
54 #include "xfs_reflink.h"
55 #include "xfs_dir2_priv.h"
57 kmem_zone_t *xfs_inode_zone;
60 * Used in xfs_itruncate_extents(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
66 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
67 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
70 * helper function to extract extent size hint from inode
76 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
77 return ip->i_d.di_extsize;
78 if (XFS_IS_REALTIME_INODE(ip))
79 return ip->i_mount->m_sb.sb_rextsize;
84 * Helper function to extract CoW extent size hint from inode.
85 * Between the extent size hint and the CoW extent size hint, we
86 * return the greater of the two. If the value is zero (automatic),
87 * use the default size.
90 xfs_get_cowextsz_hint(
96 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
97 a = ip->i_d.di_cowextsize;
98 b = xfs_get_extsz_hint(ip);
102 return XFS_DEFAULT_COWEXTSZ_HINT;
107 * These two are wrapper routines around the xfs_ilock() routine used to
108 * centralize some grungy code. They are used in places that wish to lock the
109 * inode solely for reading the extents. The reason these places can't just
110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
111 * bringing in of the extents from disk for a file in b-tree format. If the
112 * inode is in b-tree format, then we need to lock the inode exclusively until
113 * the extents are read in. Locking it exclusively all the time would limit
114 * our parallelism unnecessarily, though. What we do instead is check to see
115 * if the extents have been read in yet, and only lock the inode exclusively
118 * The functions return a value which should be given to the corresponding
119 * xfs_iunlock() call.
122 xfs_ilock_data_map_shared(
123 struct xfs_inode *ip)
125 uint lock_mode = XFS_ILOCK_SHARED;
127 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
128 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
129 lock_mode = XFS_ILOCK_EXCL;
130 xfs_ilock(ip, lock_mode);
135 xfs_ilock_attr_map_shared(
136 struct xfs_inode *ip)
138 uint lock_mode = XFS_ILOCK_SHARED;
140 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
141 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
142 lock_mode = XFS_ILOCK_EXCL;
143 xfs_ilock(ip, lock_mode);
148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
149 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
150 * various combinations of the locks to be obtained.
152 * The 3 locks should always be ordered so that the IO lock is obtained first,
153 * the mmap lock second and the ilock last in order to prevent deadlock.
155 * Basic locking order:
157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
159 * mmap_sem locking order:
161 * i_rwsem -> page lock -> mmap_sem
162 * mmap_sem -> i_mmap_lock -> page_lock
164 * The difference in mmap_sem locking order mean that we cannot hold the
165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
167 * in get_user_pages() to map the user pages into the kernel address space for
168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
169 * page faults already hold the mmap_sem.
171 * Hence to serialise fully against both syscall and mmap based IO, we need to
172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
173 * taken in places where we need to invalidate the page cache in a race
174 * free manner (e.g. truncate, hole punch and other extent manipulation
182 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
185 * You can't set both SHARED and EXCL for the same lock,
186 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
187 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
189 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
190 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
191 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
192 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
193 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
194 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
195 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
197 if (lock_flags & XFS_IOLOCK_EXCL) {
198 down_write_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 } else if (lock_flags & XFS_IOLOCK_SHARED) {
201 down_read_nested(&VFS_I(ip)->i_rwsem,
202 XFS_IOLOCK_DEP(lock_flags));
205 if (lock_flags & XFS_MMAPLOCK_EXCL)
206 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
207 else if (lock_flags & XFS_MMAPLOCK_SHARED)
208 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
210 if (lock_flags & XFS_ILOCK_EXCL)
211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 else if (lock_flags & XFS_ILOCK_SHARED)
213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
236 * You can't set both SHARED and EXCL for the same lock,
237 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
238 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
240 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
241 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
242 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
243 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
244 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
245 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
246 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
248 if (lock_flags & XFS_IOLOCK_EXCL) {
249 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
251 } else if (lock_flags & XFS_IOLOCK_SHARED) {
252 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
256 if (lock_flags & XFS_MMAPLOCK_EXCL) {
257 if (!mrtryupdate(&ip->i_mmaplock))
258 goto out_undo_iolock;
259 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
260 if (!mrtryaccess(&ip->i_mmaplock))
261 goto out_undo_iolock;
264 if (lock_flags & XFS_ILOCK_EXCL) {
265 if (!mrtryupdate(&ip->i_lock))
266 goto out_undo_mmaplock;
267 } else if (lock_flags & XFS_ILOCK_SHARED) {
268 if (!mrtryaccess(&ip->i_lock))
269 goto out_undo_mmaplock;
274 if (lock_flags & XFS_MMAPLOCK_EXCL)
275 mrunlock_excl(&ip->i_mmaplock);
276 else if (lock_flags & XFS_MMAPLOCK_SHARED)
277 mrunlock_shared(&ip->i_mmaplock);
279 if (lock_flags & XFS_IOLOCK_EXCL)
280 up_write(&VFS_I(ip)->i_rwsem);
281 else if (lock_flags & XFS_IOLOCK_SHARED)
282 up_read(&VFS_I(ip)->i_rwsem);
288 * xfs_iunlock() is used to drop the inode locks acquired with
289 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
291 * that we know which locks to drop.
293 * ip -- the inode being unlocked
294 * lock_flags -- this parameter indicates the inode's locks to be
295 * to be unlocked. See the comment for xfs_ilock() for a list
296 * of valid values for this parameter.
305 * You can't set both SHARED and EXCL for the same lock,
306 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
307 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
309 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
310 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
311 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
312 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
313 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
314 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
315 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
316 ASSERT(lock_flags != 0);
318 if (lock_flags & XFS_IOLOCK_EXCL)
319 up_write(&VFS_I(ip)->i_rwsem);
320 else if (lock_flags & XFS_IOLOCK_SHARED)
321 up_read(&VFS_I(ip)->i_rwsem);
323 if (lock_flags & XFS_MMAPLOCK_EXCL)
324 mrunlock_excl(&ip->i_mmaplock);
325 else if (lock_flags & XFS_MMAPLOCK_SHARED)
326 mrunlock_shared(&ip->i_mmaplock);
328 if (lock_flags & XFS_ILOCK_EXCL)
329 mrunlock_excl(&ip->i_lock);
330 else if (lock_flags & XFS_ILOCK_SHARED)
331 mrunlock_shared(&ip->i_lock);
333 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
337 * give up write locks. the i/o lock cannot be held nested
338 * if it is being demoted.
345 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
347 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
349 if (lock_flags & XFS_ILOCK_EXCL)
350 mrdemote(&ip->i_lock);
351 if (lock_flags & XFS_MMAPLOCK_EXCL)
352 mrdemote(&ip->i_mmaplock);
353 if (lock_flags & XFS_IOLOCK_EXCL)
354 downgrade_write(&VFS_I(ip)->i_rwsem);
356 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
359 #if defined(DEBUG) || defined(XFS_WARN)
365 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
366 if (!(lock_flags & XFS_ILOCK_SHARED))
367 return !!ip->i_lock.mr_writer;
368 return rwsem_is_locked(&ip->i_lock.mr_lock);
371 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
372 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
373 return !!ip->i_mmaplock.mr_writer;
374 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
377 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
378 if (!(lock_flags & XFS_IOLOCK_SHARED))
379 return !debug_locks ||
380 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
381 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
393 * errors and warnings.
395 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
397 xfs_lockdep_subclass_ok(
400 return subclass < MAX_LOCKDEP_SUBCLASSES;
403 #define xfs_lockdep_subclass_ok(subclass) (true)
407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
408 * value. This can be called for any type of inode lock combination, including
409 * parent locking. Care must be taken to ensure we don't overrun the subclass
410 * storage fields in the class mask we build.
413 xfs_lock_inumorder(int lock_mode, int subclass)
417 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
419 ASSERT(xfs_lockdep_subclass_ok(subclass));
421 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
422 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
423 class += subclass << XFS_IOLOCK_SHIFT;
426 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
427 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
428 class += subclass << XFS_MMAPLOCK_SHIFT;
431 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
432 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
433 class += subclass << XFS_ILOCK_SHIFT;
436 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
440 * The following routine will lock n inodes in exclusive mode. We assume the
441 * caller calls us with the inodes in i_ino order.
443 * We need to detect deadlock where an inode that we lock is in the AIL and we
444 * start waiting for another inode that is locked by a thread in a long running
445 * transaction (such as truncate). This can result in deadlock since the long
446 * running trans might need to wait for the inode we just locked in order to
447 * push the tail and free space in the log.
449 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
451 * lock more than one at a time, lockdep will report false positives saying we
452 * have violated locking orders.
460 int attempts = 0, i, j, try_lock;
464 * Currently supports between 2 and 5 inodes with exclusive locking. We
465 * support an arbitrary depth of locking here, but absolute limits on
466 * inodes depend on the the type of locking and the limits placed by
467 * lockdep annotations in xfs_lock_inumorder. These are all checked by
470 ASSERT(ips && inodes >= 2 && inodes <= 5);
471 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
473 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
475 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
476 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
477 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
478 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
480 if (lock_mode & XFS_IOLOCK_EXCL) {
481 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
482 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
488 for (; i < inodes; i++) {
491 if (i && (ips[i] == ips[i - 1])) /* Already locked */
495 * If try_lock is not set yet, make sure all locked inodes are
496 * not in the AIL. If any are, set try_lock to be used later.
499 for (j = (i - 1); j >= 0 && !try_lock; j--) {
500 lp = (xfs_log_item_t *)ips[j]->i_itemp;
501 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
507 * If any of the previous locks we have locked is in the AIL,
508 * we must TRY to get the second and subsequent locks. If
509 * we can't get any, we must release all we have
513 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
517 /* try_lock means we have an inode locked that is in the AIL. */
519 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
523 * Unlock all previous guys and try again. xfs_iunlock will try
524 * to push the tail if the inode is in the AIL.
