1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/blkdev.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
55 static void free_swap_count_continuations(struct swap_info_struct *);
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
61 * Some modules use swappable objects and may try to swap them out under
62 * memory pressure (via the shrinker). Before doing so, they may wish to
63 * check to see if any swap space is available.
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif /* CONFIG_MIGRATION */
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
80 * all active swap_info_structs
81 * protected with swap_lock, and ordered by priority.
83 static PLIST_HEAD(swap_active_head);
86 * all available (active, not full) swap_info_structs
87 * protected with swap_avail_lock, ordered by priority.
88 * This is used by folio_alloc_swap() instead of swap_active_head
89 * because swap_active_head includes all swap_info_structs,
90 * but folio_alloc_swap() doesn't need to look at full ones.
91 * This uses its own lock instead of swap_lock because when a
92 * swap_info_struct changes between not-full/full, it needs to
93 * add/remove itself to/from this list, but the swap_info_struct->lock
94 * is held and the locking order requires swap_lock to be taken
95 * before any swap_info_struct->lock.
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
102 static DEFINE_MUTEX(swapon_mutex);
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
112 if (type >= MAX_SWAPFILES)
115 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
118 static inline unsigned char swap_count(unsigned char ent)
120 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY 0x1
126 * Reclaim the swap entry if there are no more mappings of the
129 #define TTRS_UNMAPPED 0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL 0x4
134 * returns number of pages in the folio that backs the swap entry. If positive,
135 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
136 * folio was associated with the swap entry.
138 static int __try_to_reclaim_swap(struct swap_info_struct *si,
139 unsigned long offset, unsigned long flags)
141 swp_entry_t entry = swp_entry(si->type, offset);
145 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
149 * When this function is called from scan_swap_map_slots() and it's
150 * called by vmscan.c at reclaiming folios. So we hold a folio lock
151 * here. We have to use trylock for avoiding deadlock. This is a special
152 * case and you should use folio_free_swap() with explicit folio_lock()
153 * in usual operations.
155 if (folio_trylock(folio)) {
156 if ((flags & TTRS_ANYWAY) ||
157 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
158 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
159 ret = folio_free_swap(folio);
162 ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio);
167 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
169 struct rb_node *rb = rb_first(&sis->swap_extent_root);
170 return rb_entry(rb, struct swap_extent, rb_node);
173 static inline struct swap_extent *next_se(struct swap_extent *se)
175 struct rb_node *rb = rb_next(&se->rb_node);
176 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
180 * swapon tell device that all the old swap contents can be discarded,
181 * to allow the swap device to optimize its wear-levelling.
183 static int discard_swap(struct swap_info_struct *si)
185 struct swap_extent *se;
186 sector_t start_block;
190 /* Do not discard the swap header page! */
192 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
193 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
195 err = blkdev_issue_discard(si->bdev, start_block,
196 nr_blocks, GFP_KERNEL);
202 for (se = next_se(se); se; se = next_se(se)) {
203 start_block = se->start_block << (PAGE_SHIFT - 9);
204 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
206 err = blkdev_issue_discard(si->bdev, start_block,
207 nr_blocks, GFP_KERNEL);
213 return err; /* That will often be -EOPNOTSUPP */
216 static struct swap_extent *
217 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
219 struct swap_extent *se;
222 rb = sis->swap_extent_root.rb_node;
224 se = rb_entry(rb, struct swap_extent, rb_node);
225 if (offset < se->start_page)
227 else if (offset >= se->start_page + se->nr_pages)
232 /* It *must* be present */
236 sector_t swap_folio_sector(struct folio *folio)
238 struct swap_info_struct *sis = swp_swap_info(folio->swap);
239 struct swap_extent *se;
243 offset = swp_offset(folio->swap);
244 se = offset_to_swap_extent(sis, offset);
245 sector = se->start_block + (offset - se->start_page);
246 return sector << (PAGE_SHIFT - 9);
250 * swap allocation tell device that a cluster of swap can now be discarded,
251 * to allow the swap device to optimize its wear-levelling.
253 static void discard_swap_cluster(struct swap_info_struct *si,
254 pgoff_t start_page, pgoff_t nr_pages)
256 struct swap_extent *se = offset_to_swap_extent(si, start_page);
259 pgoff_t offset = start_page - se->start_page;
260 sector_t start_block = se->start_block + offset;
261 sector_t nr_blocks = se->nr_pages - offset;
263 if (nr_blocks > nr_pages)
264 nr_blocks = nr_pages;
265 start_page += nr_blocks;
266 nr_pages -= nr_blocks;
268 start_block <<= PAGE_SHIFT - 9;
269 nr_blocks <<= PAGE_SHIFT - 9;
270 if (blkdev_issue_discard(si->bdev, start_block,
271 nr_blocks, GFP_NOIO))
278 #ifdef CONFIG_THP_SWAP
279 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
281 #define swap_entry_order(order) (order)
283 #define SWAPFILE_CLUSTER 256
286 * Define swap_entry_order() as constant to let compiler to optimize
287 * out some code if !CONFIG_THP_SWAP
289 #define swap_entry_order(order) 0
291 #define LATENCY_LIMIT 256
293 static inline void cluster_set_flag(struct swap_cluster_info *info,
299 static inline unsigned int cluster_count(struct swap_cluster_info *info)
304 static inline void cluster_set_count(struct swap_cluster_info *info,
310 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
311 unsigned int c, unsigned int f)
317 static inline unsigned int cluster_next(struct swap_cluster_info *info)
322 static inline void cluster_set_next(struct swap_cluster_info *info,
328 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
329 unsigned int n, unsigned int f)
335 static inline bool cluster_is_free(struct swap_cluster_info *info)
337 return info->flags & CLUSTER_FLAG_FREE;
340 static inline bool cluster_is_null(struct swap_cluster_info *info)
342 return info->flags & CLUSTER_FLAG_NEXT_NULL;
345 static inline void cluster_set_null(struct swap_cluster_info *info)
347 info->flags = CLUSTER_FLAG_NEXT_NULL;
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 unsigned long offset)
354 struct swap_cluster_info *ci;
356 ci = si->cluster_info;
358 ci += offset / SWAPFILE_CLUSTER;
359 spin_lock(&ci->lock);
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
367 spin_unlock(&ci->lock);
371 * Determine the locking method in use for this device. Return
372 * swap_cluster_info if SSD-style cluster-based locking is in place.
