]> Git Repo - linux.git/blob - mm/vma.c
mm: add optional close() to struct vm_special_mapping
[linux.git] / mm / vma.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4  * VMA-specific functions.
5  */
6
7 #include "vma_internal.h"
8 #include "vma.h"
9
10 /*
11  * If the vma has a ->close operation then the driver probably needs to release
12  * per-vma resources, so we don't attempt to merge those if the caller indicates
13  * the current vma may be removed as part of the merge.
14  */
15 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
16                 struct file *file, unsigned long vm_flags,
17                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
18                 struct anon_vma_name *anon_name, bool may_remove_vma)
19 {
20         /*
21          * VM_SOFTDIRTY should not prevent from VMA merging, if we
22          * match the flags but dirty bit -- the caller should mark
23          * merged VMA as dirty. If dirty bit won't be excluded from
24          * comparison, we increase pressure on the memory system forcing
25          * the kernel to generate new VMAs when old one could be
26          * extended instead.
27          */
28         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
29                 return false;
30         if (vma->vm_file != file)
31                 return false;
32         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
33                 return false;
34         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
35                 return false;
36         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
37                 return false;
38         return true;
39 }
40
41 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
42                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
43 {
44         /*
45          * The list_is_singular() test is to avoid merging VMA cloned from
46          * parents. This can improve scalability caused by anon_vma lock.
47          */
48         if ((!anon_vma1 || !anon_vma2) && (!vma ||
49                 list_is_singular(&vma->anon_vma_chain)))
50                 return true;
51         return anon_vma1 == anon_vma2;
52 }
53
54 /*
55  * init_multi_vma_prep() - Initializer for struct vma_prepare
56  * @vp: The vma_prepare struct
57  * @vma: The vma that will be altered once locked
58  * @next: The next vma if it is to be adjusted
59  * @remove: The first vma to be removed
60  * @remove2: The second vma to be removed
61  */
62 static void init_multi_vma_prep(struct vma_prepare *vp,
63                                 struct vm_area_struct *vma,
64                                 struct vm_area_struct *next,
65                                 struct vm_area_struct *remove,
66                                 struct vm_area_struct *remove2)
67 {
68         memset(vp, 0, sizeof(struct vma_prepare));
69         vp->vma = vma;
70         vp->anon_vma = vma->anon_vma;
71         vp->remove = remove;
72         vp->remove2 = remove2;
73         vp->adj_next = next;
74         if (!vp->anon_vma && next)
75                 vp->anon_vma = next->anon_vma;
76
77         vp->file = vma->vm_file;
78         if (vp->file)
79                 vp->mapping = vma->vm_file->f_mapping;
80
81 }
82
83 /*
84  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
85  * in front of (at a lower virtual address and file offset than) the vma.
86  *
87  * We cannot merge two vmas if they have differently assigned (non-NULL)
88  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
89  *
90  * We don't check here for the merged mmap wrapping around the end of pagecache
91  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
92  * wrap, nor mmaps which cover the final page at index -1UL.
93  *
94  * We assume the vma may be removed as part of the merge.
95  */
96 bool
97 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
98                 struct anon_vma *anon_vma, struct file *file,
99                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
100                 struct anon_vma_name *anon_name)
101 {
102         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
103             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
104                 if (vma->vm_pgoff == vm_pgoff)
105                         return true;
106         }
107         return false;
108 }
109
110 /*
111  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
112  * beyond (at a higher virtual address and file offset than) the vma.
113  *
114  * We cannot merge two vmas if they have differently assigned (non-NULL)
115  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
116  *
117  * We assume that vma is not removed as part of the merge.
118  */
119 bool
120 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
121                 struct anon_vma *anon_vma, struct file *file,
122                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
123                 struct anon_vma_name *anon_name)
124 {
125         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
126             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
127                 pgoff_t vm_pglen;
128
129                 vm_pglen = vma_pages(vma);
130                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
131                         return true;
132         }
133         return false;
134 }
135
136 /*
137  * Close a vm structure and free it.
138  */
139 void remove_vma(struct vm_area_struct *vma, bool unreachable)
140 {
141         might_sleep();
142         if (vma->vm_ops && vma->vm_ops->close)
143                 vma->vm_ops->close(vma);
144         if (vma->vm_file)
145                 fput(vma->vm_file);
146         mpol_put(vma_policy(vma));
147         if (unreachable)
148                 __vm_area_free(vma);
149         else
150                 vm_area_free(vma);
151 }
152
153 /*
154  * Get rid of page table information in the indicated region.
155  *
156  * Called with the mm semaphore held.
157  */
158 void unmap_region(struct mm_struct *mm, struct ma_state *mas,
159                 struct vm_area_struct *vma, struct vm_area_struct *prev,
160                 struct vm_area_struct *next, unsigned long start,
161                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
162 {
163         struct mmu_gather tlb;
164         unsigned long mt_start = mas->index;
165
166         lru_add_drain();
167         tlb_gather_mmu(&tlb, mm);
168         update_hiwater_rss(mm);
169         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
170         mas_set(mas, mt_start);
171         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
172                                  next ? next->vm_start : USER_PGTABLES_CEILING,
173                                  mm_wr_locked);
174         tlb_finish_mmu(&tlb);
175 }
176
177 /*
178  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
179  * has already been checked or doesn't make sense to fail.
180  * VMA Iterator will point to the end VMA.
181  */
182 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
183                        unsigned long addr, int new_below)
184 {
185         struct vma_prepare vp;
186         struct vm_area_struct *new;
187         int err;
188
189         WARN_ON(vma->vm_start >= addr);
190         WARN_ON(vma->vm_end <= addr);
191
192         if (vma->vm_ops && vma->vm_ops->may_split) {
193                 err = vma->vm_ops->may_split(vma, addr);
194                 if (err)
195                         return err;
196         }
197
198         new = vm_area_dup(vma);
199         if (!new)
200                 return -ENOMEM;
201
202         if (new_below) {
203                 new->vm_end = addr;
204         } else {
205                 new->vm_start = addr;
206                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
207         }
208
209         err = -ENOMEM;
210         vma_iter_config(vmi, new->vm_start, new->vm_end);
211         if (vma_iter_prealloc(vmi, new))
212                 goto out_free_vma;
213
214         err = vma_dup_policy(vma, new);
215         if (err)
216                 goto out_free_vmi;
217
218         err = anon_vma_clone(new, vma);
219         if (err)
220                 goto out_free_mpol;
221
222         if (new->vm_file)
223                 get_file(new->vm_file);
224
225         if (new->vm_ops && new->vm_ops->open)
226                 new->vm_ops->open(new);
227
228         vma_start_write(vma);
229         vma_start_write(new);
230
231         init_vma_prep(&vp, vma);
232         vp.insert = new;
233         vma_prepare(&vp);
234         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
235
236         if (new_below) {
237                 vma->vm_start = addr;
238                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
239         } else {
240                 vma->vm_end = addr;
241         }
242
243         /* vma_complete stores the new vma */
244         vma_complete(&vp, vmi, vma->vm_mm);
245
246         /* Success. */
247         if (new_below)
248                 vma_next(vmi);
249         return 0;
250
251 out_free_mpol:
252         mpol_put(vma_policy(new));
253 out_free_vmi:
254         vma_iter_free(vmi);
255 out_free_vma:
256         vm_area_free(new);
257         return err;
258 }
259
260 /*
261  * Split a vma into two pieces at address 'addr', a new vma is allocated
262  * either for the first part or the tail.