527 for (j = i - 1; j >= 0; j--) {
529 * Check to see if we've already unlocked this one. Not
530 * the first one going back, and the inode ptr is the
533 if (j != (i - 1) && ips[j] == ips[j + 1])
536 xfs_iunlock(ips[j], lock_mode);
539 if ((attempts % 5) == 0) {
540 delay(1); /* Don't just spin the CPU */
549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
550 * the mmaplock or the ilock, but not more than one type at a time. If we lock
551 * more than one at a time, lockdep will report false positives saying we have
552 * violated locking orders. The iolock must be double-locked separately since
553 * we use i_rwsem for that. We now support taking one lock EXCL and the other
558 struct xfs_inode *ip0,
560 struct xfs_inode *ip1,
563 struct xfs_inode *temp;
568 ASSERT(hweight32(ip0_mode) == 1);
569 ASSERT(hweight32(ip1_mode) == 1);
570 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
571 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
572 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
573 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
574 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
575 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
576 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
577 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
578 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
579 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
581 ASSERT(ip0->i_ino != ip1->i_ino);
583 if (ip0->i_ino > ip1->i_ino) {
587 mode_temp = ip0_mode;
589 ip1_mode = mode_temp;
593 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
596 * If the first lock we have locked is in the AIL, we must TRY to get
597 * the second lock. If we can't get it, we must release the first one
600 lp = (xfs_log_item_t *)ip0->i_itemp;
601 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
602 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
603 xfs_iunlock(ip0, ip0_mode);
604 if ((++attempts % 5) == 0)
605 delay(1); /* Don't just spin the CPU */
609 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
615 struct xfs_inode *ip)
617 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
618 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
621 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
622 if (xfs_isiflocked(ip))
624 } while (!xfs_iflock_nowait(ip));
626 finish_wait(wq, &wait.wq_entry);
637 if (di_flags & XFS_DIFLAG_ANY) {
638 if (di_flags & XFS_DIFLAG_REALTIME)
639 flags |= FS_XFLAG_REALTIME;
640 if (di_flags & XFS_DIFLAG_PREALLOC)
641 flags |= FS_XFLAG_PREALLOC;
642 if (di_flags & XFS_DIFLAG_IMMUTABLE)
643 flags |= FS_XFLAG_IMMUTABLE;
644 if (di_flags & XFS_DIFLAG_APPEND)
645 flags |= FS_XFLAG_APPEND;
646 if (di_flags & XFS_DIFLAG_SYNC)
647 flags |= FS_XFLAG_SYNC;
648 if (di_flags & XFS_DIFLAG_NOATIME)
649 flags |= FS_XFLAG_NOATIME;
650 if (di_flags & XFS_DIFLAG_NODUMP)
651 flags |= FS_XFLAG_NODUMP;
652 if (di_flags & XFS_DIFLAG_RTINHERIT)
653 flags |= FS_XFLAG_RTINHERIT;
654 if (di_flags & XFS_DIFLAG_PROJINHERIT)
655 flags |= FS_XFLAG_PROJINHERIT;
656 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
657 flags |= FS_XFLAG_NOSYMLINKS;
658 if (di_flags & XFS_DIFLAG_EXTSIZE)
659 flags |= FS_XFLAG_EXTSIZE;
660 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
661 flags |= FS_XFLAG_EXTSZINHERIT;
662 if (di_flags & XFS_DIFLAG_NODEFRAG)
663 flags |= FS_XFLAG_NODEFRAG;
664 if (di_flags & XFS_DIFLAG_FILESTREAM)
665 flags |= FS_XFLAG_FILESTREAM;
668 if (di_flags2 & XFS_DIFLAG2_ANY) {
669 if (di_flags2 & XFS_DIFLAG2_DAX)
670 flags |= FS_XFLAG_DAX;
671 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
672 flags |= FS_XFLAG_COWEXTSIZE;
676 flags |= FS_XFLAG_HASATTR;
683 struct xfs_inode *ip)
685 struct xfs_icdinode *dic = &ip->i_d;
687 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
692 * is allowed, otherwise it has to be an exact match. If a CI match is found,
693 * ci_name->name will point to a the actual name (caller must free) or
694 * will be set to NULL if an exact match is found.
699 struct xfs_name *name,
701 struct xfs_name *ci_name)
706 trace_xfs_lookup(dp, name);
708 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
711 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
715 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
723 kmem_free(ci_name->name);
730 * Allocate an inode on disk and return a copy of its in-core version.
731 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
732 * appropriately within the inode. The uid and gid for the inode are
733 * set according to the contents of the given cred structure.
735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
736 * has a free inode available, call xfs_iget() to obtain the in-core
737 * version of the allocated inode. Finally, fill in the inode and
738 * log its initial contents. In this case, ialloc_context would be
741 * If xfs_dialloc() does not have an available inode, it will replenish
742 * its supply by doing an allocation. Since we can only do one
743 * allocation within a transaction without deadlocks, we must commit
744 * the current transaction before returning the inode itself.
745 * In this case, therefore, we will set ialloc_context and return.
746 * The caller should then commit the current transaction, start a new
747 * transaction, and call xfs_ialloc() again to actually get the inode.
749 * To ensure that some other process does not grab the inode that
750 * was allocated during the first call to xfs_ialloc(), this routine
751 * also returns the [locked] bp pointing to the head of the freelist
752 * as ialloc_context. The caller should hold this buffer across
753 * the commit and pass it back into this routine on the second call.
755 * If we are allocating quota inodes, we do not have a parent inode
756 * to attach to or associate with (i.e. pip == NULL) because they
757 * are not linked into the directory structure - they are attached
758 * directly to the superblock - and so have no parent.
768 xfs_buf_t **ialloc_context,
771 struct xfs_mount *mp = tp->t_mountp;
780 * Call the space management code to pick
781 * the on-disk inode to be allocated.
783 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
784 ialloc_context, &ino);
787 if (*ialloc_context || ino == NULLFSINO) {
791 ASSERT(*ialloc_context == NULL);
794 * Protect against obviously corrupt allocation btree records. Later
795 * xfs_iget checks will catch re-allocation of other active in-memory
796 * and on-disk inodes. If we don't catch reallocating the parent inode
797 * here we will deadlock in xfs_iget() so we have to do these checks
800 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
801 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
802 return -EFSCORRUPTED;
806 * Get the in-core inode with the lock held exclusively.
807 * This is because we're setting fields here we need
808 * to prevent others from looking at until we're done.
810 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
811 XFS_ILOCK_EXCL, &ip);
818 * We always convert v1 inodes to v2 now - we only support filesystems
819 * with >= v2 inode capability, so there is no reason for ever leaving
820 * an inode in v1 format.
822 if (ip->i_d.di_version == 1)
823 ip->i_d.di_version = 2;
825 inode->i_mode = mode;
826 set_nlink(inode, nlink);
827 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
828 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
829 inode->i_rdev = rdev;
830 xfs_set_projid(ip, prid);
832 if (pip && XFS_INHERIT_GID(pip)) {
833 ip->i_d.di_gid = pip->i_d.di_gid;
834 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
835 inode->i_mode |= S_ISGID;
839 * If the group ID of the new file does not match the effective group
840 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
841 * (and only if the irix_sgid_inherit compatibility variable is set).
843 if ((irix_sgid_inherit) &&
844 (inode->i_mode & S_ISGID) &&
845 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
846 inode->i_mode &= ~S_ISGID;
849 ip->i_d.di_nextents = 0;
850 ASSERT(ip->i_d.di_nblocks == 0);
852 tv = current_time(inode);
857 ip->i_d.di_extsize = 0;
858 ip->i_d.di_dmevmask = 0;
859 ip->i_d.di_dmstate = 0;
860 ip->i_d.di_flags = 0;
862 if (ip->i_d.di_version == 3) {
863 inode_set_iversion(inode, 1);
864 ip->i_d.di_flags2 = 0;
865 ip->i_d.di_cowextsize = 0;
866 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
867 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
871 flags = XFS_ILOG_CORE;
872 switch (mode & S_IFMT) {
877 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
878 ip->i_df.if_flags = 0;
879 flags |= XFS_ILOG_DEV;
883 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
887 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
888 di_flags |= XFS_DIFLAG_RTINHERIT;
889 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
890 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
891 ip->i_d.di_extsize = pip->i_d.di_extsize;
893 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
894 di_flags |= XFS_DIFLAG_PROJINHERIT;
895 } else if (S_ISREG(mode)) {
896 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
897 di_flags |= XFS_DIFLAG_REALTIME;
898 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
899 di_flags |= XFS_DIFLAG_EXTSIZE;
900 ip->i_d.di_extsize = pip->i_d.di_extsize;
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
905 di_flags |= XFS_DIFLAG_NOATIME;
906 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
908 di_flags |= XFS_DIFLAG_NODUMP;
909 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
911 di_flags |= XFS_DIFLAG_SYNC;
912 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
913 xfs_inherit_nosymlinks)
914 di_flags |= XFS_DIFLAG_NOSYMLINKS;
915 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
916 xfs_inherit_nodefrag)
917 di_flags |= XFS_DIFLAG_NODEFRAG;
918 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
919 di_flags |= XFS_DIFLAG_FILESTREAM;
921 ip->i_d.di_flags |= di_flags;
924 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
925 pip->i_d.di_version == 3 &&
926 ip->i_d.di_version == 3) {
927 uint64_t di_flags2 = 0;
929 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
930 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
931 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
933 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
934 di_flags2 |= XFS_DIFLAG2_DAX;
936 ip->i_d.di_flags2 |= di_flags2;
940 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
941 ip->i_df.if_flags = XFS_IFEXTENTS;
942 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
943 ip->i_df.if_u1.if_root = NULL;
949 * Attribute fork settings for new inode.
951 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
952 ip->i_d.di_anextents = 0;
955 * Log the new values stuffed into the inode.
957 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
958 xfs_trans_log_inode(tp, ip, flags);
960 /* now that we have an i_mode we can setup the inode structure */
968 * Allocates a new inode from disk and return a pointer to the
969 * incore copy. This routine will internally commit the current
970 * transaction and allocate a new one if the Space Manager needed
971 * to do an allocation to replenish the inode free-list.