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 struct swap_info_struct *si, unsigned long offset)
377 struct swap_cluster_info *ci;
379 /* Try to use fine-grained SSD-style locking if available: */
380 ci = lock_cluster(si, offset);
381 /* Otherwise, fall back to traditional, coarse locking: */
383 spin_lock(&si->lock);
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 struct swap_cluster_info *ci)
394 spin_unlock(&si->lock);
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
399 return cluster_is_null(&list->head);
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
404 return cluster_next(&list->head);
407 static void cluster_list_init(struct swap_cluster_list *list)
409 cluster_set_null(&list->head);
410 cluster_set_null(&list->tail);
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414 struct swap_cluster_info *ci,
417 if (cluster_list_empty(list)) {
418 cluster_set_next_flag(&list->head, idx, 0);
419 cluster_set_next_flag(&list->tail, idx, 0);
421 struct swap_cluster_info *ci_tail;
422 unsigned int tail = cluster_next(&list->tail);
425 * Nested cluster lock, but both cluster locks are
426 * only acquired when we held swap_info_struct->lock
429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 cluster_set_next(ci_tail, idx);
431 spin_unlock(&ci_tail->lock);
432 cluster_set_next_flag(&list->tail, idx, 0);
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 struct swap_cluster_info *ci)
441 idx = cluster_next(&list->head);
442 if (cluster_next(&list->tail) == idx) {
443 cluster_set_null(&list->head);
444 cluster_set_null(&list->tail);
446 cluster_set_next_flag(&list->head,
447 cluster_next(&ci[idx]), 0);
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
457 * If scan_swap_map_slots() can't find a free cluster, it will check
458 * si->swap_map directly. To make sure the discarding cluster isn't
459 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460 * It will be cleared after discard
462 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
467 schedule_work(&si->discard_work);
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
472 struct swap_cluster_info *ci = si->cluster_info;
474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 cluster_list_add_tail(&si->free_clusters, ci, idx);
479 * Doing discard actually. After a cluster discard is finished, the cluster
480 * will be added to free cluster list. caller should hold si->lock.
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
484 struct swap_cluster_info *info, *ci;
487 info = si->cluster_info;
489 while (!cluster_list_empty(&si->discard_clusters)) {
490 idx = cluster_list_del_first(&si->discard_clusters, info);
491 spin_unlock(&si->lock);
493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
496 spin_lock(&si->lock);
497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 __free_cluster(si, idx);
499 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 0, SWAPFILE_CLUSTER);
505 static void swap_discard_work(struct work_struct *work)
507 struct swap_info_struct *si;
509 si = container_of(work, struct swap_info_struct, discard_work);
511 spin_lock(&si->lock);
512 swap_do_scheduled_discard(si);
513 spin_unlock(&si->lock);
516 static void swap_users_ref_free(struct percpu_ref *ref)
518 struct swap_info_struct *si;
520 si = container_of(ref, struct swap_info_struct, users);
524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
526 struct swap_cluster_info *ci = si->cluster_info;
528 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529 cluster_list_del_first(&si->free_clusters, ci);
530 cluster_set_count_flag(ci + idx, 0, 0);
533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
535 struct swap_cluster_info *ci = si->cluster_info + idx;
537 VM_BUG_ON(cluster_count(ci) != 0);
539 * If the swap is discardable, prepare discard the cluster
540 * instead of free it immediately. The cluster will be freed
543 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545 swap_cluster_schedule_discard(si, idx);
549 __free_cluster(si, idx);
553 * The cluster corresponding to page_nr will be used. The cluster will be
554 * removed from free cluster list and its usage counter will be increased by
557 static void add_cluster_info_page(struct swap_info_struct *p,
558 struct swap_cluster_info *cluster_info, unsigned long page_nr,
561 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
565 if (cluster_is_free(&cluster_info[idx]))
566 alloc_cluster(p, idx);
568 VM_BUG_ON(cluster_count(&cluster_info[idx]) + count > SWAPFILE_CLUSTER);
569 cluster_set_count(&cluster_info[idx],
570 cluster_count(&cluster_info[idx]) + count);
574 * The cluster corresponding to page_nr will be used. The cluster will be
575 * removed from free cluster list and its usage counter will be increased by 1.
577 static void inc_cluster_info_page(struct swap_info_struct *p,
578 struct swap_cluster_info *cluster_info, unsigned long page_nr)
580 add_cluster_info_page(p, cluster_info, page_nr, 1);
584 * The cluster corresponding to page_nr decreases one usage. If the usage
585 * counter becomes 0, which means no page in the cluster is in using, we can
586 * optionally discard the cluster and add it to free cluster list.
588 static void dec_cluster_info_page(struct swap_info_struct *p,
589 struct swap_cluster_info *cluster_info, unsigned long page_nr)
591 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
596 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
597 cluster_set_count(&cluster_info[idx],
598 cluster_count(&cluster_info[idx]) - 1);
600 if (cluster_count(&cluster_info[idx]) == 0)
601 free_cluster(p, idx);
605 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
606 * cluster list. Avoiding such abuse to avoid list corruption.
