3 * Written by Mark Hemment, 1996/97.
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
166 typedef unsigned short freelist_idx_t;
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172 * true if a page was allocated from pfmemalloc reserves for network-based
175 static bool pfmemalloc_active __read_mostly;
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
185 * The limit is stored in the per-cpu structure to reduce the data cache
192 unsigned int batchcount;
193 unsigned int touched;
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
207 struct array_cache ac;
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
216 static inline void set_obj_pfmemalloc(void **objp)
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
222 static inline void clear_obj_pfmemalloc(void **objp)
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
238 * Need this for bootstrapping a per node allocator.
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_NODE (MAX_NUMNODES)
245 static int drain_freelist(struct kmem_cache *cache,
246 struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
253 static int slab_early_init = 1;
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
264 parent->colour_next = 0;
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
270 #define MAKE_LIST(cachep, listp, slab, nodeid) \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
283 #define CFLGS_OFF_SLAB (0x80000000UL)
284 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285 #define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
287 #define BATCHREFILL_LIMIT 16
289 * Optimization question: fewer reaps means less probability for unnessary
290 * cpucache drain/refill cycles.
292 * OTOH the cpuarrays can contain lots of objects,
293 * which could lock up otherwise freeable slabs.
295 #define REAPTIMEOUT_AC (2*HZ)
296 #define REAPTIMEOUT_NODE (4*HZ)
299 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
300 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
301 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
302 #define STATS_INC_GROWN(x) ((x)->grown++)
303 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
304 #define STATS_SET_HIGH(x) \
306 if ((x)->num_active > (x)->high_mark) \
307 (x)->high_mark = (x)->num_active; \
309 #define STATS_INC_ERR(x) ((x)->errors++)
310 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
311 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
312 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
313 #define STATS_SET_FREEABLE(x, i) \
315 if ((x)->max_freeable < i) \
316 (x)->max_freeable = i; \
318 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
319 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
320 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
321 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
323 #define STATS_INC_ACTIVE(x) do { } while (0)
324 #define STATS_DEC_ACTIVE(x) do { } while (0)
325 #define STATS_INC_ALLOCED(x) do { } while (0)
326 #define STATS_INC_GROWN(x) do { } while (0)
327 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
328 #define STATS_SET_HIGH(x) do { } while (0)
329 #define STATS_INC_ERR(x) do { } while (0)
330 #define STATS_INC_NODEALLOCS(x) do { } while (0)
331 #define STATS_INC_NODEFREES(x) do { } while (0)
332 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
333 #define STATS_SET_FREEABLE(x, i) do { } while (0)
334 #define STATS_INC_ALLOCHIT(x) do { } while (0)
335 #define STATS_INC_ALLOCMISS(x) do { } while (0)
336 #define STATS_INC_FREEHIT(x) do { } while (0)
337 #define STATS_INC_FREEMISS(x) do { } while (0)
343 * memory layout of objects:
345 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
346 * the end of an object is aligned with the end of the real
347 * allocation. Catches writes behind the end of the allocation.
348 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
350 * cachep->obj_offset: The real object.
351 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
352 * cachep->size - 1* BYTES_PER_WORD: last caller address
353 * [BYTES_PER_WORD long]
355 static int obj_offset(struct kmem_cache *cachep)
357 return cachep->obj_offset;
360 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
362 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
363 return (unsigned long long*) (objp + obj_offset(cachep) -
364 sizeof(unsigned long long));
367 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
369 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
370 if (cachep->flags & SLAB_STORE_USER)
371 return (unsigned long long *)(objp + cachep->size -
372 sizeof(unsigned long long) -
374 return (unsigned long long *) (objp + cachep->size -
375 sizeof(unsigned long long));
378 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
380 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
381 return (void **)(objp + cachep->size - BYTES_PER_WORD);
386 #define obj_offset(x) 0
387 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
389 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
393 #define OBJECT_FREE (0)
394 #define OBJECT_ACTIVE (1)
396 #ifdef CONFIG_DEBUG_SLAB_LEAK
398 static void set_obj_status(struct page *page, int idx, int val)
402 struct kmem_cache *cachep = page->slab_cache;
404 freelist_size = cachep->num * sizeof(freelist_idx_t);
405 status = (char *)page->freelist + freelist_size;
409 static inline unsigned int get_obj_status(struct page *page, int idx)
413 struct kmem_cache *cachep = page->slab_cache;
415 freelist_size = cachep->num * sizeof(freelist_idx_t);
416 status = (char *)page->freelist + freelist_size;
422 static inline void set_obj_status(struct page *page, int idx, int val) {}
427 * Do not go above this order unless 0 objects fit into the slab or
428 * overridden on the command line.
430 #define SLAB_MAX_ORDER_HI 1
431 #define SLAB_MAX_ORDER_LO 0
432 static int slab_max_order = SLAB_MAX_ORDER_LO;
433 static bool slab_max_order_set __initdata;
435 static inline struct kmem_cache *virt_to_cache(const void *obj)
437 struct page *page = virt_to_head_page(obj);
438 return page->slab_cache;
441 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
444 return page->s_mem + cache->size * idx;
448 * We want to avoid an expensive divide : (offset / cache->size)
449 * Using the fact that size is a constant for a particular cache,
450 * we can replace (offset / cache->size) by
451 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
453 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
454 const struct page *page, void *obj)
456 u32 offset = (obj - page->s_mem);
457 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
460 /* internal cache of cache description objs */
461 static struct kmem_cache kmem_cache_boot = {
463 .limit = BOOT_CPUCACHE_ENTRIES,
465 .size = sizeof(struct kmem_cache),
466 .name = "kmem_cache",
469 #define BAD_ALIEN_MAGIC 0x01020304ul
471 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
473 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
475 return this_cpu_ptr(cachep->cpu_cache);
478 static size_t calculate_freelist_size(int nr_objs, size_t align)
480 size_t freelist_size;
482 freelist_size = nr_objs * sizeof(freelist_idx_t);
483 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
484 freelist_size += nr_objs * sizeof(char);
487 freelist_size = ALIGN(freelist_size, align);
489 return freelist_size;
492 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
493 size_t idx_size, size_t align)
496 size_t remained_size;
497 size_t freelist_size;
500 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
501 extra_space = sizeof(char);
503 * Ignore padding for the initial guess. The padding
504 * is at most @align-1 bytes, and @buffer_size is at
505 * least @align. In the worst case, this result will
506 * be one greater than the number of objects that fit
507 * into the memory allocation when taking the padding
510 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
513 * This calculated number will be either the right
514 * amount, or one greater than what we want.
516 remained_size = slab_size - nr_objs * buffer_size;
517 freelist_size = calculate_freelist_size(nr_objs, align);
518 if (remained_size < freelist_size)
525 * Calculate the number of objects and left-over bytes for a given buffer size.
527 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
528 size_t align, int flags, size_t *left_over,
533 size_t slab_size = PAGE_SIZE << gfporder;
536 * The slab management structure can be either off the slab or
537 * on it. For the latter case, the memory allocated for a
540 * - One unsigned int for each object
541 * - Padding to respect alignment of @align
542 * - @buffer_size bytes for each object
544 * If the slab management structure is off the slab, then the
545 * alignment will already be calculated into the size. Because
546 * the slabs are all pages aligned, the objects will be at the
547 * correct alignment when allocated.
549 if (flags & CFLGS_OFF_SLAB) {
551 nr_objs = slab_size / buffer_size;
554 nr_objs = calculate_nr_objs(slab_size, buffer_size,
555 sizeof(freelist_idx_t), align);
556 mgmt_size = calculate_freelist_size(nr_objs, align);
559 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
563 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
565 static void __slab_error(const char *function, struct kmem_cache *cachep,
568 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
569 function, cachep->name, msg);
571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
576 * By default on NUMA we use alien caches to stage the freeing of
577 * objects allocated from other nodes. This causes massive memory
578 * inefficiencies when using fake NUMA setup to split memory into a
579 * large number of small nodes, so it can be disabled on the command
583 static int use_alien_caches __read_mostly = 1;
584 static int __init noaliencache_setup(char *s)
586 use_alien_caches = 0;
589 __setup("noaliencache", noaliencache_setup);
591 static int __init slab_max_order_setup(char *str)
593 get_option(&str, &slab_max_order);
594 slab_max_order = slab_max_order < 0 ? 0 :
595 min(slab_max_order, MAX_ORDER - 1);
596 slab_max_order_set = true;
600 __setup("slab_max_order=", slab_max_order_setup);
604 * Special reaping functions for NUMA systems called from cache_reap().
605 * These take care of doing round robin flushing of alien caches (containing
606 * objects freed on different nodes from which they were allocated) and the
607 * flushing of remote pcps by calling drain_node_pages.
609 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
611 static void init_reap_node(int cpu)
615 node = next_node(cpu_to_mem(cpu), node_online_map);
616 if (node == MAX_NUMNODES)
617 node = first_node(node_online_map);
619 per_cpu(slab_reap_node, cpu) = node;
622 static void next_reap_node(void)
624 int node = __this_cpu_read(slab_reap_node);
626 node = next_node(node, node_online_map);
627 if (unlikely(node >= MAX_NUMNODES))
628 node = first_node(node_online_map);
629 __this_cpu_write(slab_reap_node, node);
633 #define init_reap_node(cpu) do { } while (0)
634 #define next_reap_node(void) do { } while (0)
638 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
639 * via the workqueue/eventd.
640 * Add the CPU number into the expiration time to minimize the possibility of
641 * the CPUs getting into lockstep and contending for the global cache chain
644 static void start_cpu_timer(int cpu)
646 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
649 * When this gets called from do_initcalls via cpucache_init(),
650 * init_workqueues() has already run, so keventd will be setup
653 if (keventd_up() && reap_work->work.func == NULL) {
655 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
656 schedule_delayed_work_on(cpu, reap_work,
657 __round_jiffies_relative(HZ, cpu));
661 static void init_arraycache(struct array_cache *ac, int limit, int batch)
664 * The array_cache structures contain pointers to free object.
665 * However, when such objects are allocated or transferred to another
666 * cache the pointers are not cleared and they could be counted as
667 * valid references during a kmemleak scan. Therefore, kmemleak must
668 * not scan such objects.