973 * This routine is designed to be called from xfs_create and
979 xfs_trans_t **tpp, /* input: current transaction;
980 output: may be a new transaction. */
981 xfs_inode_t *dp, /* directory within whose allocate
986 prid_t prid, /* project id */
987 xfs_inode_t **ipp) /* pointer to inode; it will be
992 xfs_buf_t *ialloc_context = NULL;
998 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1001 * xfs_ialloc will return a pointer to an incore inode if
1002 * the Space Manager has an available inode on the free
1003 * list. Otherwise, it will do an allocation and replenish
1004 * the freelist. Since we can only do one allocation per
1005 * transaction without deadlocks, we will need to commit the
1006 * current transaction and start a new one. We will then
1007 * need to call xfs_ialloc again to get the inode.
1009 * If xfs_ialloc did an allocation to replenish the freelist,
1010 * it returns the bp containing the head of the freelist as
1011 * ialloc_context. We will hold a lock on it across the
1012 * transaction commit so that no other process can steal
1013 * the inode(s) that we've just allocated.
1015 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1019 * Return an error if we were unable to allocate a new inode.
1020 * This should only happen if we run out of space on disk or
1021 * encounter a disk error.
1027 if (!ialloc_context && !ip) {
1033 * If the AGI buffer is non-NULL, then we were unable to get an
1034 * inode in one operation. We need to commit the current
1035 * transaction and call xfs_ialloc() again. It is guaranteed
1036 * to succeed the second time.
1038 if (ialloc_context) {
1040 * Normally, xfs_trans_commit releases all the locks.
1041 * We call bhold to hang on to the ialloc_context across
1042 * the commit. Holding this buffer prevents any other
1043 * processes from doing any allocations in this
1046 xfs_trans_bhold(tp, ialloc_context);
1049 * We want the quota changes to be associated with the next
1050 * transaction, NOT this one. So, detach the dqinfo from this
1051 * and attach it to the next transaction.
1056 dqinfo = (void *)tp->t_dqinfo;
1057 tp->t_dqinfo = NULL;
1058 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1059 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1062 code = xfs_trans_roll(&tp);
1065 * Re-attach the quota info that we detached from prev trx.
1068 tp->t_dqinfo = dqinfo;
1069 tp->t_flags |= tflags;
1073 xfs_buf_relse(ialloc_context);
1078 xfs_trans_bjoin(tp, ialloc_context);
1081 * Call ialloc again. Since we've locked out all
1082 * other allocations in this allocation group,
1083 * this call should always succeed.
1085 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1086 &ialloc_context, &ip);
1089 * If we get an error at this point, return to the caller
1090 * so that the current transaction can be aborted.
1097 ASSERT(!ialloc_context && ip);
1108 * Decrement the link count on an inode & log the change. If this causes the
1109 * link count to go to zero, move the inode to AGI unlinked list so that it can
1110 * be freed when the last active reference goes away via xfs_inactive().
1112 static int /* error */
1117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1119 drop_nlink(VFS_I(ip));
1120 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1122 if (VFS_I(ip)->i_nlink)
1125 return xfs_iunlink(tp, ip);
1129 * Increment the link count on an inode & log the change.
1136 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1138 ASSERT(ip->i_d.di_version > 1);
1139 inc_nlink(VFS_I(ip));
1140 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1147 struct xfs_name *name,
1152 int is_dir = S_ISDIR(mode);
1153 struct xfs_mount *mp = dp->i_mount;
1154 struct xfs_inode *ip = NULL;
1155 struct xfs_trans *tp = NULL;
1157 struct xfs_defer_ops dfops;
1158 xfs_fsblock_t first_block;
1159 bool unlock_dp_on_error = false;
1161 struct xfs_dquot *udqp = NULL;
1162 struct xfs_dquot *gdqp = NULL;
1163 struct xfs_dquot *pdqp = NULL;
1164 struct xfs_trans_res *tres;
1167 trace_xfs_create(dp, name);
1169 if (XFS_FORCED_SHUTDOWN(mp))
1172 prid = xfs_get_initial_prid(dp);
1175 * Make sure that we have allocated dquot(s) on disk.
1177 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1178 xfs_kgid_to_gid(current_fsgid()), prid,
1179 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1180 &udqp, &gdqp, &pdqp);
1185 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1186 tres = &M_RES(mp)->tr_mkdir;
1188 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1189 tres = &M_RES(mp)->tr_create;
1193 * Initially assume that the file does not exist and
1194 * reserve the resources for that case. If that is not
1195 * the case we'll drop the one we have and get a more
1196 * appropriate transaction later.
1198 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1199 if (error == -ENOSPC) {
1200 /* flush outstanding delalloc blocks and retry */
1201 xfs_flush_inodes(mp);
1202 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1205 goto out_release_inode;
1207 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1208 unlock_dp_on_error = true;
1210 xfs_defer_init(&dfops, &first_block);
1211 tp->t_agfl_dfops = &dfops;
1214 * Reserve disk quota and the inode.
1216 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1217 pdqp, resblks, 1, 0);
1219 goto out_trans_cancel;
1222 * A newly created regular or special file just has one directory
1223 * entry pointing to them, but a directory also the "." entry
1224 * pointing to itself.
1226 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1228 goto out_trans_cancel;
1231 * Now we join the directory inode to the transaction. We do not do it
1232 * earlier because xfs_dir_ialloc might commit the previous transaction
1233 * (and release all the locks). An error from here on will result in
1234 * the transaction cancel unlocking dp so don't do it explicitly in the
1237 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1238 unlock_dp_on_error = false;
1240 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1241 &first_block, &dfops, resblks ?
1242 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1244 ASSERT(error != -ENOSPC);
1245 goto out_trans_cancel;
1247 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1248 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1251 error = xfs_dir_init(tp, ip, dp);
1253 goto out_bmap_cancel;
1255 error = xfs_bumplink(tp, dp);
1257 goto out_bmap_cancel;
1261 * If this is a synchronous mount, make sure that the
1262 * create transaction goes to disk before returning to
1265 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1266 xfs_trans_set_sync(tp);
1269 * Attach the dquot(s) to the inodes and modify them incore.
1270 * These ids of the inode couldn't have changed since the new
1271 * inode has been locked ever since it was created.
1273 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1275 error = xfs_defer_finish(&tp, &dfops);
1277 goto out_bmap_cancel;
1279 error = xfs_trans_commit(tp);
1281 goto out_release_inode;
1283 xfs_qm_dqrele(udqp);
1284 xfs_qm_dqrele(gdqp);
1285 xfs_qm_dqrele(pdqp);
1291 xfs_defer_cancel(&dfops);
1293 xfs_trans_cancel(tp);
1296 * Wait until after the current transaction is aborted to finish the
1297 * setup of the inode and release the inode. This prevents recursive
1298 * transactions and deadlocks from xfs_inactive.
1301 xfs_finish_inode_setup(ip);
1305 xfs_qm_dqrele(udqp);
1306 xfs_qm_dqrele(gdqp);
1307 xfs_qm_dqrele(pdqp);
1309 if (unlock_dp_on_error)
1310 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1316 struct xfs_inode *dp,
1318 struct xfs_inode **ipp)
1320 struct xfs_mount *mp = dp->i_mount;
1321 struct xfs_inode *ip = NULL;
1322 struct xfs_trans *tp = NULL;
1325 struct xfs_dquot *udqp = NULL;
1326 struct xfs_dquot *gdqp = NULL;
1327 struct xfs_dquot *pdqp = NULL;
1328 struct xfs_trans_res *tres;
1331 if (XFS_FORCED_SHUTDOWN(mp))
1334 prid = xfs_get_initial_prid(dp);
1337 * Make sure that we have allocated dquot(s) on disk.
1339 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1340 xfs_kgid_to_gid(current_fsgid()), prid,
1341 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1342 &udqp, &gdqp, &pdqp);
1346 resblks = XFS_IALLOC_SPACE_RES(mp);
1347 tres = &M_RES(mp)->tr_create_tmpfile;
1349 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1351 goto out_release_inode;
1353 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1354 pdqp, resblks, 1, 0);
1356 goto out_trans_cancel;
1358 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
1360 goto out_trans_cancel;
1362 if (mp->m_flags & XFS_MOUNT_WSYNC)
1363 xfs_trans_set_sync(tp);
1366 * Attach the dquot(s) to the inodes and modify them incore.
1367 * These ids of the inode couldn't have changed since the new
1368 * inode has been locked ever since it was created.
1370 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1372 error = xfs_iunlink(tp, ip);
1374 goto out_trans_cancel;
1376 error = xfs_trans_commit(tp);
1378 goto out_release_inode;
1380 xfs_qm_dqrele(udqp);
1381 xfs_qm_dqrele(gdqp);
1382 xfs_qm_dqrele(pdqp);
1388 xfs_trans_cancel(tp);
1391 * Wait until after the current transaction is aborted to finish the
1392 * setup of the inode and release the inode. This prevents recursive
1393 * transactions and deadlocks from xfs_inactive.
1396 xfs_finish_inode_setup(ip);
1400 xfs_qm_dqrele(udqp);
1401 xfs_qm_dqrele(gdqp);
1402 xfs_qm_dqrele(pdqp);
1411 struct xfs_name *target_name)
1413 xfs_mount_t *mp = tdp->i_mount;
1416 struct xfs_defer_ops dfops;
1417 xfs_fsblock_t first_block;
1420 trace_xfs_link(tdp, target_name);
1422 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1424 if (XFS_FORCED_SHUTDOWN(mp))
1427 error = xfs_qm_dqattach(sip, 0);
1431 error = xfs_qm_dqattach(tdp, 0);
1435 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1436 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1437 if (error == -ENOSPC) {
1439 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1444 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1446 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1447 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1450 * If we are using project inheritance, we only allow hard link
1451 * creation in our tree when the project IDs are the same; else
1452 * the tree quota mechanism could be circumvented.