263  */
264 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
265                      unsigned long addr, int new_below)
266 {
267         if (vma->vm_mm->map_count >= sysctl_max_map_count)
268                 return -ENOMEM;
269
270         return __split_vma(vmi, vma, addr, new_below);
271 }
272
273 /*
274  * Ok - we have the memory areas we should free on a maple tree so release them,
275  * and do the vma updates.
276  *
277  * Called with the mm semaphore held.
278  */
279 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
280 {
281         unsigned long nr_accounted = 0;
282         struct vm_area_struct *vma;
283
284         /* Update high watermark before we lower total_vm */
285         update_hiwater_vm(mm);
286         mas_for_each(mas, vma, ULONG_MAX) {
287                 long nrpages = vma_pages(vma);
288
289                 if (vma->vm_flags & VM_ACCOUNT)
290                         nr_accounted += nrpages;
291                 vm_stat_account(mm, vma->vm_flags, -nrpages);
292                 remove_vma(vma, false);
293         }
294         vm_unacct_memory(nr_accounted);
295 }
296
297 /*
298  * init_vma_prep() - Initializer wrapper for vma_prepare struct
299  * @vp: The vma_prepare struct
300  * @vma: The vma that will be altered once locked
301  */
302 void init_vma_prep(struct vma_prepare *vp,
303                    struct vm_area_struct *vma)
304 {
305         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
306 }
307
308 /*
309  * Requires inode->i_mapping->i_mmap_rwsem
310  */
311 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
312                                       struct address_space *mapping)
313 {
314         if (vma_is_shared_maywrite(vma))
315                 mapping_unmap_writable(mapping);
316
317         flush_dcache_mmap_lock(mapping);
318         vma_interval_tree_remove(vma, &mapping->i_mmap);
319         flush_dcache_mmap_unlock(mapping);
320 }
321
322 /*
323  * vma has some anon_vma assigned, and is already inserted on that
324  * anon_vma's interval trees.
325  *
326  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
327  * vma must be removed from the anon_vma's interval trees using
328  * anon_vma_interval_tree_pre_update_vma().
329  *
330  * After the update, the vma will be reinserted using
331  * anon_vma_interval_tree_post_update_vma().
332  *
333  * The entire update must be protected by exclusive mmap_lock and by
334  * the root anon_vma's mutex.
335  */
336 void
337 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
338 {
339         struct anon_vma_chain *avc;
340
341         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
342                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
343 }
344
345 void
346 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
347 {
348         struct anon_vma_chain *avc;
349
350         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
351                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
352 }
353
354 static void __vma_link_file(struct vm_area_struct *vma,
355                             struct address_space *mapping)
356 {
357         if (vma_is_shared_maywrite(vma))
358                 mapping_allow_writable(mapping);
359
360         flush_dcache_mmap_lock(mapping);
361         vma_interval_tree_insert(vma, &mapping->i_mmap);
362         flush_dcache_mmap_unlock(mapping);
363 }
364
365 /*
366  * vma_prepare() - Helper function for handling locking VMAs prior to altering
367  * @vp: The initialized vma_prepare struct
368  */
369 void vma_prepare(struct vma_prepare *vp)
370 {
371         if (vp->file) {
372                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
373
374                 if (vp->adj_next)
375                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
376                                       vp->adj_next->vm_end);
377
378                 i_mmap_lock_write(vp->mapping);
379                 if (vp->insert && vp->insert->vm_file) {
380                         /*
381                          * Put into interval tree now, so instantiated pages
382                          * are visible to arm/parisc __flush_dcache_page
383                          * throughout; but we cannot insert into address
384                          * space until vma start or end is updated.
385                          */
386                         __vma_link_file(vp->insert,
387                                         vp->insert->vm_file->f_mapping);
388                 }
389         }
390
391         if (vp->anon_vma) {
392                 anon_vma_lock_write(vp->anon_vma);
393                 anon_vma_interval_tree_pre_update_vma(vp->vma);
394                 if (vp->adj_next)
395                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
396         }
397
398         if (vp->file) {
399                 flush_dcache_mmap_lock(vp->mapping);
400                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
401                 if (vp->adj_next)
402                         vma_interval_tree_remove(vp->adj_next,
403                                                  &vp->mapping->i_mmap);
404         }
405
406 }
407
408 /*
409  * dup_anon_vma() - Helper function to duplicate anon_vma
410  * @dst: The destination VMA
411  * @src: The source VMA
412  * @dup: Pointer to the destination VMA when successful.
413  *
414  * Returns: 0 on success.
415  */
416 static int dup_anon_vma(struct vm_area_struct *dst,
417                         struct vm_area_struct *src, struct vm_area_struct **dup)
418 {
419         /*
420          * Easily overlooked: when mprotect shifts the boundary, make sure the
421          * expanding vma has anon_vma set if the shrinking vma had, to cover any
422          * anon pages imported.
423          */
424         if (src->anon_vma && !dst->anon_vma) {
425                 int ret;
426
427                 vma_assert_write_locked(dst);
428                 dst->anon_vma = src->anon_vma;
429                 ret = anon_vma_clone(dst, src);
430                 if (ret)
431                         return ret;
432
433                 *dup = dst;
434         }
435
436         return 0;
437 }
438
439 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
440 void validate_mm(struct mm_struct *mm)
441 {
442         int bug = 0;
443         int i = 0;
444         struct vm_area_struct *vma;
445         VMA_ITERATOR(vmi, mm, 0);
446
447         mt_validate(&mm->mm_mt);
448         for_each_vma(vmi, vma) {
449 #ifdef CONFIG_DEBUG_VM_RB
450                 struct anon_vma *anon_vma = vma->anon_vma;
451                 struct anon_vma_chain *avc;
452 #endif
453                 unsigned long vmi_start, vmi_end;
454                 bool warn = 0;
455
456                 vmi_start = vma_iter_addr(&vmi);
457                 vmi_end = vma_iter_end(&vmi);
458                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
459                         warn = 1;
460
461                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
462                         warn = 1;
463
464                 if (warn) {
465                         pr_emerg("issue in %s\n", current->comm);
466                         dump_stack();
467                         dump_vma(vma);
468                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
469                                  vmi_start, vmi_end - 1);
470                         vma_iter_dump_tree(&vmi);
471                 }
472
473 #ifdef CONFIG_DEBUG_VM_RB
474                 if (anon_vma) {
475                         anon_vma_lock_read(anon_vma);
476                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
477                                 anon_vma_interval_tree_verify(avc);
478                         anon_vma_unlock_read(anon_vma);
479                 }
480 #endif
481                 i++;
482         }
483         if (i != mm->map_count) {
484                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
485                 bug = 1;
486         }
487         VM_BUG_ON_MM(bug, mm);
488 }
489 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
490
491 /*
492  * vma_expand - Expand an existing VMA
493  *
494  * @vmi: The vma iterator
495  * @vma: The vma to expand
496  * @start: The start of the vma
497  * @end: The exclusive end of the vma
498  * @pgoff: The page offset of vma
499  * @next: The current of next vma.