609 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
610 unsigned long offset, int order)
612 struct percpu_cluster *percpu_cluster;
615 offset /= SWAPFILE_CLUSTER;
616 conflict = !cluster_list_empty(&si->free_clusters) &&
617 offset != cluster_list_first(&si->free_clusters) &&
618 cluster_is_free(&si->cluster_info[offset]);
623 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
624 percpu_cluster->next[order] = SWAP_NEXT_INVALID;
628 static inline bool swap_range_empty(char *swap_map, unsigned int start,
629 unsigned int nr_pages)
633 for (i = 0; i < nr_pages; i++) {
634 if (swap_map[start + i])
642 * Try to get swap entries with specified order from current cpu's swap entry
643 * pool (a cluster). This might involve allocating a new cluster for current CPU
646 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
647 unsigned long *offset, unsigned long *scan_base, int order)
649 unsigned int nr_pages = 1 << order;
650 struct percpu_cluster *cluster;
651 struct swap_cluster_info *ci;
652 unsigned int tmp, max;
655 cluster = this_cpu_ptr(si->percpu_cluster);
656 tmp = cluster->next[order];
657 if (tmp == SWAP_NEXT_INVALID) {
658 if (!cluster_list_empty(&si->free_clusters)) {
659 tmp = cluster_next(&si->free_clusters.head) *
661 } else if (!cluster_list_empty(&si->discard_clusters)) {
663 * we don't have free cluster but have some clusters in
664 * discarding, do discard now and reclaim them, then
665 * reread cluster_next_cpu since we dropped si->lock
667 swap_do_scheduled_discard(si);
668 *scan_base = this_cpu_read(*si->cluster_next_cpu);
669 *offset = *scan_base;
676 * Other CPUs can use our cluster if they can't find a free cluster,
677 * check if there is still free entry in the cluster, maintaining
680 max = min_t(unsigned long, si->max, ALIGN(tmp + 1, SWAPFILE_CLUSTER));
682 ci = lock_cluster(si, tmp);
684 if (swap_range_empty(si->swap_map, tmp, nr_pages))
691 cluster->next[order] = SWAP_NEXT_INVALID;
697 cluster->next[order] = tmp < max ? tmp : SWAP_NEXT_INVALID;
701 static void __del_from_avail_list(struct swap_info_struct *p)
705 assert_spin_locked(&p->lock);
707 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
710 static void del_from_avail_list(struct swap_info_struct *p)
712 spin_lock(&swap_avail_lock);
713 __del_from_avail_list(p);
714 spin_unlock(&swap_avail_lock);
717 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
718 unsigned int nr_entries)
720 unsigned int end = offset + nr_entries - 1;
722 if (offset == si->lowest_bit)
723 si->lowest_bit += nr_entries;
724 if (end == si->highest_bit)
725 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
726 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
727 if (si->inuse_pages == si->pages) {
728 si->lowest_bit = si->max;
730 del_from_avail_list(si);
734 static void add_to_avail_list(struct swap_info_struct *p)
738 spin_lock(&swap_avail_lock);
740 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
741 spin_unlock(&swap_avail_lock);
744 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
745 unsigned int nr_entries)
747 unsigned long begin = offset;
748 unsigned long end = offset + nr_entries - 1;
749 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
751 if (offset < si->lowest_bit)
752 si->lowest_bit = offset;
753 if (end > si->highest_bit) {
754 bool was_full = !si->highest_bit;
756 WRITE_ONCE(si->highest_bit, end);
757 if (was_full && (si->flags & SWP_WRITEOK))
758 add_to_avail_list(si);
760 if (si->flags & SWP_BLKDEV)
761 swap_slot_free_notify =
762 si->bdev->bd_disk->fops->swap_slot_free_notify;
764 swap_slot_free_notify = NULL;
765 while (offset <= end) {
766 arch_swap_invalidate_page(si->type, offset);
767 if (swap_slot_free_notify)
768 swap_slot_free_notify(si->bdev, offset);
771 clear_shadow_from_swap_cache(si->type, begin, end);
774 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
775 * only after the above cleanups are done.
778 atomic_long_add(nr_entries, &nr_swap_pages);
779 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
782 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
786 if (!(si->flags & SWP_SOLIDSTATE)) {
787 si->cluster_next = next;
791 prev = this_cpu_read(*si->cluster_next_cpu);
793 * Cross the swap address space size aligned trunk, choose
794 * another trunk randomly to avoid lock contention on swap
795 * address space if possible.
797 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
798 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
799 /* No free swap slots available */
800 if (si->highest_bit <= si->lowest_bit)
802 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
803 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
804 next = max_t(unsigned int, next, si->lowest_bit);
806 this_cpu_write(*si->cluster_next_cpu, next);
809 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
810 unsigned long offset)
812 if (data_race(!si->swap_map[offset])) {
813 spin_lock(&si->lock);
817 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
818 spin_lock(&si->lock);
825 static int scan_swap_map_slots(struct swap_info_struct *si,
826 unsigned char usage, int nr,
827 swp_entry_t slots[], int order)
829 struct swap_cluster_info *ci;
830 unsigned long offset;
831 unsigned long scan_base;
832 unsigned long last_in_cluster = 0;
833 int latency_ration = LATENCY_LIMIT;
834 unsigned int nr_pages = 1 << order;
836 bool scanned_many = false;
839 * We try to cluster swap pages by allocating them sequentially
840 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
841 * way, however, we resort to first-free allocation, starting
842 * a new cluster. This prevents us from scattering swap pages
843 * all over the entire swap partition, so that we reduce
844 * overall disk seek times between swap pages. -- sct
845 * But we do now try to find an empty cluster. -Andrea
846 * And we let swap pages go all over an SSD partition. Hugh
851 * Should not even be attempting large allocations when huge
852 * page swap is disabled. Warn and fail the allocation.
854 if (!IS_ENABLED(CONFIG_THP_SWAP) ||
855 nr_pages > SWAPFILE_CLUSTER) {
861 * Swapfile is not block device or not using clusters so unable
862 * to allocate large entries.
864 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
868 si->flags += SWP_SCANNING;
870 * Use percpu scan base for SSD to reduce lock contention on
871 * cluster and swap cache. For HDD, sequential access is more
874 if (si->flags & SWP_SOLIDSTATE)
875 scan_base = this_cpu_read(*si->cluster_next_cpu);
877 scan_base = si->cluster_next;
881 if (si->cluster_info) {
882 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) {
887 } else if (unlikely(!si->cluster_nr--)) {
888 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
889 si->cluster_nr = SWAPFILE_CLUSTER - 1;
893 spin_unlock(&si->lock);
896 * If seek is expensive, start searching for new cluster from
897 * start of partition, to minimize the span of allocated swap.
898 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
899 * case, just handled by scan_swap_map_try_ssd_cluster() above.