670 kmemleak_no_scan(ac);
674 ac->batchcount = batch;
679 static struct array_cache *alloc_arraycache(int node, int entries,
680 int batchcount, gfp_t gfp)
682 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
683 struct array_cache *ac = NULL;
685 ac = kmalloc_node(memsize, gfp, node);
686 init_arraycache(ac, entries, batchcount);
690 static inline bool is_slab_pfmemalloc(struct page *page)
692 return PageSlabPfmemalloc(page);
695 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
696 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
697 struct array_cache *ac)
699 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
703 if (!pfmemalloc_active)
706 spin_lock_irqsave(&n->list_lock, flags);
707 list_for_each_entry(page, &n->slabs_full, lru)
708 if (is_slab_pfmemalloc(page))
711 list_for_each_entry(page, &n->slabs_partial, lru)
712 if (is_slab_pfmemalloc(page))
715 list_for_each_entry(page, &n->slabs_free, lru)
716 if (is_slab_pfmemalloc(page))
719 pfmemalloc_active = false;
721 spin_unlock_irqrestore(&n->list_lock, flags);
724 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
725 gfp_t flags, bool force_refill)
728 void *objp = ac->entry[--ac->avail];
730 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
731 if (unlikely(is_obj_pfmemalloc(objp))) {
732 struct kmem_cache_node *n;
734 if (gfp_pfmemalloc_allowed(flags)) {
735 clear_obj_pfmemalloc(&objp);
739 /* The caller cannot use PFMEMALLOC objects, find another one */
740 for (i = 0; i < ac->avail; i++) {
741 /* If a !PFMEMALLOC object is found, swap them */
742 if (!is_obj_pfmemalloc(ac->entry[i])) {
744 ac->entry[i] = ac->entry[ac->avail];
745 ac->entry[ac->avail] = objp;
751 * If there are empty slabs on the slabs_free list and we are
752 * being forced to refill the cache, mark this one !pfmemalloc.
754 n = get_node(cachep, numa_mem_id());
755 if (!list_empty(&n->slabs_free) && force_refill) {
756 struct page *page = virt_to_head_page(objp);
757 ClearPageSlabPfmemalloc(page);
758 clear_obj_pfmemalloc(&objp);
759 recheck_pfmemalloc_active(cachep, ac);
763 /* No !PFMEMALLOC objects available */
771 static inline void *ac_get_obj(struct kmem_cache *cachep,
772 struct array_cache *ac, gfp_t flags, bool force_refill)
776 if (unlikely(sk_memalloc_socks()))
777 objp = __ac_get_obj(cachep, ac, flags, force_refill);
779 objp = ac->entry[--ac->avail];
784 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
785 struct array_cache *ac, void *objp)
787 if (unlikely(pfmemalloc_active)) {
788 /* Some pfmemalloc slabs exist, check if this is one */
789 struct page *page = virt_to_head_page(objp);
790 if (PageSlabPfmemalloc(page))
791 set_obj_pfmemalloc(&objp);
797 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
800 if (unlikely(sk_memalloc_socks()))
801 objp = __ac_put_obj(cachep, ac, objp);
803 ac->entry[ac->avail++] = objp;
807 * Transfer objects in one arraycache to another.
808 * Locking must be handled by the caller.
810 * Return the number of entries transferred.
812 static int transfer_objects(struct array_cache *to,
813 struct array_cache *from, unsigned int max)
815 /* Figure out how many entries to transfer */
816 int nr = min3(from->avail, max, to->limit - to->avail);
821 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
831 #define drain_alien_cache(cachep, alien) do { } while (0)
832 #define reap_alien(cachep, n) do { } while (0)
834 static inline struct alien_cache **alloc_alien_cache(int node,
835 int limit, gfp_t gfp)
837 return (struct alien_cache **)BAD_ALIEN_MAGIC;
840 static inline void free_alien_cache(struct alien_cache **ac_ptr)
844 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
849 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
855 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
856 gfp_t flags, int nodeid)
861 static inline gfp_t gfp_exact_node(gfp_t flags)
866 #else /* CONFIG_NUMA */
868 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
869 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
871 static struct alien_cache *__alloc_alien_cache(int node, int entries,
872 int batch, gfp_t gfp)
874 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
875 struct alien_cache *alc = NULL;
877 alc = kmalloc_node(memsize, gfp, node);
878 init_arraycache(&alc->ac, entries, batch);
879 spin_lock_init(&alc->lock);
883 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
885 struct alien_cache **alc_ptr;
886 size_t memsize = sizeof(void *) * nr_node_ids;
891 alc_ptr = kzalloc_node(memsize, gfp, node);
896 if (i == node || !node_online(i))
898 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
900 for (i--; i >= 0; i--)
909 static void free_alien_cache(struct alien_cache **alc_ptr)
920 static void __drain_alien_cache(struct kmem_cache *cachep,
921 struct array_cache *ac, int node,
922 struct list_head *list)
924 struct kmem_cache_node *n = get_node(cachep, node);
927 spin_lock(&n->list_lock);
929 * Stuff objects into the remote nodes shared array first.
930 * That way we could avoid the overhead of putting the objects
931 * into the free lists and getting them back later.
934 transfer_objects(n->shared, ac, ac->limit);
936 free_block(cachep, ac->entry, ac->avail, node, list);
938 spin_unlock(&n->list_lock);
943 * Called from cache_reap() to regularly drain alien caches round robin.
945 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
947 int node = __this_cpu_read(slab_reap_node);
950 struct alien_cache *alc = n->alien[node];
951 struct array_cache *ac;
955 if (ac->avail && spin_trylock_irq(&alc->lock)) {
958 __drain_alien_cache(cachep, ac, node, &list);
959 spin_unlock_irq(&alc->lock);
960 slabs_destroy(cachep, &list);
966 static void drain_alien_cache(struct kmem_cache *cachep,
967 struct alien_cache **alien)
970 struct alien_cache *alc;
971 struct array_cache *ac;
974 for_each_online_node(i) {
980 spin_lock_irqsave(&alc->lock, flags);
981 __drain_alien_cache(cachep, ac, i, &list);
982 spin_unlock_irqrestore(&alc->lock, flags);
983 slabs_destroy(cachep, &list);
988 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
989 int node, int page_node)
991 struct kmem_cache_node *n;
992 struct alien_cache *alien = NULL;
993 struct array_cache *ac;
996 n = get_node(cachep, node);
997 STATS_INC_NODEFREES(cachep);
998 if (n->alien && n->alien[page_node]) {
999 alien = n->alien[page_node];
1001 spin_lock(&alien->lock);
1002 if (unlikely(ac->avail == ac->limit)) {
1003 STATS_INC_ACOVERFLOW(cachep);
1004 __drain_alien_cache(cachep, ac, page_node, &list);
1006 ac_put_obj(cachep, ac, objp);
1007 spin_unlock(&alien->lock);
1008 slabs_destroy(cachep, &list);
1010 n = get_node(cachep, page_node);
1011 spin_lock(&n->list_lock);
1012 free_block(cachep, &objp, 1, page_node, &list);
1013 spin_unlock(&n->list_lock);
1014 slabs_destroy(cachep, &list);
1019 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1021 int page_node = page_to_nid(virt_to_page(objp));
1022 int node = numa_mem_id();
1024 * Make sure we are not freeing a object from another node to the array
1025 * cache on this cpu.
1027 if (likely(node == page_node))
1030 return __cache_free_alien(cachep, objp, node, page_node);
1034 * Construct gfp mask to allocate from a specific node but do not invoke reclaim
1035 * or warn about failures.
1037 static inline gfp_t gfp_exact_node(gfp_t flags)
1039 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
1044 * Allocates and initializes node for a node on each slab cache, used for
1045 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1046 * will be allocated off-node since memory is not yet online for the new node.
1047 * When hotplugging memory or a cpu, existing node are not replaced if
1050 * Must hold slab_mutex.
1052 static int init_cache_node_node(int node)
1054 struct kmem_cache *cachep;
1055 struct kmem_cache_node *n;
1056 const size_t memsize = sizeof(struct kmem_cache_node);
1058 list_for_each_entry(cachep, &slab_caches, list) {
1060 * Set up the kmem_cache_node for cpu before we can
1061 * begin anything. Make sure some other cpu on this
1062 * node has not already allocated this
1064 n = get_node(cachep, node);
1066 n = kmalloc_node(memsize, GFP_KERNEL, node);
1069 kmem_cache_node_init(n);
1070 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1071 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1074 * The kmem_cache_nodes don't come and go as CPUs
1075 * come and go. slab_mutex is sufficient
1078 cachep->node[node] = n;
1081 spin_lock_irq(&n->list_lock);
1083 (1 + nr_cpus_node(node)) *
1084 cachep->batchcount + cachep->num;
1085 spin_unlock_irq(&n->list_lock);
1090 static inline int slabs_tofree(struct kmem_cache *cachep,
1091 struct kmem_cache_node *n)
1093 return (n->free_objects + cachep->num - 1) / cachep->num;
1096 static void cpuup_canceled(long cpu)
1098 struct kmem_cache *cachep;
1099 struct kmem_cache_node *n = NULL;
1100 int node = cpu_to_mem(cpu);
1101 const struct cpumask *mask = cpumask_of_node(node);
1103 list_for_each_entry(cachep, &slab_caches, list) {
1104 struct array_cache *nc;
1105 struct array_cache *shared;
1106 struct alien_cache **alien;
1109 n = get_node(cachep, node);
1113 spin_lock_irq(&n->list_lock);
1115 /* Free limit for this kmem_cache_node */
1116 n->free_limit -= cachep->batchcount;
1118 /* cpu is dead; no one can alloc from it. */
1119 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1121 free_block(cachep, nc->entry, nc->avail, node, &list);
1125 if (!cpumask_empty(mask)) {
1126 spin_unlock_irq(&n->list_lock);
1132 free_block(cachep, shared->entry,
1133 shared->avail, node, &list);
1140 spin_unlock_irq(&n->list_lock);
1144 drain_alien_cache(cachep, alien);
1145 free_alien_cache(alien);
1149 slabs_destroy(cachep, &list);
1152 * In the previous loop, all the objects were freed to
1153 * the respective cache's slabs, now we can go ahead and
1154 * shrink each nodelist to its limit.
1156 list_for_each_entry(cachep, &slab_caches, list) {
1157 n = get_node(cachep, node);
1160 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1164 static int cpuup_prepare(long cpu)
1166 struct kmem_cache *cachep;
1167 struct kmem_cache_node *n = NULL;
1168 int node = cpu_to_mem(cpu);
1172 * We need to do this right in the beginning since
1173 * alloc_arraycache's are going to use this list.
1174 * kmalloc_node allows us to add the slab to the right
1175 * kmem_cache_node and not this cpu's kmem_cache_node
1177 err = init_cache_node_node(node);
1182 * Now we can go ahead with allocating the shared arrays and
1185 list_for_each_entry(cachep, &slab_caches, list) {
1186 struct array_cache *shared = NULL;
1187 struct alien_cache **alien = NULL;
1189 if (cachep->shared) {
1190 shared = alloc_arraycache(node,
1191 cachep->shared * cachep->batchcount,
1192 0xbaadf00d, GFP_KERNEL);
1196 if (use_alien_caches) {
1197 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1203 n = get_node(cachep, node);
1206 spin_lock_irq(&n->list_lock);
1209 * We are serialised from CPU_DEAD or
1210 * CPU_UP_CANCELLED by the cpucontrol lock
1221 spin_unlock_irq(&n->list_lock);
1223 free_alien_cache(alien);
1228 cpuup_canceled(cpu);
1232 static int cpuup_callback(struct notifier_block *nfb,
1233 unsigned long action, void *hcpu)
1235 long cpu = (long)hcpu;
1239 case CPU_UP_PREPARE:
1240 case CPU_UP_PREPARE_FROZEN:
1241 mutex_lock(&slab_mutex);
1242 err = cpuup_prepare(cpu);
1243 mutex_unlock(&slab_mutex);
1246 case CPU_ONLINE_FROZEN:
1247 start_cpu_timer(cpu);
1249 #ifdef CONFIG_HOTPLUG_CPU
1250 case CPU_DOWN_PREPARE:
1251 case CPU_DOWN_PREPARE_FROZEN:
1253 * Shutdown cache reaper. Note that the slab_mutex is
1254 * held so that if cache_reap() is invoked it cannot do
1255 * anything expensive but will only modify reap_work
1256 * and reschedule the timer.