500  *
501  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
502  * expand over @next if it's different from @vma and @end == @next->vm_end.
503  * Checking if the @vma can expand and merge with @next needs to be handled by
504  * the caller.
505  *
506  * Returns: 0 on success
507  */
508 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
509                unsigned long start, unsigned long end, pgoff_t pgoff,
510                struct vm_area_struct *next)
511 {
512         struct vm_area_struct *anon_dup = NULL;
513         bool remove_next = false;
514         struct vma_prepare vp;
515
516         vma_start_write(vma);
517         if (next && (vma != next) && (end == next->vm_end)) {
518                 int ret;
519
520                 remove_next = true;
521                 vma_start_write(next);
522                 ret = dup_anon_vma(vma, next, &anon_dup);
523                 if (ret)
524                         return ret;
525         }
526
527         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
528         /* Not merging but overwriting any part of next is not handled. */
529         VM_WARN_ON(next && !vp.remove &&
530                   next != vma && end > next->vm_start);
531         /* Only handles expanding */
532         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
533
534         /* Note: vma iterator must be pointing to 'start' */
535         vma_iter_config(vmi, start, end);
536         if (vma_iter_prealloc(vmi, vma))
537                 goto nomem;
538
539         vma_prepare(&vp);
540         vma_adjust_trans_huge(vma, start, end, 0);
541         vma_set_range(vma, start, end, pgoff);
542         vma_iter_store(vmi, vma);
543
544         vma_complete(&vp, vmi, vma->vm_mm);
545         return 0;
546
547 nomem:
548         if (anon_dup)
549                 unlink_anon_vmas(anon_dup);
550         return -ENOMEM;
551 }
552
553 /*
554  * vma_shrink() - Reduce an existing VMAs memory area
555  * @vmi: The vma iterator
556  * @vma: The VMA to modify
557  * @start: The new start
558  * @end: The new end
559  *
560  * Returns: 0 on success, -ENOMEM otherwise
561  */
562 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
563                unsigned long start, unsigned long end, pgoff_t pgoff)
564 {
565         struct vma_prepare vp;
566
567         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
568
569         if (vma->vm_start < start)
570                 vma_iter_config(vmi, vma->vm_start, start);
571         else
572                 vma_iter_config(vmi, end, vma->vm_end);
573
574         if (vma_iter_prealloc(vmi, NULL))
575                 return -ENOMEM;
576
577         vma_start_write(vma);
578
579         init_vma_prep(&vp, vma);
580         vma_prepare(&vp);
581         vma_adjust_trans_huge(vma, start, end, 0);
582
583         vma_iter_clear(vmi);
584         vma_set_range(vma, start, end, pgoff);
585         vma_complete(&vp, vmi, vma->vm_mm);
586         return 0;
587 }
588
589 /*
590  * vma_complete- Helper function for handling the unlocking after altering VMAs,
591  * or for inserting a VMA.
592  *
593  * @vp: The vma_prepare struct
594  * @vmi: The vma iterator
595  * @mm: The mm_struct
596  */
597 void vma_complete(struct vma_prepare *vp,
598                   struct vma_iterator *vmi, struct mm_struct *mm)
599 {
600         if (vp->file) {
601                 if (vp->adj_next)
602                         vma_interval_tree_insert(vp->adj_next,
603                                                  &vp->mapping->i_mmap);
604                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
605                 flush_dcache_mmap_unlock(vp->mapping);
606         }
607
608         if (vp->remove && vp->file) {
609                 __remove_shared_vm_struct(vp->remove, vp->mapping);
610                 if (vp->remove2)
611                         __remove_shared_vm_struct(vp->remove2, vp->mapping);
612         } else if (vp->insert) {
613                 /*
614                  * split_vma has split insert from vma, and needs
615                  * us to insert it before dropping the locks
616                  * (it may either follow vma or precede it).
617                  */
618                 vma_iter_store(vmi, vp->insert);
619                 mm->map_count++;
620         }
621
622         if (vp->anon_vma) {
623                 anon_vma_interval_tree_post_update_vma(vp->vma);
624                 if (vp->adj_next)
625                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
626                 anon_vma_unlock_write(vp->anon_vma);
627         }
628
629         if (vp->file) {
630                 i_mmap_unlock_write(vp->mapping);
631                 uprobe_mmap(vp->vma);
632
633                 if (vp->adj_next)
634                         uprobe_mmap(vp->adj_next);
635         }
636
637         if (vp->remove) {
638 again:
639                 vma_mark_detached(vp->remove, true);
640                 if (vp->file) {
641                         uprobe_munmap(vp->remove, vp->remove->vm_start,
642                                       vp->remove->vm_end);
643                         fput(vp->file);
644                 }
645                 if (vp->remove->anon_vma)
646                         anon_vma_merge(vp->vma, vp->remove);
647                 mm->map_count--;
648                 mpol_put(vma_policy(vp->remove));
649                 if (!vp->remove2)
650                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
651                 vm_area_free(vp->remove);
652
653                 /*
654                  * In mprotect's case 6 (see comments on vma_merge),
655                  * we are removing both mid and next vmas
656                  */
657                 if (vp->remove2) {
658                         vp->remove = vp->remove2;
659                         vp->remove2 = NULL;
660                         goto again;
661                 }
662         }
663         if (vp->insert && vp->file)
664                 uprobe_mmap(vp->insert);
665         validate_mm(mm);
666 }
667
668 /*
669  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
670  * @vmi: The vma iterator
671  * @vma: The starting vm_area_struct
672  * @mm: The mm_struct
673  * @start: The aligned start address to munmap.
674  * @end: The aligned end address to munmap.
675  * @uf: The userfaultfd list_head
676  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
677  * success.
678  *
679  * Return: 0 on success and drops the lock if so directed, error and leaves the
680  * lock held otherwise.
681  */
682 int
683 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
684                     struct mm_struct *mm, unsigned long start,
685                     unsigned long end, struct list_head *uf, bool unlock)
686 {
687         struct vm_area_struct *prev, *next = NULL;
688         struct maple_tree mt_detach;
689         int count = 0;
690         int error = -ENOMEM;
691         unsigned long locked_vm = 0;
692         MA_STATE(mas_detach, &mt_detach, 0, 0);
693         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
694         mt_on_stack(mt_detach);
695
696         /*
697          * If we need to split any vma, do it now to save pain later.
698          *
699          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
700          * unmapped vm_area_struct will remain in use: so lower split_vma
701          * places tmp vma above, and higher split_vma places tmp vma below.