1454 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1455 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1461 error = xfs_dir_canenter(tp, tdp, target_name);
1466 xfs_defer_init(&dfops, &first_block);
1467 tp->t_agfl_dfops = &dfops;
1470 * Handle initial link state of O_TMPFILE inode
1472 if (VFS_I(sip)->i_nlink == 0) {
1473 error = xfs_iunlink_remove(tp, sip);
1478 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1479 &first_block, &dfops, resblks);
1482 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1483 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1485 error = xfs_bumplink(tp, sip);
1490 * If this is a synchronous mount, make sure that the
1491 * link transaction goes to disk before returning to
1494 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1495 xfs_trans_set_sync(tp);
1497 error = xfs_defer_finish(&tp, &dfops);
1499 xfs_defer_cancel(&dfops);
1503 return xfs_trans_commit(tp);
1506 xfs_trans_cancel(tp);
1511 /* Clear the reflink flag and the cowblocks tag if possible. */
1513 xfs_itruncate_clear_reflink_flags(
1514 struct xfs_inode *ip)
1516 struct xfs_ifork *dfork;
1517 struct xfs_ifork *cfork;
1519 if (!xfs_is_reflink_inode(ip))
1521 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1522 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1523 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1524 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1525 if (cfork->if_bytes == 0)
1526 xfs_inode_clear_cowblocks_tag(ip);
1530 * Free up the underlying blocks past new_size. The new size must be smaller
1531 * than the current size. This routine can be used both for the attribute and
1532 * data fork, and does not modify the inode size, which is left to the caller.
1534 * The transaction passed to this routine must have made a permanent log
1535 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1536 * given transaction and start new ones, so make sure everything involved in
1537 * the transaction is tidy before calling here. Some transaction will be
1538 * returned to the caller to be committed. The incoming transaction must
1539 * already include the inode, and both inode locks must be held exclusively.
1540 * The inode must also be "held" within the transaction. On return the inode
1541 * will be "held" within the returned transaction. This routine does NOT
1542 * require any disk space to be reserved for it within the transaction.
1544 * If we get an error, we must return with the inode locked and linked into the
1545 * current transaction. This keeps things simple for the higher level code,
1546 * because it always knows that the inode is locked and held in the transaction
1547 * that returns to it whether errors occur or not. We don't mark the inode
1548 * dirty on error so that transactions can be easily aborted if possible.
1551 xfs_itruncate_extents(
1552 struct xfs_trans **tpp,
1553 struct xfs_inode *ip,
1555 xfs_fsize_t new_size)
1557 struct xfs_mount *mp = ip->i_mount;
1558 struct xfs_trans *tp = *tpp;
1559 struct xfs_defer_ops dfops;
1560 xfs_fsblock_t first_block;
1561 xfs_fileoff_t first_unmap_block;
1562 xfs_fileoff_t last_block;
1563 xfs_filblks_t unmap_len;
1567 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1568 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1569 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1570 ASSERT(new_size <= XFS_ISIZE(ip));
1571 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1572 ASSERT(ip->i_itemp != NULL);
1573 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1574 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1576 trace_xfs_itruncate_extents_start(ip, new_size);
1579 * Since it is possible for space to become allocated beyond
1580 * the end of the file (in a crash where the space is allocated
1581 * but the inode size is not yet updated), simply remove any
1582 * blocks which show up between the new EOF and the maximum
1583 * possible file size. If the first block to be removed is
1584 * beyond the maximum file size (ie it is the same as last_block),
1585 * then there is nothing to do.
1587 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1588 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1589 if (first_unmap_block == last_block)
1592 ASSERT(first_unmap_block < last_block);
1593 unmap_len = last_block - first_unmap_block + 1;
1595 xfs_defer_init(&dfops, &first_block);
1596 error = xfs_bunmapi(tp, ip,
1597 first_unmap_block, unmap_len,
1598 xfs_bmapi_aflag(whichfork),
1599 XFS_ITRUNC_MAX_EXTENTS,
1600 &first_block, &dfops,
1603 goto out_bmap_cancel;
1606 * Duplicate the transaction that has the permanent
1607 * reservation and commit the old transaction.
1609 xfs_defer_ijoin(&dfops, ip);
1610 error = xfs_defer_finish(&tp, &dfops);
1612 goto out_bmap_cancel;
1614 error = xfs_trans_roll_inode(&tp, ip);
1619 if (whichfork == XFS_DATA_FORK) {
1620 /* Remove all pending CoW reservations. */
1621 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1622 first_unmap_block, last_block, true);
1626 xfs_itruncate_clear_reflink_flags(ip);
1630 * Always re-log the inode so that our permanent transaction can keep
1631 * on rolling it forward in the log.
1633 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1635 trace_xfs_itruncate_extents_end(ip, new_size);
1642 * If the bunmapi call encounters an error, return to the caller where
1643 * the transaction can be properly aborted. We just need to make sure
1644 * we're not holding any resources that we were not when we came in.
1646 xfs_defer_cancel(&dfops);
1654 xfs_mount_t *mp = ip->i_mount;
1657 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1660 /* If this is a read-only mount, don't do this (would generate I/O) */
1661 if (mp->m_flags & XFS_MOUNT_RDONLY)
1664 if (!XFS_FORCED_SHUTDOWN(mp)) {
1668 * If we previously truncated this file and removed old data
1669 * in the process, we want to initiate "early" writeout on
1670 * the last close. This is an attempt to combat the notorious
1671 * NULL files problem which is particularly noticeable from a
1672 * truncate down, buffered (re-)write (delalloc), followed by
1673 * a crash. What we are effectively doing here is
1674 * significantly reducing the time window where we'd otherwise
1675 * be exposed to that problem.
1677 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1679 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1680 if (ip->i_delayed_blks > 0) {
1681 error = filemap_flush(VFS_I(ip)->i_mapping);
1688 if (VFS_I(ip)->i_nlink == 0)
1691 if (xfs_can_free_eofblocks(ip, false)) {
1694 * Check if the inode is being opened, written and closed
1695 * frequently and we have delayed allocation blocks outstanding
1696 * (e.g. streaming writes from the NFS server), truncating the
1697 * blocks past EOF will cause fragmentation to occur.
1699 * In this case don't do the truncation, but we have to be
1700 * careful how we detect this case. Blocks beyond EOF show up as
1701 * i_delayed_blks even when the inode is clean, so we need to
1702 * truncate them away first before checking for a dirty release.
1703 * Hence on the first dirty close we will still remove the
1704 * speculative allocation, but after that we will leave it in
1707 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1710 * If we can't get the iolock just skip truncating the blocks
1711 * past EOF because we could deadlock with the mmap_sem
1712 * otherwise. We'll get another chance to drop them once the
1713 * last reference to the inode is dropped, so we'll never leak
1714 * blocks permanently.
1716 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1717 error = xfs_free_eofblocks(ip);
1718 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1723 /* delalloc blocks after truncation means it really is dirty */
1724 if (ip->i_delayed_blks)
1725 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1731 * xfs_inactive_truncate
1733 * Called to perform a truncate when an inode becomes unlinked.
1736 xfs_inactive_truncate(
1737 struct xfs_inode *ip)
1739 struct xfs_mount *mp = ip->i_mount;
1740 struct xfs_trans *tp;
1743 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1745 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1749 xfs_ilock(ip, XFS_ILOCK_EXCL);
1750 xfs_trans_ijoin(tp, ip, 0);
1753 * Log the inode size first to prevent stale data exposure in the event
1754 * of a system crash before the truncate completes. See the related
1755 * comment in xfs_vn_setattr_size() for details.
1757 ip->i_d.di_size = 0;
1758 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1760 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1762 goto error_trans_cancel;
1764 ASSERT(ip->i_d.di_nextents == 0);
1766 error = xfs_trans_commit(tp);
1770 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1774 xfs_trans_cancel(tp);
1776 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781 * xfs_inactive_ifree()
1783 * Perform the inode free when an inode is unlinked.
1787 struct xfs_inode *ip)
1789 struct xfs_defer_ops dfops;
1790 xfs_fsblock_t first_block;
1791 struct xfs_mount *mp = ip->i_mount;
1792 struct xfs_trans *tp;
1796 * We try to use a per-AG reservation for any block needed by the finobt
1797 * tree, but as the finobt feature predates the per-AG reservation
1798 * support a degraded file system might not have enough space for the
1799 * reservation at mount time. In that case try to dip into the reserved
1802 * Send a warning if the reservation does happen to fail, as the inode
1803 * now remains allocated and sits on the unlinked list until the fs is
1806 if (unlikely(mp->m_inotbt_nores)) {
1807 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1808 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1811 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1814 if (error == -ENOSPC) {
1815 xfs_warn_ratelimited(mp,
1816 "Failed to remove inode(s) from unlinked list. "
1817 "Please free space, unmount and run xfs_repair.");
1819 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1824 xfs_ilock(ip, XFS_ILOCK_EXCL);
1825 xfs_trans_ijoin(tp, ip, 0);
1827 xfs_defer_init(&dfops, &first_block);
1828 tp->t_agfl_dfops = &dfops;
1829 error = xfs_ifree(tp, ip, &dfops);
1832 * If we fail to free the inode, shut down. The cancel
1833 * might do that, we need to make sure. Otherwise the
1834 * inode might be lost for a long time or forever.
1836 if (!XFS_FORCED_SHUTDOWN(mp)) {
1837 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1839 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1841 xfs_trans_cancel(tp);
1842 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1847 * Credit the quota account(s). The inode is gone.
1849 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1852 * Just ignore errors at this point. There is nothing we can do except
1853 * to try to keep going. Make sure it's not a silent error.
1855 error = xfs_defer_finish(&tp, &dfops);
1857 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1859 xfs_defer_cancel(&dfops);
1861 error = xfs_trans_commit(tp);
1863 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1866 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1873 * This is called when the vnode reference count for the vnode
1874 * goes to zero. If the file has been unlinked, then it must
1875 * now be truncated. Also, we clear all of the read-ahead state
1876 * kept for the inode here since the file is now closed.