1258 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1259 /* Now the cache_reaper is guaranteed to be not running. */
1260 per_cpu(slab_reap_work, cpu).work.func = NULL;
1262 case CPU_DOWN_FAILED:
1263 case CPU_DOWN_FAILED_FROZEN:
1264 start_cpu_timer(cpu);
1267 case CPU_DEAD_FROZEN:
1269 * Even if all the cpus of a node are down, we don't free the
1270 * kmem_cache_node of any cache. This to avoid a race between
1271 * cpu_down, and a kmalloc allocation from another cpu for
1272 * memory from the node of the cpu going down. The node
1273 * structure is usually allocated from kmem_cache_create() and
1274 * gets destroyed at kmem_cache_destroy().
1278 case CPU_UP_CANCELED:
1279 case CPU_UP_CANCELED_FROZEN:
1280 mutex_lock(&slab_mutex);
1281 cpuup_canceled(cpu);
1282 mutex_unlock(&slab_mutex);
1285 return notifier_from_errno(err);
1288 static struct notifier_block cpucache_notifier = {
1289 &cpuup_callback, NULL, 0
1292 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1294 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1295 * Returns -EBUSY if all objects cannot be drained so that the node is not
1298 * Must hold slab_mutex.
1300 static int __meminit drain_cache_node_node(int node)
1302 struct kmem_cache *cachep;
1305 list_for_each_entry(cachep, &slab_caches, list) {
1306 struct kmem_cache_node *n;
1308 n = get_node(cachep, node);
1312 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1314 if (!list_empty(&n->slabs_full) ||
1315 !list_empty(&n->slabs_partial)) {
1323 static int __meminit slab_memory_callback(struct notifier_block *self,
1324 unsigned long action, void *arg)
1326 struct memory_notify *mnb = arg;
1330 nid = mnb->status_change_nid;
1335 case MEM_GOING_ONLINE:
1336 mutex_lock(&slab_mutex);
1337 ret = init_cache_node_node(nid);
1338 mutex_unlock(&slab_mutex);
1340 case MEM_GOING_OFFLINE:
1341 mutex_lock(&slab_mutex);
1342 ret = drain_cache_node_node(nid);
1343 mutex_unlock(&slab_mutex);
1347 case MEM_CANCEL_ONLINE:
1348 case MEM_CANCEL_OFFLINE:
1352 return notifier_from_errno(ret);
1354 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1357 * swap the static kmem_cache_node with kmalloced memory
1359 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1362 struct kmem_cache_node *ptr;
1364 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1367 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1369 * Do not assume that spinlocks can be initialized via memcpy:
1371 spin_lock_init(&ptr->list_lock);
1373 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1374 cachep->node[nodeid] = ptr;
1378 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1379 * size of kmem_cache_node.
1381 static void __init set_up_node(struct kmem_cache *cachep, int index)
1385 for_each_online_node(node) {
1386 cachep->node[node] = &init_kmem_cache_node[index + node];
1387 cachep->node[node]->next_reap = jiffies +
1389 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1394 * Initialisation. Called after the page allocator have been initialised and
1395 * before smp_init().
1397 void __init kmem_cache_init(void)
1401 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1402 sizeof(struct rcu_head));
1403 kmem_cache = &kmem_cache_boot;
1405 if (num_possible_nodes() == 1)
1406 use_alien_caches = 0;
1408 for (i = 0; i < NUM_INIT_LISTS; i++)
1409 kmem_cache_node_init(&init_kmem_cache_node[i]);
1412 * Fragmentation resistance on low memory - only use bigger
1413 * page orders on machines with more than 32MB of memory if
1414 * not overridden on the command line.
1416 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1417 slab_max_order = SLAB_MAX_ORDER_HI;
1419 /* Bootstrap is tricky, because several objects are allocated
1420 * from caches that do not exist yet:
1421 * 1) initialize the kmem_cache cache: it contains the struct
1422 * kmem_cache structures of all caches, except kmem_cache itself:
1423 * kmem_cache is statically allocated.
1424 * Initially an __init data area is used for the head array and the
1425 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1426 * array at the end of the bootstrap.
1427 * 2) Create the first kmalloc cache.
1428 * The struct kmem_cache for the new cache is allocated normally.
1429 * An __init data area is used for the head array.
1430 * 3) Create the remaining kmalloc caches, with minimally sized
1432 * 4) Replace the __init data head arrays for kmem_cache and the first
1433 * kmalloc cache with kmalloc allocated arrays.
1434 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1435 * the other cache's with kmalloc allocated memory.
1436 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1439 /* 1) create the kmem_cache */
1442 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1444 create_boot_cache(kmem_cache, "kmem_cache",
1445 offsetof(struct kmem_cache, node) +
1446 nr_node_ids * sizeof(struct kmem_cache_node *),
1447 SLAB_HWCACHE_ALIGN);
1448 list_add(&kmem_cache->list, &slab_caches);
1449 slab_state = PARTIAL;
1452 * Initialize the caches that provide memory for the kmem_cache_node
1453 * structures first. Without this, further allocations will bug.
1455 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1456 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1457 slab_state = PARTIAL_NODE;
1458 setup_kmalloc_cache_index_table();
1460 slab_early_init = 0;
1462 /* 5) Replace the bootstrap kmem_cache_node */
1466 for_each_online_node(nid) {
1467 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1469 init_list(kmalloc_caches[INDEX_NODE],
1470 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1474 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1477 void __init kmem_cache_init_late(void)
1479 struct kmem_cache *cachep;
1483 /* 6) resize the head arrays to their final sizes */
1484 mutex_lock(&slab_mutex);
1485 list_for_each_entry(cachep, &slab_caches, list)
1486 if (enable_cpucache(cachep, GFP_NOWAIT))
1488 mutex_unlock(&slab_mutex);
1494 * Register a cpu startup notifier callback that initializes
1495 * cpu_cache_get for all new cpus
1497 register_cpu_notifier(&cpucache_notifier);
1501 * Register a memory hotplug callback that initializes and frees
1504 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1508 * The reap timers are started later, with a module init call: That part
1509 * of the kernel is not yet operational.
1513 static int __init cpucache_init(void)
1518 * Register the timers that return unneeded pages to the page allocator
1520 for_each_online_cpu(cpu)
1521 start_cpu_timer(cpu);
1527 __initcall(cpucache_init);
1529 static noinline void
1530 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1533 struct kmem_cache_node *n;
1535 unsigned long flags;
1537 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1538 DEFAULT_RATELIMIT_BURST);
1540 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1544 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1546 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1547 cachep->name, cachep->size, cachep->gfporder);
1549 for_each_kmem_cache_node(cachep, node, n) {
1550 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1551 unsigned long active_slabs = 0, num_slabs = 0;
1553 spin_lock_irqsave(&n->list_lock, flags);
1554 list_for_each_entry(page, &n->slabs_full, lru) {
1555 active_objs += cachep->num;
1558 list_for_each_entry(page, &n->slabs_partial, lru) {
1559 active_objs += page->active;
1562 list_for_each_entry(page, &n->slabs_free, lru)
1565 free_objects += n->free_objects;
1566 spin_unlock_irqrestore(&n->list_lock, flags);
1568 num_slabs += active_slabs;
1569 num_objs = num_slabs * cachep->num;
1571 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1572 node, active_slabs, num_slabs, active_objs, num_objs,
1579 * Interface to system's page allocator. No need to hold the
1580 * kmem_cache_node ->list_lock.
1582 * If we requested dmaable memory, we will get it. Even if we
1583 * did not request dmaable memory, we might get it, but that
1584 * would be relatively rare and ignorable.
1586 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1592 flags |= cachep->allocflags;
1593 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1594 flags |= __GFP_RECLAIMABLE;
1596 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1598 slab_out_of_memory(cachep, flags, nodeid);
1602 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1603 __free_pages(page, cachep->gfporder);
1607 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1608 if (page_is_pfmemalloc(page))
1609 pfmemalloc_active = true;
1611 nr_pages = (1 << cachep->gfporder);
1612 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613 add_zone_page_state(page_zone(page),
1614 NR_SLAB_RECLAIMABLE, nr_pages);
1616 add_zone_page_state(page_zone(page),
1617 NR_SLAB_UNRECLAIMABLE, nr_pages);
1618 __SetPageSlab(page);
1619 if (page_is_pfmemalloc(page))
1620 SetPageSlabPfmemalloc(page);
1622 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1623 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1626 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1628 kmemcheck_mark_unallocated_pages(page, nr_pages);
1635 * Interface to system's page release.