702          */
703
704         /* Does it split the first one? */
705         if (start > vma->vm_start) {
706
707                 /*
708                  * Make sure that map_count on return from munmap() will
709                  * not exceed its limit; but let map_count go just above
710                  * its limit temporarily, to help free resources as expected.
711                  */
712                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
713                         goto map_count_exceeded;
714
715                 error = __split_vma(vmi, vma, start, 1);
716                 if (error)
717                         goto start_split_failed;
718         }
719
720         /*
721          * Detach a range of VMAs from the mm. Using next as a temp variable as
722          * it is always overwritten.
723          */
724         next = vma;
725         do {
726                 /* Does it split the end? */
727                 if (next->vm_end > end) {
728                         error = __split_vma(vmi, next, end, 0);
729                         if (error)
730                                 goto end_split_failed;
731                 }
732                 vma_start_write(next);
733                 mas_set(&mas_detach, count);
734                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
735                 if (error)
736                         goto munmap_gather_failed;
737                 vma_mark_detached(next, true);
738                 if (next->vm_flags & VM_LOCKED)
739                         locked_vm += vma_pages(next);
740
741                 count++;
742                 if (unlikely(uf)) {
743                         /*
744                          * If userfaultfd_unmap_prep returns an error the vmas
745                          * will remain split, but userland will get a
746                          * highly unexpected error anyway. This is no
747                          * different than the case where the first of the two
748                          * __split_vma fails, but we don't undo the first
749                          * split, despite we could. This is unlikely enough
750                          * failure that it's not worth optimizing it for.
751                          */
752                         error = userfaultfd_unmap_prep(next, start, end, uf);
753
754                         if (error)
755                                 goto userfaultfd_error;
756                 }
757 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
758                 BUG_ON(next->vm_start < start);
759                 BUG_ON(next->vm_start > end);
760 #endif
761         } for_each_vma_range(*vmi, next, end);
762
763 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
764         /* Make sure no VMAs are about to be lost. */
765         {
766                 MA_STATE(test, &mt_detach, 0, 0);
767                 struct vm_area_struct *vma_mas, *vma_test;
768                 int test_count = 0;
769
770                 vma_iter_set(vmi, start);
771                 rcu_read_lock();
772                 vma_test = mas_find(&test, count - 1);
773                 for_each_vma_range(*vmi, vma_mas, end) {
774                         BUG_ON(vma_mas != vma_test);
775                         test_count++;
776                         vma_test = mas_next(&test, count - 1);
777                 }
778                 rcu_read_unlock();
779                 BUG_ON(count != test_count);
780         }
781 #endif
782
783         while (vma_iter_addr(vmi) > start)
784                 vma_iter_prev_range(vmi);
785
786         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
787         if (error)
788                 goto clear_tree_failed;
789
790         /* Point of no return */
791         mm->locked_vm -= locked_vm;
792         mm->map_count -= count;
793         if (unlock)
794                 mmap_write_downgrade(mm);
795
796         prev = vma_iter_prev_range(vmi);
797         next = vma_next(vmi);
798         if (next)
799                 vma_iter_prev_range(vmi);
800
801         /*
802          * We can free page tables without write-locking mmap_lock because VMAs
803          * were isolated before we downgraded mmap_lock.
804          */
805         mas_set(&mas_detach, 1);
806         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
807                      !unlock);
808         /* Statistics and freeing VMAs */
809         mas_set(&mas_detach, 0);
810         remove_mt(mm, &mas_detach);
811         validate_mm(mm);
812         if (unlock)
813                 mmap_read_unlock(mm);
814
815         __mt_destroy(&mt_detach);
816         return 0;
817
818 clear_tree_failed:
819 userfaultfd_error:
820 munmap_gather_failed:
821 end_split_failed:
822         mas_set(&mas_detach, 0);
823         mas_for_each(&mas_detach, next, end)
824                 vma_mark_detached(next, false);
825
826         __mt_destroy(&mt_detach);
827 start_split_failed:
828 map_count_exceeded:
829         validate_mm(mm);
830         return error;
831 }
832
833 /*
834  * do_vmi_munmap() - munmap a given range.
835  * @vmi: The vma iterator
836  * @mm: The mm_struct
837  * @start: The start address to munmap
838  * @len: The length of the range to munmap
839  * @uf: The userfaultfd list_head
840  * @unlock: set to true if the user wants to drop the mmap_lock on success
841  *
842  * This function takes a @mas that is either pointing to the previous VMA or set
843  * to MA_START and sets it up to remove the mapping(s).  The @len will be
844  * aligned and any arch_unmap work will be preformed.
845  *
846  * Return: 0 on success and drops the lock if so directed, error and leaves the
847  * lock held otherwise.
848  */
849 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
850                   unsigned long start, size_t len, struct list_head *uf,
851                   bool unlock)
852 {
853         unsigned long end;
854         struct vm_area_struct *vma;
855
856         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
857                 return -EINVAL;
858
859         end = start + PAGE_ALIGN(len);
860         if (end == start)
861                 return -EINVAL;
862
863         /*
864          * Check if memory is sealed before arch_unmap.
865          * Prevent unmapping a sealed VMA.
866          * can_modify_mm assumes we have acquired the lock on MM.
867          */
868         if (unlikely(!can_modify_mm(mm, start, end)))
869                 return -EPERM;
870
871          /* arch_unmap() might do unmaps itself.  */
872         arch_unmap(mm, start, end);
873
874         /* Find the first overlapping VMA */
875         vma = vma_find(vmi, end);
876         if (!vma) {
877                 if (unlock)
878                         mmap_write_unlock(mm);
879                 return 0;
880         }
881
882         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
883 }
884
885 /*
886  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
887  * figure out whether that can be merged with its predecessor or its
888  * successor.  Or both (it neatly fills a hole).
889  *
890  * In most cases - when called for mmap, brk or mremap - [addr,end) is
891  * certain not to be mapped by the time vma_merge is called; but when
892  * called for mprotect, it is certain to be already mapped (either at
893  * an offset within prev, or at the start of next), and the flags of
894  * this area are about to be changed to vm_flags - and the no-change
895  * case has already been eliminated.
896  *
897  * The following mprotect cases have to be considered, where **** is
898  * the area passed down from mprotect_fixup, never extending beyond one
899  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
900  * at the same address as **** and is of the same or larger span, and
901  * NNNN the next vma after ****:
902  *
903  *     ****             ****                   ****
904  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
905  *    cannot merge    might become       might become
906  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
907  *    mmap, brk or    case 4 below       case 5 below
908  *    mremap move:
909  *                        ****               ****
910  *                    PPPP    NNNN       PPPPCCCCNNNN
911  *                    might become       might become
912  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
913  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
914  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
915  *
916  * It is important for case 8 that the vma CCCC overlapping the
917  * region **** is never going to extended over NNNN. Instead NNNN must
918  * be extended in region **** and CCCC must be removed. This way in
919  * all cases where vma_merge succeeds, the moment vma_merge drops the
920  * rmap_locks, the properties of the merged vma will be already
921  * correct for the whole merged range. Some of those properties like
922  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
923  * be correct for the whole merged range immediately after the
924  * rmap_locks are released. Otherwise if NNNN would be removed and
925  * CCCC would be extended over the NNNN range, remove_migration_ptes
926  * or other rmap walkers (if working on addresses beyond the "end"
927  * parameter) may establish ptes with the wrong permissions of CCCC
928  * instead of the right permissions of NNNN.
