2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/backing-dev.h>
26 #include <linux/buffer_head.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/dax.h>
29 #include <linux/sched/signal.h>
34 * Execute a iomap write on a segment of the mapping that spans a
35 * contiguous range of pages that have identical block mapping state.
37 * This avoids the need to map pages individually, do individual allocations
38 * for each page and most importantly avoid the need for filesystem specific
39 * locking per page. Instead, all the operations are amortised over the entire
40 * range of pages. It is assumed that the filesystems will lock whatever
41 * resources they require in the iomap_begin call, and release them in the
45 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
46 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
48 struct iomap iomap = { 0 };
49 loff_t written = 0, ret;
52 * Need to map a range from start position for length bytes. This can
53 * span multiple pages - it is only guaranteed to return a range of a
54 * single type of pages (e.g. all into a hole, all mapped or all
55 * unwritten). Failure at this point has nothing to undo.
57 * If allocation is required for this range, reserve the space now so
58 * that the allocation is guaranteed to succeed later on. Once we copy
59 * the data into the page cache pages, then we cannot fail otherwise we
60 * expose transient stale data. If the reserve fails, we can safely
61 * back out at this point as there is nothing to undo.
63 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
66 if (WARN_ON(iomap.offset > pos))
68 if (WARN_ON(iomap.length == 0))
72 * Cut down the length to the one actually provided by the filesystem,
73 * as it might not be able to give us the whole size that we requested.
75 if (iomap.offset + iomap.length < pos + length)
76 length = iomap.offset + iomap.length - pos;
79 * Now that we have guaranteed that the space allocation will succeed.
80 * we can do the copy-in page by page without having to worry about
81 * failures exposing transient data.
83 written = actor(inode, pos, length, data, &iomap);
86 * Now the data has been copied, commit the range we've copied. This
87 * should not fail unless the filesystem has had a fatal error.
90 ret = ops->iomap_end(inode, pos, length,
91 written > 0 ? written : 0,
95 return written ? written : ret;
99 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
101 loff_t i_size = i_size_read(inode);
104 * Only truncate newly allocated pages beyoned EOF, even if the
105 * write started inside the existing inode size.
107 if (pos + len > i_size)
108 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
112 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
113 struct page **pagep, struct iomap *iomap)
115 pgoff_t index = pos >> PAGE_SHIFT;
119 BUG_ON(pos + len > iomap->offset + iomap->length);
121 if (fatal_signal_pending(current))
124 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
128 status = __block_write_begin_int(page, pos, len, NULL, iomap);
129 if (unlikely(status)) {
134 iomap_write_failed(inode, pos, len);
142 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
143 unsigned copied, struct page *page)
147 ret = generic_write_end(NULL, inode->i_mapping, pos, len,
150 iomap_write_failed(inode, pos, len);
155 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
158 struct iov_iter *i = data;
161 unsigned int flags = AOP_FLAG_NOFS;
165 unsigned long offset; /* Offset into pagecache page */
166 unsigned long bytes; /* Bytes to write to page */
167 size_t copied; /* Bytes copied from user */
169 offset = (pos & (PAGE_SIZE - 1));
170 bytes = min_t(unsigned long, PAGE_SIZE - offset,
177 * Bring in the user page that we will copy from _first_.
178 * Otherwise there's a nasty deadlock on copying from the
179 * same page as we're writing to, without it being marked
182 * Not only is this an optimisation, but it is also required
183 * to check that the address is actually valid, when atomic
184 * usercopies are used, below.
186 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
191 status = iomap_write_begin(inode, pos, bytes, flags, &page,
193 if (unlikely(status))
196 if (mapping_writably_mapped(inode->i_mapping))
197 flush_dcache_page(page);
199 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
201 flush_dcache_page(page);
203 status = iomap_write_end(inode, pos, bytes, copied, page);
204 if (unlikely(status < 0))
210 iov_iter_advance(i, copied);
211 if (unlikely(copied == 0)) {
213 * If we were unable to copy any data at all, we must
214 * fall back to a single segment length write.
216 * If we didn't fallback here, we could livelock
217 * because not all segments in the iov can be copied at
218 * once without a pagefault.
