1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
50 #include "ext4_extents.h" /* Needed for trace points definition */
51 #include "ext4_jbd2.h"
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 * transaction start -> page lock(s) -> i_data_sem (rw)
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #define IS_EXT2_SB(sb) (0)
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
146 if (!ext4_has_feature_metadata_csum(sb))
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
161 return cpu_to_le32(csum);
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
167 if (!ext4_has_metadata_csum(sb))
170 return es->s_checksum == ext4_superblock_csum(sb, es);
173 void ext4_superblock_csum_set(struct super_block *sb)
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
177 if (!ext4_has_metadata_csum(sb))
180 es->s_checksum = ext4_superblock_csum(sb, es);
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
187 ret = kmalloc(size, flags | __GFP_NOWARN);
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
197 ret = kzalloc(size, flags | __GFP_NOWARN);
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
316 static void __save_error_info(struct super_block *sb, const char *func,
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
337 * Start the daily error reporting function if it hasn't been
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
345 static void save_error_info(struct super_block *sb, const char *func,
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
360 static int block_device_ejected(struct super_block *sb)
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
365 return bdi->dev == NULL;
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
375 BUG_ON(txn->t_state == T_FINISHED);
377 ext4_process_freed_data(sb, txn->t_tid);
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
388 spin_unlock(&sbi->s_md_lock);
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
406 static void ext4_handle_error(struct super_block *sb)
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
416 jbd2_journal_abort(journal, -EIO);
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
425 sb->s_flags |= SB_RDONLY;
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
431 panic("EXT4-fs (device %s): panic forced after error\n",
436 #define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
440 void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
443 struct va_format vaf;
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
449 trace_ext4_error(sb, function, line);
450 if (ext4_error_ratelimit(sb)) {
455 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
456 sb->s_id, function, line, current->comm, &vaf);
459 save_error_info(sb, function, line);
460 ext4_handle_error(sb);
463 void __ext4_error_inode(struct inode *inode, const char *function,
464 unsigned int line, ext4_fsblk_t block,
465 const char *fmt, ...)
468 struct va_format vaf;
469 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
471 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
474 trace_ext4_error(inode->i_sb, function, line);
475 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
476 es->s_last_error_block = cpu_to_le64(block);
477 if (ext4_error_ratelimit(inode->i_sb)) {
482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 "inode #%lu: block %llu: comm %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 block, current->comm, &vaf);
487 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
488 "inode #%lu: comm %s: %pV\n",
489 inode->i_sb->s_id, function, line, inode->i_ino,
490 current->comm, &vaf);
493 save_error_info(inode->i_sb, function, line);
494 ext4_handle_error(inode->i_sb);
497 void __ext4_error_file(struct file *file, const char *function,
498 unsigned int line, ext4_fsblk_t block,
499 const char *fmt, ...)
502 struct va_format vaf;
503 struct ext4_super_block *es;
504 struct inode *inode = file_inode(file);
505 char pathname[80], *path;
507 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
510 trace_ext4_error(inode->i_sb, function, line);
511 es = EXT4_SB(inode->i_sb)->s_es;
512 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
513 if (ext4_error_ratelimit(inode->i_sb)) {
514 path = file_path(file, pathname, sizeof(pathname));
522 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
523 "block %llu: comm %s: path %s: %pV\n",
524 inode->i_sb->s_id, function, line, inode->i_ino,
525 block, current->comm, path, &vaf);
528 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
529 "comm %s: path %s: %pV\n",
530 inode->i_sb->s_id, function, line, inode->i_ino,
531 current->comm, path, &vaf);
534 save_error_info(inode->i_sb, function, line);
535 ext4_handle_error(inode->i_sb);
538 const char *ext4_decode_error(struct super_block *sb, int errno,
545 errstr = "Corrupt filesystem";
548 errstr = "Filesystem failed CRC";
551 errstr = "IO failure";
554 errstr = "Out of memory";
557 if (!sb || (EXT4_SB(sb)->s_journal &&
558 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
559 errstr = "Journal has aborted";
561 errstr = "Readonly filesystem";
564 /* If the caller passed in an extra buffer for unknown
565 * errors, textualise them now. Else we just return
568 /* Check for truncated error codes... */
569 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
578 /* __ext4_std_error decodes expected errors from journaling functions
579 * automatically and invokes the appropriate error response. */
581 void __ext4_std_error(struct super_block *sb, const char *function,
582 unsigned int line, int errno)
587 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
590 /* Special case: if the error is EROFS, and we're not already
591 * inside a transaction, then there's really no point in logging
593 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
596 if (ext4_error_ratelimit(sb)) {
597 errstr = ext4_decode_error(sb, errno, nbuf);
598 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
599 sb->s_id, function, line, errstr);
602 save_error_info(sb, function, line);
603 ext4_handle_error(sb);
607 * ext4_abort is a much stronger failure handler than ext4_error. The
608 * abort function may be used to deal with unrecoverable failures such
609 * as journal IO errors or ENOMEM at a critical moment in log management.
611 * We unconditionally force the filesystem into an ABORT|READONLY state,
612 * unless the error response on the fs has been set to panic in which
613 * case we take the easy way out and panic immediately.
616 void __ext4_abort(struct super_block *sb, const char *function,
617 unsigned int line, const char *fmt, ...)
619 struct va_format vaf;
622 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
625 save_error_info(sb, function, line);
629 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
630 sb->s_id, function, line, &vaf);
633 if (sb_rdonly(sb) == 0) {
634 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
635 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
637 * Make sure updated value of ->s_mount_flags will be visible
638 * before ->s_flags update
641 sb->s_flags |= SB_RDONLY;
642 if (EXT4_SB(sb)->s_journal)
643 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
644 save_error_info(sb, function, line);
646 if (test_opt(sb, ERRORS_PANIC)) {
647 if (EXT4_SB(sb)->s_journal &&
648 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
650 panic("EXT4-fs panic from previous error\n");
654 void __ext4_msg(struct super_block *sb,
655 const char *prefix, const char *fmt, ...)
657 struct va_format vaf;
660 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
666 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
670 #define ext4_warning_ratelimit(sb) \
671 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
674 void __ext4_warning(struct super_block *sb, const char *function,
675 unsigned int line, const char *fmt, ...)
677 struct va_format vaf;
680 if (!ext4_warning_ratelimit(sb))
686 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
687 sb->s_id, function, line, &vaf);
691 void __ext4_warning_inode(const struct inode *inode, const char *function,
692 unsigned int line, const char *fmt, ...)
694 struct va_format vaf;
697 if (!ext4_warning_ratelimit(inode->i_sb))
703 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
704 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
705 function, line, inode->i_ino, current->comm, &vaf);
709 void __ext4_grp_locked_error(const char *function, unsigned int line,
710 struct super_block *sb, ext4_group_t grp,
711 unsigned long ino, ext4_fsblk_t block,
712 const char *fmt, ...)
716 struct va_format vaf;
718 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
720 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
723 trace_ext4_error(sb, function, line);
724 es->s_last_error_ino = cpu_to_le32(ino);
725 es->s_last_error_block = cpu_to_le64(block);
726 __save_error_info(sb, function, line);
728 if (ext4_error_ratelimit(sb)) {
732 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
733 sb->s_id, function, line, grp);
735 printk(KERN_CONT "inode %lu: ", ino);
737 printk(KERN_CONT "block %llu:",
738 (unsigned long long) block);
739 printk(KERN_CONT "%pV\n", &vaf);
743 if (test_opt(sb, ERRORS_CONT)) {
744 ext4_commit_super(sb, 0);
748 ext4_unlock_group(sb, grp);
749 ext4_commit_super(sb, 1);
750 ext4_handle_error(sb);
752 * We only get here in the ERRORS_RO case; relocking the group
753 * may be dangerous, but nothing bad will happen since the
754 * filesystem will have already been marked read/only and the
755 * journal has been aborted. We return 1 as a hint to callers
756 * who might what to use the return value from
757 * ext4_grp_locked_error() to distinguish between the
758 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
759 * aggressively from the ext4 function in question, with a
760 * more appropriate error code.
762 ext4_lock_group(sb, grp);
766 void ext4_update_dynamic_rev(struct super_block *sb)
768 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
770 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
774 "updating to rev %d because of new feature flag, "
775 "running e2fsck is recommended",
778 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
779 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
780 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
781 /* leave es->s_feature_*compat flags alone */
782 /* es->s_uuid will be set by e2fsck if empty */
785 * The rest of the superblock fields should be zero, and if not it
786 * means they are likely already in use, so leave them alone. We
787 * can leave it up to e2fsck to clean up any inconsistencies there.
792 * Open the external journal device
794 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
796 struct block_device *bdev;
797 char b[BDEVNAME_SIZE];
799 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
805 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
806 __bdevname(dev, b), PTR_ERR(bdev));
811 * Release the journal device
813 static void ext4_blkdev_put(struct block_device *bdev)
815 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
818 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
820 struct block_device *bdev;
821 bdev = sbi->journal_bdev;
823 ext4_blkdev_put(bdev);
824 sbi->journal_bdev = NULL;
828 static inline struct inode *orphan_list_entry(struct list_head *l)
830 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
833 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
837 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
838 le32_to_cpu(sbi->s_es->s_last_orphan));
840 printk(KERN_ERR "sb_info orphan list:\n");
841 list_for_each(l, &sbi->s_orphan) {
842 struct inode *inode = orphan_list_entry(l);
844 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
845 inode->i_sb->s_id, inode->i_ino, inode,
846 inode->i_mode, inode->i_nlink,
852 static int ext4_quota_off(struct super_block *sb, int type);
854 static inline void ext4_quota_off_umount(struct super_block *sb)
858 /* Use our quota_off function to clear inode flags etc. */
859 for (type = 0; type < EXT4_MAXQUOTAS; type++)
860 ext4_quota_off(sb, type);
863 static inline void ext4_quota_off_umount(struct super_block *sb)
868 static void ext4_put_super(struct super_block *sb)
870 struct ext4_sb_info *sbi = EXT4_SB(sb);
871 struct ext4_super_block *es = sbi->s_es;
875 ext4_unregister_li_request(sb);
876 ext4_quota_off_umount(sb);
878 destroy_workqueue(sbi->rsv_conversion_wq);
880 if (sbi->s_journal) {
881 aborted = is_journal_aborted(sbi->s_journal);
882 err = jbd2_journal_destroy(sbi->s_journal);
883 sbi->s_journal = NULL;
884 if ((err < 0) && !aborted)
885 ext4_abort(sb, "Couldn't clean up the journal");
888 ext4_unregister_sysfs(sb);
889 ext4_es_unregister_shrinker(sbi);
890 del_timer_sync(&sbi->s_err_report);
891 ext4_release_system_zone(sb);
893 ext4_ext_release(sb);
895 if (!sb_rdonly(sb) && !aborted) {
896 ext4_clear_feature_journal_needs_recovery(sb);
897 es->s_state = cpu_to_le16(sbi->s_mount_state);
900 ext4_commit_super(sb, 1);
902 for (i = 0; i < sbi->s_gdb_count; i++)
903 brelse(sbi->s_group_desc[i]);
904 kvfree(sbi->s_group_desc);
905 kvfree(sbi->s_flex_groups);
906 percpu_counter_destroy(&sbi->s_freeclusters_counter);
907 percpu_counter_destroy(&sbi->s_freeinodes_counter);
908 percpu_counter_destroy(&sbi->s_dirs_counter);
909 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
910 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
912 for (i = 0; i < EXT4_MAXQUOTAS; i++)
913 kfree(sbi->s_qf_names[i]);
916 /* Debugging code just in case the in-memory inode orphan list
917 * isn't empty. The on-disk one can be non-empty if we've
918 * detected an error and taken the fs readonly, but the
919 * in-memory list had better be clean by this point. */
920 if (!list_empty(&sbi->s_orphan))
921 dump_orphan_list(sb, sbi);
922 J_ASSERT(list_empty(&sbi->s_orphan));
924 sync_blockdev(sb->s_bdev);
925 invalidate_bdev(sb->s_bdev);
926 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
928 * Invalidate the journal device's buffers. We don't want them
929 * floating about in memory - the physical journal device may
930 * hotswapped, and it breaks the `ro-after' testing code.
932 sync_blockdev(sbi->journal_bdev);
933 invalidate_bdev(sbi->journal_bdev);
934 ext4_blkdev_remove(sbi);
936 if (sbi->s_ea_inode_cache) {
937 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
938 sbi->s_ea_inode_cache = NULL;
940 if (sbi->s_ea_block_cache) {
941 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
942 sbi->s_ea_block_cache = NULL;
945 kthread_stop(sbi->s_mmp_tsk);
947 sb->s_fs_info = NULL;
949 * Now that we are completely done shutting down the
950 * superblock, we need to actually destroy the kobject.
952 kobject_put(&sbi->s_kobj);
953 wait_for_completion(&sbi->s_kobj_unregister);
954 if (sbi->s_chksum_driver)
955 crypto_free_shash(sbi->s_chksum_driver);
956 kfree(sbi->s_blockgroup_lock);
957 fs_put_dax(sbi->s_daxdev);
961 static struct kmem_cache *ext4_inode_cachep;
964 * Called inside transaction, so use GFP_NOFS
966 static struct inode *ext4_alloc_inode(struct super_block *sb)
968 struct ext4_inode_info *ei;
970 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
974 inode_set_iversion(&ei->vfs_inode, 1);
975 spin_lock_init(&ei->i_raw_lock);
976 INIT_LIST_HEAD(&ei->i_prealloc_list);
977 spin_lock_init(&ei->i_prealloc_lock);
978 ext4_es_init_tree(&ei->i_es_tree);
979 rwlock_init(&ei->i_es_lock);
980 INIT_LIST_HEAD(&ei->i_es_list);
983 ei->i_es_shrink_lblk = 0;
984 ei->i_reserved_data_blocks = 0;
985 ei->i_da_metadata_calc_len = 0;
986 ei->i_da_metadata_calc_last_lblock = 0;
987 spin_lock_init(&(ei->i_block_reservation_lock));
989 ei->i_reserved_quota = 0;
990 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
993 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
994 spin_lock_init(&ei->i_completed_io_lock);
996 ei->i_datasync_tid = 0;
997 atomic_set(&ei->i_unwritten, 0);
998 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
999 return &ei->vfs_inode;
1002 static int ext4_drop_inode(struct inode *inode)
1004 int drop = generic_drop_inode(inode);
1006 trace_ext4_drop_inode(inode, drop);
1010 static void ext4_i_callback(struct rcu_head *head)
1012 struct inode *inode = container_of(head, struct inode, i_rcu);
1013 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1016 static void ext4_destroy_inode(struct inode *inode)
1018 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1019 ext4_msg(inode->i_sb, KERN_ERR,
1020 "Inode %lu (%p): orphan list check failed!",
1021 inode->i_ino, EXT4_I(inode));
1022 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1023 EXT4_I(inode), sizeof(struct ext4_inode_info),
1027 call_rcu(&inode->i_rcu, ext4_i_callback);
1030 static void init_once(void *foo)
1032 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1034 INIT_LIST_HEAD(&ei->i_orphan);
1035 init_rwsem(&ei->xattr_sem);
1036 init_rwsem(&ei->i_data_sem);
1037 init_rwsem(&ei->i_mmap_sem);
1038 inode_init_once(&ei->vfs_inode);
1041 static int __init init_inodecache(void)
1043 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1044 sizeof(struct ext4_inode_info), 0,
1045 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1047 offsetof(struct ext4_inode_info, i_data),
1048 sizeof_field(struct ext4_inode_info, i_data),
1050 if (ext4_inode_cachep == NULL)
1055 static void destroy_inodecache(void)
1058 * Make sure all delayed rcu free inodes are flushed before we
1062 kmem_cache_destroy(ext4_inode_cachep);
1065 void ext4_clear_inode(struct inode *inode)
1067 invalidate_inode_buffers(inode);
1070 ext4_discard_preallocations(inode);
1071 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1072 if (EXT4_I(inode)->jinode) {
1073 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1074 EXT4_I(inode)->jinode);
1075 jbd2_free_inode(EXT4_I(inode)->jinode);
1076 EXT4_I(inode)->jinode = NULL;
1078 fscrypt_put_encryption_info(inode);
1081 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1082 u64 ino, u32 generation)
1084 struct inode *inode;
1086 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1087 return ERR_PTR(-ESTALE);
1088 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1089 return ERR_PTR(-ESTALE);
1091 /* iget isn't really right if the inode is currently unallocated!!