929  *
930  * In the code below:
931  * PPPP is represented by *prev
932  * CCCC is represented by *curr or not represented at all (NULL)
933  * NNNN is represented by *next or not represented at all (NULL)
934  * **** is not represented - it will be merged and the vma containing the
935  *      area is returned, or the function will return NULL
936  */
937 static struct vm_area_struct
938 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
939            struct vm_area_struct *src, unsigned long addr, unsigned long end,
940            unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
941            struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
942            struct anon_vma_name *anon_name)
943 {
944         struct mm_struct *mm = src->vm_mm;
945         struct anon_vma *anon_vma = src->anon_vma;
946         struct file *file = src->vm_file;
947         struct vm_area_struct *curr, *next, *res;
948         struct vm_area_struct *vma, *adjust, *remove, *remove2;
949         struct vm_area_struct *anon_dup = NULL;
950         struct vma_prepare vp;
951         pgoff_t vma_pgoff;
952         int err = 0;
953         bool merge_prev = false;
954         bool merge_next = false;
955         bool vma_expanded = false;
956         unsigned long vma_start = addr;
957         unsigned long vma_end = end;
958         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
959         long adj_start = 0;
960
961         /*
962          * We later require that vma->vm_flags == vm_flags,
963          * so this tests vma->vm_flags & VM_SPECIAL, too.
964          */
965         if (vm_flags & VM_SPECIAL)
966                 return NULL;
967
968         /* Does the input range span an existing VMA? (cases 5 - 8) */
969         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
970
971         if (!curr ||                    /* cases 1 - 4 */
972             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
973                 next = vma_lookup(mm, end);
974         else
975                 next = NULL;            /* case 5 */
976
977         if (prev) {
978                 vma_start = prev->vm_start;
979                 vma_pgoff = prev->vm_pgoff;
980
981                 /* Can we merge the predecessor? */
982                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
983                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
984                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
985                         merge_prev = true;
986                         vma_prev(vmi);
987                 }
988         }
989
990         /* Can we merge the successor? */
991         if (next && mpol_equal(policy, vma_policy(next)) &&
992             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
993                                  vm_userfaultfd_ctx, anon_name)) {
994                 merge_next = true;
995         }
996
997         /* Verify some invariant that must be enforced by the caller. */
998         VM_WARN_ON(prev && addr <= prev->vm_start);
999         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
1000         VM_WARN_ON(addr >= end);
1001
1002         if (!merge_prev && !merge_next)
1003                 return NULL; /* Not mergeable. */
1004
1005         if (merge_prev)
1006                 vma_start_write(prev);
1007
1008         res = vma = prev;
1009         remove = remove2 = adjust = NULL;
1010
1011         /* Can we merge both the predecessor and the successor? */
1012         if (merge_prev && merge_next &&
1013             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
1014                 vma_start_write(next);
1015                 remove = next;                          /* case 1 */
1016                 vma_end = next->vm_end;
1017                 err = dup_anon_vma(prev, next, &anon_dup);
1018                 if (curr) {                             /* case 6 */
1019                         vma_start_write(curr);
1020                         remove = curr;
1021                         remove2 = next;
1022                         /*
1023                          * Note that the dup_anon_vma below cannot overwrite err
1024                          * since the first caller would do nothing unless next
1025                          * has an anon_vma.
1026                          */
1027                         if (!next->anon_vma)
1028                                 err = dup_anon_vma(prev, curr, &anon_dup);
1029                 }
1030         } else if (merge_prev) {                        /* case 2 */
1031                 if (curr) {
1032                         vma_start_write(curr);
1033                         if (end == curr->vm_end) {      /* case 7 */
1034                                 /*
1035                                  * can_vma_merge_after() assumed we would not be
1036                                  * removing prev vma, so it skipped the check
1037                                  * for vm_ops->close, but we are removing curr
1038                                  */
1039                                 if (curr->vm_ops && curr->vm_ops->close)
1040                                         err = -EINVAL;
1041                                 remove = curr;
1042                         } else {                        /* case 5 */
1043                                 adjust = curr;
1044                                 adj_start = (end - curr->vm_start);
1045                         }
1046                         if (!err)
1047                                 err = dup_anon_vma(prev, curr, &anon_dup);
1048                 }
1049         } else { /* merge_next */
1050                 vma_start_write(next);
1051                 res = next;
1052                 if (prev && addr < prev->vm_end) {      /* case 4 */
1053                         vma_start_write(prev);
1054                         vma_end = addr;
1055                         adjust = next;
1056                         adj_start = -(prev->vm_end - addr);
1057                         err = dup_anon_vma(next, prev, &anon_dup);
1058                 } else {
1059                         /*
1060                          * Note that cases 3 and 8 are the ONLY ones where prev
1061                          * is permitted to be (but is not necessarily) NULL.
1062                          */
1063                         vma = next;                     /* case 3 */
1064                         vma_start = addr;
1065                         vma_end = next->vm_end;
1066                         vma_pgoff = next->vm_pgoff - pglen;
1067                         if (curr) {                     /* case 8 */
1068                                 vma_pgoff = curr->vm_pgoff;
1069                                 vma_start_write(curr);
1070                                 remove = curr;
1071                                 err = dup_anon_vma(next, curr, &anon_dup);
1072                         }
1073                 }
1074         }
1075
1076         /* Error in anon_vma clone. */
1077         if (err)
1078                 goto anon_vma_fail;
1079
1080         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1081                 vma_expanded = true;
1082
1083         if (vma_expanded) {
1084                 vma_iter_config(vmi, vma_start, vma_end);
1085         } else {
1086                 vma_iter_config(vmi, adjust->vm_start + adj_start,
1087                                 adjust->vm_end);
1088         }
1089
1090         if (vma_iter_prealloc(vmi, vma))
1091                 goto prealloc_fail;
1092
1093         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1094         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1095                    vp.anon_vma != adjust->anon_vma);
1096
1097         vma_prepare(&vp);
1098         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1099         vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1100
1101         if (vma_expanded)
1102                 vma_iter_store(vmi, vma);
1103
1104         if (adj_start) {
1105                 adjust->vm_start += adj_start;
1106                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1107                 if (adj_start < 0) {
1108                         WARN_ON(vma_expanded);
1109                         vma_iter_store(vmi, next);
1110                 }
1111         }
1112
1113         vma_complete(&vp, vmi, mm);
1114         khugepaged_enter_vma(res, vm_flags);
1115         return res;
1116
1117 prealloc_fail:
1118         if (anon_dup)
1119                 unlink_anon_vmas(anon_dup);
1120
1121 anon_vma_fail:
1122         vma_iter_set(vmi, addr);
1123         vma_iter_load(vmi);
1124         return NULL;
1125 }
1126
1127 /*
1128  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1129  * context and anonymous VMA name within the range [start, end).