901 scan_base = offset = si->lowest_bit;
902 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
904 /* Locate the first empty (unaligned) cluster */
905 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
906 if (si->swap_map[offset])
907 last_in_cluster = offset + SWAPFILE_CLUSTER;
908 else if (offset == last_in_cluster) {
909 spin_lock(&si->lock);
910 offset -= SWAPFILE_CLUSTER - 1;
911 si->cluster_next = offset;
912 si->cluster_nr = SWAPFILE_CLUSTER - 1;
915 if (unlikely(--latency_ration < 0)) {
917 latency_ration = LATENCY_LIMIT;
922 spin_lock(&si->lock);
923 si->cluster_nr = SWAPFILE_CLUSTER - 1;
927 if (si->cluster_info) {
928 while (scan_swap_map_ssd_cluster_conflict(si, offset, order)) {
929 /* take a break if we already got some slots */
932 if (!scan_swap_map_try_ssd_cluster(si, &offset,
933 &scan_base, order)) {
940 if (!(si->flags & SWP_WRITEOK))
942 if (!si->highest_bit)
944 if (offset > si->highest_bit)
945 scan_base = offset = si->lowest_bit;
947 ci = lock_cluster(si, offset);
948 /* reuse swap entry of cache-only swap if not busy. */
949 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
952 spin_unlock(&si->lock);
953 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
954 spin_lock(&si->lock);
955 /* entry was freed successfully, try to use this again */
956 if (swap_was_freed > 0)
958 goto scan; /* check next one */
961 if (si->swap_map[offset]) {
968 memset(si->swap_map + offset, usage, nr_pages);
969 add_cluster_info_page(si, si->cluster_info, offset, nr_pages);
972 swap_range_alloc(si, offset, nr_pages);
973 slots[n_ret++] = swp_entry(si->type, offset);
975 /* got enough slots or reach max slots? */
976 if ((n_ret == nr) || (offset >= si->highest_bit))
979 /* search for next available slot */
981 /* time to take a break? */
982 if (unlikely(--latency_ration < 0)) {
985 spin_unlock(&si->lock);
987 spin_lock(&si->lock);
988 latency_ration = LATENCY_LIMIT;
991 /* try to get more slots in cluster */
992 if (si->cluster_info) {
993 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order))
997 } else if (si->cluster_nr && !si->swap_map[++offset]) {
998 /* non-ssd case, still more slots in cluster? */
1004 * Even if there's no free clusters available (fragmented),
1005 * try to scan a little more quickly with lock held unless we
1006 * have scanned too many slots already.
1008 if (!scanned_many) {
1009 unsigned long scan_limit;
1011 if (offset < scan_base)
1012 scan_limit = scan_base;
1014 scan_limit = si->highest_bit;
1015 for (; offset <= scan_limit && --latency_ration > 0;
1017 if (!si->swap_map[offset])
1024 set_cluster_next(si, offset + 1);
1025 si->flags -= SWP_SCANNING;
1029 VM_WARN_ON(order > 0);
1030 spin_unlock(&si->lock);
1031 while (++offset <= READ_ONCE(si->highest_bit)) {
1032 if (unlikely(--latency_ration < 0)) {
1034 latency_ration = LATENCY_LIMIT;
1035 scanned_many = true;
1037 if (swap_offset_available_and_locked(si, offset))
1040 offset = si->lowest_bit;
1041 while (offset < scan_base) {
1042 if (unlikely(--latency_ration < 0)) {
1044 latency_ration = LATENCY_LIMIT;
1045 scanned_many = true;
1047 if (swap_offset_available_and_locked(si, offset))
1051 spin_lock(&si->lock);
1054 si->flags -= SWP_SCANNING;
1058 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1060 unsigned long offset = idx * SWAPFILE_CLUSTER;
1061 struct swap_cluster_info *ci;
1063 ci = lock_cluster(si, offset);
1064 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1065 cluster_set_count_flag(ci, 0, 0);
1066 free_cluster(si, idx);
1068 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1071 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1073 int order = swap_entry_order(entry_order);
1074 unsigned long size = 1 << order;
1075 struct swap_info_struct *si, *next;
1080 spin_lock(&swap_avail_lock);
1082 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1083 if (avail_pgs <= 0) {
1084 spin_unlock(&swap_avail_lock);
1088 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1090 atomic_long_sub(n_goal * size, &nr_swap_pages);
1093 node = numa_node_id();
1094 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1095 /* requeue si to after same-priority siblings */
1096 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1097 spin_unlock(&swap_avail_lock);
1098 spin_lock(&si->lock);
1099 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1100 spin_lock(&swap_avail_lock);
1101 if (plist_node_empty(&si->avail_lists[node])) {
1102 spin_unlock(&si->lock);
1105 WARN(!si->highest_bit,
1106 "swap_info %d in list but !highest_bit\n",
1108 WARN(!(si->flags & SWP_WRITEOK),
1109 "swap_info %d in list but !SWP_WRITEOK\n",
1111 __del_from_avail_list(si);
1112 spin_unlock(&si->lock);
1115 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1116 n_goal, swp_entries, order);
1117 spin_unlock(&si->lock);
1118 if (n_ret || size > 1)
1122 spin_lock(&swap_avail_lock);
1125 * if we got here, it's likely that si was almost full before,
1126 * and since scan_swap_map_slots() can drop the si->lock,
1127 * multiple callers probably all tried to get a page from the
1128 * same si and it filled up before we could get one; or, the si
1129 * filled up between us dropping swap_avail_lock and taking
1130 * si->lock. Since we dropped the swap_avail_lock, the
1131 * swap_avail_head list may have been modified; so if next is
1132 * still in the swap_avail_head list then try it, otherwise
1133 * start over if we have not gotten any slots.
1135 if (plist_node_empty(&next->avail_lists[node]))
1139 spin_unlock(&swap_avail_lock);
1143 atomic_long_add((long)(n_goal - n_ret) * size,
1149 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1151 struct swap_info_struct *p;
1152 unsigned long offset;
1156 p = swp_swap_info(entry);
1159 if (data_race(!(p->flags & SWP_USED)))
1161 offset = swp_offset(entry);
1162 if (offset >= p->max)
1164 if (data_race(!p->swap_map[swp_offset(entry)]))
1169 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1172 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1175 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1178 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1183 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1184 struct swap_info_struct *q)
1186 struct swap_info_struct *p;
1188 p = _swap_info_get(entry);
1192 spin_unlock(&q->lock);
1194 spin_lock(&p->lock);
1199 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1200 unsigned long offset,
1201 unsigned char usage)
1203 unsigned char count;
1204 unsigned char has_cache;
1206 count = p->swap_map[offset];
1208 has_cache = count & SWAP_HAS_CACHE;
1209 count &= ~SWAP_HAS_CACHE;
1211 if (usage == SWAP_HAS_CACHE) {
1212 VM_BUG_ON(!has_cache);
1214 } else if (count == SWAP_MAP_SHMEM) {
1216 * Or we could insist on shmem.c using a special
1217 * swap_shmem_free() and free_shmem_swap_and_cache()...