1093 * ext4_read_inode will return a bad_inode if the inode had been
1094 * deleted, so we should be safe.
1096 * Currently we don't know the generation for parent directory, so
1097 * a generation of 0 means "accept any"
1099 inode = ext4_iget_normal(sb, ino);
1101 return ERR_CAST(inode);
1102 if (generation && inode->i_generation != generation) {
1104 return ERR_PTR(-ESTALE);
1110 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1111 int fh_len, int fh_type)
1113 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1114 ext4_nfs_get_inode);
1117 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1118 int fh_len, int fh_type)
1120 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1121 ext4_nfs_get_inode);
1125 * Try to release metadata pages (indirect blocks, directories) which are
1126 * mapped via the block device. Since these pages could have journal heads
1127 * which would prevent try_to_free_buffers() from freeing them, we must use
1128 * jbd2 layer's try_to_free_buffers() function to release them.
1130 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1133 journal_t *journal = EXT4_SB(sb)->s_journal;
1135 WARN_ON(PageChecked(page));
1136 if (!page_has_buffers(page))
1139 return jbd2_journal_try_to_free_buffers(journal, page,
1140 wait & ~__GFP_DIRECT_RECLAIM);
1141 return try_to_free_buffers(page);
1144 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1145 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1147 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1148 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1151 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1154 handle_t *handle = fs_data;
1155 int res, res2, credits, retries = 0;
1158 * Encrypting the root directory is not allowed because e2fsck expects
1159 * lost+found to exist and be unencrypted, and encrypting the root
1160 * directory would imply encrypting the lost+found directory as well as
1161 * the filename "lost+found" itself.
1163 if (inode->i_ino == EXT4_ROOT_INO)
1166 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1169 res = ext4_convert_inline_data(inode);
1174 * If a journal handle was specified, then the encryption context is
1175 * being set on a new inode via inheritance and is part of a larger
1176 * transaction to create the inode. Otherwise the encryption context is
1177 * being set on an existing inode in its own transaction. Only in the
1178 * latter case should the "retry on ENOSPC" logic be used.
1182 res = ext4_xattr_set_handle(handle, inode,
1183 EXT4_XATTR_INDEX_ENCRYPTION,
1184 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1187 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1188 ext4_clear_inode_state(inode,
1189 EXT4_STATE_MAY_INLINE_DATA);
1191 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1192 * S_DAX may be disabled
1194 ext4_set_inode_flags(inode);
1199 res = dquot_initialize(inode);
1203 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1208 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1210 return PTR_ERR(handle);
1212 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1213 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1216 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1218 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1219 * S_DAX may be disabled
1221 ext4_set_inode_flags(inode);
1222 res = ext4_mark_inode_dirty(handle, inode);
1224 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1226 res2 = ext4_journal_stop(handle);
1228 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1235 static bool ext4_dummy_context(struct inode *inode)
1237 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1240 static unsigned ext4_max_namelen(struct inode *inode)
1242 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1246 static const struct fscrypt_operations ext4_cryptops = {
1247 .key_prefix = "ext4:",
1248 .get_context = ext4_get_context,
1249 .set_context = ext4_set_context,
1250 .dummy_context = ext4_dummy_context,
1251 .empty_dir = ext4_empty_dir,
1252 .max_namelen = ext4_max_namelen,
1257 static const char * const quotatypes[] = INITQFNAMES;
1258 #define QTYPE2NAME(t) (quotatypes[t])
1260 static int ext4_write_dquot(struct dquot *dquot);
1261 static int ext4_acquire_dquot(struct dquot *dquot);
1262 static int ext4_release_dquot(struct dquot *dquot);
1263 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1264 static int ext4_write_info(struct super_block *sb, int type);
1265 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1266 const struct path *path);
1267 static int ext4_quota_on_mount(struct super_block *sb, int type);
1268 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1269 size_t len, loff_t off);
1270 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1271 const char *data, size_t len, loff_t off);
1272 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1273 unsigned int flags);
1274 static int ext4_enable_quotas(struct super_block *sb);
1275 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1277 static struct dquot **ext4_get_dquots(struct inode *inode)
1279 return EXT4_I(inode)->i_dquot;
1282 static const struct dquot_operations ext4_quota_operations = {
1283 .get_reserved_space = ext4_get_reserved_space,
1284 .write_dquot = ext4_write_dquot,
1285 .acquire_dquot = ext4_acquire_dquot,
1286 .release_dquot = ext4_release_dquot,
1287 .mark_dirty = ext4_mark_dquot_dirty,
1288 .write_info = ext4_write_info,
1289 .alloc_dquot = dquot_alloc,
1290 .destroy_dquot = dquot_destroy,
1291 .get_projid = ext4_get_projid,
1292 .get_inode_usage = ext4_get_inode_usage,
1293 .get_next_id = ext4_get_next_id,
1296 static const struct quotactl_ops ext4_qctl_operations = {
1297 .quota_on = ext4_quota_on,
1298 .quota_off = ext4_quota_off,
1299 .quota_sync = dquot_quota_sync,
1300 .get_state = dquot_get_state,
1301 .set_info = dquot_set_dqinfo,
1302 .get_dqblk = dquot_get_dqblk,
1303 .set_dqblk = dquot_set_dqblk,
1304 .get_nextdqblk = dquot_get_next_dqblk,
1308 static const struct super_operations ext4_sops = {
1309 .alloc_inode = ext4_alloc_inode,
1310 .destroy_inode = ext4_destroy_inode,
1311 .write_inode = ext4_write_inode,
1312 .dirty_inode = ext4_dirty_inode,
1313 .drop_inode = ext4_drop_inode,
1314 .evict_inode = ext4_evict_inode,
1315 .put_super = ext4_put_super,
1316 .sync_fs = ext4_sync_fs,
1317 .freeze_fs = ext4_freeze,
1318 .unfreeze_fs = ext4_unfreeze,
1319 .statfs = ext4_statfs,
1320 .remount_fs = ext4_remount,
1321 .show_options = ext4_show_options,
1323 .quota_read = ext4_quota_read,
1324 .quota_write = ext4_quota_write,
1325 .get_dquots = ext4_get_dquots,
1327 .bdev_try_to_free_page = bdev_try_to_free_page,
1330 static const struct export_operations ext4_export_ops = {
1331 .fh_to_dentry = ext4_fh_to_dentry,
1332 .fh_to_parent = ext4_fh_to_parent,
1333 .get_parent = ext4_get_parent,
1337 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1338 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1339 Opt_nouid32, Opt_debug, Opt_removed,
1340 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1341 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1342 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1343 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1344 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1345 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1346 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1347 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1348 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1349 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1350 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1351 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1352 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1353 Opt_inode_readahead_blks, Opt_journal_ioprio,
1354 Opt_dioread_nolock, Opt_dioread_lock,
1355 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1356 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1359 static const match_table_t tokens = {
1360 {Opt_bsd_df, "bsddf"},
1361 {Opt_minix_df, "minixdf"},
1362 {Opt_grpid, "grpid"},
1363 {Opt_grpid, "bsdgroups"},
1364 {Opt_nogrpid, "nogrpid"},
1365 {Opt_nogrpid, "sysvgroups"},
1366 {Opt_resgid, "resgid=%u"},
1367 {Opt_resuid, "resuid=%u"},
1369 {Opt_err_cont, "errors=continue"},
1370 {Opt_err_panic, "errors=panic"},
1371 {Opt_err_ro, "errors=remount-ro"},
1372 {Opt_nouid32, "nouid32"},
1373 {Opt_debug, "debug"},
1374 {Opt_removed, "oldalloc"},
1375 {Opt_removed, "orlov"},
1376 {Opt_user_xattr, "user_xattr"},
1377 {Opt_nouser_xattr, "nouser_xattr"},
1379 {Opt_noacl, "noacl"},
1380 {Opt_noload, "norecovery"},
1381 {Opt_noload, "noload"},
1382 {Opt_removed, "nobh"},
1383 {Opt_removed, "bh"},
1384 {Opt_commit, "commit=%u"},
1385 {Opt_min_batch_time, "min_batch_time=%u"},
1386 {Opt_max_batch_time, "max_batch_time=%u"},
1387 {Opt_journal_dev, "journal_dev=%u"},
1388 {Opt_journal_path, "journal_path=%s"},
1389 {Opt_journal_checksum, "journal_checksum"},
1390 {Opt_nojournal_checksum, "nojournal_checksum"},
1391 {Opt_journal_async_commit, "journal_async_commit"},
1392 {Opt_abort, "abort"},
1393 {Opt_data_journal, "data=journal"},
1394 {Opt_data_ordered, "data=ordered"},
1395 {Opt_data_writeback, "data=writeback"},
1396 {Opt_data_err_abort, "data_err=abort"},
1397 {Opt_data_err_ignore, "data_err=ignore"},
1398 {Opt_offusrjquota, "usrjquota="},
1399 {Opt_usrjquota, "usrjquota=%s"},
1400 {Opt_offgrpjquota, "grpjquota="},
1401 {Opt_grpjquota, "grpjquota=%s"},
1402 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1403 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1404 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1405 {Opt_grpquota, "grpquota"},
1406 {Opt_noquota, "noquota"},
1407 {Opt_quota, "quota"},
1408 {Opt_usrquota, "usrquota"},
1409 {Opt_prjquota, "prjquota"},
1410 {Opt_barrier, "barrier=%u"},
1411 {Opt_barrier, "barrier"},
1412 {Opt_nobarrier, "nobarrier"},
1413 {Opt_i_version, "i_version"},
1415 {Opt_stripe, "stripe=%u"},
1416 {Opt_delalloc, "delalloc"},
1417 {Opt_lazytime, "lazytime"},
1418 {Opt_nolazytime, "nolazytime"},
1419 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1420 {Opt_nodelalloc, "nodelalloc"},
1421 {Opt_removed, "mblk_io_submit"},
1422 {Opt_removed, "nomblk_io_submit"},
1423 {Opt_block_validity, "block_validity"},
1424 {Opt_noblock_validity, "noblock_validity"},
1425 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1426 {Opt_journal_ioprio, "journal_ioprio=%u"},
1427 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1428 {Opt_auto_da_alloc, "auto_da_alloc"},
1429 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1430 {Opt_dioread_nolock, "dioread_nolock"},
1431 {Opt_dioread_lock, "dioread_lock"},
1432 {Opt_discard, "discard"},
1433 {Opt_nodiscard, "nodiscard"},
1434 {Opt_init_itable, "init_itable=%u"},
1435 {Opt_init_itable, "init_itable"},
1436 {Opt_noinit_itable, "noinit_itable"},
1437 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1438 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1439 {Opt_nombcache, "nombcache"},
1440 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1441 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1442 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1443 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1444 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1445 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1449 static ext4_fsblk_t get_sb_block(void **data)
1451 ext4_fsblk_t sb_block;
1452 char *options = (char *) *data;
1454 if (!options || strncmp(options, "sb=", 3) != 0)
1455 return 1; /* Default location */
1458 /* TODO: use simple_strtoll with >32bit ext4 */
1459 sb_block = simple_strtoul(options, &options, 0);
1460 if (*options && *options != ',') {
1461 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1465 if (*options == ',')
1467 *data = (void *) options;
1472 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1473 static const char deprecated_msg[] =
1474 "Mount option \"%s\" will be removed by %s\n"
1478 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1480 struct ext4_sb_info *sbi = EXT4_SB(sb);
1484 if (sb_any_quota_loaded(sb) &&
1485 !sbi->s_qf_names[qtype]) {
1486 ext4_msg(sb, KERN_ERR,
1487 "Cannot change journaled "
1488 "quota options when quota turned on");
1491 if (ext4_has_feature_quota(sb)) {
1492 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1493 "ignored when QUOTA feature is enabled");
1496 qname = match_strdup(args);
1498 ext4_msg(sb, KERN_ERR,
1499 "Not enough memory for storing quotafile name");
1502 if (sbi->s_qf_names[qtype]) {
1503 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1506 ext4_msg(sb, KERN_ERR,
1507 "%s quota file already specified",
1511 if (strchr(qname, '/')) {
1512 ext4_msg(sb, KERN_ERR,
1513 "quotafile must be on filesystem root");
1516 sbi->s_qf_names[qtype] = qname;
1524 static int clear_qf_name(struct super_block *sb, int qtype)
1527 struct ext4_sb_info *sbi = EXT4_SB(sb);
1529 if (sb_any_quota_loaded(sb) &&
1530 sbi->s_qf_names[qtype]) {
1531 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1532 " when quota turned on");
1535 kfree(sbi->s_qf_names[qtype]);
1536 sbi->s_qf_names[qtype] = NULL;
1541 #define MOPT_SET 0x0001
1542 #define MOPT_CLEAR 0x0002
1543 #define MOPT_NOSUPPORT 0x0004
1544 #define MOPT_EXPLICIT 0x0008
1545 #define MOPT_CLEAR_ERR 0x0010
1546 #define MOPT_GTE0 0x0020
1549 #define MOPT_QFMT 0x0040
1551 #define MOPT_Q MOPT_NOSUPPORT
1552 #define MOPT_QFMT MOPT_NOSUPPORT
1554 #define MOPT_DATAJ 0x0080
1555 #define MOPT_NO_EXT2 0x0100
1556 #define MOPT_NO_EXT3 0x0200
1557 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1558 #define MOPT_STRING 0x0400
1560 static const struct mount_opts {
1564 } ext4_mount_opts[] = {
1565 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1566 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1567 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1568 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1569 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1570 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1571 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1572 MOPT_EXT4_ONLY | MOPT_SET},
1573 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1574 MOPT_EXT4_ONLY | MOPT_CLEAR},
1575 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1576 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1577 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1578 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1579 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1580 MOPT_EXT4_ONLY | MOPT_CLEAR},
1581 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1582 MOPT_EXT4_ONLY | MOPT_CLEAR},
1583 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1584 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1585 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1586 EXT4_MOUNT_JOURNAL_CHECKSUM),
1587 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1588 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1589 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1590 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1591 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1592 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1594 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1596 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1597 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1598 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1599 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1600 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1601 {Opt_commit, 0, MOPT_GTE0},
1602 {Opt_max_batch_time, 0, MOPT_GTE0},
1603 {Opt_min_batch_time, 0, MOPT_GTE0},
1604 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1605 {Opt_init_itable, 0, MOPT_GTE0},
1606 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1607 {Opt_stripe, 0, MOPT_GTE0},
1608 {Opt_resuid, 0, MOPT_GTE0},
1609 {Opt_resgid, 0, MOPT_GTE0},
1610 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1611 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1612 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1613 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1614 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1615 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1616 MOPT_NO_EXT2 | MOPT_DATAJ},
1617 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1618 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1619 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1620 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1621 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1623 {Opt_acl, 0, MOPT_NOSUPPORT},
1624 {Opt_noacl, 0, MOPT_NOSUPPORT},
1626 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1627 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1628 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1629 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1630 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1632 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1634 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1636 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1637 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1638 MOPT_CLEAR | MOPT_Q},
1639 {Opt_usrjquota, 0, MOPT_Q},
1640 {Opt_grpjquota, 0, MOPT_Q},
1641 {Opt_offusrjquota, 0, MOPT_Q},
1642 {Opt_offgrpjquota, 0, MOPT_Q},
1643 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1644 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1645 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1646 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1647 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1648 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1652 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1653 substring_t *args, unsigned long *journal_devnum,
1654 unsigned int *journal_ioprio, int is_remount)
1656 struct ext4_sb_info *sbi = EXT4_SB(sb);
1657 const struct mount_opts *m;
1663 if (token == Opt_usrjquota)
1664 return set_qf_name(sb, USRQUOTA, &args[0]);
1665 else if (token == Opt_grpjquota)
1666 return set_qf_name(sb, GRPQUOTA, &args[0]);
1667 else if (token == Opt_offusrjquota)
1668 return clear_qf_name(sb, USRQUOTA);
1669 else if (token == Opt_offgrpjquota)
1670 return clear_qf_name(sb, GRPQUOTA);
1674 case Opt_nouser_xattr:
1675 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1678 return 1; /* handled by get_sb_block() */
1680 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1683 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1686 sb->s_flags |= SB_I_VERSION;
1689 sb->s_flags |= SB_LAZYTIME;
1691 case Opt_nolazytime:
1692 sb->s_flags &= ~SB_LAZYTIME;
1696 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1697 if (token == m->token)
1700 if (m->token == Opt_err) {
1701 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1702 "or missing value", opt);
1706 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1707 ext4_msg(sb, KERN_ERR,