1882 struct xfs_mount *mp;
1883 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1888 * If the inode is already free, then there can be nothing
1891 if (VFS_I(ip)->i_mode == 0) {
1892 ASSERT(ip->i_df.if_real_bytes == 0);
1893 ASSERT(ip->i_df.if_broot_bytes == 0);
1898 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1900 /* If this is a read-only mount, don't do this (would generate I/O) */
1901 if (mp->m_flags & XFS_MOUNT_RDONLY)
1904 /* Try to clean out the cow blocks if there are any. */
1905 if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1906 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1908 if (VFS_I(ip)->i_nlink != 0) {
1910 * force is true because we are evicting an inode from the
1911 * cache. Post-eof blocks must be freed, lest we end up with
1912 * broken free space accounting.
1914 * Note: don't bother with iolock here since lockdep complains
1915 * about acquiring it in reclaim context. We have the only
1916 * reference to the inode at this point anyways.
1918 if (xfs_can_free_eofblocks(ip, true))
1919 xfs_free_eofblocks(ip);
1924 if (S_ISREG(VFS_I(ip)->i_mode) &&
1925 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1926 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1929 error = xfs_qm_dqattach(ip, 0);
1933 if (S_ISLNK(VFS_I(ip)->i_mode))
1934 error = xfs_inactive_symlink(ip);
1936 error = xfs_inactive_truncate(ip);
1941 * If there are attributes associated with the file then blow them away
1942 * now. The code calls a routine that recursively deconstructs the
1943 * attribute fork. If also blows away the in-core attribute fork.
1945 if (XFS_IFORK_Q(ip)) {
1946 error = xfs_attr_inactive(ip);
1952 ASSERT(ip->i_d.di_anextents == 0);
1953 ASSERT(ip->i_d.di_forkoff == 0);
1958 error = xfs_inactive_ifree(ip);
1963 * Release the dquots held by inode, if any.
1965 xfs_qm_dqdetach(ip);
1969 * This is called when the inode's link count goes to 0 or we are creating a
1970 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1971 * set to true as the link count is dropped to zero by the VFS after we've
1972 * created the file successfully, so we have to add it to the unlinked list
1973 * while the link count is non-zero.
1975 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1976 * list when the inode is freed.
1980 struct xfs_trans *tp,
1981 struct xfs_inode *ip)
1983 xfs_mount_t *mp = tp->t_mountp;
1993 ASSERT(VFS_I(ip)->i_mode != 0);
1996 * Get the agi buffer first. It ensures lock ordering
1999 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
2002 agi = XFS_BUF_TO_AGI(agibp);
2005 * Get the index into the agi hash table for the
2006 * list this inode will go on.
2008 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2010 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2011 ASSERT(agi->agi_unlinked[bucket_index]);
2012 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2014 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2016 * There is already another inode in the bucket we need
2017 * to add ourselves to. Add us at the front of the list.
2018 * Here we put the head pointer into our next pointer,
2019 * and then we fall through to point the head at us.
2021 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2026 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2027 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2028 offset = ip->i_imap.im_boffset +
2029 offsetof(xfs_dinode_t, di_next_unlinked);
2031 /* need to recalc the inode CRC if appropriate */
2032 xfs_dinode_calc_crc(mp, dip);
2034 xfs_trans_inode_buf(tp, ibp);
2035 xfs_trans_log_buf(tp, ibp, offset,
2036 (offset + sizeof(xfs_agino_t) - 1));
2037 xfs_inobp_check(mp, ibp);
2041 * Point the bucket head pointer at the inode being inserted.
2044 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2045 offset = offsetof(xfs_agi_t, agi_unlinked) +
2046 (sizeof(xfs_agino_t) * bucket_index);
2047 xfs_trans_log_buf(tp, agibp, offset,
2048 (offset + sizeof(xfs_agino_t) - 1));
2053 * Pull the on-disk inode from the AGI unlinked list.
2066 xfs_agnumber_t agno;
2068 xfs_agino_t next_agino;
2069 xfs_buf_t *last_ibp;
2070 xfs_dinode_t *last_dip = NULL;
2072 int offset, last_offset = 0;
2076 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2079 * Get the agi buffer first. It ensures lock ordering
2082 error = xfs_read_agi(mp, tp, agno, &agibp);
2086 agi = XFS_BUF_TO_AGI(agibp);
2089 * Get the index into the agi hash table for the
2090 * list this inode will go on.
2092 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2094 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2095 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2096 ASSERT(agi->agi_unlinked[bucket_index]);
2098 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2100 * We're at the head of the list. Get the inode's on-disk
2101 * buffer to see if there is anyone after us on the list.
2102 * Only modify our next pointer if it is not already NULLAGINO.
2103 * This saves us the overhead of dealing with the buffer when
2104 * there is no need to change it.
2106 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2109 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2113 next_agino = be32_to_cpu(dip->di_next_unlinked);
2114 ASSERT(next_agino != 0);
2115 if (next_agino != NULLAGINO) {
2116 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2117 offset = ip->i_imap.im_boffset +
2118 offsetof(xfs_dinode_t, di_next_unlinked);
2120 /* need to recalc the inode CRC if appropriate */
2121 xfs_dinode_calc_crc(mp, dip);
2123 xfs_trans_inode_buf(tp, ibp);
2124 xfs_trans_log_buf(tp, ibp, offset,
2125 (offset + sizeof(xfs_agino_t) - 1));
2126 xfs_inobp_check(mp, ibp);
2128 xfs_trans_brelse(tp, ibp);
2131 * Point the bucket head pointer at the next inode.
2133 ASSERT(next_agino != 0);
2134 ASSERT(next_agino != agino);
2135 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2136 offset = offsetof(xfs_agi_t, agi_unlinked) +
2137 (sizeof(xfs_agino_t) * bucket_index);
2138 xfs_trans_log_buf(tp, agibp, offset,
2139 (offset + sizeof(xfs_agino_t) - 1));
2142 * We need to search the list for the inode being freed.
2144 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2146 while (next_agino != agino) {
2147 struct xfs_imap imap;
2150 xfs_trans_brelse(tp, last_ibp);
2153 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2155 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2158 "%s: xfs_imap returned error %d.",
2163 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2167 "%s: xfs_imap_to_bp returned error %d.",
2172 last_offset = imap.im_boffset;
2173 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2174 ASSERT(next_agino != NULLAGINO);
2175 ASSERT(next_agino != 0);
2179 * Now last_ibp points to the buffer previous to us on the
2180 * unlinked list. Pull us from the list.
2182 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2185 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2189 next_agino = be32_to_cpu(dip->di_next_unlinked);
2190 ASSERT(next_agino != 0);
2191 ASSERT(next_agino != agino);
2192 if (next_agino != NULLAGINO) {
2193 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2194 offset = ip->i_imap.im_boffset +
2195 offsetof(xfs_dinode_t, di_next_unlinked);
2197 /* need to recalc the inode CRC if appropriate */
2198 xfs_dinode_calc_crc(mp, dip);
2200 xfs_trans_inode_buf(tp, ibp);
2201 xfs_trans_log_buf(tp, ibp, offset,
2202 (offset + sizeof(xfs_agino_t) - 1));
2203 xfs_inobp_check(mp, ibp);
2205 xfs_trans_brelse(tp, ibp);
2208 * Point the previous inode on the list to the next inode.
2210 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2211 ASSERT(next_agino != 0);
2212 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2214 /* need to recalc the inode CRC if appropriate */
2215 xfs_dinode_calc_crc(mp, last_dip);
2217 xfs_trans_inode_buf(tp, last_ibp);
2218 xfs_trans_log_buf(tp, last_ibp, offset,
2219 (offset + sizeof(xfs_agino_t) - 1));
2220 xfs_inobp_check(mp, last_ibp);
2226 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2227 * inodes that are in memory - they all must be marked stale and attached to
2228 * the cluster buffer.
2232 xfs_inode_t *free_ip,
2234 struct xfs_icluster *xic)
2236 xfs_mount_t *mp = free_ip->i_mount;
2237 int blks_per_cluster;
2238 int inodes_per_cluster;
2245 xfs_inode_log_item_t *iip;
2246 struct xfs_log_item *lip;
2247 struct xfs_perag *pag;
2250 inum = xic->first_ino;
2251 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2252 blks_per_cluster = xfs_icluster_size_fsb(mp);
2253 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2254 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2256 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2258 * The allocation bitmap tells us which inodes of the chunk were
2259 * physically allocated. Skip the cluster if an inode falls into
2262 ioffset = inum - xic->first_ino;
2263 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2264 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2268 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2269 XFS_INO_TO_AGBNO(mp, inum));
2272 * We obtain and lock the backing buffer first in the process
2273 * here, as we have to ensure that any dirty inode that we
2274 * can't get the flush lock on is attached to the buffer.
2275 * If we scan the in-memory inodes first, then buffer IO can
2276 * complete before we get a lock on it, and hence we may fail
2277 * to mark all the active inodes on the buffer stale.
2279 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2280 mp->m_bsize * blks_per_cluster,
2287 * This buffer may not have been correctly initialised as we
2288 * didn't read it from disk. That's not important because we are
2289 * only using to mark the buffer as stale in the log, and to
2290 * attach stale cached inodes on it. That means it will never be
2291 * dispatched for IO. If it is, we want to know about it, and we
2292 * want it to fail. We can acheive this by adding a write
2293 * verifier to the buffer.
2295 bp->b_ops = &xfs_inode_buf_ops;
2298 * Walk the inodes already attached to the buffer and mark them
2299 * stale. These will all have the flush locks held, so an
2300 * in-memory inode walk can't lock them. By marking them all
2301 * stale first, we will not attempt to lock them in the loop
2302 * below as the XFS_ISTALE flag will be set.