1220 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1221 if (count == COUNT_CONTINUED) {
1222 if (swap_count_continued(p, offset, count))
1223 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1225 count = SWAP_MAP_MAX;
1230 usage = count | has_cache;
1232 WRITE_ONCE(p->swap_map[offset], usage);
1234 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1240 * When we get a swap entry, if there aren't some other ways to
1241 * prevent swapoff, such as the folio in swap cache is locked, RCU
1242 * reader side is locked, etc., the swap entry may become invalid
1243 * because of swapoff. Then, we need to enclose all swap related
1244 * functions with get_swap_device() and put_swap_device(), unless the
1245 * swap functions call get/put_swap_device() by themselves.
1247 * RCU reader side lock (including any spinlock) is sufficient to
1248 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1249 * before freeing data structures.
1251 * Check whether swap entry is valid in the swap device. If so,
1252 * return pointer to swap_info_struct, and keep the swap entry valid
1253 * via preventing the swap device from being swapoff, until
1254 * put_swap_device() is called. Otherwise return NULL.
1256 * Notice that swapoff or swapoff+swapon can still happen before the
1257 * percpu_ref_tryget_live() in get_swap_device() or after the
1258 * percpu_ref_put() in put_swap_device() if there isn't any other way
1259 * to prevent swapoff. The caller must be prepared for that. For
1260 * example, the following situation is possible.
1264 * ... swapoff+swapon
1265 * __read_swap_cache_async()
1266 * swapcache_prepare()
1267 * __swap_duplicate()
1269 * // verify PTE not changed
1271 * In __swap_duplicate(), the swap_map need to be checked before
1272 * changing partly because the specified swap entry may be for another
1273 * swap device which has been swapoff. And in do_swap_page(), after
1274 * the page is read from the swap device, the PTE is verified not
1275 * changed with the page table locked to check whether the swap device
1276 * has been swapoff or swapoff+swapon.
1278 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1280 struct swap_info_struct *si;
1281 unsigned long offset;
1285 si = swp_swap_info(entry);
1288 if (!percpu_ref_tryget_live(&si->users))
1291 * Guarantee the si->users are checked before accessing other
1292 * fields of swap_info_struct.
1294 * Paired with the spin_unlock() after setup_swap_info() in
1295 * enable_swap_info().
1298 offset = swp_offset(entry);
1299 if (offset >= si->max)
1304 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1308 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1309 percpu_ref_put(&si->users);
1313 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1316 struct swap_cluster_info *ci;
1317 unsigned long offset = swp_offset(entry);
1318 unsigned char usage;
1320 ci = lock_cluster_or_swap_info(p, offset);
1321 usage = __swap_entry_free_locked(p, offset, 1);
1322 unlock_cluster_or_swap_info(p, ci);
1324 free_swap_slot(entry);
1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1331 struct swap_cluster_info *ci;
1332 unsigned long offset = swp_offset(entry);
1333 unsigned char count;
1335 ci = lock_cluster(p, offset);
1336 count = p->swap_map[offset];
1337 VM_BUG_ON(count != SWAP_HAS_CACHE);
1338 p->swap_map[offset] = 0;
1339 dec_cluster_info_page(p, p->cluster_info, offset);
1342 mem_cgroup_uncharge_swap(entry, 1);
1343 swap_range_free(p, offset, 1);
1346 static void cluster_swap_free_nr(struct swap_info_struct *sis,
1347 unsigned long offset, int nr_pages,
1348 unsigned char usage)
1350 struct swap_cluster_info *ci;
1351 DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1354 ci = lock_cluster_or_swap_info(sis, offset);
1356 nr = min(BITS_PER_LONG, nr_pages);
1357 for (i = 0; i < nr; i++) {
1358 if (!__swap_entry_free_locked(sis, offset + i, usage))
1359 bitmap_set(to_free, i, 1);
1361 if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1362 unlock_cluster_or_swap_info(sis, ci);
1363 for_each_set_bit(i, to_free, BITS_PER_LONG)
1364 free_swap_slot(swp_entry(sis->type, offset + i));
1367 bitmap_clear(to_free, 0, BITS_PER_LONG);
1368 ci = lock_cluster_or_swap_info(sis, offset);
1373 unlock_cluster_or_swap_info(sis, ci);
1377 * Caller has made sure that the swap device corresponding to entry
1378 * is still around or has not been recycled.
1380 void swap_free_nr(swp_entry_t entry, int nr_pages)
1383 struct swap_info_struct *sis;
1384 unsigned long offset = swp_offset(entry);
1386 sis = _swap_info_get(entry);
1391 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1392 cluster_swap_free_nr(sis, offset, nr, 1);
1399 * Called after dropping swapcache to decrease refcnt to swap entries.
1401 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1403 unsigned long offset = swp_offset(entry);
1404 unsigned long idx = offset / SWAPFILE_CLUSTER;
1405 struct swap_cluster_info *ci;
1406 struct swap_info_struct *si;
1408 unsigned int i, free_entries = 0;
1410 int size = 1 << swap_entry_order(folio_order(folio));
1412 si = _swap_info_get(entry);
1416 ci = lock_cluster_or_swap_info(si, offset);
1417 if (size == SWAPFILE_CLUSTER) {
1418 map = si->swap_map + offset;
1419 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1421 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1422 if (val == SWAP_HAS_CACHE)
1425 if (free_entries == SWAPFILE_CLUSTER) {
1426 unlock_cluster_or_swap_info(si, ci);
1427 spin_lock(&si->lock);
1428 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1429 swap_free_cluster(si, idx);
1430 spin_unlock(&si->lock);
1434 for (i = 0; i < size; i++, entry.val++) {
1435 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1436 unlock_cluster_or_swap_info(si, ci);
1437 free_swap_slot(entry);
1440 lock_cluster_or_swap_info(si, offset);
1443 unlock_cluster_or_swap_info(si, ci);
1446 static int swp_entry_cmp(const void *ent1, const void *ent2)
1448 const swp_entry_t *e1 = ent1, *e2 = ent2;
1450 return (int)swp_type(*e1) - (int)swp_type(*e2);
1453 void swapcache_free_entries(swp_entry_t *entries, int n)
1455 struct swap_info_struct *p, *prev;
1465 * Sort swap entries by swap device, so each lock is only taken once.