1708 "Mount option \"%s\" incompatible with ext2", opt);
1711 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1712 ext4_msg(sb, KERN_ERR,
1713 "Mount option \"%s\" incompatible with ext3", opt);
1717 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1719 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1721 if (m->flags & MOPT_EXPLICIT) {
1722 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1723 set_opt2(sb, EXPLICIT_DELALLOC);
1724 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1725 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1729 if (m->flags & MOPT_CLEAR_ERR)
1730 clear_opt(sb, ERRORS_MASK);
1731 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1732 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1733 "options when quota turned on");
1737 if (m->flags & MOPT_NOSUPPORT) {
1738 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1739 } else if (token == Opt_commit) {
1741 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1742 sbi->s_commit_interval = HZ * arg;
1743 } else if (token == Opt_debug_want_extra_isize) {
1744 sbi->s_want_extra_isize = arg;
1745 } else if (token == Opt_max_batch_time) {
1746 sbi->s_max_batch_time = arg;
1747 } else if (token == Opt_min_batch_time) {
1748 sbi->s_min_batch_time = arg;
1749 } else if (token == Opt_inode_readahead_blks) {
1750 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1751 ext4_msg(sb, KERN_ERR,
1752 "EXT4-fs: inode_readahead_blks must be "
1753 "0 or a power of 2 smaller than 2^31");
1756 sbi->s_inode_readahead_blks = arg;
1757 } else if (token == Opt_init_itable) {
1758 set_opt(sb, INIT_INODE_TABLE);
1760 arg = EXT4_DEF_LI_WAIT_MULT;
1761 sbi->s_li_wait_mult = arg;
1762 } else if (token == Opt_max_dir_size_kb) {
1763 sbi->s_max_dir_size_kb = arg;
1764 } else if (token == Opt_stripe) {
1765 sbi->s_stripe = arg;
1766 } else if (token == Opt_resuid) {
1767 uid = make_kuid(current_user_ns(), arg);
1768 if (!uid_valid(uid)) {
1769 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1772 sbi->s_resuid = uid;
1773 } else if (token == Opt_resgid) {
1774 gid = make_kgid(current_user_ns(), arg);
1775 if (!gid_valid(gid)) {
1776 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1779 sbi->s_resgid = gid;
1780 } else if (token == Opt_journal_dev) {
1782 ext4_msg(sb, KERN_ERR,
1783 "Cannot specify journal on remount");
1786 *journal_devnum = arg;
1787 } else if (token == Opt_journal_path) {
1789 struct inode *journal_inode;
1794 ext4_msg(sb, KERN_ERR,
1795 "Cannot specify journal on remount");
1798 journal_path = match_strdup(&args[0]);
1799 if (!journal_path) {
1800 ext4_msg(sb, KERN_ERR, "error: could not dup "
1801 "journal device string");
1805 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1807 ext4_msg(sb, KERN_ERR, "error: could not find "
1808 "journal device path: error %d", error);
1809 kfree(journal_path);
1813 journal_inode = d_inode(path.dentry);
1814 if (!S_ISBLK(journal_inode->i_mode)) {
1815 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1816 "is not a block device", journal_path);
1818 kfree(journal_path);
1822 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1824 kfree(journal_path);
1825 } else if (token == Opt_journal_ioprio) {
1827 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1832 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1833 } else if (token == Opt_test_dummy_encryption) {
1834 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1835 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1836 ext4_msg(sb, KERN_WARNING,
1837 "Test dummy encryption mode enabled");
1839 ext4_msg(sb, KERN_WARNING,
1840 "Test dummy encryption mount option ignored");
1842 } else if (m->flags & MOPT_DATAJ) {
1844 if (!sbi->s_journal)
1845 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1846 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1847 ext4_msg(sb, KERN_ERR,
1848 "Cannot change data mode on remount");
1852 clear_opt(sb, DATA_FLAGS);
1853 sbi->s_mount_opt |= m->mount_opt;
1856 } else if (m->flags & MOPT_QFMT) {
1857 if (sb_any_quota_loaded(sb) &&
1858 sbi->s_jquota_fmt != m->mount_opt) {
1859 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1860 "quota options when quota turned on");
1863 if (ext4_has_feature_quota(sb)) {
1864 ext4_msg(sb, KERN_INFO,
1865 "Quota format mount options ignored "
1866 "when QUOTA feature is enabled");
1869 sbi->s_jquota_fmt = m->mount_opt;
1871 } else if (token == Opt_dax) {
1872 #ifdef CONFIG_FS_DAX
1873 ext4_msg(sb, KERN_WARNING,
1874 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1875 sbi->s_mount_opt |= m->mount_opt;
1877 ext4_msg(sb, KERN_INFO, "dax option not supported");
1880 } else if (token == Opt_data_err_abort) {
1881 sbi->s_mount_opt |= m->mount_opt;
1882 } else if (token == Opt_data_err_ignore) {
1883 sbi->s_mount_opt &= ~m->mount_opt;
1887 if (m->flags & MOPT_CLEAR)
1889 else if (unlikely(!(m->flags & MOPT_SET))) {
1890 ext4_msg(sb, KERN_WARNING,
1891 "buggy handling of option %s", opt);
1896 sbi->s_mount_opt |= m->mount_opt;
1898 sbi->s_mount_opt &= ~m->mount_opt;
1903 static int parse_options(char *options, struct super_block *sb,
1904 unsigned long *journal_devnum,
1905 unsigned int *journal_ioprio,
1908 struct ext4_sb_info *sbi = EXT4_SB(sb);
1910 substring_t args[MAX_OPT_ARGS];
1916 while ((p = strsep(&options, ",")) != NULL) {
1920 * Initialize args struct so we know whether arg was
1921 * found; some options take optional arguments.
1923 args[0].to = args[0].from = NULL;
1924 token = match_token(p, tokens, args);
1925 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1926 journal_ioprio, is_remount) < 0)
1931 * We do the test below only for project quotas. 'usrquota' and
1932 * 'grpquota' mount options are allowed even without quota feature
1933 * to support legacy quotas in quota files.
1935 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1936 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1937 "Cannot enable project quota enforcement.");
1940 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1941 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1942 clear_opt(sb, USRQUOTA);
1944 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1945 clear_opt(sb, GRPQUOTA);
1947 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1948 ext4_msg(sb, KERN_ERR, "old and new quota "
1953 if (!sbi->s_jquota_fmt) {
1954 ext4_msg(sb, KERN_ERR, "journaled quota format "
1960 if (test_opt(sb, DIOREAD_NOLOCK)) {
1962 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1964 if (blocksize < PAGE_SIZE) {
1965 ext4_msg(sb, KERN_ERR, "can't mount with "
1966 "dioread_nolock if block size != PAGE_SIZE");
1973 static inline void ext4_show_quota_options(struct seq_file *seq,
1974 struct super_block *sb)
1976 #if defined(CONFIG_QUOTA)
1977 struct ext4_sb_info *sbi = EXT4_SB(sb);
1979 if (sbi->s_jquota_fmt) {
1982 switch (sbi->s_jquota_fmt) {
1993 seq_printf(seq, ",jqfmt=%s", fmtname);
1996 if (sbi->s_qf_names[USRQUOTA])
1997 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1999 if (sbi->s_qf_names[GRPQUOTA])
2000 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
2004 static const char *token2str(int token)
2006 const struct match_token *t;
2008 for (t = tokens; t->token != Opt_err; t++)
2009 if (t->token == token && !strchr(t->pattern, '='))
2016 * - it's set to a non-default value OR
2017 * - if the per-sb default is different from the global default
2019 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2022 struct ext4_sb_info *sbi = EXT4_SB(sb);
2023 struct ext4_super_block *es = sbi->s_es;
2024 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2025 const struct mount_opts *m;
2026 char sep = nodefs ? '\n' : ',';
2028 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2029 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2031 if (sbi->s_sb_block != 1)
2032 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2034 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2035 int want_set = m->flags & MOPT_SET;
2036 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2037 (m->flags & MOPT_CLEAR_ERR))
2039 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2040 continue; /* skip if same as the default */
2042 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2043 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2044 continue; /* select Opt_noFoo vs Opt_Foo */
2045 SEQ_OPTS_PRINT("%s", token2str(m->token));
2048 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2049 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2050 SEQ_OPTS_PRINT("resuid=%u",
2051 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2052 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2053 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2054 SEQ_OPTS_PRINT("resgid=%u",
2055 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2056 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2057 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2058 SEQ_OPTS_PUTS("errors=remount-ro");
2059 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2060 SEQ_OPTS_PUTS("errors=continue");
2061 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2062 SEQ_OPTS_PUTS("errors=panic");
2063 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2064 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2065 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2066 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2067 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2068 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2069 if (sb->s_flags & SB_I_VERSION)
2070 SEQ_OPTS_PUTS("i_version");
2071 if (nodefs || sbi->s_stripe)
2072 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2073 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2074 (sbi->s_mount_opt ^ def_mount_opt)) {
2075 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2076 SEQ_OPTS_PUTS("data=journal");
2077 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2078 SEQ_OPTS_PUTS("data=ordered");
2079 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2080 SEQ_OPTS_PUTS("data=writeback");
2083 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2084 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2085 sbi->s_inode_readahead_blks);
2087 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2088 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2089 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2090 if (nodefs || sbi->s_max_dir_size_kb)
2091 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2092 if (test_opt(sb, DATA_ERR_ABORT))
2093 SEQ_OPTS_PUTS("data_err=abort");
2095 ext4_show_quota_options(seq, sb);
2099 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2101 return _ext4_show_options(seq, root->d_sb, 0);
2104 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2106 struct super_block *sb = seq->private;
2109 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2110 rc = _ext4_show_options(seq, sb, 1);
2111 seq_puts(seq, "\n");
2115 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2118 struct ext4_sb_info *sbi = EXT4_SB(sb);
2121 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2122 ext4_msg(sb, KERN_ERR, "revision level too high, "
2123 "forcing read-only mode");
2128 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2129 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2130 "running e2fsck is recommended");
2131 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2132 ext4_msg(sb, KERN_WARNING,
2133 "warning: mounting fs with errors, "
2134 "running e2fsck is recommended");
2135 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2136 le16_to_cpu(es->s_mnt_count) >=
2137 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2138 ext4_msg(sb, KERN_WARNING,
2139 "warning: maximal mount count reached, "
2140 "running e2fsck is recommended");
2141 else if (le32_to_cpu(es->s_checkinterval) &&
2142 (le32_to_cpu(es->s_lastcheck) +
2143 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2144 ext4_msg(sb, KERN_WARNING,
2145 "warning: checktime reached, "
2146 "running e2fsck is recommended");
2147 if (!sbi->s_journal)
2148 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2149 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2150 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2151 le16_add_cpu(&es->s_mnt_count, 1);
2152 es->s_mtime = cpu_to_le32(get_seconds());
2153 ext4_update_dynamic_rev(sb);
2155 ext4_set_feature_journal_needs_recovery(sb);
2157 ext4_commit_super(sb, 1);
2159 if (test_opt(sb, DEBUG))
2160 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2161 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2163 sbi->s_groups_count,
2164 EXT4_BLOCKS_PER_GROUP(sb),
2165 EXT4_INODES_PER_GROUP(sb),
2166 sbi->s_mount_opt, sbi->s_mount_opt2);
2168 cleancache_init_fs(sb);
2172 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2174 struct ext4_sb_info *sbi = EXT4_SB(sb);
2175 struct flex_groups *new_groups;
2178 if (!sbi->s_log_groups_per_flex)
2181 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2182 if (size <= sbi->s_flex_groups_allocated)
2185 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2186 new_groups = kvzalloc(size, GFP_KERNEL);
2188 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2189 size / (int) sizeof(struct flex_groups));
2193 if (sbi->s_flex_groups) {
2194 memcpy(new_groups, sbi->s_flex_groups,
2195 (sbi->s_flex_groups_allocated *
2196 sizeof(struct flex_groups)));
2197 kvfree(sbi->s_flex_groups);
2199 sbi->s_flex_groups = new_groups;
2200 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2204 static int ext4_fill_flex_info(struct super_block *sb)
2206 struct ext4_sb_info *sbi = EXT4_SB(sb);
2207 struct ext4_group_desc *gdp = NULL;
2208 ext4_group_t flex_group;
2211 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2212 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2213 sbi->s_log_groups_per_flex = 0;
2217 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2221 for (i = 0; i < sbi->s_groups_count; i++) {
2222 gdp = ext4_get_group_desc(sb, i, NULL);
2224 flex_group = ext4_flex_group(sbi, i);
2225 atomic_add(ext4_free_inodes_count(sb, gdp),
2226 &sbi->s_flex_groups[flex_group].free_inodes);
2227 atomic64_add(ext4_free_group_clusters(sb, gdp),
2228 &sbi->s_flex_groups[flex_group].free_clusters);
2229 atomic_add(ext4_used_dirs_count(sb, gdp),
2230 &sbi->s_flex_groups[flex_group].used_dirs);
2238 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2239 struct ext4_group_desc *gdp)
2241 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2243 __le32 le_group = cpu_to_le32(block_group);
2244 struct ext4_sb_info *sbi = EXT4_SB(sb);
2246 if (ext4_has_metadata_csum(sbi->s_sb)) {
2247 /* Use new metadata_csum algorithm */
2249 __u16 dummy_csum = 0;
2251 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2253 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2254 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2255 sizeof(dummy_csum));
2256 offset += sizeof(dummy_csum);
2257 if (offset < sbi->s_desc_size)
2258 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2259 sbi->s_desc_size - offset);
2261 crc = csum32 & 0xFFFF;
2265 /* old crc16 code */
2266 if (!ext4_has_feature_gdt_csum(sb))
2269 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2270 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2271 crc = crc16(crc, (__u8 *)gdp, offset);
2272 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2273 /* for checksum of struct ext4_group_desc do the rest...*/
2274 if (ext4_has_feature_64bit(sb) &&
2275 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2276 crc = crc16(crc, (__u8 *)gdp + offset,
2277 le16_to_cpu(sbi->s_es->s_desc_size) -
2281 return cpu_to_le16(crc);
2284 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2285 struct ext4_group_desc *gdp)
2287 if (ext4_has_group_desc_csum(sb) &&
2288 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2294 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2295 struct ext4_group_desc *gdp)
2297 if (!ext4_has_group_desc_csum(sb))
2299 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2302 /* Called at mount-time, super-block is locked */
2303 static int ext4_check_descriptors(struct super_block *sb,
2304 ext4_fsblk_t sb_block,
2305 ext4_group_t *first_not_zeroed)
2307 struct ext4_sb_info *sbi = EXT4_SB(sb);
2308 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2309 ext4_fsblk_t last_block;
2310 ext4_fsblk_t block_bitmap;
2311 ext4_fsblk_t inode_bitmap;
2312 ext4_fsblk_t inode_table;
2313 int flexbg_flag = 0;
2314 ext4_group_t i, grp = sbi->s_groups_count;
2316 if (ext4_has_feature_flex_bg(sb))
2319 ext4_debug("Checking group descriptors");
2321 for (i = 0; i < sbi->s_groups_count; i++) {
2322 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2324 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2325 last_block = ext4_blocks_count(sbi->s_es) - 1;
2327 last_block = first_block +
2328 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2330 if ((grp == sbi->s_groups_count) &&
2331 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2334 block_bitmap = ext4_block_bitmap(sb, gdp);
2335 if (block_bitmap == sb_block) {
2336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337 "Block bitmap for group %u overlaps "
2342 if (block_bitmap < first_block || block_bitmap > last_block) {
2343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344 "Block bitmap for group %u not in group "
2345 "(block %llu)!", i, block_bitmap);
2348 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2349 if (inode_bitmap == sb_block) {
2350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2351 "Inode bitmap for group %u overlaps "
2356 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2357 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2358 "Inode bitmap for group %u not in group "
2359 "(block %llu)!", i, inode_bitmap);
2362 inode_table = ext4_inode_table(sb, gdp);
2363 if (inode_table == sb_block) {
2364 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2365 "Inode table for group %u overlaps "
2370 if (inode_table < first_block ||
2371 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2373 "Inode table for group %u not in group "
2374 "(block %llu)!", i, inode_table);
2377 ext4_lock_group(sb, i);
2378 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2379 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2380 "Checksum for group %u failed (%u!=%u)",
2381 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2382 gdp)), le16_to_cpu(gdp->bg_checksum));
2383 if (!sb_rdonly(sb)) {
2384 ext4_unlock_group(sb, i);
2388 ext4_unlock_group(sb, i);
2390 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2392 if (NULL != first_not_zeroed)
2393 *first_not_zeroed = grp;
2397 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2398 * the superblock) which were deleted from all directories, but held open by
2399 * a process at the time of a crash. We walk the list and try to delete these
2400 * inodes at recovery time (only with a read-write filesystem).