220 bytes = min_t(unsigned long, PAGE_SIZE - offset,
221 iov_iter_single_seg_count(i));
228 balance_dirty_pages_ratelimited(inode->i_mapping);
229 } while (iov_iter_count(i) && length);
231 return written ? written : status;
235 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
236 const struct iomap_ops *ops)
238 struct inode *inode = iocb->ki_filp->f_mapping->host;
239 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
241 while (iov_iter_count(iter)) {
242 ret = iomap_apply(inode, pos, iov_iter_count(iter),
243 IOMAP_WRITE, ops, iter, iomap_write_actor);
250 return written ? written : ret;
252 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
255 __iomap_read_page(struct inode *inode, loff_t offset)
257 struct address_space *mapping = inode->i_mapping;
260 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
263 if (!PageUptodate(page)) {
265 return ERR_PTR(-EIO);
271 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
278 struct page *page, *rpage;
279 unsigned long offset; /* Offset into pagecache page */
280 unsigned long bytes; /* Bytes to write to page */
282 offset = (pos & (PAGE_SIZE - 1));
283 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
285 rpage = __iomap_read_page(inode, pos);
287 return PTR_ERR(rpage);
289 status = iomap_write_begin(inode, pos, bytes,
290 AOP_FLAG_NOFS, &page, iomap);
292 if (unlikely(status))
295 WARN_ON_ONCE(!PageUptodate(page));
297 status = iomap_write_end(inode, pos, bytes, bytes, page);
298 if (unlikely(status <= 0)) {
299 if (WARN_ON_ONCE(status == 0))
310 balance_dirty_pages_ratelimited(inode->i_mapping);
317 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
318 const struct iomap_ops *ops)
323 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
333 EXPORT_SYMBOL_GPL(iomap_file_dirty);
335 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
336 unsigned bytes, struct iomap *iomap)
341 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
346 zero_user(page, offset, bytes);
347 mark_page_accessed(page);
349 return iomap_write_end(inode, pos, bytes, bytes, page);
352 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
355 sector_t sector = (iomap->addr +
356 (pos & PAGE_MASK) - iomap->offset) >> 9;
358 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev, sector,
363 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
364 void *data, struct iomap *iomap)
366 bool *did_zero = data;
370 /* already zeroed? we're done. */
371 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
375 unsigned offset, bytes;
377 offset = pos & (PAGE_SIZE - 1); /* Within page */
378 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
381 status = iomap_dax_zero(pos, offset, bytes, iomap);
383 status = iomap_zero(inode, pos, offset, bytes, iomap);
398 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
399 const struct iomap_ops *ops)
404 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
405 ops, did_zero, iomap_zero_range_actor);
415 EXPORT_SYMBOL_GPL(iomap_zero_range);
418 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
419 const struct iomap_ops *ops)
421 unsigned int blocksize = i_blocksize(inode);
422 unsigned int off = pos & (blocksize - 1);
424 /* Block boundary? Nothing to do */
427 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
429 EXPORT_SYMBOL_GPL(iomap_truncate_page);
432 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
433 void *data, struct iomap *iomap)
435 struct page *page = data;
438 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
442 block_commit_write(page, 0, length);
446 int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
448 struct page *page = vmf->page;
449 struct inode *inode = file_inode(vmf->vma->vm_file);
450 unsigned long length;
455 size = i_size_read(inode);
456 if ((page->mapping != inode->i_mapping) ||
457 (page_offset(page) > size)) {
458 /* We overload EFAULT to mean page got truncated */
463 /* page is wholly or partially inside EOF */
464 if (((page->index + 1) << PAGE_SHIFT) > size)
465 length = size & ~PAGE_MASK;
469 offset = page_offset(page);
471 ret = iomap_apply(inode, offset, length,
472 IOMAP_WRITE | IOMAP_FAULT, ops, page,
473 iomap_page_mkwrite_actor);
474 if (unlikely(ret <= 0))
480 set_page_dirty(page);
481 wait_for_stable_page(page);
482 return VM_FAULT_LOCKED;
485 return block_page_mkwrite_return(ret);
487 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
490 struct fiemap_extent_info *fi;
494 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