1466 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1467 * so low that it isn't necessary to optimize further.
1469 if (nr_swapfiles > 1)
1470 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1471 for (i = 0; i < n; ++i) {
1472 p = swap_info_get_cont(entries[i], prev);
1474 swap_entry_free(p, entries[i]);
1478 spin_unlock(&p->lock);
1481 int __swap_count(swp_entry_t entry)
1483 struct swap_info_struct *si = swp_swap_info(entry);
1484 pgoff_t offset = swp_offset(entry);
1486 return swap_count(si->swap_map[offset]);
1490 * How many references to @entry are currently swapped out?
1491 * This does not give an exact answer when swap count is continued,
1492 * but does include the high COUNT_CONTINUED flag to allow for that.
1494 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1496 pgoff_t offset = swp_offset(entry);
1497 struct swap_cluster_info *ci;
1500 ci = lock_cluster_or_swap_info(si, offset);
1501 count = swap_count(si->swap_map[offset]);
1502 unlock_cluster_or_swap_info(si, ci);
1507 * How many references to @entry are currently swapped out?
1508 * This considers COUNT_CONTINUED so it returns exact answer.
1510 int swp_swapcount(swp_entry_t entry)
1512 int count, tmp_count, n;
1513 struct swap_info_struct *p;
1514 struct swap_cluster_info *ci;
1519 p = _swap_info_get(entry);
1523 offset = swp_offset(entry);
1525 ci = lock_cluster_or_swap_info(p, offset);
1527 count = swap_count(p->swap_map[offset]);
1528 if (!(count & COUNT_CONTINUED))
1531 count &= ~COUNT_CONTINUED;
1532 n = SWAP_MAP_MAX + 1;
1534 page = vmalloc_to_page(p->swap_map + offset);
1535 offset &= ~PAGE_MASK;
1536 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1539 page = list_next_entry(page, lru);
1540 map = kmap_local_page(page);
1541 tmp_count = map[offset];
1544 count += (tmp_count & ~COUNT_CONTINUED) * n;
1545 n *= (SWAP_CONT_MAX + 1);
1546 } while (tmp_count & COUNT_CONTINUED);
1548 unlock_cluster_or_swap_info(p, ci);
1552 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1553 swp_entry_t entry, int order)
1555 struct swap_cluster_info *ci;
1556 unsigned char *map = si->swap_map;
1557 unsigned int nr_pages = 1 << order;
1558 unsigned long roffset = swp_offset(entry);
1559 unsigned long offset = round_down(roffset, nr_pages);
1563 ci = lock_cluster_or_swap_info(si, offset);
1564 if (!ci || nr_pages == 1) {
1565 if (swap_count(map[roffset]))
1569 for (i = 0; i < nr_pages; i++) {
1570 if (swap_count(map[offset + i])) {
1576 unlock_cluster_or_swap_info(si, ci);
1580 static bool folio_swapped(struct folio *folio)
1582 swp_entry_t entry = folio->swap;
1583 struct swap_info_struct *si = _swap_info_get(entry);
1588 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1589 return swap_swapcount(si, entry) != 0;
1591 return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1595 * folio_free_swap() - Free the swap space used for this folio.
1596 * @folio: The folio to remove.
1598 * If swap is getting full, or if there are no more mappings of this folio,
1599 * then call folio_free_swap to free its swap space.
1601 * Return: true if we were able to release the swap space.
1603 bool folio_free_swap(struct folio *folio)
1605 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1607 if (!folio_test_swapcache(folio))
1609 if (folio_test_writeback(folio))
1611 if (folio_swapped(folio))
1615 * Once hibernation has begun to create its image of memory,
1616 * there's a danger that one of the calls to folio_free_swap()
1617 * - most probably a call from __try_to_reclaim_swap() while
1618 * hibernation is allocating its own swap pages for the image,
1619 * but conceivably even a call from memory reclaim - will free
1620 * the swap from a folio which has already been recorded in the
1621 * image as a clean swapcache folio, and then reuse its swap for
1622 * another page of the image. On waking from hibernation, the
1623 * original folio might be freed under memory pressure, then
1624 * later read back in from swap, now with the wrong data.
1626 * Hibernation suspends storage while it is writing the image
1627 * to disk so check that here.
1629 if (pm_suspended_storage())
1632 delete_from_swap_cache(folio);
1633 folio_set_dirty(folio);
1638 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1639 * reclaim their cache if no more references remain.
1640 * @entry: First entry of range.
1641 * @nr: Number of entries in range.
1643 * For each swap entry in the contiguous range, release a reference. If any swap
1644 * entries become free, try to reclaim their underlying folios, if present. The
1645 * offset range is defined by [entry.offset, entry.offset + nr).
1647 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1649 const unsigned long start_offset = swp_offset(entry);
1650 const unsigned long end_offset = start_offset + nr;
1651 unsigned int type = swp_type(entry);
1652 struct swap_info_struct *si;
1653 bool any_only_cache = false;
1654 unsigned long offset;
1655 unsigned char count;
1657 if (non_swap_entry(entry))
1660 si = get_swap_device(entry);
1664 if (WARN_ON(end_offset > si->max))
1668 * First free all entries in the range.
1670 for (offset = start_offset; offset < end_offset; offset++) {
1671 if (data_race(si->swap_map[offset])) {
1672 count = __swap_entry_free(si, swp_entry(type, offset));
1673 if (count == SWAP_HAS_CACHE)
1674 any_only_cache = true;
1681 * Short-circuit the below loop if none of the entries had their
1682 * reference drop to zero.
1684 if (!any_only_cache)
1688 * Now go back over the range trying to reclaim the swap cache. This is
1689 * more efficient for large folios because we will only try to reclaim
1690 * the swap once per folio in the common case. If we do
1691 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1692 * latter will get a reference and lock the folio for every individual
1693 * page but will only succeed once the swap slot for every subpage is
1696 for (offset = start_offset; offset < end_offset; offset += nr) {
1698 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1700 * Folios are always naturally aligned in swap so
1701 * advance forward to the next boundary. Zero means no
1702 * folio was found for the swap entry, so advance by 1
1703 * in this case. Negative value means folio was found
1704 * but could not be reclaimed. Here we can still advance
1705 * to the next boundary.