2402 * In order to keep the orphan inode chain consistent during traversal (in
2403 * case of crash during recovery), we link each inode into the superblock
2404 * orphan list_head and handle it the same way as an inode deletion during
2405 * normal operation (which journals the operations for us).
2407 * We only do an iget() and an iput() on each inode, which is very safe if we
2408 * accidentally point at an in-use or already deleted inode. The worst that
2409 * can happen in this case is that we get a "bit already cleared" message from
2410 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2411 * e2fsck was run on this filesystem, and it must have already done the orphan
2412 * inode cleanup for us, so we can safely abort without any further action.
2414 static void ext4_orphan_cleanup(struct super_block *sb,
2415 struct ext4_super_block *es)
2417 unsigned int s_flags = sb->s_flags;
2418 int ret, nr_orphans = 0, nr_truncates = 0;
2420 int quota_update = 0;
2423 if (!es->s_last_orphan) {
2424 jbd_debug(4, "no orphan inodes to clean up\n");
2428 if (bdev_read_only(sb->s_bdev)) {
2429 ext4_msg(sb, KERN_ERR, "write access "
2430 "unavailable, skipping orphan cleanup");
2434 /* Check if feature set would not allow a r/w mount */
2435 if (!ext4_feature_set_ok(sb, 0)) {
2436 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2437 "unknown ROCOMPAT features");
2441 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2442 /* don't clear list on RO mount w/ errors */
2443 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2444 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2445 "clearing orphan list.\n");
2446 es->s_last_orphan = 0;
2448 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2452 if (s_flags & SB_RDONLY) {
2453 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2454 sb->s_flags &= ~SB_RDONLY;
2457 /* Needed for iput() to work correctly and not trash data */
2458 sb->s_flags |= SB_ACTIVE;
2461 * Turn on quotas which were not enabled for read-only mounts if
2462 * filesystem has quota feature, so that they are updated correctly.
2464 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2465 int ret = ext4_enable_quotas(sb);
2470 ext4_msg(sb, KERN_ERR,
2471 "Cannot turn on quotas: error %d", ret);
2474 /* Turn on journaled quotas used for old sytle */
2475 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2476 if (EXT4_SB(sb)->s_qf_names[i]) {
2477 int ret = ext4_quota_on_mount(sb, i);
2482 ext4_msg(sb, KERN_ERR,
2483 "Cannot turn on journaled "
2484 "quota: type %d: error %d", i, ret);
2489 while (es->s_last_orphan) {
2490 struct inode *inode;
2493 * We may have encountered an error during cleanup; if
2494 * so, skip the rest.
2496 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2497 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2498 es->s_last_orphan = 0;
2502 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2503 if (IS_ERR(inode)) {
2504 es->s_last_orphan = 0;
2508 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2509 dquot_initialize(inode);
2510 if (inode->i_nlink) {
2511 if (test_opt(sb, DEBUG))
2512 ext4_msg(sb, KERN_DEBUG,
2513 "%s: truncating inode %lu to %lld bytes",
2514 __func__, inode->i_ino, inode->i_size);
2515 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2516 inode->i_ino, inode->i_size);
2518 truncate_inode_pages(inode->i_mapping, inode->i_size);
2519 ret = ext4_truncate(inode);
2521 ext4_std_error(inode->i_sb, ret);
2522 inode_unlock(inode);
2525 if (test_opt(sb, DEBUG))
2526 ext4_msg(sb, KERN_DEBUG,
2527 "%s: deleting unreferenced inode %lu",
2528 __func__, inode->i_ino);
2529 jbd_debug(2, "deleting unreferenced inode %lu\n",
2533 iput(inode); /* The delete magic happens here! */
2536 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2539 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2540 PLURAL(nr_orphans));
2542 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2543 PLURAL(nr_truncates));
2545 /* Turn off quotas if they were enabled for orphan cleanup */
2547 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548 if (sb_dqopt(sb)->files[i])
2549 dquot_quota_off(sb, i);
2553 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2557 * Maximal extent format file size.
2558 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2559 * extent format containers, within a sector_t, and within i_blocks
2560 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2561 * so that won't be a limiting factor.
2563 * However there is other limiting factor. We do store extents in the form
2564 * of starting block and length, hence the resulting length of the extent
2565 * covering maximum file size must fit into on-disk format containers as
2566 * well. Given that length is always by 1 unit bigger than max unit (because
2567 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2569 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2571 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2574 loff_t upper_limit = MAX_LFS_FILESIZE;
2576 /* small i_blocks in vfs inode? */
2577 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2579 * CONFIG_LBDAF is not enabled implies the inode
2580 * i_block represent total blocks in 512 bytes
2581 * 32 == size of vfs inode i_blocks * 8
2583 upper_limit = (1LL << 32) - 1;
2585 /* total blocks in file system block size */
2586 upper_limit >>= (blkbits - 9);
2587 upper_limit <<= blkbits;
2591 * 32-bit extent-start container, ee_block. We lower the maxbytes
2592 * by one fs block, so ee_len can cover the extent of maximum file
2595 res = (1LL << 32) - 1;
2598 /* Sanity check against vm- & vfs- imposed limits */
2599 if (res > upper_limit)
2606 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2607 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2608 * We need to be 1 filesystem block less than the 2^48 sector limit.
2610 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2612 loff_t res = EXT4_NDIR_BLOCKS;
2615 /* This is calculated to be the largest file size for a dense, block
2616 * mapped file such that the file's total number of 512-byte sectors,
2617 * including data and all indirect blocks, does not exceed (2^48 - 1).
2619 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2620 * number of 512-byte sectors of the file.
2623 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2625 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2626 * the inode i_block field represents total file blocks in
2627 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2629 upper_limit = (1LL << 32) - 1;
2631 /* total blocks in file system block size */
2632 upper_limit >>= (bits - 9);
2636 * We use 48 bit ext4_inode i_blocks
2637 * With EXT4_HUGE_FILE_FL set the i_blocks
2638 * represent total number of blocks in
2639 * file system block size
2641 upper_limit = (1LL << 48) - 1;
2645 /* indirect blocks */
2647 /* double indirect blocks */
2648 meta_blocks += 1 + (1LL << (bits-2));
2649 /* tripple indirect blocks */
2650 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2652 upper_limit -= meta_blocks;
2653 upper_limit <<= bits;
2655 res += 1LL << (bits-2);
2656 res += 1LL << (2*(bits-2));
2657 res += 1LL << (3*(bits-2));
2659 if (res > upper_limit)
2662 if (res > MAX_LFS_FILESIZE)
2663 res = MAX_LFS_FILESIZE;
2668 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2669 ext4_fsblk_t logical_sb_block, int nr)
2671 struct ext4_sb_info *sbi = EXT4_SB(sb);
2672 ext4_group_t bg, first_meta_bg;
2675 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2677 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2678 return logical_sb_block + nr + 1;
2679 bg = sbi->s_desc_per_block * nr;
2680 if (ext4_bg_has_super(sb, bg))
2684 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2685 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2686 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2689 if (sb->s_blocksize == 1024 && nr == 0 &&
2690 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2693 return (has_super + ext4_group_first_block_no(sb, bg));
2697 * ext4_get_stripe_size: Get the stripe size.
2698 * @sbi: In memory super block info
2700 * If we have specified it via mount option, then
2701 * use the mount option value. If the value specified at mount time is
2702 * greater than the blocks per group use the super block value.
2703 * If the super block value is greater than blocks per group return 0.
2704 * Allocator needs it be less than blocks per group.
2707 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2709 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2710 unsigned long stripe_width =
2711 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2714 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2715 ret = sbi->s_stripe;
2716 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2718 else if (stride && stride <= sbi->s_blocks_per_group)
2724 * If the stripe width is 1, this makes no sense and
2725 * we set it to 0 to turn off stripe handling code.
2734 * Check whether this filesystem can be mounted based on
2735 * the features present and the RDONLY/RDWR mount requested.
2736 * Returns 1 if this filesystem can be mounted as requested,
2737 * 0 if it cannot be.
2739 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2741 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2742 ext4_msg(sb, KERN_ERR,
2743 "Couldn't mount because of "
2744 "unsupported optional features (%x)",
2745 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2746 ~EXT4_FEATURE_INCOMPAT_SUPP));
2753 if (ext4_has_feature_readonly(sb)) {
2754 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2755 sb->s_flags |= SB_RDONLY;
2759 /* Check that feature set is OK for a read-write mount */
2760 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2761 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2762 "unsupported optional features (%x)",
2763 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2764 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2768 * Large file size enabled file system can only be mounted
2769 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2771 if (ext4_has_feature_huge_file(sb)) {
2772 if (sizeof(blkcnt_t) < sizeof(u64)) {
2773 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2774 "cannot be mounted RDWR without "
2779 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2780 ext4_msg(sb, KERN_ERR,
2781 "Can't support bigalloc feature without "
2782 "extents feature\n");
2786 #ifndef CONFIG_QUOTA
2787 if (ext4_has_feature_quota(sb) && !readonly) {
2788 ext4_msg(sb, KERN_ERR,
2789 "Filesystem with quota feature cannot be mounted RDWR "
2790 "without CONFIG_QUOTA");
2793 if (ext4_has_feature_project(sb) && !readonly) {
2794 ext4_msg(sb, KERN_ERR,
2795 "Filesystem with project quota feature cannot be mounted RDWR "
2796 "without CONFIG_QUOTA");
2799 #endif /* CONFIG_QUOTA */
2804 * This function is called once a day if we have errors logged
2805 * on the file system
2807 static void print_daily_error_info(struct timer_list *t)
2809 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2810 struct super_block *sb = sbi->s_sb;
2811 struct ext4_super_block *es = sbi->s_es;
2813 if (es->s_error_count)
2814 /* fsck newer than v1.41.13 is needed to clean this condition. */
2815 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2816 le32_to_cpu(es->s_error_count));
2817 if (es->s_first_error_time) {
2818 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2819 sb->s_id, le32_to_cpu(es->s_first_error_time),
2820 (int) sizeof(es->s_first_error_func),
2821 es->s_first_error_func,
2822 le32_to_cpu(es->s_first_error_line));
2823 if (es->s_first_error_ino)
2824 printk(KERN_CONT ": inode %u",
2825 le32_to_cpu(es->s_first_error_ino));
2826 if (es->s_first_error_block)
2827 printk(KERN_CONT ": block %llu", (unsigned long long)
2828 le64_to_cpu(es->s_first_error_block));
2829 printk(KERN_CONT "\n");
2831 if (es->s_last_error_time) {
2832 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2833 sb->s_id, le32_to_cpu(es->s_last_error_time),
2834 (int) sizeof(es->s_last_error_func),
2835 es->s_last_error_func,
2836 le32_to_cpu(es->s_last_error_line));
2837 if (es->s_last_error_ino)
2838 printk(KERN_CONT ": inode %u",
2839 le32_to_cpu(es->s_last_error_ino));
2840 if (es->s_last_error_block)
2841 printk(KERN_CONT ": block %llu", (unsigned long long)
2842 le64_to_cpu(es->s_last_error_block));
2843 printk(KERN_CONT "\n");
2845 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2848 /* Find next suitable group and run ext4_init_inode_table */
2849 static int ext4_run_li_request(struct ext4_li_request *elr)
2851 struct ext4_group_desc *gdp = NULL;
2852 ext4_group_t group, ngroups;
2853 struct super_block *sb;
2854 unsigned long timeout = 0;
2858 ngroups = EXT4_SB(sb)->s_groups_count;
2860 for (group = elr->lr_next_group; group < ngroups; group++) {
2861 gdp = ext4_get_group_desc(sb, group, NULL);
2867 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2871 if (group >= ngroups)
2876 ret = ext4_init_inode_table(sb, group,
2877 elr->lr_timeout ? 0 : 1);
2878 if (elr->lr_timeout == 0) {
2879 timeout = (jiffies - timeout) *
2880 elr->lr_sbi->s_li_wait_mult;
2881 elr->lr_timeout = timeout;
2883 elr->lr_next_sched = jiffies + elr->lr_timeout;
2884 elr->lr_next_group = group + 1;
2890 * Remove lr_request from the list_request and free the
2891 * request structure. Should be called with li_list_mtx held
2893 static void ext4_remove_li_request(struct ext4_li_request *elr)
2895 struct ext4_sb_info *sbi;
2902 list_del(&elr->lr_request);
2903 sbi->s_li_request = NULL;
2907 static void ext4_unregister_li_request(struct super_block *sb)
2909 mutex_lock(&ext4_li_mtx);
2910 if (!ext4_li_info) {
2911 mutex_unlock(&ext4_li_mtx);
2915 mutex_lock(&ext4_li_info->li_list_mtx);
2916 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2917 mutex_unlock(&ext4_li_info->li_list_mtx);
2918 mutex_unlock(&ext4_li_mtx);
2921 static struct task_struct *ext4_lazyinit_task;
2924 * This is the function where ext4lazyinit thread lives. It walks
2925 * through the request list searching for next scheduled filesystem.
2926 * When such a fs is found, run the lazy initialization request
2927 * (ext4_rn_li_request) and keep track of the time spend in this
2928 * function. Based on that time we compute next schedule time of
2929 * the request. When walking through the list is complete, compute
2930 * next waking time and put itself into sleep.
2932 static int ext4_lazyinit_thread(void *arg)
2934 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2935 struct list_head *pos, *n;
2936 struct ext4_li_request *elr;
2937 unsigned long next_wakeup, cur;
2939 BUG_ON(NULL == eli);
2943 next_wakeup = MAX_JIFFY_OFFSET;
2945 mutex_lock(&eli->li_list_mtx);
2946 if (list_empty(&eli->li_request_list)) {
2947 mutex_unlock(&eli->li_list_mtx);
2950 list_for_each_safe(pos, n, &eli->li_request_list) {
2953 elr = list_entry(pos, struct ext4_li_request,
2956 if (time_before(jiffies, elr->lr_next_sched)) {
2957 if (time_before(elr->lr_next_sched, next_wakeup))
2958 next_wakeup = elr->lr_next_sched;
2961 if (down_read_trylock(&elr->lr_super->s_umount)) {
2962 if (sb_start_write_trylock(elr->lr_super)) {
2965 * We hold sb->s_umount, sb can not
2966 * be removed from the list, it is
2967 * now safe to drop li_list_mtx
2969 mutex_unlock(&eli->li_list_mtx);
2970 err = ext4_run_li_request(elr);
2971 sb_end_write(elr->lr_super);
2972 mutex_lock(&eli->li_list_mtx);
2975 up_read((&elr->lr_super->s_umount));
2977 /* error, remove the lazy_init job */
2979 ext4_remove_li_request(elr);
2983 elr->lr_next_sched = jiffies +
2985 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2987 if (time_before(elr->lr_next_sched, next_wakeup))
2988 next_wakeup = elr->lr_next_sched;
2990 mutex_unlock(&eli->li_list_mtx);
2995 if ((time_after_eq(cur, next_wakeup)) ||
2996 (MAX_JIFFY_OFFSET == next_wakeup)) {
3001 schedule_timeout_interruptible(next_wakeup - cur);
3003 if (kthread_should_stop()) {
3004 ext4_clear_request_list();
3011 * It looks like the request list is empty, but we need
3012 * to check it under the li_list_mtx lock, to prevent any
3013 * additions into it, and of course we should lock ext4_li_mtx
3014 * to atomically free the list and ext4_li_info, because at
3015 * this point another ext4 filesystem could be registering
3018 mutex_lock(&ext4_li_mtx);
3019 mutex_lock(&eli->li_list_mtx);
3020 if (!list_empty(&eli->li_request_list)) {
3021 mutex_unlock(&eli->li_list_mtx);
3022 mutex_unlock(&ext4_li_mtx);
3025 mutex_unlock(&eli->li_list_mtx);
3026 kfree(ext4_li_info);
3027 ext4_li_info = NULL;
3028 mutex_unlock(&ext4_li_mtx);
3033 static void ext4_clear_request_list(void)
3035 struct list_head *pos, *n;
3036 struct ext4_li_request *elr;
3038 mutex_lock(&ext4_li_info->li_list_mtx);
3039 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3040 elr = list_entry(pos, struct ext4_li_request,
3042 ext4_remove_li_request(elr);
3044 mutex_unlock(&ext4_li_info->li_list_mtx);
3047 static int ext4_run_lazyinit_thread(void)
3049 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3050 ext4_li_info, "ext4lazyinit");
3051 if (IS_ERR(ext4_lazyinit_task)) {
3052 int err = PTR_ERR(ext4_lazyinit_task);
3053 ext4_clear_request_list();
3054 kfree(ext4_li_info);
3055 ext4_li_info = NULL;
3056 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3057 "initialization thread\n",
3061 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3066 * Check whether it make sense to run itable init. thread or not.