495 struct iomap *iomap, u32 flags)
497 switch (iomap->type) {
502 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
504 case IOMAP_UNWRITTEN:
505 flags |= FIEMAP_EXTENT_UNWRITTEN;
511 if (iomap->flags & IOMAP_F_MERGED)
512 flags |= FIEMAP_EXTENT_MERGED;
513 if (iomap->flags & IOMAP_F_SHARED)
514 flags |= FIEMAP_EXTENT_SHARED;
515 if (iomap->flags & IOMAP_F_DATA_INLINE)
516 flags |= FIEMAP_EXTENT_DATA_INLINE;
518 return fiemap_fill_next_extent(fi, iomap->offset,
519 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
520 iomap->length, flags);
524 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
527 struct fiemap_ctx *ctx = data;
530 if (iomap->type == IOMAP_HOLE)
533 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
536 case 0: /* success */
538 case 1: /* extent array full */
545 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
546 loff_t start, loff_t len, const struct iomap_ops *ops)
548 struct fiemap_ctx ctx;
551 memset(&ctx, 0, sizeof(ctx));
553 ctx.prev.type = IOMAP_HOLE;
555 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
559 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
560 ret = filemap_write_and_wait(inode->i_mapping);
566 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
568 /* inode with no (attribute) mapping will give ENOENT */
580 if (ctx.prev.type != IOMAP_HOLE) {
581 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
588 EXPORT_SYMBOL_GPL(iomap_fiemap);
591 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
592 void *data, struct iomap *iomap)
594 switch (iomap->type) {
595 case IOMAP_UNWRITTEN:
596 offset = page_cache_seek_hole_data(inode, offset, length,
602 *(loff_t *)data = offset;
610 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
612 loff_t size = i_size_read(inode);
613 loff_t length = size - offset;
616 /* Nothing to be found before or beyond the end of the file. */
617 if (offset < 0 || offset >= size)
621 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
622 &offset, iomap_seek_hole_actor);
634 EXPORT_SYMBOL_GPL(iomap_seek_hole);
637 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
638 void *data, struct iomap *iomap)
640 switch (iomap->type) {
643 case IOMAP_UNWRITTEN:
644 offset = page_cache_seek_hole_data(inode, offset, length,
650 *(loff_t *)data = offset;
656 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
658 loff_t size = i_size_read(inode);
659 loff_t length = size - offset;
662 /* Nothing to be found before or beyond the end of the file. */
663 if (offset < 0 || offset >= size)
667 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
668 &offset, iomap_seek_data_actor);
682 EXPORT_SYMBOL_GPL(iomap_seek_data);
685 * Private flags for iomap_dio, must not overlap with the public ones in
688 #define IOMAP_DIO_WRITE_FUA (1 << 28)
689 #define IOMAP_DIO_NEED_SYNC (1 << 29)
690 #define IOMAP_DIO_WRITE (1 << 30)
691 #define IOMAP_DIO_DIRTY (1 << 31)
695 iomap_dio_end_io_t *end_io;
703 /* used during submission and for synchronous completion: */
705 struct iov_iter *iter;
706 struct task_struct *waiter;
707 struct request_queue *last_queue;
711 /* used for aio completion: */
713 struct work_struct work;
718 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
720 struct kiocb *iocb = dio->iocb;
721 struct inode *inode = file_inode(iocb->ki_filp);
722 loff_t offset = iocb->ki_pos;
726 ret = dio->end_io(iocb,
727 dio->error ? dio->error : dio->size,
735 /* check for short read */
736 if (offset + ret > dio->i_size &&
737 !(dio->flags & IOMAP_DIO_WRITE))
738 ret = dio->i_size - offset;
743 * Try again to invalidate clean pages which might have been cached by
744 * non-direct readahead, or faulted in by get_user_pages() if the source
745 * of the write was an mmap'ed region of the file we're writing. Either
746 * one is a pretty crazy thing to do, so we don't support it 100%. If
747 * this invalidation fails, tough, the write still worked...
749 * And this page cache invalidation has to be after dio->end_io(), as
750 * some filesystems convert unwritten extents to real allocations in
751 * end_io() when necessary, otherwise a racing buffer read would cache
752 * zeros from unwritten extents.
755 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
757 err = invalidate_inode_pages2_range(inode->i_mapping,
758 offset >> PAGE_SHIFT,
759 (offset + dio->size - 1) >> PAGE_SHIFT);
761 dio_warn_stale_pagecache(iocb->ki_filp);
765 * If this is a DSYNC write, make sure we push it to stable storage now
766 * that we've written data.