1130  *
1131  * As a result, we might be able to merge the newly modified VMA range with an
1132  * adjacent VMA with identical properties.
1133  *
1134  * If no merge is possible and the range does not span the entirety of the VMA,
1135  * we then need to split the VMA to accommodate the change.
1136  *
1137  * The function returns either the merged VMA, the original VMA if a split was
1138  * required instead, or an error if the split failed.
1139  */
1140 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
1141                                   struct vm_area_struct *prev,
1142                                   struct vm_area_struct *vma,
1143                                   unsigned long start, unsigned long end,
1144                                   unsigned long vm_flags,
1145                                   struct mempolicy *policy,
1146                                   struct vm_userfaultfd_ctx uffd_ctx,
1147                                   struct anon_vma_name *anon_name)
1148 {
1149         pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1150         struct vm_area_struct *merged;
1151
1152         merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
1153                            pgoff, policy, uffd_ctx, anon_name);
1154         if (merged)
1155                 return merged;
1156
1157         if (vma->vm_start < start) {
1158                 int err = split_vma(vmi, vma, start, 1);
1159
1160                 if (err)
1161                         return ERR_PTR(err);
1162         }
1163
1164         if (vma->vm_end > end) {
1165                 int err = split_vma(vmi, vma, end, 0);
1166
1167                 if (err)
1168                         return ERR_PTR(err);
1169         }
1170
1171         return vma;
1172 }
1173
1174 /*
1175  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
1176  * must ensure that [start, end) does not overlap any existing VMA.
1177  */
1178 struct vm_area_struct
1179 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
1180                    struct vm_area_struct *vma, unsigned long start,
1181                    unsigned long end, pgoff_t pgoff)
1182 {
1183         return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
1184                          vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
1185 }
1186
1187 /*
1188  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1189  * VMA with identical properties.
1190  */
1191 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1192                                         struct vm_area_struct *vma,
1193                                         unsigned long delta)
1194 {
1195         pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
1196
1197         /* vma is specified as prev, so case 1 or 2 will apply. */
1198         return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
1199                          vma->vm_flags, pgoff, vma_policy(vma),
1200                          vma->vm_userfaultfd_ctx, anon_vma_name(vma));
1201 }
1202
1203 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1204 {
1205         vb->count = 0;
1206 }
1207
1208 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1209 {
1210         struct address_space *mapping;
1211         int i;
1212
1213         mapping = vb->vmas[0]->vm_file->f_mapping;
1214         i_mmap_lock_write(mapping);
1215         for (i = 0; i < vb->count; i++) {
1216                 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1217                 __remove_shared_vm_struct(vb->vmas[i], mapping);
1218         }
1219         i_mmap_unlock_write(mapping);
1220
1221         unlink_file_vma_batch_init(vb);
1222 }
1223
1224 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1225                                struct vm_area_struct *vma)
1226 {
1227         if (vma->vm_file == NULL)
1228                 return;
1229
1230         if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1231             vb->count == ARRAY_SIZE(vb->vmas))
1232                 unlink_file_vma_batch_process(vb);
1233
1234         vb->vmas[vb->count] = vma;
1235         vb->count++;
1236 }
1237
1238 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1239 {
1240         if (vb->count > 0)
1241                 unlink_file_vma_batch_process(vb);
1242 }
1243
1244 /*
1245  * Unlink a file-based vm structure from its interval tree, to hide
1246  * vma from rmap and vmtruncate before freeing its page tables.
1247  */
1248 void unlink_file_vma(struct vm_area_struct *vma)
1249 {
1250         struct file *file = vma->vm_file;
1251
1252         if (file) {
1253                 struct address_space *mapping = file->f_mapping;
1254
1255                 i_mmap_lock_write(mapping);
1256                 __remove_shared_vm_struct(vma, mapping);
1257                 i_mmap_unlock_write(mapping);
1258         }
1259 }
1260
1261 void vma_link_file(struct vm_area_struct *vma)
1262 {
1263         struct file *file = vma->vm_file;
1264         struct address_space *mapping;
1265
1266         if (file) {
1267                 mapping = file->f_mapping;
1268                 i_mmap_lock_write(mapping);
1269                 __vma_link_file(vma, mapping);
1270                 i_mmap_unlock_write(mapping);
1271         }
1272 }
1273
1274 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1275 {
1276         VMA_ITERATOR(vmi, mm, 0);
1277
1278         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1279         if (vma_iter_prealloc(&vmi, vma))
1280                 return -ENOMEM;
1281
1282         vma_start_write(vma);
1283         vma_iter_store(&vmi, vma);
1284         vma_link_file(vma);
1285         mm->map_count++;
1286         validate_mm(mm);
1287         return 0;
1288 }
1289
1290 /*
1291  * Copy the vma structure to a new location in the same mm,
1292  * prior to moving page table entries, to effect an mremap move.
1293  */
1294 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1295         unsigned long addr, unsigned long len, pgoff_t pgoff,
1296         bool *need_rmap_locks)
1297 {
1298         struct vm_area_struct *vma = *vmap;
1299         unsigned long vma_start = vma->vm_start;
1300         struct mm_struct *mm = vma->vm_mm;
1301         struct vm_area_struct *new_vma, *prev;
1302         bool faulted_in_anon_vma = true;
1303         VMA_ITERATOR(vmi, mm, addr);
1304
1305         /*
1306          * If anonymous vma has not yet been faulted, update new pgoff
1307          * to match new location, to increase its chance of merging.
1308          */
1309         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1310                 pgoff = addr >> PAGE_SHIFT;
1311                 faulted_in_anon_vma = false;
1312         }
1313
1314         new_vma = find_vma_prev(mm, addr, &prev);
1315         if (new_vma && new_vma->vm_start < addr + len)
1316                 return NULL;    /* should never get here */
1317
1318         new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
1319         if (new_vma) {
1320                 /*
1321                  * Source vma may have been merged into new_vma
1322                  */
1323                 if (unlikely(vma_start >= new_vma->vm_start &&
1324                              vma_start < new_vma->vm_end)) {
1325                         /*
1326                          * The only way we can get a vma_merge with
1327                          * self during an mremap is if the vma hasn't
1328                          * been faulted in yet and we were allowed to
1329                          * reset the dst vma->vm_pgoff to the
1330                          * destination address of the mremap to allow
1331                          * the merge to happen. mremap must change the
1332                          * vm_pgoff linearity between src and dst vmas
1333                          * (in turn preventing a vma_merge) to be
1334                          * safe. It is only safe to keep the vm_pgoff
1335                          * linear if there are no pages mapped yet.