3067 * If there is at least one uninitialized inode table, return
3068 * corresponding group number, else the loop goes through all
3069 * groups and return total number of groups.
3071 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3073 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3074 struct ext4_group_desc *gdp = NULL;
3076 for (group = 0; group < ngroups; group++) {
3077 gdp = ext4_get_group_desc(sb, group, NULL);
3081 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3088 static int ext4_li_info_new(void)
3090 struct ext4_lazy_init *eli = NULL;
3092 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3096 INIT_LIST_HEAD(&eli->li_request_list);
3097 mutex_init(&eli->li_list_mtx);
3099 eli->li_state |= EXT4_LAZYINIT_QUIT;
3106 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3109 struct ext4_sb_info *sbi = EXT4_SB(sb);
3110 struct ext4_li_request *elr;
3112 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3118 elr->lr_next_group = start;
3121 * Randomize first schedule time of the request to
3122 * spread the inode table initialization requests
3125 elr->lr_next_sched = jiffies + (prandom_u32() %
3126 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3130 int ext4_register_li_request(struct super_block *sb,
3131 ext4_group_t first_not_zeroed)
3133 struct ext4_sb_info *sbi = EXT4_SB(sb);
3134 struct ext4_li_request *elr = NULL;
3135 ext4_group_t ngroups = sbi->s_groups_count;
3138 mutex_lock(&ext4_li_mtx);
3139 if (sbi->s_li_request != NULL) {
3141 * Reset timeout so it can be computed again, because
3142 * s_li_wait_mult might have changed.
3144 sbi->s_li_request->lr_timeout = 0;
3148 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3149 !test_opt(sb, INIT_INODE_TABLE))
3152 elr = ext4_li_request_new(sb, first_not_zeroed);
3158 if (NULL == ext4_li_info) {
3159 ret = ext4_li_info_new();
3164 mutex_lock(&ext4_li_info->li_list_mtx);
3165 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3166 mutex_unlock(&ext4_li_info->li_list_mtx);
3168 sbi->s_li_request = elr;
3170 * set elr to NULL here since it has been inserted to
3171 * the request_list and the removal and free of it is
3172 * handled by ext4_clear_request_list from now on.
3176 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3177 ret = ext4_run_lazyinit_thread();
3182 mutex_unlock(&ext4_li_mtx);
3189 * We do not need to lock anything since this is called on
3192 static void ext4_destroy_lazyinit_thread(void)
3195 * If thread exited earlier
3196 * there's nothing to be done.
3198 if (!ext4_li_info || !ext4_lazyinit_task)
3201 kthread_stop(ext4_lazyinit_task);
3204 static int set_journal_csum_feature_set(struct super_block *sb)
3207 int compat, incompat;
3208 struct ext4_sb_info *sbi = EXT4_SB(sb);
3210 if (ext4_has_metadata_csum(sb)) {
3211 /* journal checksum v3 */
3213 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3215 /* journal checksum v1 */
3216 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3220 jbd2_journal_clear_features(sbi->s_journal,
3221 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3222 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3223 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3224 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3225 ret = jbd2_journal_set_features(sbi->s_journal,
3227 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3229 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3230 ret = jbd2_journal_set_features(sbi->s_journal,
3233 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3234 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3236 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3237 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3244 * Note: calculating the overhead so we can be compatible with
3245 * historical BSD practice is quite difficult in the face of
3246 * clusters/bigalloc. This is because multiple metadata blocks from
3247 * different block group can end up in the same allocation cluster.
3248 * Calculating the exact overhead in the face of clustered allocation
3249 * requires either O(all block bitmaps) in memory or O(number of block
3250 * groups**2) in time. We will still calculate the superblock for
3251 * older file systems --- and if we come across with a bigalloc file
3252 * system with zero in s_overhead_clusters the estimate will be close to
3253 * correct especially for very large cluster sizes --- but for newer
3254 * file systems, it's better to calculate this figure once at mkfs
3255 * time, and store it in the superblock. If the superblock value is
3256 * present (even for non-bigalloc file systems), we will use it.
3258 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3261 struct ext4_sb_info *sbi = EXT4_SB(sb);
3262 struct ext4_group_desc *gdp;
3263 ext4_fsblk_t first_block, last_block, b;
3264 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3265 int s, j, count = 0;
3267 if (!ext4_has_feature_bigalloc(sb))
3268 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3269 sbi->s_itb_per_group + 2);
3271 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3272 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3273 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3274 for (i = 0; i < ngroups; i++) {
3275 gdp = ext4_get_group_desc(sb, i, NULL);
3276 b = ext4_block_bitmap(sb, gdp);
3277 if (b >= first_block && b <= last_block) {
3278 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3281 b = ext4_inode_bitmap(sb, gdp);
3282 if (b >= first_block && b <= last_block) {
3283 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3286 b = ext4_inode_table(sb, gdp);
3287 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3288 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3289 int c = EXT4_B2C(sbi, b - first_block);
3290 ext4_set_bit(c, buf);
3296 if (ext4_bg_has_super(sb, grp)) {
3297 ext4_set_bit(s++, buf);
3300 j = ext4_bg_num_gdb(sb, grp);
3301 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3302 ext4_error(sb, "Invalid number of block group "
3303 "descriptor blocks: %d", j);
3304 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3308 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3312 return EXT4_CLUSTERS_PER_GROUP(sb) -
3313 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3317 * Compute the overhead and stash it in sbi->s_overhead
3319 int ext4_calculate_overhead(struct super_block *sb)
3321 struct ext4_sb_info *sbi = EXT4_SB(sb);
3322 struct ext4_super_block *es = sbi->s_es;
3323 struct inode *j_inode;
3324 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3325 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3326 ext4_fsblk_t overhead = 0;
3327 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3333 * Compute the overhead (FS structures). This is constant
3334 * for a given filesystem unless the number of block groups
3335 * changes so we cache the previous value until it does.
3339 * All of the blocks before first_data_block are overhead
3341 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3344 * Add the overhead found in each block group
3346 for (i = 0; i < ngroups; i++) {
3349 blks = count_overhead(sb, i, buf);
3352 memset(buf, 0, PAGE_SIZE);
3357 * Add the internal journal blocks whether the journal has been
3360 if (sbi->s_journal && !sbi->journal_bdev)
3361 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3362 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3363 j_inode = ext4_get_journal_inode(sb, j_inum);
3365 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3366 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3369 ext4_msg(sb, KERN_ERR, "can't get journal size");
3372 sbi->s_overhead = overhead;
3374 free_page((unsigned long) buf);
3378 static void ext4_set_resv_clusters(struct super_block *sb)
3380 ext4_fsblk_t resv_clusters;
3381 struct ext4_sb_info *sbi = EXT4_SB(sb);
3384 * There's no need to reserve anything when we aren't using extents.
3385 * The space estimates are exact, there are no unwritten extents,
3386 * hole punching doesn't need new metadata... This is needed especially
3387 * to keep ext2/3 backward compatibility.
3389 if (!ext4_has_feature_extents(sb))
3392 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3393 * This should cover the situations where we can not afford to run
3394 * out of space like for example punch hole, or converting
3395 * unwritten extents in delalloc path. In most cases such
3396 * allocation would require 1, or 2 blocks, higher numbers are
3399 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3400 sbi->s_cluster_bits);
3402 do_div(resv_clusters, 50);
3403 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3405 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3408 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3410 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3411 char *orig_data = kstrdup(data, GFP_KERNEL);
3412 struct buffer_head *bh;
3413 struct ext4_super_block *es = NULL;
3414 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3416 ext4_fsblk_t sb_block = get_sb_block(&data);
3417 ext4_fsblk_t logical_sb_block;
3418 unsigned long offset = 0;
3419 unsigned long journal_devnum = 0;
3420 unsigned long def_mount_opts;
3424 int blocksize, clustersize;
3425 unsigned int db_count;
3427 int needs_recovery, has_huge_files, has_bigalloc;
3430 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3431 ext4_group_t first_not_zeroed;
3433 if ((data && !orig_data) || !sbi)
3436 sbi->s_daxdev = dax_dev;
3437 sbi->s_blockgroup_lock =
3438 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3439 if (!sbi->s_blockgroup_lock)
3442 sb->s_fs_info = sbi;
3444 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3445 sbi->s_sb_block = sb_block;
3446 if (sb->s_bdev->bd_part)
3447 sbi->s_sectors_written_start =
3448 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3450 /* Cleanup superblock name */
3451 strreplace(sb->s_id, '/', '!');
3453 /* -EINVAL is default */
3455 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3457 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3462 * The ext4 superblock will not be buffer aligned for other than 1kB
3463 * block sizes. We need to calculate the offset from buffer start.
3465 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3466 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3467 offset = do_div(logical_sb_block, blocksize);
3469 logical_sb_block = sb_block;
3472 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3473 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3477 * Note: s_es must be initialized as soon as possible because
3478 * some ext4 macro-instructions depend on its value
3480 es = (struct ext4_super_block *) (bh->b_data + offset);
3482 sb->s_magic = le16_to_cpu(es->s_magic);
3483 if (sb->s_magic != EXT4_SUPER_MAGIC)
3485 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3487 /* Warn if metadata_csum and gdt_csum are both set. */
3488 if (ext4_has_feature_metadata_csum(sb) &&
3489 ext4_has_feature_gdt_csum(sb))
3490 ext4_warning(sb, "metadata_csum and uninit_bg are "
3491 "redundant flags; please run fsck.");
3493 /* Check for a known checksum algorithm */
3494 if (!ext4_verify_csum_type(sb, es)) {
3495 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3496 "unknown checksum algorithm.");
3501 /* Load the checksum driver */
3502 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3503 if (IS_ERR(sbi->s_chksum_driver)) {
3504 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3505 ret = PTR_ERR(sbi->s_chksum_driver);
3506 sbi->s_chksum_driver = NULL;
3510 /* Check superblock checksum */
3511 if (!ext4_superblock_csum_verify(sb, es)) {
3512 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3513 "invalid superblock checksum. Run e2fsck?");
3519 /* Precompute checksum seed for all metadata */
3520 if (ext4_has_feature_csum_seed(sb))
3521 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3522 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3523 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3524 sizeof(es->s_uuid));
3526 /* Set defaults before we parse the mount options */
3527 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3528 set_opt(sb, INIT_INODE_TABLE);
3529 if (def_mount_opts & EXT4_DEFM_DEBUG)
3531 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3533 if (def_mount_opts & EXT4_DEFM_UID16)
3534 set_opt(sb, NO_UID32);
3535 /* xattr user namespace & acls are now defaulted on */
3536 set_opt(sb, XATTR_USER);
3537 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3538 set_opt(sb, POSIX_ACL);
3540 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3541 if (ext4_has_metadata_csum(sb))
3542 set_opt(sb, JOURNAL_CHECKSUM);
3544 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3545 set_opt(sb, JOURNAL_DATA);
3546 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3547 set_opt(sb, ORDERED_DATA);
3548 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3549 set_opt(sb, WRITEBACK_DATA);
3551 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3552 set_opt(sb, ERRORS_PANIC);
3553 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3554 set_opt(sb, ERRORS_CONT);
3556 set_opt(sb, ERRORS_RO);
3557 /* block_validity enabled by default; disable with noblock_validity */
3558 set_opt(sb, BLOCK_VALIDITY);
3559 if (def_mount_opts & EXT4_DEFM_DISCARD)
3560 set_opt(sb, DISCARD);
3562 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3563 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3564 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3565 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3566 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3568 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3569 set_opt(sb, BARRIER);
3572 * enable delayed allocation by default
3573 * Use -o nodelalloc to turn it off
3575 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3576 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3577 set_opt(sb, DELALLOC);
3580 * set default s_li_wait_mult for lazyinit, for the case there is
3581 * no mount option specified.
3583 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3585 if (sbi->s_es->s_mount_opts[0]) {
3586 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3587 sizeof(sbi->s_es->s_mount_opts),
3591 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3592 &journal_ioprio, 0)) {
3593 ext4_msg(sb, KERN_WARNING,
3594 "failed to parse options in superblock: %s",
3597 kfree(s_mount_opts);
3599 sbi->s_def_mount_opt = sbi->s_mount_opt;
3600 if (!parse_options((char *) data, sb, &journal_devnum,
3601 &journal_ioprio, 0))
3604 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3605 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3606 "with data=journal disables delayed "
3607 "allocation and O_DIRECT support!\n");
3608 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3609 ext4_msg(sb, KERN_ERR, "can't mount with "
3610 "both data=journal and delalloc");
3613 if (test_opt(sb, DIOREAD_NOLOCK)) {
3614 ext4_msg(sb, KERN_ERR, "can't mount with "
3615 "both data=journal and dioread_nolock");
3618 if (test_opt(sb, DAX)) {
3619 ext4_msg(sb, KERN_ERR, "can't mount with "
3620 "both data=journal and dax");
3623 if (ext4_has_feature_encrypt(sb)) {
3624 ext4_msg(sb, KERN_WARNING,
3625 "encrypted files will use data=ordered "
3626 "instead of data journaling mode");
3628 if (test_opt(sb, DELALLOC))
3629 clear_opt(sb, DELALLOC);
3631 sb->s_iflags |= SB_I_CGROUPWB;
3634 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3635 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3637 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3638 (ext4_has_compat_features(sb) ||
3639 ext4_has_ro_compat_features(sb) ||
3640 ext4_has_incompat_features(sb)))
3641 ext4_msg(sb, KERN_WARNING,
3642 "feature flags set on rev 0 fs, "
3643 "running e2fsck is recommended");
3645 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3646 set_opt2(sb, HURD_COMPAT);
3647 if (ext4_has_feature_64bit(sb)) {
3648 ext4_msg(sb, KERN_ERR,
3649 "The Hurd can't support 64-bit file systems");
3654 * ea_inode feature uses l_i_version field which is not
3655 * available in HURD_COMPAT mode.
3657 if (ext4_has_feature_ea_inode(sb)) {
3658 ext4_msg(sb, KERN_ERR,
3659 "ea_inode feature is not supported for Hurd");
3664 if (IS_EXT2_SB(sb)) {
3665 if (ext2_feature_set_ok(sb))
3666 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3667 "using the ext4 subsystem");
3670 * If we're probing be silent, if this looks like
3671 * it's actually an ext[34] filesystem.
3673 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3675 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3676 "to feature incompatibilities");
3681 if (IS_EXT3_SB(sb)) {
3682 if (ext3_feature_set_ok(sb))
3683 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3684 "using the ext4 subsystem");
3687 * If we're probing be silent, if this looks like
3688 * it's actually an ext4 filesystem.
3690 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3692 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3693 "to feature incompatibilities");
3699 * Check feature flags regardless of the revision level, since we
3700 * previously didn't change the revision level when setting the flags,
3701 * so there is a chance incompat flags are set on a rev 0 filesystem.