1637 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1639 const unsigned long nr_freed = (1 << cachep->gfporder);
1641 kmemcheck_free_shadow(page, cachep->gfporder);
1643 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1644 sub_zone_page_state(page_zone(page),
1645 NR_SLAB_RECLAIMABLE, nr_freed);
1647 sub_zone_page_state(page_zone(page),
1648 NR_SLAB_UNRECLAIMABLE, nr_freed);
1650 BUG_ON(!PageSlab(page));
1651 __ClearPageSlabPfmemalloc(page);
1652 __ClearPageSlab(page);
1653 page_mapcount_reset(page);
1654 page->mapping = NULL;
1656 if (current->reclaim_state)
1657 current->reclaim_state->reclaimed_slab += nr_freed;
1658 __free_kmem_pages(page, cachep->gfporder);
1661 static void kmem_rcu_free(struct rcu_head *head)
1663 struct kmem_cache *cachep;
1666 page = container_of(head, struct page, rcu_head);
1667 cachep = page->slab_cache;
1669 kmem_freepages(cachep, page);
1674 #ifdef CONFIG_DEBUG_PAGEALLOC
1675 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1676 unsigned long caller)
1678 int size = cachep->object_size;
1680 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1682 if (size < 5 * sizeof(unsigned long))
1685 *addr++ = 0x12345678;
1687 *addr++ = smp_processor_id();
1688 size -= 3 * sizeof(unsigned long);
1690 unsigned long *sptr = &caller;
1691 unsigned long svalue;
1693 while (!kstack_end(sptr)) {
1695 if (kernel_text_address(svalue)) {
1697 size -= sizeof(unsigned long);
1698 if (size <= sizeof(unsigned long))
1704 *addr++ = 0x87654321;
1708 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1710 int size = cachep->object_size;
1711 addr = &((char *)addr)[obj_offset(cachep)];
1713 memset(addr, val, size);
1714 *(unsigned char *)(addr + size - 1) = POISON_END;
1717 static void dump_line(char *data, int offset, int limit)
1720 unsigned char error = 0;
1723 printk(KERN_ERR "%03x: ", offset);
1724 for (i = 0; i < limit; i++) {
1725 if (data[offset + i] != POISON_FREE) {
1726 error = data[offset + i];
1730 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1731 &data[offset], limit, 1);
1733 if (bad_count == 1) {
1734 error ^= POISON_FREE;
1735 if (!(error & (error - 1))) {
1736 printk(KERN_ERR "Single bit error detected. Probably "
1739 printk(KERN_ERR "Run memtest86+ or a similar memory "
1742 printk(KERN_ERR "Run a memory test tool.\n");
1751 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1756 if (cachep->flags & SLAB_RED_ZONE) {
1757 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1758 *dbg_redzone1(cachep, objp),
1759 *dbg_redzone2(cachep, objp));
1762 if (cachep->flags & SLAB_STORE_USER) {
1763 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1764 *dbg_userword(cachep, objp),
1765 *dbg_userword(cachep, objp));
1767 realobj = (char *)objp + obj_offset(cachep);
1768 size = cachep->object_size;
1769 for (i = 0; i < size && lines; i += 16, lines--) {
1772 if (i + limit > size)
1774 dump_line(realobj, i, limit);
1778 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1784 realobj = (char *)objp + obj_offset(cachep);
1785 size = cachep->object_size;
1787 for (i = 0; i < size; i++) {
1788 char exp = POISON_FREE;
1791 if (realobj[i] != exp) {
1797 "Slab corruption (%s): %s start=%p, len=%d\n",
1798 print_tainted(), cachep->name, realobj, size);
1799 print_objinfo(cachep, objp, 0);
1801 /* Hexdump the affected line */
1804 if (i + limit > size)
1806 dump_line(realobj, i, limit);
1809 /* Limit to 5 lines */
1815 /* Print some data about the neighboring objects, if they
1818 struct page *page = virt_to_head_page(objp);
1821 objnr = obj_to_index(cachep, page, objp);
1823 objp = index_to_obj(cachep, page, objnr - 1);
1824 realobj = (char *)objp + obj_offset(cachep);
1825 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1827 print_objinfo(cachep, objp, 2);
1829 if (objnr + 1 < cachep->num) {
1830 objp = index_to_obj(cachep, page, objnr + 1);
1831 realobj = (char *)objp + obj_offset(cachep);
1832 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1834 print_objinfo(cachep, objp, 2);
1841 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1845 for (i = 0; i < cachep->num; i++) {
1846 void *objp = index_to_obj(cachep, page, i);
1848 if (cachep->flags & SLAB_POISON) {
1849 #ifdef CONFIG_DEBUG_PAGEALLOC
1850 if (cachep->size % PAGE_SIZE == 0 &&
1852 kernel_map_pages(virt_to_page(objp),
1853 cachep->size / PAGE_SIZE, 1);
1855 check_poison_obj(cachep, objp);
1857 check_poison_obj(cachep, objp);
1860 if (cachep->flags & SLAB_RED_ZONE) {
1861 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1862 slab_error(cachep, "start of a freed object "
1864 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1865 slab_error(cachep, "end of a freed object "
1871 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1878 * slab_destroy - destroy and release all objects in a slab
1879 * @cachep: cache pointer being destroyed
1880 * @page: page pointer being destroyed
1882 * Destroy all the objs in a slab page, and release the mem back to the system.
1883 * Before calling the slab page must have been unlinked from the cache. The
1884 * kmem_cache_node ->list_lock is not held/needed.
1886 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1890 freelist = page->freelist;
1891 slab_destroy_debugcheck(cachep, page);
1892 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1893 struct rcu_head *head;
1896 * RCU free overloads the RCU head over the LRU.
1897 * slab_page has been overloeaded over the LRU,
1898 * however it is not used from now on so that
1899 * we can use it safely.
1901 head = (void *)&page->rcu_head;
1902 call_rcu(head, kmem_rcu_free);
1905 kmem_freepages(cachep, page);
1909 * From now on, we don't use freelist
1910 * although actual page can be freed in rcu context
1912 if (OFF_SLAB(cachep))
1913 kmem_cache_free(cachep->freelist_cache, freelist);
1916 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1918 struct page *page, *n;
1920 list_for_each_entry_safe(page, n, list, lru) {
1921 list_del(&page->lru);
1922 slab_destroy(cachep, page);
1927 * calculate_slab_order - calculate size (page order) of slabs
1928 * @cachep: pointer to the cache that is being created
1929 * @size: size of objects to be created in this cache.
1930 * @align: required alignment for the objects.
1931 * @flags: slab allocation flags
1933 * Also calculates the number of objects per slab.
1935 * This could be made much more intelligent. For now, try to avoid using
1936 * high order pages for slabs. When the gfp() functions are more friendly
1937 * towards high-order requests, this should be changed.
1939 static size_t calculate_slab_order(struct kmem_cache *cachep,
1940 size_t size, size_t align, unsigned long flags)
1942 unsigned long offslab_limit;
1943 size_t left_over = 0;
1946 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1950 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1954 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1955 if (num > SLAB_OBJ_MAX_NUM)
1958 if (flags & CFLGS_OFF_SLAB) {
1959 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1961 * Max number of objs-per-slab for caches which
1962 * use off-slab slabs. Needed to avoid a possible
1963 * looping condition in cache_grow().
1965 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1966 freelist_size_per_obj += sizeof(char);
1967 offslab_limit = size;
1968 offslab_limit /= freelist_size_per_obj;
1970 if (num > offslab_limit)
1974 /* Found something acceptable - save it away */
1976 cachep->gfporder = gfporder;
1977 left_over = remainder;
1980 * A VFS-reclaimable slab tends to have most allocations
1981 * as GFP_NOFS and we really don't want to have to be allocating
1982 * higher-order pages when we are unable to shrink dcache.
1984 if (flags & SLAB_RECLAIM_ACCOUNT)
1988 * Large number of objects is good, but very large slabs are
1989 * currently bad for the gfp()s.
1991 if (gfporder >= slab_max_order)
1995 * Acceptable internal fragmentation?
1997 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2003 static struct array_cache __percpu *alloc_kmem_cache_cpus(
2004 struct kmem_cache *cachep, int entries, int batchcount)
2008 struct array_cache __percpu *cpu_cache;
2010 size = sizeof(void *) * entries + sizeof(struct array_cache);
2011 cpu_cache = __alloc_percpu(size, sizeof(void *));
2016 for_each_possible_cpu(cpu) {
2017 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2018 entries, batchcount);
2024 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2026 if (slab_state >= FULL)
2027 return enable_cpucache(cachep, gfp);
2029 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2030 if (!cachep->cpu_cache)
2033 if (slab_state == DOWN) {
2034 /* Creation of first cache (kmem_cache). */
2035 set_up_node(kmem_cache, CACHE_CACHE);
2036 } else if (slab_state == PARTIAL) {
2037 /* For kmem_cache_node */
2038 set_up_node(cachep, SIZE_NODE);
2042 for_each_online_node(node) {
2043 cachep->node[node] = kmalloc_node(
2044 sizeof(struct kmem_cache_node), gfp, node);
2045 BUG_ON(!cachep->node[node]);
2046 kmem_cache_node_init(cachep->node[node]);
2050 cachep->node[numa_mem_id()]->next_reap =
2051 jiffies + REAPTIMEOUT_NODE +
2052 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2054 cpu_cache_get(cachep)->avail = 0;
2055 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2056 cpu_cache_get(cachep)->batchcount = 1;
2057 cpu_cache_get(cachep)->touched = 0;
2058 cachep->batchcount = 1;
2059 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2063 unsigned long kmem_cache_flags(unsigned long object_size,
2064 unsigned long flags, const char *name,
2065 void (*ctor)(void *))
2071 __kmem_cache_alias(const char *name, size_t size, size_t align,
2072 unsigned long flags, void (*ctor)(void *))
2074 struct kmem_cache *cachep;
2076 cachep = find_mergeable(size, align, flags, name, ctor);
2081 * Adjust the object sizes so that we clear
2082 * the complete object on kzalloc.
2084 cachep->object_size = max_t(int, cachep->object_size, size);
2090 * __kmem_cache_create - Create a cache.
2091 * @cachep: cache management descriptor
2092 * @flags: SLAB flags
2094 * Returns a ptr to the cache on success, NULL on failure.
2095 * Cannot be called within a int, but can be interrupted.
2096 * The @ctor is run when new pages are allocated by the cache.
2100 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2101 * to catch references to uninitialised memory.
2103 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2104 * for buffer overruns.
2106 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2107 * cacheline. This can be beneficial if you're counting cycles as closely
2111 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2113 size_t left_over, freelist_size;
2114 size_t ralign = BYTES_PER_WORD;
2117 size_t size = cachep->size;
2122 * Enable redzoning and last user accounting, except for caches with
2123 * large objects, if the increased size would increase the object size
2124 * above the next power of two: caches with object sizes just above a
2125 * power of two have a significant amount of internal fragmentation.
2127 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2128 2 * sizeof(unsigned long long)))
2129 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2130 if (!(flags & SLAB_DESTROY_BY_RCU))
2131 flags |= SLAB_POISON;
2133 if (flags & SLAB_DESTROY_BY_RCU)
2134 BUG_ON(flags & SLAB_POISON);
2138 * Check that size is in terms of words. This is needed to avoid
2139 * unaligned accesses for some archs when redzoning is used, and makes
2140 * sure any on-slab bufctl's are also correctly aligned.
2142 if (size & (BYTES_PER_WORD - 1)) {
2143 size += (BYTES_PER_WORD - 1);
2144 size &= ~(BYTES_PER_WORD - 1);
2147 if (flags & SLAB_RED_ZONE) {
2148 ralign = REDZONE_ALIGN;
2149 /* If redzoning, ensure that the second redzone is suitably
2150 * aligned, by adjusting the object size accordingly. */
2151 size += REDZONE_ALIGN - 1;
2152 size &= ~(REDZONE_ALIGN - 1);
2155 /* 3) caller mandated alignment */
2156 if (ralign < cachep->align) {
2157 ralign = cachep->align;
2159 /* disable debug if necessary */
2160 if (ralign > __alignof__(unsigned long long))
2161 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2165 cachep->align = ralign;
2167 if (slab_is_available())
2175 * Both debugging options require word-alignment which is calculated
2178 if (flags & SLAB_RED_ZONE) {
2179 /* add space for red zone words */
2180 cachep->obj_offset += sizeof(unsigned long long);
2181 size += 2 * sizeof(unsigned long long);
2183 if (flags & SLAB_STORE_USER) {
2184 /* user store requires one word storage behind the end of
2185 * the real object. But if the second red zone needs to be
2186 * aligned to 64 bits, we must allow that much space.
2188 if (flags & SLAB_RED_ZONE)
2189 size += REDZONE_ALIGN;
2191 size += BYTES_PER_WORD;
2193 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2195 * To activate debug pagealloc, off-slab management is necessary
2196 * requirement. In early phase of initialization, small sized slab
2197 * doesn't get initialized so it would not be possible. So, we need
2198 * to check size >= 256. It guarantees that all necessary small
2199 * sized slab is initialized in current slab initialization sequence.