768 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
769 ret = generic_write_sync(iocb, ret);
771 inode_dio_end(file_inode(iocb->ki_filp));
777 static void iomap_dio_complete_work(struct work_struct *work)
779 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
780 struct kiocb *iocb = dio->iocb;
782 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
786 * Set an error in the dio if none is set yet. We have to use cmpxchg
787 * as the submission context and the completion context(s) can race to
790 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
792 cmpxchg(&dio->error, 0, ret);
795 static void iomap_dio_bio_end_io(struct bio *bio)
797 struct iomap_dio *dio = bio->bi_private;
798 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
801 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
803 if (atomic_dec_and_test(&dio->ref)) {
804 if (is_sync_kiocb(dio->iocb)) {
805 struct task_struct *waiter = dio->submit.waiter;
807 WRITE_ONCE(dio->submit.waiter, NULL);
808 wake_up_process(waiter);
809 } else if (dio->flags & IOMAP_DIO_WRITE) {
810 struct inode *inode = file_inode(dio->iocb->ki_filp);
812 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
813 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
815 iomap_dio_complete_work(&dio->aio.work);
820 bio_check_pages_dirty(bio);
822 struct bio_vec *bvec;
825 bio_for_each_segment_all(bvec, bio, i)
826 put_page(bvec->bv_page);
832 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
835 struct page *page = ZERO_PAGE(0);
838 bio = bio_alloc(GFP_KERNEL, 1);
839 bio_set_dev(bio, iomap->bdev);
840 bio->bi_iter.bi_sector =
841 (iomap->addr + pos - iomap->offset) >> 9;
842 bio->bi_private = dio;
843 bio->bi_end_io = iomap_dio_bio_end_io;
846 if (bio_add_page(bio, page, len, 0) != len)
848 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
850 atomic_inc(&dio->ref);
851 return submit_bio(bio);
855 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
856 void *data, struct iomap *iomap)
858 struct iomap_dio *dio = data;
859 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
860 unsigned int fs_block_size = i_blocksize(inode), pad;
861 unsigned int align = iov_iter_alignment(dio->submit.iter);
862 struct iov_iter iter;
864 bool need_zeroout = false;
865 bool use_fua = false;
869 if ((pos | length | align) & ((1 << blkbits) - 1))
872 switch (iomap->type) {
874 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
877 case IOMAP_UNWRITTEN:
878 if (!(dio->flags & IOMAP_DIO_WRITE)) {
879 length = iov_iter_zero(length, dio->submit.iter);
883 dio->flags |= IOMAP_DIO_UNWRITTEN;
887 if (iomap->flags & IOMAP_F_SHARED)
888 dio->flags |= IOMAP_DIO_COW;
889 if (iomap->flags & IOMAP_F_NEW) {
893 * Use a FUA write if we need datasync semantics, this
894 * is a pure data IO that doesn't require any metadata
895 * updates and the underlying device supports FUA. This
896 * allows us to avoid cache flushes on IO completion.
898 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
899 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
900 blk_queue_fua(bdev_get_queue(iomap->bdev)))
910 * Operate on a partial iter trimmed to the extent we were called for.
911 * We'll update the iter in the dio once we're done with this extent.