3703 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3706 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3707 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3708 blocksize > EXT4_MAX_BLOCK_SIZE) {
3709 ext4_msg(sb, KERN_ERR,
3710 "Unsupported filesystem blocksize %d (%d log_block_size)",
3711 blocksize, le32_to_cpu(es->s_log_block_size));
3714 if (le32_to_cpu(es->s_log_block_size) >
3715 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3716 ext4_msg(sb, KERN_ERR,
3717 "Invalid log block size: %u",
3718 le32_to_cpu(es->s_log_block_size));
3722 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3723 ext4_msg(sb, KERN_ERR,
3724 "Number of reserved GDT blocks insanely large: %d",
3725 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3729 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3730 if (ext4_has_feature_inline_data(sb)) {
3731 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3732 " that may contain inline data");
3733 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3735 err = bdev_dax_supported(sb, blocksize);
3737 ext4_msg(sb, KERN_ERR,
3738 "DAX unsupported by block device. Turning off DAX.");
3739 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3743 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3744 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3745 es->s_encryption_level);
3749 if (sb->s_blocksize != blocksize) {
3750 /* Validate the filesystem blocksize */
3751 if (!sb_set_blocksize(sb, blocksize)) {
3752 ext4_msg(sb, KERN_ERR, "bad block size %d",
3758 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3759 offset = do_div(logical_sb_block, blocksize);
3760 bh = sb_bread_unmovable(sb, logical_sb_block);
3762 ext4_msg(sb, KERN_ERR,
3763 "Can't read superblock on 2nd try");
3766 es = (struct ext4_super_block *)(bh->b_data + offset);
3768 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3769 ext4_msg(sb, KERN_ERR,
3770 "Magic mismatch, very weird!");
3775 has_huge_files = ext4_has_feature_huge_file(sb);
3776 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3778 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3780 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3781 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3782 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3784 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3785 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3786 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3787 (!is_power_of_2(sbi->s_inode_size)) ||
3788 (sbi->s_inode_size > blocksize)) {
3789 ext4_msg(sb, KERN_ERR,
3790 "unsupported inode size: %d",
3794 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3795 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3798 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3799 if (ext4_has_feature_64bit(sb)) {
3800 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3801 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3802 !is_power_of_2(sbi->s_desc_size)) {
3803 ext4_msg(sb, KERN_ERR,
3804 "unsupported descriptor size %lu",
3809 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3811 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3812 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3814 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3815 if (sbi->s_inodes_per_block == 0)
3817 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3818 sbi->s_inodes_per_group > blocksize * 8) {
3819 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3820 sbi->s_blocks_per_group);
3823 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3824 sbi->s_inodes_per_block;
3825 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3827 sbi->s_mount_state = le16_to_cpu(es->s_state);
3828 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3829 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3831 for (i = 0; i < 4; i++)
3832 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3833 sbi->s_def_hash_version = es->s_def_hash_version;
3834 if (ext4_has_feature_dir_index(sb)) {
3835 i = le32_to_cpu(es->s_flags);
3836 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3837 sbi->s_hash_unsigned = 3;
3838 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3839 #ifdef __CHAR_UNSIGNED__
3842 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3843 sbi->s_hash_unsigned = 3;
3847 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3852 /* Handle clustersize */
3853 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3854 has_bigalloc = ext4_has_feature_bigalloc(sb);
3856 if (clustersize < blocksize) {
3857 ext4_msg(sb, KERN_ERR,
3858 "cluster size (%d) smaller than "
3859 "block size (%d)", clustersize, blocksize);
3862 if (le32_to_cpu(es->s_log_cluster_size) >
3863 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3864 ext4_msg(sb, KERN_ERR,
3865 "Invalid log cluster size: %u",
3866 le32_to_cpu(es->s_log_cluster_size));
3869 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3870 le32_to_cpu(es->s_log_block_size);
3871 sbi->s_clusters_per_group =
3872 le32_to_cpu(es->s_clusters_per_group);
3873 if (sbi->s_clusters_per_group > blocksize * 8) {
3874 ext4_msg(sb, KERN_ERR,
3875 "#clusters per group too big: %lu",
3876 sbi->s_clusters_per_group);
3879 if (sbi->s_blocks_per_group !=
3880 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3881 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3882 "clusters per group (%lu) inconsistent",
3883 sbi->s_blocks_per_group,
3884 sbi->s_clusters_per_group);
3888 if (clustersize != blocksize) {
3889 ext4_warning(sb, "fragment/cluster size (%d) != "
3890 "block size (%d)", clustersize,
3892 clustersize = blocksize;
3894 if (sbi->s_blocks_per_group > blocksize * 8) {
3895 ext4_msg(sb, KERN_ERR,
3896 "#blocks per group too big: %lu",
3897 sbi->s_blocks_per_group);
3900 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3901 sbi->s_cluster_bits = 0;
3903 sbi->s_cluster_ratio = clustersize / blocksize;
3905 /* Do we have standard group size of clustersize * 8 blocks ? */
3906 if (sbi->s_blocks_per_group == clustersize << 3)
3907 set_opt2(sb, STD_GROUP_SIZE);
3910 * Test whether we have more sectors than will fit in sector_t,
3911 * and whether the max offset is addressable by the page cache.
3913 err = generic_check_addressable(sb->s_blocksize_bits,
3914 ext4_blocks_count(es));
3916 ext4_msg(sb, KERN_ERR, "filesystem"
3917 " too large to mount safely on this system");
3918 if (sizeof(sector_t) < 8)
3919 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3923 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3926 /* check blocks count against device size */
3927 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3928 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3929 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3930 "exceeds size of device (%llu blocks)",
3931 ext4_blocks_count(es), blocks_count);
3936 * It makes no sense for the first data block to be beyond the end
3937 * of the filesystem.
3939 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3940 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3941 "block %u is beyond end of filesystem (%llu)",
3942 le32_to_cpu(es->s_first_data_block),
3943 ext4_blocks_count(es));
3946 blocks_count = (ext4_blocks_count(es) -
3947 le32_to_cpu(es->s_first_data_block) +
3948 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3949 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3950 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3951 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3952 "(block count %llu, first data block %u, "
3953 "blocks per group %lu)", sbi->s_groups_count,
3954 ext4_blocks_count(es),
3955 le32_to_cpu(es->s_first_data_block),
3956 EXT4_BLOCKS_PER_GROUP(sb));
3959 sbi->s_groups_count = blocks_count;
3960 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3961 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3962 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3963 EXT4_DESC_PER_BLOCK(sb);
3964 if (ext4_has_feature_meta_bg(sb)) {
3965 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3966 ext4_msg(sb, KERN_WARNING,
3967 "first meta block group too large: %u "
3968 "(group descriptor block count %u)",
3969 le32_to_cpu(es->s_first_meta_bg), db_count);
3973 sbi->s_group_desc = kvmalloc(db_count *
3974 sizeof(struct buffer_head *),
3976 if (sbi->s_group_desc == NULL) {
3977 ext4_msg(sb, KERN_ERR, "not enough memory");
3982 bgl_lock_init(sbi->s_blockgroup_lock);
3984 /* Pre-read the descriptors into the buffer cache */
3985 for (i = 0; i < db_count; i++) {
3986 block = descriptor_loc(sb, logical_sb_block, i);
3987 sb_breadahead(sb, block);
3990 for (i = 0; i < db_count; i++) {
3991 block = descriptor_loc(sb, logical_sb_block, i);
3992 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3993 if (!sbi->s_group_desc[i]) {
3994 ext4_msg(sb, KERN_ERR,
3995 "can't read group descriptor %d", i);
4000 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4001 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4002 ret = -EFSCORRUPTED;
4006 sbi->s_gdb_count = db_count;
4008 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4010 /* Register extent status tree shrinker */
4011 if (ext4_es_register_shrinker(sbi))
4014 sbi->s_stripe = ext4_get_stripe_size(sbi);
4015 sbi->s_extent_max_zeroout_kb = 32;
4018 * set up enough so that it can read an inode
4020 sb->s_op = &ext4_sops;
4021 sb->s_export_op = &ext4_export_ops;
4022 sb->s_xattr = ext4_xattr_handlers;
4023 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4024 sb->s_cop = &ext4_cryptops;
4027 sb->dq_op = &ext4_quota_operations;
4028 if (ext4_has_feature_quota(sb))
4029 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4031 sb->s_qcop = &ext4_qctl_operations;
4032 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4034 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4036 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4037 mutex_init(&sbi->s_orphan_lock);
4041 needs_recovery = (es->s_last_orphan != 0 ||
4042 ext4_has_feature_journal_needs_recovery(sb));
4044 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4045 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4046 goto failed_mount3a;
4049 * The first inode we look at is the journal inode. Don't try
4050 * root first: it may be modified in the journal!
4052 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4053 err = ext4_load_journal(sb, es, journal_devnum);
4055 goto failed_mount3a;
4056 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4057 ext4_has_feature_journal_needs_recovery(sb)) {
4058 ext4_msg(sb, KERN_ERR, "required journal recovery "
4059 "suppressed and not mounted read-only");
4060 goto failed_mount_wq;
4062 /* Nojournal mode, all journal mount options are illegal */
4063 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4064 ext4_msg(sb, KERN_ERR, "can't mount with "
4065 "journal_checksum, fs mounted w/o journal");
4066 goto failed_mount_wq;
4068 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4069 ext4_msg(sb, KERN_ERR, "can't mount with "
4070 "journal_async_commit, fs mounted w/o journal");
4071 goto failed_mount_wq;
4073 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4074 ext4_msg(sb, KERN_ERR, "can't mount with "
4075 "commit=%lu, fs mounted w/o journal",
4076 sbi->s_commit_interval / HZ);
4077 goto failed_mount_wq;
4079 if (EXT4_MOUNT_DATA_FLAGS &
4080 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4081 ext4_msg(sb, KERN_ERR, "can't mount with "
4082 "data=, fs mounted w/o journal");
4083 goto failed_mount_wq;
4085 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4086 clear_opt(sb, JOURNAL_CHECKSUM);
4087 clear_opt(sb, DATA_FLAGS);
4088 sbi->s_journal = NULL;
4093 if (ext4_has_feature_64bit(sb) &&
4094 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4095 JBD2_FEATURE_INCOMPAT_64BIT)) {
4096 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4097 goto failed_mount_wq;
4100 if (!set_journal_csum_feature_set(sb)) {
4101 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4103 goto failed_mount_wq;
4106 /* We have now updated the journal if required, so we can
4107 * validate the data journaling mode. */
4108 switch (test_opt(sb, DATA_FLAGS)) {
4110 /* No mode set, assume a default based on the journal
4111 * capabilities: ORDERED_DATA if the journal can
4112 * cope, else JOURNAL_DATA
4114 if (jbd2_journal_check_available_features
4115 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4116 set_opt(sb, ORDERED_DATA);
4117 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4119 set_opt(sb, JOURNAL_DATA);
4120 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4124 case EXT4_MOUNT_ORDERED_DATA:
4125 case EXT4_MOUNT_WRITEBACK_DATA:
4126 if (!jbd2_journal_check_available_features
4127 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4128 ext4_msg(sb, KERN_ERR, "Journal does not support "
4129 "requested data journaling mode");
4130 goto failed_mount_wq;
4136 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4137 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4138 ext4_msg(sb, KERN_ERR, "can't mount with "
4139 "journal_async_commit in data=ordered mode");
4140 goto failed_mount_wq;
4143 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4145 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4148 if (!test_opt(sb, NO_MBCACHE)) {
4149 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4150 if (!sbi->s_ea_block_cache) {
4151 ext4_msg(sb, KERN_ERR,
4152 "Failed to create ea_block_cache");
4153 goto failed_mount_wq;
4156 if (ext4_has_feature_ea_inode(sb)) {
4157 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4158 if (!sbi->s_ea_inode_cache) {
4159 ext4_msg(sb, KERN_ERR,
4160 "Failed to create ea_inode_cache");
4161 goto failed_mount_wq;
4166 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4167 (blocksize != PAGE_SIZE)) {
4168 ext4_msg(sb, KERN_ERR,
4169 "Unsupported blocksize for fs encryption");
4170 goto failed_mount_wq;
4173 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4174 !ext4_has_feature_encrypt(sb)) {
4175 ext4_set_feature_encrypt(sb);
4176 ext4_commit_super(sb, 1);
4180 * Get the # of file system overhead blocks from the
4181 * superblock if present.
4183 if (es->s_overhead_clusters)
4184 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4186 err = ext4_calculate_overhead(sb);
4188 goto failed_mount_wq;
4192 * The maximum number of concurrent works can be high and
4193 * concurrency isn't really necessary. Limit it to 1.
4195 EXT4_SB(sb)->rsv_conversion_wq =
4196 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4197 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4198 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4204 * The jbd2_journal_load will have done any necessary log recovery,
4205 * so we can safely mount the rest of the filesystem now.
4208 root = ext4_iget(sb, EXT4_ROOT_INO);
4210 ext4_msg(sb, KERN_ERR, "get root inode failed");
4211 ret = PTR_ERR(root);
4215 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4216 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4220 sb->s_root = d_make_root(root);
4222 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4227 if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4228 sb->s_flags |= SB_RDONLY;
4230 /* determine the minimum size of new large inodes, if present */
4231 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4232 sbi->s_want_extra_isize == 0) {
4233 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4234 EXT4_GOOD_OLD_INODE_SIZE;
4235 if (ext4_has_feature_extra_isize(sb)) {
4236 if (sbi->s_want_extra_isize <
4237 le16_to_cpu(es->s_want_extra_isize))
4238 sbi->s_want_extra_isize =
4239 le16_to_cpu(es->s_want_extra_isize);
4240 if (sbi->s_want_extra_isize <
4241 le16_to_cpu(es->s_min_extra_isize))
4242 sbi->s_want_extra_isize =
4243 le16_to_cpu(es->s_min_extra_isize);
4246 /* Check if enough inode space is available */
4247 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4248 sbi->s_inode_size) {
4249 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4250 EXT4_GOOD_OLD_INODE_SIZE;
4251 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4255 ext4_set_resv_clusters(sb);
4257 err = ext4_setup_system_zone(sb);
4259 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4261 goto failed_mount4a;
4265 err = ext4_mb_init(sb);
4267 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4272 block = ext4_count_free_clusters(sb);
4273 ext4_free_blocks_count_set(sbi->s_es,
4274 EXT4_C2B(sbi, block));
4275 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4278 unsigned long freei = ext4_count_free_inodes(sb);
4279 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4280 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4284 err = percpu_counter_init(&sbi->s_dirs_counter,
4285 ext4_count_dirs(sb), GFP_KERNEL);
4287 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4290 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4293 ext4_msg(sb, KERN_ERR, "insufficient memory");
4297 if (ext4_has_feature_flex_bg(sb))
4298 if (!ext4_fill_flex_info(sb)) {
4299 ext4_msg(sb, KERN_ERR,
4300 "unable to initialize "
4301 "flex_bg meta info!");
4305 err = ext4_register_li_request(sb, first_not_zeroed);
4309 err = ext4_register_sysfs(sb);
4314 /* Enable quota usage during mount. */
4315 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4316 err = ext4_enable_quotas(sb);
4320 #endif /* CONFIG_QUOTA */
4322 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4323 ext4_orphan_cleanup(sb, es);
4324 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4325 if (needs_recovery) {
4326 ext4_msg(sb, KERN_INFO, "recovery complete");
4327 ext4_mark_recovery_complete(sb, es);
4329 if (EXT4_SB(sb)->s_journal) {
4330 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4331 descr = " journalled data mode";
4332 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4333 descr = " ordered data mode";
4335 descr = " writeback data mode";
4337 descr = "out journal";
4339 if (test_opt(sb, DISCARD)) {
4340 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4341 if (!blk_queue_discard(q))
4342 ext4_msg(sb, KERN_WARNING,
4343 "mounting with \"discard\" option, but "
4344 "the device does not support discard");
4347 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4348 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4349 "Opts: %.*s%s%s", descr,
4350 (int) sizeof(sbi->s_es->s_mount_opts),
4351 sbi->s_es->s_mount_opts,
4352 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4354 if (es->s_error_count)
4355 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4357 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4358 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4359 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4360 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4367 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4372 ext4_unregister_sysfs(sb);
4375 ext4_unregister_li_request(sb);
4377 ext4_mb_release(sb);
4378 if (sbi->s_flex_groups)
4379 kvfree(sbi->s_flex_groups);
4380 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4381 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4382 percpu_counter_destroy(&sbi->s_dirs_counter);
4383 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4385 ext4_ext_release(sb);
4386 ext4_release_system_zone(sb);
4391 ext4_msg(sb, KERN_ERR, "mount failed");
4392 if (EXT4_SB(sb)->rsv_conversion_wq)
4393 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4395 if (sbi->s_ea_inode_cache) {
4396 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4397 sbi->s_ea_inode_cache = NULL;
4399 if (sbi->s_ea_block_cache) {
4400 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4401 sbi->s_ea_block_cache = NULL;
4403 if (sbi->s_journal) {
4404 jbd2_journal_destroy(sbi->s_journal);
4405 sbi->s_journal = NULL;
4408 ext4_es_unregister_shrinker(sbi);
4410 del_timer_sync(&sbi->s_err_report);
4412 kthread_stop(sbi->s_mmp_tsk);
4414 for (i = 0; i < db_count; i++)
4415 brelse(sbi->s_group_desc[i]);
4416 kvfree(sbi->s_group_desc);
4418 if (sbi->s_chksum_driver)
4419 crypto_free_shash(sbi->s_chksum_driver);
4421 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4422 kfree(sbi->s_qf_names[i]);
4424 ext4_blkdev_remove(sbi);
4427 sb->s_fs_info = NULL;
4428 kfree(sbi->s_blockgroup_lock);
4432 fs_put_dax(dax_dev);
4433 return err ? err : ret;
4437 * Setup any per-fs journal parameters now. We'll do this both on
4438 * initial mount, once the journal has been initialised but before we've
4439 * done any recovery; and again on any subsequent remount.