2201 if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2202 size >= 256 && cachep->object_size > cache_line_size() &&
2203 ALIGN(size, cachep->align) < PAGE_SIZE) {
2204 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2211 * Determine if the slab management is 'on' or 'off' slab.
2212 * (bootstrapping cannot cope with offslab caches so don't do
2213 * it too early on. Always use on-slab management when
2214 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2216 if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2217 !(flags & SLAB_NOLEAKTRACE))
2219 * Size is large, assume best to place the slab management obj
2220 * off-slab (should allow better packing of objs).
2222 flags |= CFLGS_OFF_SLAB;
2224 size = ALIGN(size, cachep->align);
2226 * We should restrict the number of objects in a slab to implement
2227 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2229 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2230 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2232 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2237 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2240 * If the slab has been placed off-slab, and we have enough space then
2241 * move it on-slab. This is at the expense of any extra colouring.
2243 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2244 flags &= ~CFLGS_OFF_SLAB;
2245 left_over -= freelist_size;
2248 if (flags & CFLGS_OFF_SLAB) {
2249 /* really off slab. No need for manual alignment */
2250 freelist_size = calculate_freelist_size(cachep->num, 0);
2252 #ifdef CONFIG_PAGE_POISONING
2253 /* If we're going to use the generic kernel_map_pages()
2254 * poisoning, then it's going to smash the contents of
2255 * the redzone and userword anyhow, so switch them off.
2257 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2258 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2262 cachep->colour_off = cache_line_size();
2263 /* Offset must be a multiple of the alignment. */
2264 if (cachep->colour_off < cachep->align)
2265 cachep->colour_off = cachep->align;
2266 cachep->colour = left_over / cachep->colour_off;
2267 cachep->freelist_size = freelist_size;
2268 cachep->flags = flags;
2269 cachep->allocflags = __GFP_COMP;
2270 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2271 cachep->allocflags |= GFP_DMA;
2272 cachep->size = size;
2273 cachep->reciprocal_buffer_size = reciprocal_value(size);
2275 if (flags & CFLGS_OFF_SLAB) {
2276 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2278 * This is a possibility for one of the kmalloc_{dma,}_caches.
2279 * But since we go off slab only for object size greater than
2280 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2281 * in ascending order,this should not happen at all.
2282 * But leave a BUG_ON for some lucky dude.
2284 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2287 err = setup_cpu_cache(cachep, gfp);
2289 __kmem_cache_shutdown(cachep);
2297 static void check_irq_off(void)
2299 BUG_ON(!irqs_disabled());
2302 static void check_irq_on(void)
2304 BUG_ON(irqs_disabled());
2307 static void check_spinlock_acquired(struct kmem_cache *cachep)
2311 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2315 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2319 assert_spin_locked(&get_node(cachep, node)->list_lock);
2324 #define check_irq_off() do { } while(0)
2325 #define check_irq_on() do { } while(0)
2326 #define check_spinlock_acquired(x) do { } while(0)
2327 #define check_spinlock_acquired_node(x, y) do { } while(0)
2330 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2331 struct array_cache *ac,
2332 int force, int node);
2334 static void do_drain(void *arg)
2336 struct kmem_cache *cachep = arg;
2337 struct array_cache *ac;
2338 int node = numa_mem_id();
2339 struct kmem_cache_node *n;
2343 ac = cpu_cache_get(cachep);
2344 n = get_node(cachep, node);
2345 spin_lock(&n->list_lock);
2346 free_block(cachep, ac->entry, ac->avail, node, &list);
2347 spin_unlock(&n->list_lock);
2348 slabs_destroy(cachep, &list);
2352 static void drain_cpu_caches(struct kmem_cache *cachep)
2354 struct kmem_cache_node *n;
2357 on_each_cpu(do_drain, cachep, 1);
2359 for_each_kmem_cache_node(cachep, node, n)
2361 drain_alien_cache(cachep, n->alien);
2363 for_each_kmem_cache_node(cachep, node, n)
2364 drain_array(cachep, n, n->shared, 1, node);
2368 * Remove slabs from the list of free slabs.
2369 * Specify the number of slabs to drain in tofree.
2371 * Returns the actual number of slabs released.
2373 static int drain_freelist(struct kmem_cache *cache,
2374 struct kmem_cache_node *n, int tofree)
2376 struct list_head *p;
2381 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2383 spin_lock_irq(&n->list_lock);
2384 p = n->slabs_free.prev;
2385 if (p == &n->slabs_free) {
2386 spin_unlock_irq(&n->list_lock);
2390 page = list_entry(p, struct page, lru);
2392 BUG_ON(page->active);
2394 list_del(&page->lru);
2396 * Safe to drop the lock. The slab is no longer linked
2399 n->free_objects -= cache->num;
2400 spin_unlock_irq(&n->list_lock);
2401 slab_destroy(cache, page);
2408 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2412 struct kmem_cache_node *n;
2414 drain_cpu_caches(cachep);
2417 for_each_kmem_cache_node(cachep, node, n) {
2418 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2420 ret += !list_empty(&n->slabs_full) ||
2421 !list_empty(&n->slabs_partial);
2423 return (ret ? 1 : 0);
2426 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2429 struct kmem_cache_node *n;
2430 int rc = __kmem_cache_shrink(cachep, false);
2435 free_percpu(cachep->cpu_cache);
2437 /* NUMA: free the node structures */
2438 for_each_kmem_cache_node(cachep, i, n) {
2440 free_alien_cache(n->alien);
2442 cachep->node[i] = NULL;
2448 * Get the memory for a slab management obj.
2450 * For a slab cache when the slab descriptor is off-slab, the
2451 * slab descriptor can't come from the same cache which is being created,
2452 * Because if it is the case, that means we defer the creation of
2453 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2454 * And we eventually call down to __kmem_cache_create(), which
2455 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2456 * This is a "chicken-and-egg" problem.
2458 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2459 * which are all initialized during kmem_cache_init().
2461 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2462 struct page *page, int colour_off,
2463 gfp_t local_flags, int nodeid)
2466 void *addr = page_address(page);
2468 if (OFF_SLAB(cachep)) {
2469 /* Slab management obj is off-slab. */
2470 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2471 local_flags, nodeid);
2475 freelist = addr + colour_off;
2476 colour_off += cachep->freelist_size;
2479 page->s_mem = addr + colour_off;
2483 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2485 return ((freelist_idx_t *)page->freelist)[idx];
2488 static inline void set_free_obj(struct page *page,
2489 unsigned int idx, freelist_idx_t val)
2491 ((freelist_idx_t *)(page->freelist))[idx] = val;
2494 static void cache_init_objs(struct kmem_cache *cachep,
2499 for (i = 0; i < cachep->num; i++) {
2500 void *objp = index_to_obj(cachep, page, i);
2502 /* need to poison the objs? */
2503 if (cachep->flags & SLAB_POISON)
2504 poison_obj(cachep, objp, POISON_FREE);
2505 if (cachep->flags & SLAB_STORE_USER)
2506 *dbg_userword(cachep, objp) = NULL;
2508 if (cachep->flags & SLAB_RED_ZONE) {
2509 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2510 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2513 * Constructors are not allowed to allocate memory from the same
2514 * cache which they are a constructor for. Otherwise, deadlock.
2515 * They must also be threaded.
2517 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2518 cachep->ctor(objp + obj_offset(cachep));
2520 if (cachep->flags & SLAB_RED_ZONE) {
2521 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2522 slab_error(cachep, "constructor overwrote the"
2523 " end of an object");
2524 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2525 slab_error(cachep, "constructor overwrote the"
2526 " start of an object");
2528 if ((cachep->size % PAGE_SIZE) == 0 &&
2529 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2530 kernel_map_pages(virt_to_page(objp),
2531 cachep->size / PAGE_SIZE, 0);
2536 set_obj_status(page, i, OBJECT_FREE);
2537 set_free_obj(page, i, i);
2541 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2543 if (CONFIG_ZONE_DMA_FLAG) {
2544 if (flags & GFP_DMA)
2545 BUG_ON(!(cachep->allocflags & GFP_DMA));
2547 BUG_ON(cachep->allocflags & GFP_DMA);
2551 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2556 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2559 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2565 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2566 void *objp, int nodeid)
2568 unsigned int objnr = obj_to_index(cachep, page, objp);
2572 /* Verify that the slab belongs to the intended node */
2573 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2575 /* Verify double free bug */
2576 for (i = page->active; i < cachep->num; i++) {
2577 if (get_free_obj(page, i) == objnr) {
2578 printk(KERN_ERR "slab: double free detected in cache "
2579 "'%s', objp %p\n", cachep->name, objp);
2585 set_free_obj(page, page->active, objnr);
2589 * Map pages beginning at addr to the given cache and slab. This is required
2590 * for the slab allocator to be able to lookup the cache and slab of a
2591 * virtual address for kfree, ksize, and slab debugging.
2593 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2596 page->slab_cache = cache;
2597 page->freelist = freelist;
2601 * Grow (by 1) the number of slabs within a cache. This is called by
2602 * kmem_cache_alloc() when there are no active objs left in a cache.
2604 static int cache_grow(struct kmem_cache *cachep,
2605 gfp_t flags, int nodeid, struct page *page)
2610 struct kmem_cache_node *n;
2613 * Be lazy and only check for valid flags here, keeping it out of the
2614 * critical path in kmem_cache_alloc().
2616 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2617 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2620 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2622 /* Take the node list lock to change the colour_next on this node */
2624 n = get_node(cachep, nodeid);
2625 spin_lock(&n->list_lock);
2627 /* Get colour for the slab, and cal the next value. */
2628 offset = n->colour_next;
2630 if (n->colour_next >= cachep->colour)
2632 spin_unlock(&n->list_lock);
2634 offset *= cachep->colour_off;
2636 if (local_flags & __GFP_WAIT)
2640 * The test for missing atomic flag is performed here, rather than
2641 * the more obvious place, simply to reduce the critical path length
2642 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2643 * will eventually be caught here (where it matters).
2645 kmem_flagcheck(cachep, flags);
2648 * Get mem for the objs. Attempt to allocate a physical page from
2652 page = kmem_getpages(cachep, local_flags, nodeid);
2656 /* Get slab management. */
2657 freelist = alloc_slabmgmt(cachep, page, offset,
2658 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2662 slab_map_pages(cachep, page, freelist);
2664 cache_init_objs(cachep, page);
2666 if (local_flags & __GFP_WAIT)
2667 local_irq_disable();
2669 spin_lock(&n->list_lock);
2671 /* Make slab active. */
2672 list_add_tail(&page->lru, &(n->slabs_free));
2673 STATS_INC_GROWN(cachep);
2674 n->free_objects += cachep->num;
2675 spin_unlock(&n->list_lock);
2678 kmem_freepages(cachep, page);
2680 if (local_flags & __GFP_WAIT)
2681 local_irq_disable();
2688 * Perform extra freeing checks:
2689 * - detect bad pointers.