1336                          */
1337                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1338                         *vmap = vma = new_vma;
1339                 }
1340                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1341         } else {
1342                 new_vma = vm_area_dup(vma);
1343                 if (!new_vma)
1344                         goto out;
1345                 vma_set_range(new_vma, addr, addr + len, pgoff);
1346                 if (vma_dup_policy(vma, new_vma))
1347                         goto out_free_vma;
1348                 if (anon_vma_clone(new_vma, vma))
1349                         goto out_free_mempol;
1350                 if (new_vma->vm_file)
1351                         get_file(new_vma->vm_file);
1352                 if (new_vma->vm_ops && new_vma->vm_ops->open)
1353                         new_vma->vm_ops->open(new_vma);
1354                 if (vma_link(mm, new_vma))
1355                         goto out_vma_link;
1356                 *need_rmap_locks = false;
1357         }
1358         return new_vma;
1359
1360 out_vma_link:
1361         if (new_vma->vm_ops && new_vma->vm_ops->close)
1362                 new_vma->vm_ops->close(new_vma);
1363
1364         if (new_vma->vm_file)
1365                 fput(new_vma->vm_file);
1366
1367         unlink_anon_vmas(new_vma);
1368 out_free_mempol:
1369         mpol_put(vma_policy(new_vma));
1370 out_free_vma:
1371         vm_area_free(new_vma);
1372 out:
1373         return NULL;
1374 }
1375
1376 /*
1377  * Rough compatibility check to quickly see if it's even worth looking
1378  * at sharing an anon_vma.
1379  *
1380  * They need to have the same vm_file, and the flags can only differ
1381  * in things that mprotect may change.
1382  *
1383  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1384  * we can merge the two vma's. For example, we refuse to merge a vma if
1385  * there is a vm_ops->close() function, because that indicates that the
1386  * driver is doing some kind of reference counting. But that doesn't
1387  * really matter for the anon_vma sharing case.
1388  */
1389 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1390 {
1391         return a->vm_end == b->vm_start &&
1392                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1393                 a->vm_file == b->vm_file &&
1394                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1395                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1396 }
1397
1398 /*
1399  * Do some basic sanity checking to see if we can re-use the anon_vma
1400  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1401  * the same as 'old', the other will be the new one that is trying
1402  * to share the anon_vma.
1403  *
1404  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1405  * the anon_vma of 'old' is concurrently in the process of being set up
1406  * by another page fault trying to merge _that_. But that's ok: if it
1407  * is being set up, that automatically means that it will be a singleton
1408  * acceptable for merging, so we can do all of this optimistically. But
1409  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1410  *
1411  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1412  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1413  * is to return an anon_vma that is "complex" due to having gone through
1414  * a fork).
1415  *
1416  * We also make sure that the two vma's are compatible (adjacent,
1417  * and with the same memory policies). That's all stable, even with just
1418  * a read lock on the mmap_lock.
1419  */
1420 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1421                                           struct vm_area_struct *a,
1422                                           struct vm_area_struct *b)
1423 {
1424         if (anon_vma_compatible(a, b)) {
1425                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1426
1427                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1428                         return anon_vma;
1429         }
1430         return NULL;
1431 }
1432
1433 /*
1434  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1435  * neighbouring vmas for a suitable anon_vma, before it goes off
1436  * to allocate a new anon_vma.  It checks because a repetitive
1437  * sequence of mprotects and faults may otherwise lead to distinct
1438  * anon_vmas being allocated, preventing vma merge in subsequent
1439  * mprotect.
1440  */
1441 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1442 {
1443         struct anon_vma *anon_vma = NULL;
1444         struct vm_area_struct *prev, *next;
1445         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1446
1447         /* Try next first. */
1448         next = vma_iter_load(&vmi);
1449         if (next) {
1450                 anon_vma = reusable_anon_vma(next, vma, next);
1451                 if (anon_vma)
1452                         return anon_vma;
1453         }
1454
1455         prev = vma_prev(&vmi);
1456         VM_BUG_ON_VMA(prev != vma, vma);
1457         prev = vma_prev(&vmi);
1458         /* Try prev next. */
1459         if (prev)
1460                 anon_vma = reusable_anon_vma(prev, prev, vma);
1461
1462         /*
1463          * We might reach here with anon_vma == NULL if we can't find
1464          * any reusable anon_vma.
1465          * There's no absolute need to look only at touching neighbours:
1466          * we could search further afield for "compatible" anon_vmas.
1467          * But it would probably just be a waste of time searching,
1468          * or lead to too many vmas hanging off the same anon_vma.
1469          * We're trying to allow mprotect remerging later on,
1470          * not trying to minimize memory used for anon_vmas.
1471          */
1472         return anon_vma;
1473 }
1474
1475 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1476 {
1477         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1478 }
1479
1480 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1481 {
1482         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1483                 (VM_WRITE | VM_SHARED);
1484 }
1485
1486 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1487 {
1488         /* No managed pages to writeback. */
1489         if (vma->vm_flags & VM_PFNMAP)
1490                 return false;
1491
1492         return vma->vm_file && vma->vm_file->f_mapping &&
1493                 mapping_can_writeback(vma->vm_file->f_mapping);
1494 }
1495
1496 /*
1497  * Does this VMA require the underlying folios to have their dirty state
1498  * tracked?
1499  */
1500 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1501 {
1502         /* Only shared, writable VMAs require dirty tracking. */
1503         if (!vma_is_shared_writable(vma))
1504                 return false;
1505
1506         /* Does the filesystem need to be notified? */
1507         if (vm_ops_needs_writenotify(vma->vm_ops))
1508                 return true;
1509
1510         /*
1511          * Even if the filesystem doesn't indicate a need for writenotify, if it
1512          * can writeback, dirty tracking is still required.
1513          */
1514         return vma_fs_can_writeback(vma);
1515 }
1516
1517 /*
1518  * Some shared mappings will want the pages marked read-only
1519  * to track write events. If so, we'll downgrade vm_page_prot
1520  * to the private version (using protection_map[] without the
1521  * VM_SHARED bit).
1522  */
1523 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1524 {
1525         /* If it was private or non-writable, the write bit is already clear */
1526         if (!vma_is_shared_writable(vma))
1527                 return false;
1528
1529         /* The backer wishes to know when pages are first written to? */
1530         if (vm_ops_needs_writenotify(vma->vm_ops))
1531                 return true;
1532
1533         /* The open routine did something to the protections that pgprot_modify
1534          * won't preserve? */
1535         if (pgprot_val(vm_page_prot) !=
1536             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1537                 return false;
1538
1539         /*
1540          * Do we need to track softdirty? hugetlb does not support softdirty
1541          * tracking yet.
1542          */
1543         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1544                 return true;
1545
1546         /* Do we need write faults for uffd-wp tracking? */
1547         if (userfaultfd_wp(vma))
1548                 return true;
1549
1550         /* Can the mapping track the dirty pages? */
1551         return vma_fs_can_writeback(vma);
1552 }
1553
1554 unsigned long count_vma_pages_range(struct mm_struct *mm,
1555                                     unsigned long addr, unsigned long end)
1556 {
1557         VMA_ITERATOR(vmi, mm, addr);
1558         struct vm_area_struct *vma;
1559         unsigned long nr_pages = 0;
1560
1561         for_each_vma_range(vmi, vma, end) {
1562                 unsigned long vm_start = max(addr, vma->vm_start);
1563                 unsigned long vm_end = min(end, vma->vm_end);
1564
1565                 nr_pages += PHYS_PFN(vm_end - vm_start);
1566         }
1567
1568         return nr_pages;
1569 }
1570
1571 static DEFINE_MUTEX(mm_all_locks_mutex);
1572
1573 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1574 {
1575         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1576                 /*
1577                  * The LSB of head.next can't change from under us
1578                  * because we hold the mm_all_locks_mutex.