4441 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4443 struct ext4_sb_info *sbi = EXT4_SB(sb);
4445 journal->j_commit_interval = sbi->s_commit_interval;
4446 journal->j_min_batch_time = sbi->s_min_batch_time;
4447 journal->j_max_batch_time = sbi->s_max_batch_time;
4449 write_lock(&journal->j_state_lock);
4450 if (test_opt(sb, BARRIER))
4451 journal->j_flags |= JBD2_BARRIER;
4453 journal->j_flags &= ~JBD2_BARRIER;
4454 if (test_opt(sb, DATA_ERR_ABORT))
4455 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4457 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4458 write_unlock(&journal->j_state_lock);
4461 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4462 unsigned int journal_inum)
4464 struct inode *journal_inode;
4467 * Test for the existence of a valid inode on disk. Bad things
4468 * happen if we iget() an unused inode, as the subsequent iput()
4469 * will try to delete it.
4471 journal_inode = ext4_iget(sb, journal_inum);
4472 if (IS_ERR(journal_inode)) {
4473 ext4_msg(sb, KERN_ERR, "no journal found");
4476 if (!journal_inode->i_nlink) {
4477 make_bad_inode(journal_inode);
4478 iput(journal_inode);
4479 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4483 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4484 journal_inode, journal_inode->i_size);
4485 if (!S_ISREG(journal_inode->i_mode)) {
4486 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4487 iput(journal_inode);
4490 return journal_inode;
4493 static journal_t *ext4_get_journal(struct super_block *sb,
4494 unsigned int journal_inum)
4496 struct inode *journal_inode;
4499 BUG_ON(!ext4_has_feature_journal(sb));
4501 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4505 journal = jbd2_journal_init_inode(journal_inode);
4507 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4508 iput(journal_inode);
4511 journal->j_private = sb;
4512 ext4_init_journal_params(sb, journal);
4516 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4519 struct buffer_head *bh;
4523 int hblock, blocksize;
4524 ext4_fsblk_t sb_block;
4525 unsigned long offset;
4526 struct ext4_super_block *es;
4527 struct block_device *bdev;
4529 BUG_ON(!ext4_has_feature_journal(sb));
4531 bdev = ext4_blkdev_get(j_dev, sb);
4535 blocksize = sb->s_blocksize;
4536 hblock = bdev_logical_block_size(bdev);
4537 if (blocksize < hblock) {
4538 ext4_msg(sb, KERN_ERR,
4539 "blocksize too small for journal device");
4543 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4544 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4545 set_blocksize(bdev, blocksize);
4546 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4547 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4548 "external journal");
4552 es = (struct ext4_super_block *) (bh->b_data + offset);
4553 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4554 !(le32_to_cpu(es->s_feature_incompat) &
4555 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4556 ext4_msg(sb, KERN_ERR, "external journal has "
4562 if ((le32_to_cpu(es->s_feature_ro_compat) &
4563 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4564 es->s_checksum != ext4_superblock_csum(sb, es)) {
4565 ext4_msg(sb, KERN_ERR, "external journal has "
4566 "corrupt superblock");
4571 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4572 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4577 len = ext4_blocks_count(es);
4578 start = sb_block + 1;
4579 brelse(bh); /* we're done with the superblock */
4581 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4582 start, len, blocksize);
4584 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4587 journal->j_private = sb;
4588 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4589 wait_on_buffer(journal->j_sb_buffer);
4590 if (!buffer_uptodate(journal->j_sb_buffer)) {
4591 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4594 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4595 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4596 "user (unsupported) - %d",
4597 be32_to_cpu(journal->j_superblock->s_nr_users));
4600 EXT4_SB(sb)->journal_bdev = bdev;
4601 ext4_init_journal_params(sb, journal);
4605 jbd2_journal_destroy(journal);
4607 ext4_blkdev_put(bdev);
4611 static int ext4_load_journal(struct super_block *sb,
4612 struct ext4_super_block *es,
4613 unsigned long journal_devnum)
4616 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4619 int really_read_only;
4621 BUG_ON(!ext4_has_feature_journal(sb));
4623 if (journal_devnum &&
4624 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4625 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4626 "numbers have changed");
4627 journal_dev = new_decode_dev(journal_devnum);
4629 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4631 really_read_only = bdev_read_only(sb->s_bdev);
4634 * Are we loading a blank journal or performing recovery after a
4635 * crash? For recovery, we need to check in advance whether we
4636 * can get read-write access to the device.
4638 if (ext4_has_feature_journal_needs_recovery(sb)) {
4639 if (sb_rdonly(sb)) {
4640 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4641 "required on readonly filesystem");
4642 if (really_read_only) {
4643 ext4_msg(sb, KERN_ERR, "write access "
4644 "unavailable, cannot proceed "
4645 "(try mounting with noload)");
4648 ext4_msg(sb, KERN_INFO, "write access will "
4649 "be enabled during recovery");
4653 if (journal_inum && journal_dev) {
4654 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4655 "and inode journals!");
4660 if (!(journal = ext4_get_journal(sb, journal_inum)))
4663 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4667 if (!(journal->j_flags & JBD2_BARRIER))
4668 ext4_msg(sb, KERN_INFO, "barriers disabled");
4670 if (!ext4_has_feature_journal_needs_recovery(sb))
4671 err = jbd2_journal_wipe(journal, !really_read_only);
4673 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4675 memcpy(save, ((char *) es) +
4676 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4677 err = jbd2_journal_load(journal);
4679 memcpy(((char *) es) + EXT4_S_ERR_START,
4680 save, EXT4_S_ERR_LEN);
4685 ext4_msg(sb, KERN_ERR, "error loading journal");
4686 jbd2_journal_destroy(journal);
4690 EXT4_SB(sb)->s_journal = journal;
4691 ext4_clear_journal_err(sb, es);
4693 if (!really_read_only && journal_devnum &&
4694 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4695 es->s_journal_dev = cpu_to_le32(journal_devnum);
4697 /* Make sure we flush the recovery flag to disk. */
4698 ext4_commit_super(sb, 1);
4704 static int ext4_commit_super(struct super_block *sb, int sync)
4706 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4707 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4710 if (!sbh || block_device_ejected(sb))
4713 * If the file system is mounted read-only, don't update the
4714 * superblock write time. This avoids updating the superblock
4715 * write time when we are mounting the root file system
4716 * read/only but we need to replay the journal; at that point,
4717 * for people who are east of GMT and who make their clock
4718 * tick in localtime for Windows bug-for-bug compatibility,
4719 * the clock is set in the future, and this will cause e2fsck
4720 * to complain and force a full file system check.
4722 if (!(sb->s_flags & SB_RDONLY))
4723 es->s_wtime = cpu_to_le32(get_seconds());
4724 if (sb->s_bdev->bd_part)
4725 es->s_kbytes_written =
4726 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4727 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4728 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4730 es->s_kbytes_written =
4731 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4732 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4733 ext4_free_blocks_count_set(es,
4734 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4735 &EXT4_SB(sb)->s_freeclusters_counter)));
4736 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4737 es->s_free_inodes_count =
4738 cpu_to_le32(percpu_counter_sum_positive(
4739 &EXT4_SB(sb)->s_freeinodes_counter));
4740 BUFFER_TRACE(sbh, "marking dirty");
4741 ext4_superblock_csum_set(sb);
4744 if (buffer_write_io_error(sbh)) {
4746 * Oh, dear. A previous attempt to write the
4747 * superblock failed. This could happen because the
4748 * USB device was yanked out. Or it could happen to
4749 * be a transient write error and maybe the block will
4750 * be remapped. Nothing we can do but to retry the
4751 * write and hope for the best.
4753 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4754 "superblock detected");
4755 clear_buffer_write_io_error(sbh);
4756 set_buffer_uptodate(sbh);
4758 mark_buffer_dirty(sbh);
4761 error = __sync_dirty_buffer(sbh,
4762 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4766 error = buffer_write_io_error(sbh);
4768 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4770 clear_buffer_write_io_error(sbh);
4771 set_buffer_uptodate(sbh);
4778 * Have we just finished recovery? If so, and if we are mounting (or
4779 * remounting) the filesystem readonly, then we will end up with a
4780 * consistent fs on disk. Record that fact.
4782 static void ext4_mark_recovery_complete(struct super_block *sb,
4783 struct ext4_super_block *es)
4785 journal_t *journal = EXT4_SB(sb)->s_journal;
4787 if (!ext4_has_feature_journal(sb)) {
4788 BUG_ON(journal != NULL);
4791 jbd2_journal_lock_updates(journal);
4792 if (jbd2_journal_flush(journal) < 0)
4795 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4796 ext4_clear_feature_journal_needs_recovery(sb);
4797 ext4_commit_super(sb, 1);
4801 jbd2_journal_unlock_updates(journal);
4805 * If we are mounting (or read-write remounting) a filesystem whose journal
4806 * has recorded an error from a previous lifetime, move that error to the
4807 * main filesystem now.
4809 static void ext4_clear_journal_err(struct super_block *sb,
4810 struct ext4_super_block *es)
4816 BUG_ON(!ext4_has_feature_journal(sb));
4818 journal = EXT4_SB(sb)->s_journal;
4821 * Now check for any error status which may have been recorded in the
4822 * journal by a prior ext4_error() or ext4_abort()
4825 j_errno = jbd2_journal_errno(journal);
4829 errstr = ext4_decode_error(sb, j_errno, nbuf);
4830 ext4_warning(sb, "Filesystem error recorded "
4831 "from previous mount: %s", errstr);
4832 ext4_warning(sb, "Marking fs in need of filesystem check.");
4834 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4835 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4836 ext4_commit_super(sb, 1);
4838 jbd2_journal_clear_err(journal);
4839 jbd2_journal_update_sb_errno(journal);
4844 * Force the running and committing transactions to commit,
4845 * and wait on the commit.
4847 int ext4_force_commit(struct super_block *sb)
4854 journal = EXT4_SB(sb)->s_journal;
4855 return ext4_journal_force_commit(journal);
4858 static int ext4_sync_fs(struct super_block *sb, int wait)
4862 bool needs_barrier = false;
4863 struct ext4_sb_info *sbi = EXT4_SB(sb);
4865 if (unlikely(ext4_forced_shutdown(sbi)))
4868 trace_ext4_sync_fs(sb, wait);
4869 flush_workqueue(sbi->rsv_conversion_wq);
4871 * Writeback quota in non-journalled quota case - journalled quota has
4874 dquot_writeback_dquots(sb, -1);
4876 * Data writeback is possible w/o journal transaction, so barrier must
4877 * being sent at the end of the function. But we can skip it if
4878 * transaction_commit will do it for us.
4880 if (sbi->s_journal) {
4881 target = jbd2_get_latest_transaction(sbi->s_journal);
4882 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4883 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4884 needs_barrier = true;
4886 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4888 ret = jbd2_log_wait_commit(sbi->s_journal,
4891 } else if (wait && test_opt(sb, BARRIER))
4892 needs_barrier = true;
4893 if (needs_barrier) {
4895 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4904 * LVM calls this function before a (read-only) snapshot is created. This
4905 * gives us a chance to flush the journal completely and mark the fs clean.
4907 * Note that only this function cannot bring a filesystem to be in a clean
4908 * state independently. It relies on upper layer to stop all data & metadata
4911 static int ext4_freeze(struct super_block *sb)
4919 journal = EXT4_SB(sb)->s_journal;
4922 /* Now we set up the journal barrier. */
4923 jbd2_journal_lock_updates(journal);
4926 * Don't clear the needs_recovery flag if we failed to
4927 * flush the journal.
4929 error = jbd2_journal_flush(journal);
4933 /* Journal blocked and flushed, clear needs_recovery flag. */
4934 ext4_clear_feature_journal_needs_recovery(sb);
4937 error = ext4_commit_super(sb, 1);
4940 /* we rely on upper layer to stop further updates */
4941 jbd2_journal_unlock_updates(journal);
4946 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4947 * flag here, even though the filesystem is not technically dirty yet.
4949 static int ext4_unfreeze(struct super_block *sb)
4951 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4954 if (EXT4_SB(sb)->s_journal) {
4955 /* Reset the needs_recovery flag before the fs is unlocked. */
4956 ext4_set_feature_journal_needs_recovery(sb);
4959 ext4_commit_super(sb, 1);
4964 * Structure to save mount options for ext4_remount's benefit
4966 struct ext4_mount_options {
4967 unsigned long s_mount_opt;
4968 unsigned long s_mount_opt2;
4971 unsigned long s_commit_interval;
4972 u32 s_min_batch_time, s_max_batch_time;
4975 char *s_qf_names[EXT4_MAXQUOTAS];
4979 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4981 struct ext4_super_block *es;
4982 struct ext4_sb_info *sbi = EXT4_SB(sb);
4983 unsigned long old_sb_flags;
4984 struct ext4_mount_options old_opts;
4985 int enable_quota = 0;
4987 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4992 char *orig_data = kstrdup(data, GFP_KERNEL);
4994 /* Store the original options */
4995 old_sb_flags = sb->s_flags;
4996 old_opts.s_mount_opt = sbi->s_mount_opt;
4997 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4998 old_opts.s_resuid = sbi->s_resuid;
4999 old_opts.s_resgid = sbi->s_resgid;
5000 old_opts.s_commit_interval = sbi->s_commit_interval;
5001 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5002 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5004 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5005 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5006 if (sbi->s_qf_names[i]) {
5007 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
5009 if (!old_opts.s_qf_names[i]) {
5010 for (j = 0; j < i; j++)
5011 kfree(old_opts.s_qf_names[j]);
5016 old_opts.s_qf_names[i] = NULL;
5018 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5019 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5021 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5026 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5027 test_opt(sb, JOURNAL_CHECKSUM)) {
5028 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5029 "during remount not supported; ignoring");
5030 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5033 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5034 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5035 ext4_msg(sb, KERN_ERR, "can't mount with "
5036 "both data=journal and delalloc");
5040 if (test_opt(sb, DIOREAD_NOLOCK)) {
5041 ext4_msg(sb, KERN_ERR, "can't mount with "
5042 "both data=journal and dioread_nolock");
5046 if (test_opt(sb, DAX)) {
5047 ext4_msg(sb, KERN_ERR, "can't mount with "
5048 "both data=journal and dax");
5052 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5053 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5054 ext4_msg(sb, KERN_ERR, "can't mount with "
5055 "journal_async_commit in data=ordered mode");
5061 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5062 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5067 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5068 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5069 "dax flag with busy inodes while remounting");
5070 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5073 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5074 ext4_abort(sb, "Abort forced by user");
5076 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5077 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5081 if (sbi->s_journal) {
5082 ext4_init_journal_params(sb, sbi->s_journal);
5083 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5086 if (*flags & SB_LAZYTIME)
5087 sb->s_flags |= SB_LAZYTIME;
5089 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5090 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5095 if (*flags & SB_RDONLY) {
5096 err = sync_filesystem(sb);
5099 err = dquot_suspend(sb, -1);
5104 * First of all, the unconditional stuff we have to do
5105 * to disable replay of the journal when we next remount
5107 sb->s_flags |= SB_RDONLY;
5110 * OK, test if we are remounting a valid rw partition
5111 * readonly, and if so set the rdonly flag and then
5112 * mark the partition as valid again.