2690 * - POISON/RED_ZONE checking
2692 static void kfree_debugcheck(const void *objp)
2694 if (!virt_addr_valid(objp)) {
2695 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2696 (unsigned long)objp);
2701 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2703 unsigned long long redzone1, redzone2;
2705 redzone1 = *dbg_redzone1(cache, obj);
2706 redzone2 = *dbg_redzone2(cache, obj);
2711 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2714 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2715 slab_error(cache, "double free detected");
2717 slab_error(cache, "memory outside object was overwritten");
2719 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2720 obj, redzone1, redzone2);
2723 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2724 unsigned long caller)
2729 BUG_ON(virt_to_cache(objp) != cachep);
2731 objp -= obj_offset(cachep);
2732 kfree_debugcheck(objp);
2733 page = virt_to_head_page(objp);
2735 if (cachep->flags & SLAB_RED_ZONE) {
2736 verify_redzone_free(cachep, objp);
2737 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2738 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2740 if (cachep->flags & SLAB_STORE_USER)
2741 *dbg_userword(cachep, objp) = (void *)caller;
2743 objnr = obj_to_index(cachep, page, objp);
2745 BUG_ON(objnr >= cachep->num);
2746 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2748 set_obj_status(page, objnr, OBJECT_FREE);
2749 if (cachep->flags & SLAB_POISON) {
2750 #ifdef CONFIG_DEBUG_PAGEALLOC
2751 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2752 store_stackinfo(cachep, objp, caller);
2753 kernel_map_pages(virt_to_page(objp),
2754 cachep->size / PAGE_SIZE, 0);
2756 poison_obj(cachep, objp, POISON_FREE);
2759 poison_obj(cachep, objp, POISON_FREE);
2766 #define kfree_debugcheck(x) do { } while(0)
2767 #define cache_free_debugcheck(x,objp,z) (objp)
2770 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2774 struct kmem_cache_node *n;
2775 struct array_cache *ac;
2779 node = numa_mem_id();
2780 if (unlikely(force_refill))
2783 ac = cpu_cache_get(cachep);
2784 batchcount = ac->batchcount;
2785 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2787 * If there was little recent activity on this cache, then
2788 * perform only a partial refill. Otherwise we could generate
2791 batchcount = BATCHREFILL_LIMIT;
2793 n = get_node(cachep, node);
2795 BUG_ON(ac->avail > 0 || !n);
2796 spin_lock(&n->list_lock);
2798 /* See if we can refill from the shared array */
2799 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2800 n->shared->touched = 1;
2804 while (batchcount > 0) {
2805 struct list_head *entry;
2807 /* Get slab alloc is to come from. */
2808 entry = n->slabs_partial.next;
2809 if (entry == &n->slabs_partial) {
2810 n->free_touched = 1;
2811 entry = n->slabs_free.next;
2812 if (entry == &n->slabs_free)
2816 page = list_entry(entry, struct page, lru);
2817 check_spinlock_acquired(cachep);
2820 * The slab was either on partial or free list so
2821 * there must be at least one object available for
2824 BUG_ON(page->active >= cachep->num);
2826 while (page->active < cachep->num && batchcount--) {
2827 STATS_INC_ALLOCED(cachep);
2828 STATS_INC_ACTIVE(cachep);
2829 STATS_SET_HIGH(cachep);
2831 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2835 /* move slabp to correct slabp list: */
2836 list_del(&page->lru);
2837 if (page->active == cachep->num)
2838 list_add(&page->lru, &n->slabs_full);
2840 list_add(&page->lru, &n->slabs_partial);
2844 n->free_objects -= ac->avail;
2846 spin_unlock(&n->list_lock);
2848 if (unlikely(!ac->avail)) {
2851 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2853 /* cache_grow can reenable interrupts, then ac could change. */
2854 ac = cpu_cache_get(cachep);
2855 node = numa_mem_id();
2857 /* no objects in sight? abort */
2858 if (!x && (ac->avail == 0 || force_refill))
2861 if (!ac->avail) /* objects refilled by interrupt? */
2866 return ac_get_obj(cachep, ac, flags, force_refill);
2869 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2872 might_sleep_if(flags & __GFP_WAIT);
2874 kmem_flagcheck(cachep, flags);
2879 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2880 gfp_t flags, void *objp, unsigned long caller)
2886 if (cachep->flags & SLAB_POISON) {
2887 #ifdef CONFIG_DEBUG_PAGEALLOC
2888 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2889 kernel_map_pages(virt_to_page(objp),
2890 cachep->size / PAGE_SIZE, 1);
2892 check_poison_obj(cachep, objp);
2894 check_poison_obj(cachep, objp);
2896 poison_obj(cachep, objp, POISON_INUSE);
2898 if (cachep->flags & SLAB_STORE_USER)
2899 *dbg_userword(cachep, objp) = (void *)caller;
2901 if (cachep->flags & SLAB_RED_ZONE) {
2902 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2903 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2904 slab_error(cachep, "double free, or memory outside"
2905 " object was overwritten");
2907 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2908 objp, *dbg_redzone1(cachep, objp),
2909 *dbg_redzone2(cachep, objp));
2911 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2912 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2915 page = virt_to_head_page(objp);
2916 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2917 objp += obj_offset(cachep);
2918 if (cachep->ctor && cachep->flags & SLAB_POISON)
2920 if (ARCH_SLAB_MINALIGN &&
2921 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2922 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2923 objp, (int)ARCH_SLAB_MINALIGN);
2928 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2931 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2933 if (unlikely(cachep == kmem_cache))
2936 return should_failslab(cachep->object_size, flags, cachep->flags);
2939 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2942 struct array_cache *ac;
2943 bool force_refill = false;
2947 ac = cpu_cache_get(cachep);
2948 if (likely(ac->avail)) {
2950 objp = ac_get_obj(cachep, ac, flags, false);
2953 * Allow for the possibility all avail objects are not allowed
2954 * by the current flags
2957 STATS_INC_ALLOCHIT(cachep);
2960 force_refill = true;
2963 STATS_INC_ALLOCMISS(cachep);
2964 objp = cache_alloc_refill(cachep, flags, force_refill);
2966 * the 'ac' may be updated by cache_alloc_refill(),
2967 * and kmemleak_erase() requires its correct value.
2969 ac = cpu_cache_get(cachep);
2973 * To avoid a false negative, if an object that is in one of the
2974 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2975 * treat the array pointers as a reference to the object.
2978 kmemleak_erase(&ac->entry[ac->avail]);
2984 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2986 * If we are in_interrupt, then process context, including cpusets and
2987 * mempolicy, may not apply and should not be used for allocation policy.
2989 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2991 int nid_alloc, nid_here;
2993 if (in_interrupt() || (flags & __GFP_THISNODE))
2995 nid_alloc = nid_here = numa_mem_id();
2996 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2997 nid_alloc = cpuset_slab_spread_node();
2998 else if (current->mempolicy)
2999 nid_alloc = mempolicy_slab_node();
3000 if (nid_alloc != nid_here)
3001 return ____cache_alloc_node(cachep, flags, nid_alloc);
3006 * Fallback function if there was no memory available and no objects on a
3007 * certain node and fall back is permitted. First we scan all the
3008 * available node for available objects. If that fails then we
3009 * perform an allocation without specifying a node. This allows the page
3010 * allocator to do its reclaim / fallback magic. We then insert the
3011 * slab into the proper nodelist and then allocate from it.
3013 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3015 struct zonelist *zonelist;
3019 enum zone_type high_zoneidx = gfp_zone(flags);
3022 unsigned int cpuset_mems_cookie;
3024 if (flags & __GFP_THISNODE)
3027 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3030 cpuset_mems_cookie = read_mems_allowed_begin();
3031 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3035 * Look through allowed nodes for objects available
3036 * from existing per node queues.
3038 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3039 nid = zone_to_nid(zone);
3041 if (cpuset_zone_allowed(zone, flags) &&
3042 get_node(cache, nid) &&
3043 get_node(cache, nid)->free_objects) {
3044 obj = ____cache_alloc_node(cache,
3045 gfp_exact_node(flags), nid);
3053 * This allocation will be performed within the constraints
3054 * of the current cpuset / memory policy requirements.
3055 * We may trigger various forms of reclaim on the allowed
3056 * set and go into memory reserves if necessary.
3060 if (local_flags & __GFP_WAIT)
3062 kmem_flagcheck(cache, flags);
3063 page = kmem_getpages(cache, local_flags, numa_mem_id());
3064 if (local_flags & __GFP_WAIT)
3065 local_irq_disable();
3068 * Insert into the appropriate per node queues
3070 nid = page_to_nid(page);
3071 if (cache_grow(cache, flags, nid, page)) {
3072 obj = ____cache_alloc_node(cache,
3073 gfp_exact_node(flags), nid);
3076 * Another processor may allocate the
3077 * objects in the slab since we are
3078 * not holding any locks.
3082 /* cache_grow already freed obj */
3088 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3094 * A interface to enable slab creation on nodeid
3096 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3099 struct list_head *entry;
3101 struct kmem_cache_node *n;
3105 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3106 n = get_node(cachep, nodeid);
3111 spin_lock(&n->list_lock);
3112 entry = n->slabs_partial.next;
3113 if (entry == &n->slabs_partial) {
3114 n->free_touched = 1;
3115 entry = n->slabs_free.next;
3116 if (entry == &n->slabs_free)
3120 page = list_entry(entry, struct page, lru);
3121 check_spinlock_acquired_node(cachep, nodeid);
3123 STATS_INC_NODEALLOCS(cachep);
3124 STATS_INC_ACTIVE(cachep);
3125 STATS_SET_HIGH(cachep);
3127 BUG_ON(page->active == cachep->num);
3129 obj = slab_get_obj(cachep, page, nodeid);
3131 /* move slabp to correct slabp list: */
3132 list_del(&page->lru);
3134 if (page->active == cachep->num)
3135 list_add(&page->lru, &n->slabs_full);
3137 list_add(&page->lru, &n->slabs_partial);
3139 spin_unlock(&n->list_lock);
3143 spin_unlock(&n->list_lock);
3144 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3148 return fallback_alloc(cachep, flags);
3154 static __always_inline void *
3155 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3156 unsigned long caller)
3158 unsigned long save_flags;
3160 int slab_node = numa_mem_id();
3162 flags &= gfp_allowed_mask;
3164 lockdep_trace_alloc(flags);
3166 if (slab_should_failslab(cachep, flags))
3169 cachep = memcg_kmem_get_cache(cachep, flags);
3171 cache_alloc_debugcheck_before(cachep, flags);
3172 local_irq_save(save_flags);
3174 if (nodeid == NUMA_NO_NODE)
3177 if (unlikely(!get_node(cachep, nodeid))) {
3178 /* Node not bootstrapped yet */
3179 ptr = fallback_alloc(cachep, flags);
3183 if (nodeid == slab_node) {
3185 * Use the locally cached objects if possible.
3186 * However ____cache_alloc does not allow fallback
3187 * to other nodes. It may fail while we still have
3188 * objects on other nodes available.