2304 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2305 if (lip->li_type == XFS_LI_INODE) {
2306 iip = (xfs_inode_log_item_t *)lip;
2307 ASSERT(iip->ili_logged == 1);
2308 lip->li_cb = xfs_istale_done;
2309 xfs_trans_ail_copy_lsn(mp->m_ail,
2310 &iip->ili_flush_lsn,
2311 &iip->ili_item.li_lsn);
2312 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2318 * For each inode in memory attempt to add it to the inode
2319 * buffer and set it up for being staled on buffer IO
2320 * completion. This is safe as we've locked out tail pushing
2321 * and flushing by locking the buffer.
2323 * We have already marked every inode that was part of a
2324 * transaction stale above, which means there is no point in
2325 * even trying to lock them.
2327 for (i = 0; i < inodes_per_cluster; i++) {
2330 ip = radix_tree_lookup(&pag->pag_ici_root,
2331 XFS_INO_TO_AGINO(mp, (inum + i)));
2333 /* Inode not in memory, nothing to do */
2340 * because this is an RCU protected lookup, we could
2341 * find a recently freed or even reallocated inode
2342 * during the lookup. We need to check under the
2343 * i_flags_lock for a valid inode here. Skip it if it
2344 * is not valid, the wrong inode or stale.
2346 spin_lock(&ip->i_flags_lock);
2347 if (ip->i_ino != inum + i ||
2348 __xfs_iflags_test(ip, XFS_ISTALE)) {
2349 spin_unlock(&ip->i_flags_lock);
2353 spin_unlock(&ip->i_flags_lock);
2356 * Don't try to lock/unlock the current inode, but we
2357 * _cannot_ skip the other inodes that we did not find
2358 * in the list attached to the buffer and are not
2359 * already marked stale. If we can't lock it, back off
2362 if (ip != free_ip) {
2363 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2370 * Check the inode number again in case we're
2371 * racing with freeing in xfs_reclaim_inode().
2372 * See the comments in that function for more
2373 * information as to why the initial check is
2376 if (ip->i_ino != inum + i) {
2377 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2385 xfs_iflags_set(ip, XFS_ISTALE);
2388 * we don't need to attach clean inodes or those only
2389 * with unlogged changes (which we throw away, anyway).
2392 if (!iip || xfs_inode_clean(ip)) {
2393 ASSERT(ip != free_ip);
2395 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2399 iip->ili_last_fields = iip->ili_fields;
2400 iip->ili_fields = 0;
2401 iip->ili_fsync_fields = 0;
2402 iip->ili_logged = 1;
2403 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2404 &iip->ili_item.li_lsn);
2406 xfs_buf_attach_iodone(bp, xfs_istale_done,
2410 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2413 xfs_trans_stale_inode_buf(tp, bp);
2414 xfs_trans_binval(tp, bp);
2422 * Free any local-format buffers sitting around before we reset to
2426 xfs_ifree_local_data(
2427 struct xfs_inode *ip,
2430 struct xfs_ifork *ifp;
2432 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2435 ifp = XFS_IFORK_PTR(ip, whichfork);
2436 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2440 * This is called to return an inode to the inode free list.
2441 * The inode should already be truncated to 0 length and have
2442 * no pages associated with it. This routine also assumes that
2443 * the inode is already a part of the transaction.
2445 * The on-disk copy of the inode will have been added to the list
2446 * of unlinked inodes in the AGI. We need to remove the inode from
2447 * that list atomically with respect to freeing it here.
2453 struct xfs_defer_ops *dfops)
2456 struct xfs_icluster xic = { 0 };
2458 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2459 ASSERT(VFS_I(ip)->i_nlink == 0);
2460 ASSERT(ip->i_d.di_nextents == 0);
2461 ASSERT(ip->i_d.di_anextents == 0);
2462 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2463 ASSERT(ip->i_d.di_nblocks == 0);
2466 * Pull the on-disk inode from the AGI unlinked list.
2468 error = xfs_iunlink_remove(tp, ip);
2472 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2476 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2477 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2479 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2480 ip->i_d.di_flags = 0;
2481 ip->i_d.di_flags2 = 0;
2482 ip->i_d.di_dmevmask = 0;
2483 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2484 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2485 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2487 /* Don't attempt to replay owner changes for a deleted inode */
2488 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2491 * Bump the generation count so no one will be confused
2492 * by reincarnations of this inode.
2494 VFS_I(ip)->i_generation++;
2495 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2498 error = xfs_ifree_cluster(ip, tp, &xic);
2504 * This is called to unpin an inode. The caller must have the inode locked
2505 * in at least shared mode so that the buffer cannot be subsequently pinned
2506 * once someone is waiting for it to be unpinned.
2510 struct xfs_inode *ip)
2512 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2514 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2516 /* Give the log a push to start the unpinning I/O */
2517 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2523 struct xfs_inode *ip)
2525 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2526 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2531 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2532 if (xfs_ipincount(ip))
2534 } while (xfs_ipincount(ip));
2535 finish_wait(wq, &wait.wq_entry);
2540 struct xfs_inode *ip)
2542 if (xfs_ipincount(ip))
2543 __xfs_iunpin_wait(ip);
2547 * Removing an inode from the namespace involves removing the directory entry
2548 * and dropping the link count on the inode. Removing the directory entry can
2549 * result in locking an AGF (directory blocks were freed) and removing a link
2550 * count can result in placing the inode on an unlinked list which results in
2553 * The big problem here is that we have an ordering constraint on AGF and AGI
2554 * locking - inode allocation locks the AGI, then can allocate a new extent for
2555 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2556 * removes the inode from the unlinked list, requiring that we lock the AGI
2557 * first, and then freeing the inode can result in an inode chunk being freed
2558 * and hence freeing disk space requiring that we lock an AGF.
2560 * Hence the ordering that is imposed by other parts of the code is AGI before
2561 * AGF. This means we cannot remove the directory entry before we drop the inode
2562 * reference count and put it on the unlinked list as this results in a lock
2563 * order of AGF then AGI, and this can deadlock against inode allocation and
2564 * freeing. Therefore we must drop the link counts before we remove the
2567 * This is still safe from a transactional point of view - it is not until we
2568 * get to xfs_defer_finish() that we have the possibility of multiple
2569 * transactions in this operation. Hence as long as we remove the directory
2570 * entry and drop the link count in the first transaction of the remove
2571 * operation, there are no transactional constraints on the ordering here.
2576 struct xfs_name *name,
2579 xfs_mount_t *mp = dp->i_mount;
2580 xfs_trans_t *tp = NULL;
2581 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2583 struct xfs_defer_ops dfops;
2584 xfs_fsblock_t first_block;
2587 trace_xfs_remove(dp, name);
2589 if (XFS_FORCED_SHUTDOWN(mp))
2592 error = xfs_qm_dqattach(dp, 0);
2596 error = xfs_qm_dqattach(ip, 0);
2601 * We try to get the real space reservation first,
2602 * allowing for directory btree deletion(s) implying
2603 * possible bmap insert(s). If we can't get the space
2604 * reservation then we use 0 instead, and avoid the bmap
2605 * btree insert(s) in the directory code by, if the bmap
2606 * insert tries to happen, instead trimming the LAST
2607 * block from the directory.
2609 resblks = XFS_REMOVE_SPACE_RES(mp);
2610 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2611 if (error == -ENOSPC) {
2613 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2617 ASSERT(error != -ENOSPC);
2621 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2623 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2624 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2627 * If we're removing a directory perform some additional validation.
2630 ASSERT(VFS_I(ip)->i_nlink >= 2);
2631 if (VFS_I(ip)->i_nlink != 2) {
2633 goto out_trans_cancel;
2635 if (!xfs_dir_isempty(ip)) {
2637 goto out_trans_cancel;
2640 /* Drop the link from ip's "..". */
2641 error = xfs_droplink(tp, dp);
2643 goto out_trans_cancel;
2645 /* Drop the "." link from ip to self. */
2646 error = xfs_droplink(tp, ip);
2648 goto out_trans_cancel;
2651 * When removing a non-directory we need to log the parent
2652 * inode here. For a directory this is done implicitly
2653 * by the xfs_droplink call for the ".." entry.
2655 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2657 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2659 /* Drop the link from dp to ip. */
2660 error = xfs_droplink(tp, ip);
2662 goto out_trans_cancel;
2664 xfs_defer_init(&dfops, &first_block);
2665 tp->t_agfl_dfops = &dfops;
2666 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2667 &first_block, &dfops, resblks);
2669 ASSERT(error != -ENOENT);
2670 goto out_bmap_cancel;
2674 * If this is a synchronous mount, make sure that the
2675 * remove transaction goes to disk before returning to
2678 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2679 xfs_trans_set_sync(tp);
2681 error = xfs_defer_finish(&tp, &dfops);
2683 goto out_bmap_cancel;
2685 error = xfs_trans_commit(tp);
2689 if (is_dir && xfs_inode_is_filestream(ip))
2690 xfs_filestream_deassociate(ip);
2695 xfs_defer_cancel(&dfops);
2697 xfs_trans_cancel(tp);
2703 * Enter all inodes for a rename transaction into a sorted array.
2705 #define __XFS_SORT_INODES 5
2707 xfs_sort_for_rename(
2708 struct xfs_inode *dp1, /* in: old (source) directory inode */
2709 struct xfs_inode *dp2, /* in: new (target) directory inode */
2710 struct xfs_inode *ip1, /* in: inode of old entry */
2711 struct xfs_inode *ip2, /* in: inode of new entry */
2712 struct xfs_inode *wip, /* in: whiteout inode */
2713 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2714 int *num_inodes) /* in/out: inodes in array */
2718 ASSERT(*num_inodes == __XFS_SORT_INODES);
2719 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2722 * i_tab contains a list of pointers to inodes. We initialize
2723 * the table here & we'll sort it. We will then use it to
2724 * order the acquisition of the inode locks.
2726 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2739 * Sort the elements via bubble sort. (Remember, there are at
2740 * most 5 elements to sort, so this is adequate.)
2742 for (i = 0; i < *num_inodes; i++) {
2743 for (j = 1; j < *num_inodes; j++) {
2744 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2745 struct xfs_inode *temp = i_tab[j];
2746 i_tab[j] = i_tab[j-1];
2755 struct xfs_trans *tp,
2756 struct xfs_defer_ops *dfops)
2761 * If this is a synchronous mount, make sure that the rename transaction
2762 * goes to disk before returning to the user.