1707 nr = __try_to_reclaim_swap(si, offset,
1708 TTRS_UNMAPPED | TTRS_FULL);
1713 nr = ALIGN(offset + 1, nr) - offset;
1718 put_swap_device(si);
1721 #ifdef CONFIG_HIBERNATION
1723 swp_entry_t get_swap_page_of_type(int type)
1725 struct swap_info_struct *si = swap_type_to_swap_info(type);
1726 swp_entry_t entry = {0};
1731 /* This is called for allocating swap entry, not cache */
1732 spin_lock(&si->lock);
1733 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1734 atomic_long_dec(&nr_swap_pages);
1735 spin_unlock(&si->lock);
1741 * Find the swap type that corresponds to given device (if any).
1743 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1744 * from 0, in which the swap header is expected to be located.
1746 * This is needed for the suspend to disk (aka swsusp).
1748 int swap_type_of(dev_t device, sector_t offset)
1755 spin_lock(&swap_lock);
1756 for (type = 0; type < nr_swapfiles; type++) {
1757 struct swap_info_struct *sis = swap_info[type];
1759 if (!(sis->flags & SWP_WRITEOK))
1762 if (device == sis->bdev->bd_dev) {
1763 struct swap_extent *se = first_se(sis);
1765 if (se->start_block == offset) {
1766 spin_unlock(&swap_lock);
1771 spin_unlock(&swap_lock);
1775 int find_first_swap(dev_t *device)
1779 spin_lock(&swap_lock);
1780 for (type = 0; type < nr_swapfiles; type++) {
1781 struct swap_info_struct *sis = swap_info[type];
1783 if (!(sis->flags & SWP_WRITEOK))
1785 *device = sis->bdev->bd_dev;
1786 spin_unlock(&swap_lock);
1789 spin_unlock(&swap_lock);
1794 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1795 * corresponding to given index in swap_info (swap type).
1797 sector_t swapdev_block(int type, pgoff_t offset)
1799 struct swap_info_struct *si = swap_type_to_swap_info(type);
1800 struct swap_extent *se;
1802 if (!si || !(si->flags & SWP_WRITEOK))
1804 se = offset_to_swap_extent(si, offset);
1805 return se->start_block + (offset - se->start_page);
1809 * Return either the total number of swap pages of given type, or the number
1810 * of free pages of that type (depending on @free)
1812 * This is needed for software suspend
1814 unsigned int count_swap_pages(int type, int free)
1818 spin_lock(&swap_lock);
1819 if ((unsigned int)type < nr_swapfiles) {
1820 struct swap_info_struct *sis = swap_info[type];
1822 spin_lock(&sis->lock);
1823 if (sis->flags & SWP_WRITEOK) {
1826 n -= sis->inuse_pages;
1828 spin_unlock(&sis->lock);
1830 spin_unlock(&swap_lock);
1833 #endif /* CONFIG_HIBERNATION */
1835 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1837 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1841 * No need to decide whether this PTE shares the swap entry with others,
1842 * just let do_wp_page work it out if a write is requested later - to
1843 * force COW, vm_page_prot omits write permission from any private vma.
1845 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1846 unsigned long addr, swp_entry_t entry, struct folio *folio)
1849 struct folio *swapcache;
1851 pte_t *pte, new_pte, old_pte;
1852 bool hwpoisoned = false;
1856 folio = ksm_might_need_to_copy(folio, vma, addr);
1857 if (unlikely(!folio))
1859 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1864 page = folio_file_page(folio, swp_offset(entry));
1865 if (PageHWPoison(page))
1868 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1869 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1870 swp_entry_to_pte(entry)))) {
1875 old_pte = ptep_get(pte);
1877 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1878 swp_entry_t swp_entry;
1880 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1882 swp_entry = make_hwpoison_entry(page);
1884 swp_entry = make_poisoned_swp_entry();
1886 new_pte = swp_entry_to_pte(swp_entry);
1892 * Some architectures may have to restore extra metadata to the page
1893 * when reading from swap. This metadata may be indexed by swap entry
1894 * so this must be called before swap_free().
1896 arch_swap_restore(folio_swap(entry, folio), folio);
1898 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1899 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1901 if (folio == swapcache) {
1902 rmap_t rmap_flags = RMAP_NONE;
1905 * See do_swap_page(): writeback would be problematic.
1906 * However, we do a folio_wait_writeback() just before this
1907 * call and have the folio locked.
1909 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1910 if (pte_swp_exclusive(old_pte))
1911 rmap_flags |= RMAP_EXCLUSIVE;
1913 * We currently only expect small !anon folios, which are either
1914 * fully exclusive or fully shared. If we ever get large folios
1915 * here, we have to be careful.