3190 ptr = ____cache_alloc(cachep, flags);
3194 /* ___cache_alloc_node can fall back to other nodes */
3195 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3197 local_irq_restore(save_flags);
3198 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3199 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3203 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3204 if (unlikely(flags & __GFP_ZERO))
3205 memset(ptr, 0, cachep->object_size);
3208 memcg_kmem_put_cache(cachep);
3212 static __always_inline void *
3213 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3217 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3218 objp = alternate_node_alloc(cache, flags);
3222 objp = ____cache_alloc(cache, flags);
3225 * We may just have run out of memory on the local node.
3226 * ____cache_alloc_node() knows how to locate memory on other nodes
3229 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3236 static __always_inline void *
3237 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3239 return ____cache_alloc(cachep, flags);
3242 #endif /* CONFIG_NUMA */
3244 static __always_inline void *
3245 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3247 unsigned long save_flags;
3250 flags &= gfp_allowed_mask;
3252 lockdep_trace_alloc(flags);
3254 if (slab_should_failslab(cachep, flags))
3257 cachep = memcg_kmem_get_cache(cachep, flags);
3259 cache_alloc_debugcheck_before(cachep, flags);
3260 local_irq_save(save_flags);
3261 objp = __do_cache_alloc(cachep, flags);
3262 local_irq_restore(save_flags);
3263 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3264 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3269 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3270 if (unlikely(flags & __GFP_ZERO))
3271 memset(objp, 0, cachep->object_size);
3274 memcg_kmem_put_cache(cachep);
3279 * Caller needs to acquire correct kmem_cache_node's list_lock
3280 * @list: List of detached free slabs should be freed by caller
3282 static void free_block(struct kmem_cache *cachep, void **objpp,
3283 int nr_objects, int node, struct list_head *list)
3286 struct kmem_cache_node *n = get_node(cachep, node);
3288 for (i = 0; i < nr_objects; i++) {
3292 clear_obj_pfmemalloc(&objpp[i]);
3295 page = virt_to_head_page(objp);
3296 list_del(&page->lru);
3297 check_spinlock_acquired_node(cachep, node);
3298 slab_put_obj(cachep, page, objp, node);
3299 STATS_DEC_ACTIVE(cachep);
3302 /* fixup slab chains */
3303 if (page->active == 0) {
3304 if (n->free_objects > n->free_limit) {
3305 n->free_objects -= cachep->num;
3306 list_add_tail(&page->lru, list);
3308 list_add(&page->lru, &n->slabs_free);
3311 /* Unconditionally move a slab to the end of the
3312 * partial list on free - maximum time for the
3313 * other objects to be freed, too.
3315 list_add_tail(&page->lru, &n->slabs_partial);
3320 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3323 struct kmem_cache_node *n;
3324 int node = numa_mem_id();
3327 batchcount = ac->batchcount;
3329 BUG_ON(!batchcount || batchcount > ac->avail);
3332 n = get_node(cachep, node);
3333 spin_lock(&n->list_lock);
3335 struct array_cache *shared_array = n->shared;
3336 int max = shared_array->limit - shared_array->avail;
3338 if (batchcount > max)
3340 memcpy(&(shared_array->entry[shared_array->avail]),
3341 ac->entry, sizeof(void *) * batchcount);
3342 shared_array->avail += batchcount;
3347 free_block(cachep, ac->entry, batchcount, node, &list);
3352 struct list_head *p;
3354 p = n->slabs_free.next;
3355 while (p != &(n->slabs_free)) {
3358 page = list_entry(p, struct page, lru);
3359 BUG_ON(page->active);
3364 STATS_SET_FREEABLE(cachep, i);
3367 spin_unlock(&n->list_lock);
3368 slabs_destroy(cachep, &list);
3369 ac->avail -= batchcount;
3370 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3374 * Release an obj back to its cache. If the obj has a constructed state, it must
3375 * be in this state _before_ it is released. Called with disabled ints.
3377 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3378 unsigned long caller)
3380 struct array_cache *ac = cpu_cache_get(cachep);
3383 kmemleak_free_recursive(objp, cachep->flags);
3384 objp = cache_free_debugcheck(cachep, objp, caller);
3386 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3389 * Skip calling cache_free_alien() when the platform is not numa.
3390 * This will avoid cache misses that happen while accessing slabp (which
3391 * is per page memory reference) to get nodeid. Instead use a global
3392 * variable to skip the call, which is mostly likely to be present in
3395 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3398 if (ac->avail < ac->limit) {
3399 STATS_INC_FREEHIT(cachep);
3401 STATS_INC_FREEMISS(cachep);
3402 cache_flusharray(cachep, ac);
3405 ac_put_obj(cachep, ac, objp);
3409 * kmem_cache_alloc - Allocate an object
3410 * @cachep: The cache to allocate from.
3411 * @flags: See kmalloc().
3413 * Allocate an object from this cache. The flags are only relevant
3414 * if the cache has no available objects.
3416 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3418 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3420 trace_kmem_cache_alloc(_RET_IP_, ret,
3421 cachep->object_size, cachep->size, flags);
3425 EXPORT_SYMBOL(kmem_cache_alloc);
3427 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3429 __kmem_cache_free_bulk(s, size, p);
3431 EXPORT_SYMBOL(kmem_cache_free_bulk);
3433 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3436 return __kmem_cache_alloc_bulk(s, flags, size, p);
3438 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3440 #ifdef CONFIG_TRACING
3442 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3446 ret = slab_alloc(cachep, flags, _RET_IP_);
3448 trace_kmalloc(_RET_IP_, ret,
3449 size, cachep->size, flags);
3452 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3457 * kmem_cache_alloc_node - Allocate an object on the specified node
3458 * @cachep: The cache to allocate from.
3459 * @flags: See kmalloc().
3460 * @nodeid: node number of the target node.
3462 * Identical to kmem_cache_alloc but it will allocate memory on the given
3463 * node, which can improve the performance for cpu bound structures.
3465 * Fallback to other node is possible if __GFP_THISNODE is not set.
3467 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3469 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3471 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3472 cachep->object_size, cachep->size,
3477 EXPORT_SYMBOL(kmem_cache_alloc_node);
3479 #ifdef CONFIG_TRACING
3480 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3487 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3489 trace_kmalloc_node(_RET_IP_, ret,
3494 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3497 static __always_inline void *
3498 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3500 struct kmem_cache *cachep;
3502 cachep = kmalloc_slab(size, flags);
3503 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3505 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3508 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3510 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3512 EXPORT_SYMBOL(__kmalloc_node);
3514 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3515 int node, unsigned long caller)
3517 return __do_kmalloc_node(size, flags, node, caller);
3519 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3520 #endif /* CONFIG_NUMA */
3523 * __do_kmalloc - allocate memory
3524 * @size: how many bytes of memory are required.
3525 * @flags: the type of memory to allocate (see kmalloc).
3526 * @caller: function caller for debug tracking of the caller
3528 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3529 unsigned long caller)
3531 struct kmem_cache *cachep;
3534 cachep = kmalloc_slab(size, flags);
3535 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3537 ret = slab_alloc(cachep, flags, caller);
3539 trace_kmalloc(caller, ret,
3540 size, cachep->size, flags);
3545 void *__kmalloc(size_t size, gfp_t flags)
3547 return __do_kmalloc(size, flags, _RET_IP_);
3549 EXPORT_SYMBOL(__kmalloc);
3551 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3553 return __do_kmalloc(size, flags, caller);
3555 EXPORT_SYMBOL(__kmalloc_track_caller);
3558 * kmem_cache_free - Deallocate an object
3559 * @cachep: The cache the allocation was from.
3560 * @objp: The previously allocated object.
3562 * Free an object which was previously allocated from this
3565 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3567 unsigned long flags;
3568 cachep = cache_from_obj(cachep, objp);
3572 local_irq_save(flags);
3573 debug_check_no_locks_freed(objp, cachep->object_size);
3574 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3575 debug_check_no_obj_freed(objp, cachep->object_size);
3576 __cache_free(cachep, objp, _RET_IP_);
3577 local_irq_restore(flags);
3579 trace_kmem_cache_free(_RET_IP_, objp);
3581 EXPORT_SYMBOL(kmem_cache_free);
3584 * kfree - free previously allocated memory
3585 * @objp: pointer returned by kmalloc.
3587 * If @objp is NULL, no operation is performed.
3589 * Don't free memory not originally allocated by kmalloc()
3590 * or you will run into trouble.
3592 void kfree(const void *objp)
3594 struct kmem_cache *c;
3595 unsigned long flags;
3597 trace_kfree(_RET_IP_, objp);
3599 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3601 local_irq_save(flags);
3602 kfree_debugcheck(objp);
3603 c = virt_to_cache(objp);
3604 debug_check_no_locks_freed(objp, c->object_size);
3606 debug_check_no_obj_freed(objp, c->object_size);
3607 __cache_free(c, (void *)objp, _RET_IP_);
3608 local_irq_restore(flags);
3610 EXPORT_SYMBOL(kfree);
3613 * This initializes kmem_cache_node or resizes various caches for all nodes.
3615 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3618 struct kmem_cache_node *n;
3619 struct array_cache *new_shared;
3620 struct alien_cache **new_alien = NULL;
3622 for_each_online_node(node) {
3624 if (use_alien_caches) {
3625 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3631 if (cachep->shared) {
3632 new_shared = alloc_arraycache(node,
3633 cachep->shared*cachep->batchcount,
3636 free_alien_cache(new_alien);
3641 n = get_node(cachep, node);
3643 struct array_cache *shared = n->shared;
3646 spin_lock_irq(&n->list_lock);
3649 free_block(cachep, shared->entry,
3650 shared->avail, node, &list);
3652 n->shared = new_shared;
3654 n->alien = new_alien;
3657 n->free_limit = (1 + nr_cpus_node(node)) *
3658 cachep->batchcount + cachep->num;
3659 spin_unlock_irq(&n->list_lock);
3660 slabs_destroy(cachep, &list);
3662 free_alien_cache(new_alien);
3665 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3667 free_alien_cache(new_alien);
3672 kmem_cache_node_init(n);
3673 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3674 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3675 n->shared = new_shared;
3676 n->alien = new_alien;
3677 n->free_limit = (1 + nr_cpus_node(node)) *
3678 cachep->batchcount + cachep->num;
3679 cachep->node[node] = n;
3684 if (!cachep->list.next) {
3685 /* Cache is not active yet. Roll back what we did */
3688 n = get_node(cachep, node);
3691 free_alien_cache(n->alien);
3693 cachep->node[node] = NULL;
3701 /* Always called with the slab_mutex held */
3702 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3703 int batchcount, int shared, gfp_t gfp)
3705 struct array_cache __percpu *cpu_cache, *prev;
3708 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3712 prev = cachep->cpu_cache;
3713 cachep->cpu_cache = cpu_cache;
3714 kick_all_cpus_sync();
3717 cachep->batchcount = batchcount;
3718 cachep->limit = limit;
3719 cachep->shared = shared;
3724 for_each_online_cpu(cpu) {
3727 struct kmem_cache_node *n;
3728 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3730 node = cpu_to_mem(cpu);
3731 n = get_node(cachep, node);
3732 spin_lock_irq(&n->list_lock);
3733 free_block(cachep, ac->entry, ac->avail, node, &list);
3734 spin_unlock_irq(&n->list_lock);
3735 slabs_destroy(cachep, &list);
3740 return alloc_kmem_cache_node(cachep, gfp);
3743 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3744 int batchcount, int shared, gfp_t gfp)
3747 struct kmem_cache *c;
3749 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3751 if (slab_state < FULL)
3754 if ((ret < 0) || !is_root_cache(cachep))
3757 lockdep_assert_held(&slab_mutex);
3758 for_each_memcg_cache(c, cachep) {
3759 /* return value determined by the root cache only */
3760 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3766 /* Called with slab_mutex held always */
3767 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3774 if (!is_root_cache(cachep)) {
3775 struct kmem_cache *root = memcg_root_cache(cachep);
3776 limit = root->limit;
3777 shared = root->shared;
3778 batchcount = root->batchcount;
3781 if (limit && shared && batchcount)
3784 * The head array serves three purposes:
3785 * - create a LIFO ordering, i.e. return objects that are cache-warm
3786 * - reduce the number of spinlock operations.