2764 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2765 xfs_trans_set_sync(tp);
2767 error = xfs_defer_finish(&tp, dfops);
2769 xfs_defer_cancel(dfops);
2770 xfs_trans_cancel(tp);
2774 return xfs_trans_commit(tp);
2778 * xfs_cross_rename()
2780 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2784 struct xfs_trans *tp,
2785 struct xfs_inode *dp1,
2786 struct xfs_name *name1,
2787 struct xfs_inode *ip1,
2788 struct xfs_inode *dp2,
2789 struct xfs_name *name2,
2790 struct xfs_inode *ip2,
2791 struct xfs_defer_ops *dfops,
2792 xfs_fsblock_t *first_block,
2800 /* Swap inode number for dirent in first parent */
2801 error = xfs_dir_replace(tp, dp1, name1,
2803 first_block, dfops, spaceres);
2805 goto out_trans_abort;
2807 /* Swap inode number for dirent in second parent */
2808 error = xfs_dir_replace(tp, dp2, name2,
2810 first_block, dfops, spaceres);
2812 goto out_trans_abort;
2815 * If we're renaming one or more directories across different parents,
2816 * update the respective ".." entries (and link counts) to match the new
2820 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2822 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2823 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2824 dp1->i_ino, first_block,
2827 goto out_trans_abort;
2829 /* transfer ip2 ".." reference to dp1 */
2830 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2831 error = xfs_droplink(tp, dp2);
2833 goto out_trans_abort;
2834 error = xfs_bumplink(tp, dp1);
2836 goto out_trans_abort;
2840 * Although ip1 isn't changed here, userspace needs
2841 * to be warned about the change, so that applications
2842 * relying on it (like backup ones), will properly
2845 ip1_flags |= XFS_ICHGTIME_CHG;
2846 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2849 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2850 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2851 dp2->i_ino, first_block,
2854 goto out_trans_abort;
2856 /* transfer ip1 ".." reference to dp2 */
2857 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2858 error = xfs_droplink(tp, dp1);
2860 goto out_trans_abort;
2861 error = xfs_bumplink(tp, dp2);
2863 goto out_trans_abort;
2867 * Although ip2 isn't changed here, userspace needs
2868 * to be warned about the change, so that applications
2869 * relying on it (like backup ones), will properly
2872 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2873 ip2_flags |= XFS_ICHGTIME_CHG;
2878 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2879 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2882 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2883 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2886 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2887 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2889 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2890 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2891 return xfs_finish_rename(tp, dfops);
2894 xfs_defer_cancel(dfops);
2895 xfs_trans_cancel(tp);
2900 * xfs_rename_alloc_whiteout()
2902 * Return a referenced, unlinked, unlocked inode that that can be used as a
2903 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2904 * crash between allocating the inode and linking it into the rename transaction
2905 * recovery will free the inode and we won't leak it.
2908 xfs_rename_alloc_whiteout(
2909 struct xfs_inode *dp,
2910 struct xfs_inode **wip)
2912 struct xfs_inode *tmpfile;
2915 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2920 * Prepare the tmpfile inode as if it were created through the VFS.
2921 * Otherwise, the link increment paths will complain about nlink 0->1.
2922 * Drop the link count as done by d_tmpfile(), complete the inode setup
2923 * and flag it as linkable.
2925 drop_nlink(VFS_I(tmpfile));
2926 xfs_setup_iops(tmpfile);
2927 xfs_finish_inode_setup(tmpfile);
2928 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2939 struct xfs_inode *src_dp,
2940 struct xfs_name *src_name,
2941 struct xfs_inode *src_ip,
2942 struct xfs_inode *target_dp,
2943 struct xfs_name *target_name,
2944 struct xfs_inode *target_ip,
2947 struct xfs_mount *mp = src_dp->i_mount;
2948 struct xfs_trans *tp;
2949 struct xfs_defer_ops dfops;
2950 xfs_fsblock_t first_block;
2951 struct xfs_inode *wip = NULL; /* whiteout inode */
2952 struct xfs_inode *inodes[__XFS_SORT_INODES];
2953 int num_inodes = __XFS_SORT_INODES;
2954 bool new_parent = (src_dp != target_dp);
2955 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2959 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2961 if ((flags & RENAME_EXCHANGE) && !target_ip)
2965 * If we are doing a whiteout operation, allocate the whiteout inode
2966 * we will be placing at the target and ensure the type is set
2969 if (flags & RENAME_WHITEOUT) {
2970 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2971 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2975 /* setup target dirent info as whiteout */
2976 src_name->type = XFS_DIR3_FT_CHRDEV;
2979 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2980 inodes, &num_inodes);
2982 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2983 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2984 if (error == -ENOSPC) {
2986 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2990 goto out_release_wip;
2993 * Attach the dquots to the inodes
2995 error = xfs_qm_vop_rename_dqattach(inodes);
2997 goto out_trans_cancel;
3000 * Lock all the participating inodes. Depending upon whether
3001 * the target_name exists in the target directory, and
3002 * whether the target directory is the same as the source
3003 * directory, we can lock from 2 to 4 inodes.
3005 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3008 * Join all the inodes to the transaction. From this point on,
3009 * we can rely on either trans_commit or trans_cancel to unlock
3012 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3014 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3015 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3017 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3019 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3022 * If we are using project inheritance, we only allow renames
3023 * into our tree when the project IDs are the same; else the
3024 * tree quota mechanism would be circumvented.
3026 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3027 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3029 goto out_trans_cancel;
3032 xfs_defer_init(&dfops, &first_block);
3033 tp->t_agfl_dfops = &dfops;
3035 /* RENAME_EXCHANGE is unique from here on. */
3036 if (flags & RENAME_EXCHANGE)
3037 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3038 target_dp, target_name, target_ip,
3039 &dfops, &first_block, spaceres);
3042 * Set up the target.
3044 if (target_ip == NULL) {
3046 * If there's no space reservation, check the entry will
3047 * fit before actually inserting it.
3050 error = xfs_dir_canenter(tp, target_dp, target_name);
3052 goto out_trans_cancel;
3055 * If target does not exist and the rename crosses
3056 * directories, adjust the target directory link count
3057 * to account for the ".." reference from the new entry.
3059 error = xfs_dir_createname(tp, target_dp, target_name,
3060 src_ip->i_ino, &first_block,
3063 goto out_bmap_cancel;
3065 xfs_trans_ichgtime(tp, target_dp,
3066 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3068 if (new_parent && src_is_directory) {
3069 error = xfs_bumplink(tp, target_dp);
3071 goto out_bmap_cancel;
3073 } else { /* target_ip != NULL */
3075 * If target exists and it's a directory, check that both
3076 * target and source are directories and that target can be
3077 * destroyed, or that neither is a directory.
3079 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3081 * Make sure target dir is empty.
3083 if (!(xfs_dir_isempty(target_ip)) ||
3084 (VFS_I(target_ip)->i_nlink > 2)) {
3086 goto out_trans_cancel;
3091 * Link the source inode under the target name.
3092 * If the source inode is a directory and we are moving
3093 * it across directories, its ".." entry will be
3094 * inconsistent until we replace that down below.
3096 * In case there is already an entry with the same
3097 * name at the destination directory, remove it first.
3099 error = xfs_dir_replace(tp, target_dp, target_name,
3101 &first_block, &dfops, spaceres);
3103 goto out_bmap_cancel;
3105 xfs_trans_ichgtime(tp, target_dp,
3106 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3109 * Decrement the link count on the target since the target
3110 * dir no longer points to it.
3112 error = xfs_droplink(tp, target_ip);
3114 goto out_bmap_cancel;
3116 if (src_is_directory) {
3118 * Drop the link from the old "." entry.
3120 error = xfs_droplink(tp, target_ip);
3122 goto out_bmap_cancel;
3124 } /* target_ip != NULL */
3127 * Remove the source.
3129 if (new_parent && src_is_directory) {
3131 * Rewrite the ".." entry to point to the new
3134 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3136 &first_block, &dfops, spaceres);
3137 ASSERT(error != -EEXIST);
3139 goto out_bmap_cancel;
3143 * We always want to hit the ctime on the source inode.
3145 * This isn't strictly required by the standards since the source
3146 * inode isn't really being changed, but old unix file systems did
3147 * it and some incremental backup programs won't work without it.
3149 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3150 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3153 * Adjust the link count on src_dp. This is necessary when
3154 * renaming a directory, either within one parent when
3155 * the target existed, or across two parent directories.
3157 if (src_is_directory && (new_parent || target_ip != NULL)) {
3160 * Decrement link count on src_directory since the
3161 * entry that's moved no longer points to it.
3163 error = xfs_droplink(tp, src_dp);
3165 goto out_bmap_cancel;
3169 * For whiteouts, we only need to update the source dirent with the
3170 * inode number of the whiteout inode rather than removing it
3174 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3175 &first_block, &dfops, spaceres);
3177 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3178 &first_block, &dfops, spaceres);
3180 goto out_bmap_cancel;
3183 * For whiteouts, we need to bump the link count on the whiteout inode.
3184 * This means that failures all the way up to this point leave the inode
3185 * on the unlinked list and so cleanup is a simple matter of dropping
3186 * the remaining reference to it. If we fail here after bumping the link
3187 * count, we're shutting down the filesystem so we'll never see the
3188 * intermediate state on disk.