1579                  */
1580                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1581                 /*
1582                  * We can safely modify head.next after taking the
1583                  * anon_vma->root->rwsem. If some other vma in this mm shares
1584                  * the same anon_vma we won't take it again.
1585                  *
1586                  * No need of atomic instructions here, head.next
1587                  * can't change from under us thanks to the
1588                  * anon_vma->root->rwsem.
1589                  */
1590                 if (__test_and_set_bit(0, (unsigned long *)
1591                                        &anon_vma->root->rb_root.rb_root.rb_node))
1592                         BUG();
1593         }
1594 }
1595
1596 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1597 {
1598         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1599                 /*
1600                  * AS_MM_ALL_LOCKS can't change from under us because
1601                  * we hold the mm_all_locks_mutex.
1602                  *
1603                  * Operations on ->flags have to be atomic because
1604                  * even if AS_MM_ALL_LOCKS is stable thanks to the
1605                  * mm_all_locks_mutex, there may be other cpus
1606                  * changing other bitflags in parallel to us.
1607                  */
1608                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
1609                         BUG();
1610                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
1611         }
1612 }
1613
1614 /*
1615  * This operation locks against the VM for all pte/vma/mm related
1616  * operations that could ever happen on a certain mm. This includes
1617  * vmtruncate, try_to_unmap, and all page faults.
1618  *
1619  * The caller must take the mmap_lock in write mode before calling
1620  * mm_take_all_locks(). The caller isn't allowed to release the
1621  * mmap_lock until mm_drop_all_locks() returns.
1622  *
1623  * mmap_lock in write mode is required in order to block all operations
1624  * that could modify pagetables and free pages without need of
1625  * altering the vma layout. It's also needed in write mode to avoid new
1626  * anon_vmas to be associated with existing vmas.
1627  *
1628  * A single task can't take more than one mm_take_all_locks() in a row
1629  * or it would deadlock.
1630  *
1631  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
1632  * mapping->flags avoid to take the same lock twice, if more than one
1633  * vma in this mm is backed by the same anon_vma or address_space.
1634  *
1635  * We take locks in following order, accordingly to comment at beginning
1636  * of mm/rmap.c:
1637  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
1638  *     hugetlb mapping);
1639  *   - all vmas marked locked
1640  *   - all i_mmap_rwsem locks;
1641  *   - all anon_vma->rwseml
1642  *
1643  * We can take all locks within these types randomly because the VM code
1644  * doesn't nest them and we protected from parallel mm_take_all_locks() by
1645  * mm_all_locks_mutex.
1646  *
1647  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
1648  * that may have to take thousand of locks.
1649  *
1650  * mm_take_all_locks() can fail if it's interrupted by signals.
1651  */
1652 int mm_take_all_locks(struct mm_struct *mm)
1653 {
1654         struct vm_area_struct *vma;
1655         struct anon_vma_chain *avc;
1656         VMA_ITERATOR(vmi, mm, 0);
1657
1658         mmap_assert_write_locked(mm);
1659
1660         mutex_lock(&mm_all_locks_mutex);
1661
1662         /*
1663          * vma_start_write() does not have a complement in mm_drop_all_locks()
1664          * because vma_start_write() is always asymmetrical; it marks a VMA as
1665          * being written to until mmap_write_unlock() or mmap_write_downgrade()
1666          * is reached.
1667          */
1668         for_each_vma(vmi, vma) {
1669                 if (signal_pending(current))
1670                         goto out_unlock;
1671                 vma_start_write(vma);
1672         }
1673
1674         vma_iter_init(&vmi, mm, 0);
1675         for_each_vma(vmi, vma) {
1676                 if (signal_pending(current))
1677                         goto out_unlock;
1678                 if (vma->vm_file && vma->vm_file->f_mapping &&
1679                                 is_vm_hugetlb_page(vma))
1680                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
1681         }
1682
1683         vma_iter_init(&vmi, mm, 0);
1684         for_each_vma(vmi, vma) {
1685                 if (signal_pending(current))
1686                         goto out_unlock;
1687                 if (vma->vm_file && vma->vm_file->f_mapping &&
1688                                 !is_vm_hugetlb_page(vma))
1689                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
1690         }
1691
1692         vma_iter_init(&vmi, mm, 0);
1693         for_each_vma(vmi, vma) {
1694                 if (signal_pending(current))
1695                         goto out_unlock;
1696                 if (vma->anon_vma)
1697                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
1698                                 vm_lock_anon_vma(mm, avc->anon_vma);
1699         }
1700
1701         return 0;
1702
1703 out_unlock:
1704         mm_drop_all_locks(mm);
1705         return -EINTR;
1706 }
1707
1708 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
1709 {
1710         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1711                 /*
1712                  * The LSB of head.next can't change to 0 from under
1713                  * us because we hold the mm_all_locks_mutex.
1714                  *
1715                  * We must however clear the bitflag before unlocking
1716                  * the vma so the users using the anon_vma->rb_root will
1717                  * never see our bitflag.
1718                  *
1719                  * No need of atomic instructions here, head.next
1720                  * can't change from under us until we release the
1721                  * anon_vma->root->rwsem.
1722                  */
1723                 if (!__test_and_clear_bit(0, (unsigned long *)
1724                                           &anon_vma->root->rb_root.rb_root.rb_node))
1725                         BUG();
1726                 anon_vma_unlock_write(anon_vma);
1727         }
1728 }
1729
1730 static void vm_unlock_mapping(struct address_space *mapping)
1731 {
1732         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1733                 /*
1734                  * AS_MM_ALL_LOCKS can't change to 0 from under us
1735                  * because we hold the mm_all_locks_mutex.
1736                  */
1737                 i_mmap_unlock_write(mapping);
1738                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
1739                                         &mapping->flags))
1740                         BUG();
1741         }
1742 }
1743
1744 /*
1745  * The mmap_lock cannot be released by the caller until
1746  * mm_drop_all_locks() returns.
1747  */
1748 void mm_drop_all_locks(struct mm_struct *mm)
1749 {
1750         struct vm_area_struct *vma;
1751         struct anon_vma_chain *avc;
1752         VMA_ITERATOR(vmi, mm, 0);
1753
1754         mmap_assert_write_locked(mm);
1755         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
1756
1757         for_each_vma(vmi, vma) {
1758                 if (vma->anon_vma)
1759                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
1760                                 vm_unlock_anon_vma(avc->anon_vma);
1761                 if (vma->vm_file && vma->vm_file->f_mapping)
1762                         vm_unlock_mapping(vma->vm_file->f_mapping);
1763         }
1764
1765         mutex_unlock(&mm_all_locks_mutex);
1766 }
This page took 0.138819 seconds and 4 git commands to generate.