5114 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5115 (sbi->s_mount_state & EXT4_VALID_FS))
5116 es->s_state = cpu_to_le16(sbi->s_mount_state);
5119 ext4_mark_recovery_complete(sb, es);
5121 /* Make sure we can mount this feature set readwrite */
5122 if (ext4_has_feature_readonly(sb) ||
5123 !ext4_feature_set_ok(sb, 0)) {
5128 * Make sure the group descriptor checksums
5129 * are sane. If they aren't, refuse to remount r/w.
5131 for (g = 0; g < sbi->s_groups_count; g++) {
5132 struct ext4_group_desc *gdp =
5133 ext4_get_group_desc(sb, g, NULL);
5135 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5136 ext4_msg(sb, KERN_ERR,
5137 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5138 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5139 le16_to_cpu(gdp->bg_checksum));
5146 * If we have an unprocessed orphan list hanging
5147 * around from a previously readonly bdev mount,
5148 * require a full umount/remount for now.
5150 if (es->s_last_orphan) {
5151 ext4_msg(sb, KERN_WARNING, "Couldn't "
5152 "remount RDWR because of unprocessed "
5153 "orphan inode list. Please "
5154 "umount/remount instead");
5160 * Mounting a RDONLY partition read-write, so reread
5161 * and store the current valid flag. (It may have
5162 * been changed by e2fsck since we originally mounted
5166 ext4_clear_journal_err(sb, es);
5167 sbi->s_mount_state = le16_to_cpu(es->s_state);
5168 if (!ext4_setup_super(sb, es, 0))
5169 sb->s_flags &= ~SB_RDONLY;
5170 if (ext4_has_feature_mmp(sb))
5171 if (ext4_multi_mount_protect(sb,
5172 le64_to_cpu(es->s_mmp_block))) {
5181 * Reinitialize lazy itable initialization thread based on
5184 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5185 ext4_unregister_li_request(sb);
5187 ext4_group_t first_not_zeroed;
5188 first_not_zeroed = ext4_has_uninit_itable(sb);
5189 ext4_register_li_request(sb, first_not_zeroed);
5192 ext4_setup_system_zone(sb);
5193 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY))
5194 ext4_commit_super(sb, 1);
5197 /* Release old quota file names */
5198 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5199 kfree(old_opts.s_qf_names[i]);
5201 if (sb_any_quota_suspended(sb))
5202 dquot_resume(sb, -1);
5203 else if (ext4_has_feature_quota(sb)) {
5204 err = ext4_enable_quotas(sb);
5211 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5212 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5217 sb->s_flags = old_sb_flags;
5218 sbi->s_mount_opt = old_opts.s_mount_opt;
5219 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5220 sbi->s_resuid = old_opts.s_resuid;
5221 sbi->s_resgid = old_opts.s_resgid;
5222 sbi->s_commit_interval = old_opts.s_commit_interval;
5223 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5224 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5226 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5227 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5228 kfree(sbi->s_qf_names[i]);
5229 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5237 static int ext4_statfs_project(struct super_block *sb,
5238 kprojid_t projid, struct kstatfs *buf)
5241 struct dquot *dquot;
5245 qid = make_kqid_projid(projid);
5246 dquot = dqget(sb, qid);
5248 return PTR_ERR(dquot);
5249 spin_lock(&dquot->dq_dqb_lock);
5251 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5252 dquot->dq_dqb.dqb_bsoftlimit :
5253 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5254 if (limit && buf->f_blocks > limit) {
5255 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5256 buf->f_blocks = limit;
5257 buf->f_bfree = buf->f_bavail =
5258 (buf->f_blocks > curblock) ?
5259 (buf->f_blocks - curblock) : 0;
5262 limit = dquot->dq_dqb.dqb_isoftlimit ?
5263 dquot->dq_dqb.dqb_isoftlimit :
5264 dquot->dq_dqb.dqb_ihardlimit;
5265 if (limit && buf->f_files > limit) {
5266 buf->f_files = limit;
5268 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5269 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5272 spin_unlock(&dquot->dq_dqb_lock);
5278 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5280 struct super_block *sb = dentry->d_sb;
5281 struct ext4_sb_info *sbi = EXT4_SB(sb);
5282 struct ext4_super_block *es = sbi->s_es;
5283 ext4_fsblk_t overhead = 0, resv_blocks;
5286 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5288 if (!test_opt(sb, MINIX_DF))
5289 overhead = sbi->s_overhead;
5291 buf->f_type = EXT4_SUPER_MAGIC;
5292 buf->f_bsize = sb->s_blocksize;
5293 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5294 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5295 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5296 /* prevent underflow in case that few free space is available */
5297 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5298 buf->f_bavail = buf->f_bfree -
5299 (ext4_r_blocks_count(es) + resv_blocks);
5300 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5302 buf->f_files = le32_to_cpu(es->s_inodes_count);
5303 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5304 buf->f_namelen = EXT4_NAME_LEN;
5305 fsid = le64_to_cpup((void *)es->s_uuid) ^
5306 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5307 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5308 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5311 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5312 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5313 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5322 * Helper functions so that transaction is started before we acquire dqio_sem
5323 * to keep correct lock ordering of transaction > dqio_sem
5325 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5327 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5330 static int ext4_write_dquot(struct dquot *dquot)
5334 struct inode *inode;
5336 inode = dquot_to_inode(dquot);
5337 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5338 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5340 return PTR_ERR(handle);
5341 ret = dquot_commit(dquot);
5342 err = ext4_journal_stop(handle);
5348 static int ext4_acquire_dquot(struct dquot *dquot)
5353 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5354 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5356 return PTR_ERR(handle);
5357 ret = dquot_acquire(dquot);
5358 err = ext4_journal_stop(handle);
5364 static int ext4_release_dquot(struct dquot *dquot)
5369 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5370 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5371 if (IS_ERR(handle)) {
5372 /* Release dquot anyway to avoid endless cycle in dqput() */
5373 dquot_release(dquot);
5374 return PTR_ERR(handle);
5376 ret = dquot_release(dquot);
5377 err = ext4_journal_stop(handle);
5383 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5385 struct super_block *sb = dquot->dq_sb;
5386 struct ext4_sb_info *sbi = EXT4_SB(sb);
5388 /* Are we journaling quotas? */
5389 if (ext4_has_feature_quota(sb) ||
5390 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5391 dquot_mark_dquot_dirty(dquot);
5392 return ext4_write_dquot(dquot);
5394 return dquot_mark_dquot_dirty(dquot);
5398 static int ext4_write_info(struct super_block *sb, int type)
5403 /* Data block + inode block */
5404 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5406 return PTR_ERR(handle);
5407 ret = dquot_commit_info(sb, type);
5408 err = ext4_journal_stop(handle);
5415 * Turn on quotas during mount time - we need to find
5416 * the quota file and such...
5418 static int ext4_quota_on_mount(struct super_block *sb, int type)
5420 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5421 EXT4_SB(sb)->s_jquota_fmt, type);
5424 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5426 struct ext4_inode_info *ei = EXT4_I(inode);
5428 /* The first argument of lockdep_set_subclass has to be
5429 * *exactly* the same as the argument to init_rwsem() --- in
5430 * this case, in init_once() --- or lockdep gets unhappy
5431 * because the name of the lock is set using the
5432 * stringification of the argument to init_rwsem().
5434 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5435 lockdep_set_subclass(&ei->i_data_sem, subclass);
5439 * Standard function to be called on quota_on
5441 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5442 const struct path *path)
5446 if (!test_opt(sb, QUOTA))
5449 /* Quotafile not on the same filesystem? */
5450 if (path->dentry->d_sb != sb)
5452 /* Journaling quota? */
5453 if (EXT4_SB(sb)->s_qf_names[type]) {
5454 /* Quotafile not in fs root? */
5455 if (path->dentry->d_parent != sb->s_root)
5456 ext4_msg(sb, KERN_WARNING,
5457 "Quota file not on filesystem root. "
5458 "Journaled quota will not work");
5459 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5462 * Clear the flag just in case mount options changed since
5465 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5469 * When we journal data on quota file, we have to flush journal to see
5470 * all updates to the file when we bypass pagecache...
5472 if (EXT4_SB(sb)->s_journal &&
5473 ext4_should_journal_data(d_inode(path->dentry))) {
5475 * We don't need to lock updates but journal_flush() could
5476 * otherwise be livelocked...
5478 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5479 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5480 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5485 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5486 err = dquot_quota_on(sb, type, format_id, path);
5488 lockdep_set_quota_inode(path->dentry->d_inode,
5491 struct inode *inode = d_inode(path->dentry);
5495 * Set inode flags to prevent userspace from messing with quota
5496 * files. If this fails, we return success anyway since quotas
5497 * are already enabled and this is not a hard failure.
5500 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5503 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5504 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5505 S_NOATIME | S_IMMUTABLE);
5506 ext4_mark_inode_dirty(handle, inode);
5507 ext4_journal_stop(handle);
5509 inode_unlock(inode);
5514 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5518 struct inode *qf_inode;
5519 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5520 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5521 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5522 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5525 BUG_ON(!ext4_has_feature_quota(sb));
5527 if (!qf_inums[type])
5530 qf_inode = ext4_iget(sb, qf_inums[type]);
5531 if (IS_ERR(qf_inode)) {
5532 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5533 return PTR_ERR(qf_inode);
5536 /* Don't account quota for quota files to avoid recursion */
5537 qf_inode->i_flags |= S_NOQUOTA;
5538 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5539 err = dquot_enable(qf_inode, type, format_id, flags);
5542 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5547 /* Enable usage tracking for all quota types. */
5548 static int ext4_enable_quotas(struct super_block *sb)
5551 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5552 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5553 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5554 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5556 bool quota_mopt[EXT4_MAXQUOTAS] = {
5557 test_opt(sb, USRQUOTA),
5558 test_opt(sb, GRPQUOTA),
5559 test_opt(sb, PRJQUOTA),
5562 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5563 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5564 if (qf_inums[type]) {
5565 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5566 DQUOT_USAGE_ENABLED |
5567 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5569 for (type--; type >= 0; type--)
5570 dquot_quota_off(sb, type);
5573 "Failed to enable quota tracking "
5574 "(type=%d, err=%d). Please run "
5575 "e2fsck to fix.", type, err);
5583 static int ext4_quota_off(struct super_block *sb, int type)
5585 struct inode *inode = sb_dqopt(sb)->files[type];
5589 /* Force all delayed allocation blocks to be allocated.
5590 * Caller already holds s_umount sem */
5591 if (test_opt(sb, DELALLOC))
5592 sync_filesystem(sb);
5594 if (!inode || !igrab(inode))
5597 err = dquot_quota_off(sb, type);
5598 if (err || ext4_has_feature_quota(sb))
5603 * Update modification times of quota files when userspace can
5604 * start looking at them. If we fail, we return success anyway since
5605 * this is not a hard failure and quotas are already disabled.
5607 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5610 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5611 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5612 inode->i_mtime = inode->i_ctime = current_time(inode);
5613 ext4_mark_inode_dirty(handle, inode);
5614 ext4_journal_stop(handle);
5616 inode_unlock(inode);
5618 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5622 return dquot_quota_off(sb, type);
5625 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5626 * acquiring the locks... As quota files are never truncated and quota code
5627 * itself serializes the operations (and no one else should touch the files)
5628 * we don't have to be afraid of races */
5629 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5630 size_t len, loff_t off)
5632 struct inode *inode = sb_dqopt(sb)->files[type];
5633 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5634 int offset = off & (sb->s_blocksize - 1);
5637 struct buffer_head *bh;
5638 loff_t i_size = i_size_read(inode);
5642 if (off+len > i_size)
5645 while (toread > 0) {
5646 tocopy = sb->s_blocksize - offset < toread ?
5647 sb->s_blocksize - offset : toread;
5648 bh = ext4_bread(NULL, inode, blk, 0);
5651 if (!bh) /* A hole? */
5652 memset(data, 0, tocopy);
5654 memcpy(data, bh->b_data+offset, tocopy);
5664 /* Write to quotafile (we know the transaction is already started and has
5665 * enough credits) */
5666 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5667 const char *data, size_t len, loff_t off)
5669 struct inode *inode = sb_dqopt(sb)->files[type];
5670 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5671 int err, offset = off & (sb->s_blocksize - 1);
5673 struct buffer_head *bh;
5674 handle_t *handle = journal_current_handle();
5676 if (EXT4_SB(sb)->s_journal && !handle) {
5677 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5678 " cancelled because transaction is not started",
5679 (unsigned long long)off, (unsigned long long)len);
5683 * Since we account only one data block in transaction credits,
5684 * then it is impossible to cross a block boundary.
5686 if (sb->s_blocksize - offset < len) {
5687 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5688 " cancelled because not block aligned",
5689 (unsigned long long)off, (unsigned long long)len);
5694 bh = ext4_bread(handle, inode, blk,
5695 EXT4_GET_BLOCKS_CREATE |
5696 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5697 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5698 ext4_should_retry_alloc(inode->i_sb, &retries));
5703 BUFFER_TRACE(bh, "get write access");
5704 err = ext4_journal_get_write_access(handle, bh);
5710 memcpy(bh->b_data+offset, data, len);
5711 flush_dcache_page(bh->b_page);
5713 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5716 if (inode->i_size < off + len) {
5717 i_size_write(inode, off + len);
5718 EXT4_I(inode)->i_disksize = inode->i_size;
5719 ext4_mark_inode_dirty(handle, inode);
5724 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5726 const struct quota_format_ops *ops;
5728 if (!sb_has_quota_loaded(sb, qid->type))
5730 ops = sb_dqopt(sb)->ops[qid->type];
5731 if (!ops || !ops->get_next_id)
5733 return dquot_get_next_id(sb, qid);
5737 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5738 const char *dev_name, void *data)
5740 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5743 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5744 static inline void register_as_ext2(void)
5746 int err = register_filesystem(&ext2_fs_type);
5749 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5752 static inline void unregister_as_ext2(void)
5754 unregister_filesystem(&ext2_fs_type);
5757 static inline int ext2_feature_set_ok(struct super_block *sb)
5759 if (ext4_has_unknown_ext2_incompat_features(sb))
5763 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5768 static inline void register_as_ext2(void) { }
5769 static inline void unregister_as_ext2(void) { }
5770 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5773 static inline void register_as_ext3(void)
5775 int err = register_filesystem(&ext3_fs_type);
5778 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5781 static inline void unregister_as_ext3(void)
5783 unregister_filesystem(&ext3_fs_type);
5786 static inline int ext3_feature_set_ok(struct super_block *sb)
5788 if (ext4_has_unknown_ext3_incompat_features(sb))
5790 if (!ext4_has_feature_journal(sb))
5794 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5799 static struct file_system_type ext4_fs_type = {
5800 .owner = THIS_MODULE,
5802 .mount = ext4_mount,
5803 .kill_sb = kill_block_super,
5804 .fs_flags = FS_REQUIRES_DEV,
5806 MODULE_ALIAS_FS("ext4");
5808 /* Shared across all ext4 file systems */
5809 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5811 static int __init ext4_init_fs(void)
5815 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5816 ext4_li_info = NULL;
5817 mutex_init(&ext4_li_mtx);
5819 /* Build-time check for flags consistency */
5820 ext4_check_flag_values();
5822 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5823 init_waitqueue_head(&ext4__ioend_wq[i]);
5825 err = ext4_init_es();
5829 err = ext4_init_pageio();
5833 err = ext4_init_system_zone();
5837 err = ext4_init_sysfs();
5841 err = ext4_init_mballoc();
5844 err = init_inodecache();
5849 err = register_filesystem(&ext4_fs_type);
5855 unregister_as_ext2();
5856 unregister_as_ext3();
5857 destroy_inodecache();
5859 ext4_exit_mballoc();
5863 ext4_exit_system_zone();
5872 static void __exit ext4_exit_fs(void)
5874 ext4_destroy_lazyinit_thread();
5875 unregister_as_ext2();
5876 unregister_as_ext3();
5877 unregister_filesystem(&ext4_fs_type);
5878 destroy_inodecache();
5879 ext4_exit_mballoc();
5881 ext4_exit_system_zone();
5886 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5887 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5888 MODULE_LICENSE("GPL");
5889 MODULE_SOFTDEP("pre: crc32c");
5890 module_init(ext4_init_fs)
5891 module_exit(ext4_exit_fs)