3787 * - reduce the number of linked list operations on the slab and
3788 * bufctl chains: array operations are cheaper.
3789 * The numbers are guessed, we should auto-tune as described by
3792 if (cachep->size > 131072)
3794 else if (cachep->size > PAGE_SIZE)
3796 else if (cachep->size > 1024)
3798 else if (cachep->size > 256)
3804 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3805 * allocation behaviour: Most allocs on one cpu, most free operations
3806 * on another cpu. For these cases, an efficient object passing between
3807 * cpus is necessary. This is provided by a shared array. The array
3808 * replaces Bonwick's magazine layer.
3809 * On uniprocessor, it's functionally equivalent (but less efficient)
3810 * to a larger limit. Thus disabled by default.
3813 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3818 * With debugging enabled, large batchcount lead to excessively long
3819 * periods with disabled local interrupts. Limit the batchcount
3824 batchcount = (limit + 1) / 2;
3826 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3828 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3829 cachep->name, -err);
3834 * Drain an array if it contains any elements taking the node lock only if
3835 * necessary. Note that the node listlock also protects the array_cache
3836 * if drain_array() is used on the shared array.
3838 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3839 struct array_cache *ac, int force, int node)
3844 if (!ac || !ac->avail)
3846 if (ac->touched && !force) {
3849 spin_lock_irq(&n->list_lock);
3851 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3852 if (tofree > ac->avail)
3853 tofree = (ac->avail + 1) / 2;
3854 free_block(cachep, ac->entry, tofree, node, &list);
3855 ac->avail -= tofree;
3856 memmove(ac->entry, &(ac->entry[tofree]),
3857 sizeof(void *) * ac->avail);
3859 spin_unlock_irq(&n->list_lock);
3860 slabs_destroy(cachep, &list);
3865 * cache_reap - Reclaim memory from caches.
3866 * @w: work descriptor
3868 * Called from workqueue/eventd every few seconds.
3870 * - clear the per-cpu caches for this CPU.
3871 * - return freeable pages to the main free memory pool.
3873 * If we cannot acquire the cache chain mutex then just give up - we'll try
3874 * again on the next iteration.
3876 static void cache_reap(struct work_struct *w)
3878 struct kmem_cache *searchp;
3879 struct kmem_cache_node *n;
3880 int node = numa_mem_id();
3881 struct delayed_work *work = to_delayed_work(w);
3883 if (!mutex_trylock(&slab_mutex))
3884 /* Give up. Setup the next iteration. */
3887 list_for_each_entry(searchp, &slab_caches, list) {
3891 * We only take the node lock if absolutely necessary and we
3892 * have established with reasonable certainty that
3893 * we can do some work if the lock was obtained.
3895 n = get_node(searchp, node);
3897 reap_alien(searchp, n);
3899 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3902 * These are racy checks but it does not matter
3903 * if we skip one check or scan twice.
3905 if (time_after(n->next_reap, jiffies))
3908 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3910 drain_array(searchp, n, n->shared, 0, node);
3912 if (n->free_touched)
3913 n->free_touched = 0;
3917 freed = drain_freelist(searchp, n, (n->free_limit +
3918 5 * searchp->num - 1) / (5 * searchp->num));
3919 STATS_ADD_REAPED(searchp, freed);
3925 mutex_unlock(&slab_mutex);
3928 /* Set up the next iteration */
3929 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3932 #ifdef CONFIG_SLABINFO
3933 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3936 unsigned long active_objs;
3937 unsigned long num_objs;
3938 unsigned long active_slabs = 0;
3939 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3943 struct kmem_cache_node *n;
3947 for_each_kmem_cache_node(cachep, node, n) {
3950 spin_lock_irq(&n->list_lock);
3952 list_for_each_entry(page, &n->slabs_full, lru) {
3953 if (page->active != cachep->num && !error)
3954 error = "slabs_full accounting error";
3955 active_objs += cachep->num;
3958 list_for_each_entry(page, &n->slabs_partial, lru) {
3959 if (page->active == cachep->num && !error)
3960 error = "slabs_partial accounting error";
3961 if (!page->active && !error)
3962 error = "slabs_partial accounting error";
3963 active_objs += page->active;
3966 list_for_each_entry(page, &n->slabs_free, lru) {
3967 if (page->active && !error)
3968 error = "slabs_free accounting error";
3971 free_objects += n->free_objects;
3973 shared_avail += n->shared->avail;
3975 spin_unlock_irq(&n->list_lock);
3977 num_slabs += active_slabs;
3978 num_objs = num_slabs * cachep->num;
3979 if (num_objs - active_objs != free_objects && !error)
3980 error = "free_objects accounting error";
3982 name = cachep->name;
3984 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3986 sinfo->active_objs = active_objs;
3987 sinfo->num_objs = num_objs;
3988 sinfo->active_slabs = active_slabs;
3989 sinfo->num_slabs = num_slabs;
3990 sinfo->shared_avail = shared_avail;
3991 sinfo->limit = cachep->limit;
3992 sinfo->batchcount = cachep->batchcount;
3993 sinfo->shared = cachep->shared;
3994 sinfo->objects_per_slab = cachep->num;
3995 sinfo->cache_order = cachep->gfporder;
3998 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4002 unsigned long high = cachep->high_mark;
4003 unsigned long allocs = cachep->num_allocations;
4004 unsigned long grown = cachep->grown;
4005 unsigned long reaped = cachep->reaped;
4006 unsigned long errors = cachep->errors;
4007 unsigned long max_freeable = cachep->max_freeable;
4008 unsigned long node_allocs = cachep->node_allocs;
4009 unsigned long node_frees = cachep->node_frees;
4010 unsigned long overflows = cachep->node_overflow;
4012 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4013 "%4lu %4lu %4lu %4lu %4lu",
4014 allocs, high, grown,
4015 reaped, errors, max_freeable, node_allocs,
4016 node_frees, overflows);
4020 unsigned long allochit = atomic_read(&cachep->allochit);
4021 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4022 unsigned long freehit = atomic_read(&cachep->freehit);
4023 unsigned long freemiss = atomic_read(&cachep->freemiss);
4025 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4026 allochit, allocmiss, freehit, freemiss);
4031 #define MAX_SLABINFO_WRITE 128
4033 * slabinfo_write - Tuning for the slab allocator
4035 * @buffer: user buffer
4036 * @count: data length
4039 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4040 size_t count, loff_t *ppos)
4042 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4043 int limit, batchcount, shared, res;
4044 struct kmem_cache *cachep;
4046 if (count > MAX_SLABINFO_WRITE)
4048 if (copy_from_user(&kbuf, buffer, count))
4050 kbuf[MAX_SLABINFO_WRITE] = '\0';
4052 tmp = strchr(kbuf, ' ');
4057 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4060 /* Find the cache in the chain of caches. */
4061 mutex_lock(&slab_mutex);
4063 list_for_each_entry(cachep, &slab_caches, list) {
4064 if (!strcmp(cachep->name, kbuf)) {
4065 if (limit < 1 || batchcount < 1 ||
4066 batchcount > limit || shared < 0) {
4069 res = do_tune_cpucache(cachep, limit,
4076 mutex_unlock(&slab_mutex);
4082 #ifdef CONFIG_DEBUG_SLAB_LEAK
4084 static inline int add_caller(unsigned long *n, unsigned long v)
4094 unsigned long *q = p + 2 * i;
4108 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4114 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4122 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4123 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4126 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4131 static void show_symbol(struct seq_file *m, unsigned long address)
4133 #ifdef CONFIG_KALLSYMS
4134 unsigned long offset, size;
4135 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4137 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4138 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4140 seq_printf(m, " [%s]", modname);
4144 seq_printf(m, "%p", (void *)address);
4147 static int leaks_show(struct seq_file *m, void *p)
4149 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4151 struct kmem_cache_node *n;
4153 unsigned long *x = m->private;
4157 if (!(cachep->flags & SLAB_STORE_USER))
4159 if (!(cachep->flags & SLAB_RED_ZONE))
4162 /* OK, we can do it */
4166 for_each_kmem_cache_node(cachep, node, n) {
4169 spin_lock_irq(&n->list_lock);
4171 list_for_each_entry(page, &n->slabs_full, lru)
4172 handle_slab(x, cachep, page);
4173 list_for_each_entry(page, &n->slabs_partial, lru)
4174 handle_slab(x, cachep, page);
4175 spin_unlock_irq(&n->list_lock);
4177 name = cachep->name;
4179 /* Increase the buffer size */
4180 mutex_unlock(&slab_mutex);
4181 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4183 /* Too bad, we are really out */
4185 mutex_lock(&slab_mutex);
4188 *(unsigned long *)m->private = x[0] * 2;
4190 mutex_lock(&slab_mutex);
4191 /* Now make sure this entry will be retried */
4195 for (i = 0; i < x[1]; i++) {
4196 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4197 show_symbol(m, x[2*i+2]);
4204 static const struct seq_operations slabstats_op = {
4205 .start = slab_start,
4211 static int slabstats_open(struct inode *inode, struct file *file)
4215 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4219 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4224 static const struct file_operations proc_slabstats_operations = {
4225 .open = slabstats_open,
4227 .llseek = seq_lseek,
4228 .release = seq_release_private,
4232 static int __init slab_proc_init(void)
4234 #ifdef CONFIG_DEBUG_SLAB_LEAK
4235 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4239 module_init(slab_proc_init);
4243 * ksize - get the actual amount of memory allocated for a given object
4244 * @objp: Pointer to the object
4246 * kmalloc may internally round up allocations and return more memory
4247 * than requested. ksize() can be used to determine the actual amount of
4248 * memory allocated. The caller may use this additional memory, even though
4249 * a smaller amount of memory was initially specified with the kmalloc call.
4250 * The caller must guarantee that objp points to a valid object previously
4251 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4252 * must not be freed during the duration of the call.
4254 size_t ksize(const void *objp)
4257 if (unlikely(objp == ZERO_SIZE_PTR))
4260 return virt_to_cache(objp)->object_size;
4262 EXPORT_SYMBOL(ksize);