3191 ASSERT(VFS_I(wip)->i_nlink == 0);
3192 error = xfs_bumplink(tp, wip);
3194 goto out_bmap_cancel;
3195 error = xfs_iunlink_remove(tp, wip);
3197 goto out_bmap_cancel;
3198 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3201 * Now we have a real link, clear the "I'm a tmpfile" state
3202 * flag from the inode so it doesn't accidentally get misused in
3205 VFS_I(wip)->i_state &= ~I_LINKABLE;
3208 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3209 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3211 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3213 error = xfs_finish_rename(tp, &dfops);
3219 xfs_defer_cancel(&dfops);
3221 xfs_trans_cancel(tp);
3230 struct xfs_inode *ip,
3233 struct xfs_mount *mp = ip->i_mount;
3234 struct xfs_perag *pag;
3235 unsigned long first_index, mask;
3236 unsigned long inodes_per_cluster;
3238 struct xfs_inode **cilist;
3239 struct xfs_inode *cip;
3245 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3247 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3248 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3249 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3253 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3254 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3256 /* really need a gang lookup range call here */
3257 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3258 first_index, inodes_per_cluster);
3262 for (i = 0; i < nr_found; i++) {
3268 * because this is an RCU protected lookup, we could find a
3269 * recently freed or even reallocated inode during the lookup.
3270 * We need to check under the i_flags_lock for a valid inode
3271 * here. Skip it if it is not valid or the wrong inode.
3273 spin_lock(&cip->i_flags_lock);
3275 __xfs_iflags_test(cip, XFS_ISTALE)) {
3276 spin_unlock(&cip->i_flags_lock);
3281 * Once we fall off the end of the cluster, no point checking
3282 * any more inodes in the list because they will also all be
3283 * outside the cluster.
3285 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3286 spin_unlock(&cip->i_flags_lock);
3289 spin_unlock(&cip->i_flags_lock);
3292 * Do an un-protected check to see if the inode is dirty and
3293 * is a candidate for flushing. These checks will be repeated
3294 * later after the appropriate locks are acquired.
3296 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3300 * Try to get locks. If any are unavailable or it is pinned,
3301 * then this inode cannot be flushed and is skipped.
3304 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3306 if (!xfs_iflock_nowait(cip)) {
3307 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3310 if (xfs_ipincount(cip)) {
3312 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3318 * Check the inode number again, just to be certain we are not
3319 * racing with freeing in xfs_reclaim_inode(). See the comments
3320 * in that function for more information as to why the initial
3321 * check is not sufficient.
3325 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3330 * arriving here means that this inode can be flushed. First
3331 * re-check that it's dirty before flushing.
3333 if (!xfs_inode_clean(cip)) {
3335 error = xfs_iflush_int(cip, bp);
3337 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3338 goto cluster_corrupt_out;
3344 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3348 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3349 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3360 cluster_corrupt_out:
3362 * Corruption detected in the clustering loop. Invalidate the
3363 * inode buffer and shut down the filesystem.
3367 * Clean up the buffer. If it was delwri, just release it --
3368 * brelse can handle it with no problems. If not, shut down the
3369 * filesystem before releasing the buffer.
3371 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3375 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3377 if (!bufwasdelwri) {
3379 * Just like incore_relse: if we have b_iodone functions,
3380 * mark the buffer as an error and call them. Otherwise
3381 * mark it as stale and brelse.
3384 bp->b_flags &= ~XBF_DONE;
3386 xfs_buf_ioerror(bp, -EIO);
3395 * Unlocks the flush lock
3397 xfs_iflush_abort(cip, false);
3400 return -EFSCORRUPTED;
3404 * Flush dirty inode metadata into the backing buffer.
3406 * The caller must have the inode lock and the inode flush lock held. The
3407 * inode lock will still be held upon return to the caller, and the inode
3408 * flush lock will be released after the inode has reached the disk.
3410 * The caller must write out the buffer returned in *bpp and release it.
3414 struct xfs_inode *ip,
3415 struct xfs_buf **bpp)
3417 struct xfs_mount *mp = ip->i_mount;
3418 struct xfs_buf *bp = NULL;
3419 struct xfs_dinode *dip;
3422 XFS_STATS_INC(mp, xs_iflush_count);
3424 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3425 ASSERT(xfs_isiflocked(ip));
3426 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3427 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3431 xfs_iunpin_wait(ip);
3434 * For stale inodes we cannot rely on the backing buffer remaining
3435 * stale in cache for the remaining life of the stale inode and so
3436 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3437 * inodes below. We have to check this after ensuring the inode is
3438 * unpinned so that it is safe to reclaim the stale inode after the
3441 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3447 * This may have been unpinned because the filesystem is shutting
3448 * down forcibly. If that's the case we must not write this inode
3449 * to disk, because the log record didn't make it to disk.
3451 * We also have to remove the log item from the AIL in this case,
3452 * as we wait for an empty AIL as part of the unmount process.
3454 if (XFS_FORCED_SHUTDOWN(mp)) {
3460 * Get the buffer containing the on-disk inode. We are doing a try-lock
3461 * operation here, so we may get an EAGAIN error. In that case, we
3462 * simply want to return with the inode still dirty.
3464 * If we get any other error, we effectively have a corruption situation
3465 * and we cannot flush the inode, so we treat it the same as failing
3468 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3470 if (error == -EAGAIN) {
3478 * First flush out the inode that xfs_iflush was called with.
3480 error = xfs_iflush_int(ip, bp);
3485 * If the buffer is pinned then push on the log now so we won't
3486 * get stuck waiting in the write for too long.
3488 if (xfs_buf_ispinned(bp))
3489 xfs_log_force(mp, 0);
3493 * see if other inodes can be gathered into this write
3495 error = xfs_iflush_cluster(ip, bp);
3497 goto cluster_corrupt_out;
3505 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3506 cluster_corrupt_out:
3507 error = -EFSCORRUPTED;
3510 * Unlocks the flush lock
3512 xfs_iflush_abort(ip, false);
3517 * If there are inline format data / attr forks attached to this inode,
3518 * make sure they're not corrupt.
3521 xfs_inode_verify_forks(
3522 struct xfs_inode *ip)
3524 struct xfs_ifork *ifp;
3527 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3529 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3530 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3531 ifp->if_u1.if_data, ifp->if_bytes, fa);
3535 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3537 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3538 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3539 ifp ? ifp->if_u1.if_data : NULL,
3540 ifp ? ifp->if_bytes : 0, fa);
3548 struct xfs_inode *ip,
3551 struct xfs_inode_log_item *iip = ip->i_itemp;
3552 struct xfs_dinode *dip;
3553 struct xfs_mount *mp = ip->i_mount;
3555 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3556 ASSERT(xfs_isiflocked(ip));
3557 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3558 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3559 ASSERT(iip != NULL && iip->ili_fields != 0);
3560 ASSERT(ip->i_d.di_version > 1);
3562 /* set *dip = inode's place in the buffer */
3563 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3565 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3566 mp, XFS_ERRTAG_IFLUSH_1)) {
3567 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3568 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3569 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3572 if (S_ISREG(VFS_I(ip)->i_mode)) {
3574 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3575 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3576 mp, XFS_ERRTAG_IFLUSH_3)) {
3577 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3578 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3579 __func__, ip->i_ino, ip);
3582 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3584 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3585 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3586 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3587 mp, XFS_ERRTAG_IFLUSH_4)) {
3588 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3589 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3590 __func__, ip->i_ino, ip);
3594 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3595 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3596 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3597 "%s: detected corrupt incore inode %Lu, "
3598 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3599 __func__, ip->i_ino,
3600 ip->i_d.di_nextents + ip->i_d.di_anextents,
3601 ip->i_d.di_nblocks, ip);
3604 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3605 mp, XFS_ERRTAG_IFLUSH_6)) {
3606 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3607 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3608 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3613 * Inode item log recovery for v2 inodes are dependent on the
3614 * di_flushiter count for correct sequencing. We bump the flush
3615 * iteration count so we can detect flushes which postdate a log record
3616 * during recovery. This is redundant as we now log every change and
3617 * hence this can't happen but we need to still do it to ensure
3618 * backwards compatibility with old kernels that predate logging all
3621 if (ip->i_d.di_version < 3)
3622 ip->i_d.di_flushiter++;
3624 /* Check the inline fork data before we write out. */
3625 if (!xfs_inode_verify_forks(ip))
3629 * Copy the dirty parts of the inode into the on-disk inode. We always
3630 * copy out the core of the inode, because if the inode is dirty at all
3633 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3635 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3636 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3637 ip->i_d.di_flushiter = 0;
3639 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3640 if (XFS_IFORK_Q(ip))
3641 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3642 xfs_inobp_check(mp, bp);
3645 * We've recorded everything logged in the inode, so we'd like to clear
3646 * the ili_fields bits so we don't log and flush things unnecessarily.
3647 * However, we can't stop logging all this information until the data
3648 * we've copied into the disk buffer is written to disk. If we did we
3649 * might overwrite the copy of the inode in the log with all the data
3650 * after re-logging only part of it, and in the face of a crash we
3651 * wouldn't have all the data we need to recover.
3653 * What we do is move the bits to the ili_last_fields field. When
3654 * logging the inode, these bits are moved back to the ili_fields field.
3655 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3656 * know that the information those bits represent is permanently on
3657 * disk. As long as the flush completes before the inode is logged
3658 * again, then both ili_fields and ili_last_fields will be cleared.
3660 * We can play with the ili_fields bits here, because the inode lock
3661 * must be held exclusively in order to set bits there and the flush
3662 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3663 * done routine can tell whether or not to look in the AIL. Also, store
3664 * the current LSN of the inode so that we can tell whether the item has
3665 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3666 * need the AIL lock, because it is a 64 bit value that cannot be read
3669 iip->ili_last_fields = iip->ili_fields;
3670 iip->ili_fields = 0;
3671 iip->ili_fsync_fields = 0;
3672 iip->ili_logged = 1;
3674 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3675 &iip->ili_item.li_lsn);
3678 * Attach the function xfs_iflush_done to the inode's
3679 * buffer. This will remove the inode from the AIL
3680 * and unlock the inode's flush lock when the inode is
3681 * completely written to disk.
3683 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3685 /* generate the checksum. */
3686 xfs_dinode_calc_crc(mp, dip);
3688 ASSERT(!list_empty(&bp->b_li_list));
3689 ASSERT(bp->b_iodone != NULL);
3693 return -EFSCORRUPTED;