913 iter = *dio->submit.iter;
914 iov_iter_truncate(&iter, length);
916 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
921 /* zero out from the start of the block to the write offset */
922 pad = pos & (fs_block_size - 1);
924 iomap_dio_zero(dio, iomap, pos - pad, pad);
930 iov_iter_revert(dio->submit.iter, copied);
934 bio = bio_alloc(GFP_KERNEL, nr_pages);
935 bio_set_dev(bio, iomap->bdev);
936 bio->bi_iter.bi_sector =
937 (iomap->addr + pos - iomap->offset) >> 9;
938 bio->bi_write_hint = dio->iocb->ki_hint;
939 bio->bi_private = dio;
940 bio->bi_end_io = iomap_dio_bio_end_io;
942 ret = bio_iov_iter_get_pages(bio, &iter);
945 return copied ? copied : ret;
948 n = bio->bi_iter.bi_size;
949 if (dio->flags & IOMAP_DIO_WRITE) {
950 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
952 bio->bi_opf |= REQ_FUA;
954 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
955 task_io_account_write(n);
957 bio->bi_opf = REQ_OP_READ;
958 if (dio->flags & IOMAP_DIO_DIRTY)
959 bio_set_pages_dirty(bio);
962 iov_iter_advance(dio->submit.iter, n);
968 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
970 atomic_inc(&dio->ref);
972 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
973 dio->submit.cookie = submit_bio(bio);
977 /* zero out from the end of the write to the end of the block */
978 pad = pos & (fs_block_size - 1);
980 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
986 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
987 * is being issued as AIO or not. This allows us to optimise pure data writes
988 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
989 * REQ_FLUSH post write. This is slightly tricky because a single request here
990 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
991 * may be pure data writes. In that case, we still need to do a full data sync
995 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
996 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
998 struct address_space *mapping = iocb->ki_filp->f_mapping;
999 struct inode *inode = file_inode(iocb->ki_filp);
1000 size_t count = iov_iter_count(iter);
1001 loff_t pos = iocb->ki_pos, start = pos;
1002 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1003 unsigned int flags = IOMAP_DIRECT;
1004 struct blk_plug plug;
1005 struct iomap_dio *dio;
1007 lockdep_assert_held(&inode->i_rwsem);
1012 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1017 atomic_set(&dio->ref, 1);
1019 dio->i_size = i_size_read(inode);
1020 dio->end_io = end_io;
1024 dio->submit.iter = iter;
1025 if (is_sync_kiocb(iocb)) {
1026 dio->submit.waiter = current;
1027 dio->submit.cookie = BLK_QC_T_NONE;
1028 dio->submit.last_queue = NULL;
1031 if (iov_iter_rw(iter) == READ) {
1032 if (pos >= dio->i_size)
1035 if (iter->type == ITER_IOVEC)
1036 dio->flags |= IOMAP_DIO_DIRTY;
1038 flags |= IOMAP_WRITE;
1039 dio->flags |= IOMAP_DIO_WRITE;
1041 /* for data sync or sync, we need sync completion processing */
1042 if (iocb->ki_flags & IOCB_DSYNC)
1043 dio->flags |= IOMAP_DIO_NEED_SYNC;
1046 * For datasync only writes, we optimistically try using FUA for
1047 * this IO. Any non-FUA write that occurs will clear this flag,
1048 * hence we know before completion whether a cache flush is
1051 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1052 dio->flags |= IOMAP_DIO_WRITE_FUA;
1055 if (iocb->ki_flags & IOCB_NOWAIT) {
1056 if (filemap_range_has_page(mapping, start, end)) {
1060 flags |= IOMAP_NOWAIT;
1063 ret = filemap_write_and_wait_range(mapping, start, end);
1068 * Try to invalidate cache pages for the range we're direct
1069 * writing. If this invalidation fails, tough, the write will
1070 * still work, but racing two incompatible write paths is a
1071 * pretty crazy thing to do, so we don't support it 100%.
1073 ret = invalidate_inode_pages2_range(mapping,
1074 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1076 dio_warn_stale_pagecache(iocb->ki_filp);
1079 if (iov_iter_rw(iter) == WRITE && !is_sync_kiocb(iocb) &&
1080 !inode->i_sb->s_dio_done_wq) {
1081 ret = sb_init_dio_done_wq(inode->i_sb);
1086 inode_dio_begin(inode);
1088 blk_start_plug(&plug);
1090 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1093 /* magic error code to fall back to buffered I/O */
1094 if (ret == -ENOTBLK)
1100 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1102 } while ((count = iov_iter_count(iter)) > 0);
1103 blk_finish_plug(&plug);
1106 iomap_dio_set_error(dio, ret);
1109 * If all the writes we issued were FUA, we don't need to flush the
1110 * cache on IO completion. Clear the sync flag for this case.
1112 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1113 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1115 if (!atomic_dec_and_test(&dio->ref)) {
1116 if (!is_sync_kiocb(iocb))
1117 return -EIOCBQUEUED;
1120 set_current_state(TASK_UNINTERRUPTIBLE);
1121 if (!READ_ONCE(dio->submit.waiter))
1124 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1125 !dio->submit.last_queue ||
1126 !blk_poll(dio->submit.last_queue,
1127 dio->submit.cookie))
1130 __set_current_state(TASK_RUNNING);
1133 ret = iomap_dio_complete(dio);
1141 EXPORT_SYMBOL_GPL(iomap_dio_rw);