1917 if (!folio_test_anon(folio)) {
1918 VM_WARN_ON_ONCE(folio_test_large(folio));
1919 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
1920 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
1922 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1924 } else { /* ksm created a completely new copy */
1925 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
1926 folio_add_lru_vma(folio, vma);
1928 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1929 if (pte_swp_soft_dirty(old_pte))
1930 new_pte = pte_mksoft_dirty(new_pte);
1931 if (pte_swp_uffd_wp(old_pte))
1932 new_pte = pte_mkuffd_wp(new_pte);
1934 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1938 pte_unmap_unlock(pte, ptl);
1939 if (folio != swapcache) {
1940 folio_unlock(folio);
1946 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1947 unsigned long addr, unsigned long end,
1951 struct swap_info_struct *si;
1953 si = swap_info[type];
1955 struct folio *folio;
1956 unsigned long offset;
1957 unsigned char swp_count;
1963 pte = pte_offset_map(pmd, addr);
1968 ptent = ptep_get_lockless(pte);
1970 if (!is_swap_pte(ptent))
1973 entry = pte_to_swp_entry(ptent);
1974 if (swp_type(entry) != type)
1977 offset = swp_offset(entry);
1981 folio = swap_cache_get_folio(entry, vma, addr);
1983 struct vm_fault vmf = {
1986 .real_address = addr,
1990 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1994 swp_count = READ_ONCE(si->swap_map[offset]);
1995 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2001 folio_wait_writeback(folio);
2002 ret = unuse_pte(vma, pmd, addr, entry, folio);
2004 folio_unlock(folio);
2009 folio_free_swap(folio);
2010 folio_unlock(folio);
2012 } while (addr += PAGE_SIZE, addr != end);
2019 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2020 unsigned long addr, unsigned long end,
2027 pmd = pmd_offset(pud, addr);
2030 next = pmd_addr_end(addr, end);
2031 ret = unuse_pte_range(vma, pmd, addr, next, type);
2034 } while (pmd++, addr = next, addr != end);
2038 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2039 unsigned long addr, unsigned long end,
2046 pud = pud_offset(p4d, addr);
2048 next = pud_addr_end(addr, end);
2049 if (pud_none_or_clear_bad(pud))
2051 ret = unuse_pmd_range(vma, pud, addr, next, type);
2054 } while (pud++, addr = next, addr != end);
2058 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2059 unsigned long addr, unsigned long end,
2066 p4d = p4d_offset(pgd, addr);
2068 next = p4d_addr_end(addr, end);
2069 if (p4d_none_or_clear_bad(p4d))
2071 ret = unuse_pud_range(vma, p4d, addr, next, type);
2074 } while (p4d++, addr = next, addr != end);
2078 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2081 unsigned long addr, end, next;
2084 addr = vma->vm_start;
2087 pgd = pgd_offset(vma->vm_mm, addr);
2089 next = pgd_addr_end(addr, end);
2090 if (pgd_none_or_clear_bad(pgd))
2092 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2095 } while (pgd++, addr = next, addr != end);
2099 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2101 struct vm_area_struct *vma;
2103 VMA_ITERATOR(vmi, mm, 0);
2106 for_each_vma(vmi, vma) {
2107 if (vma->anon_vma) {
2108 ret = unuse_vma(vma, type);
2115 mmap_read_unlock(mm);
2120 * Scan swap_map from current position to next entry still in use.
2121 * Return 0 if there are no inuse entries after prev till end of
2124 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2128 unsigned char count;
2131 * No need for swap_lock here: we're just looking
2132 * for whether an entry is in use, not modifying it; false
2133 * hits are okay, and sys_swapoff() has already prevented new
2134 * allocations from this area (while holding swap_lock).
2136 for (i = prev + 1; i < si->max; i++) {
2137 count = READ_ONCE(si->swap_map[i]);
2138 if (count && swap_count(count) != SWAP_MAP_BAD)
2140 if ((i % LATENCY_LIMIT) == 0)
2150 static int try_to_unuse(unsigned int type)
2152 struct mm_struct *prev_mm;
2153 struct mm_struct *mm;
2154 struct list_head *p;
2156 struct swap_info_struct *si = swap_info[type];
2157 struct folio *folio;
2161 if (!READ_ONCE(si->inuse_pages))
2165 retval = shmem_unuse(type);
2172 spin_lock(&mmlist_lock);
2173 p = &init_mm.mmlist;
2174 while (READ_ONCE(si->inuse_pages) &&
2175 !signal_pending(current) &&
2176 (p = p->next) != &init_mm.mmlist) {
2178 mm = list_entry(p, struct mm_struct, mmlist);
2179 if (!mmget_not_zero(mm))
2181 spin_unlock(&mmlist_lock);
2184 retval = unuse_mm(mm, type);
2191 * Make sure that we aren't completely killing
2192 * interactive performance.
2195 spin_lock(&mmlist_lock);
2197 spin_unlock(&mmlist_lock);
2202 while (READ_ONCE(si->inuse_pages) &&
2203 !signal_pending(current) &&
2204 (i = find_next_to_unuse(si, i)) != 0) {
2206 entry = swp_entry(type, i);
2207 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2212 * It is conceivable that a racing task removed this folio from
2213 * swap cache just before we acquired the page lock. The folio
2214 * might even be back in swap cache on another swap area. But
2215 * that is okay, folio_free_swap() only removes stale folios.
2218 folio_wait_writeback(folio);
2219 folio_free_swap(folio);
2220 folio_unlock(folio);
2225 * Lets check again to see if there are still swap entries in the map.
2226 * If yes, we would need to do retry the unuse logic again.
2227 * Under global memory pressure, swap entries can be reinserted back
2228 * into process space after the mmlist loop above passes over them.
2230 * Limit the number of retries? No: when mmget_not_zero()
2231 * above fails, that mm is likely to be freeing swap from
2232 * exit_mmap(), which proceeds at its own independent pace;
2233 * and even shmem_writepage() could have been preempted after
2234 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2235 * and robust (though cpu-intensive) just to keep retrying.
2237 if (READ_ONCE(si->inuse_pages)) {
2238 if (!signal_pending(current))
2245 * Make sure that further cleanups after try_to_unuse() returns happen
2246 * after swap_range_free() reduces si->inuse_pages to 0.
2253 * After a successful try_to_unuse, if no swap is now in use, we know
2254 * we can empty the mmlist. swap_lock must be held on entry and exit.
2255 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2256 * added to the mmlist just after page_duplicate - before would be racy.
2258 static void drain_mmlist(void)
2260 struct list_head *p, *next;
2263 for (type = 0; type < nr_swapfiles; type++)
2264 if (swap_info[type]->inuse_pages)
2266 spin_lock(&mmlist_lock);
2267 list_for_each_safe(p, next, &init_mm.mmlist)
2269 spin_unlock(&mmlist_lock);
2273 * Free all of a swapdev's extent information
2275 static void destroy_swap_extents(struct swap_info_struct *sis)
2277 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2278 struct rb_node *rb = sis->swap_extent_root.rb_node;
2279 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2281 rb_erase(rb, &sis->swap_extent_root);
2285 if (sis->flags & SWP_ACTIVATED) {
2286 struct file *swap_file = sis->swap_file;
2287 struct address_space *mapping = swap_file->f_mapping;
2289 sis->flags &= ~SWP_ACTIVATED;
2290 if (mapping->a_ops->swap_deactivate)
2291 mapping->a_ops->swap_deactivate(swap_file);
2296 * Add a block range (and the corresponding page range) into this swapdev's
2299 * This function rather assumes that it is called in ascending page order.
2302 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2303 unsigned long nr_pages, sector_t start_block)
2305 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2306 struct swap_extent *se;
2307 struct swap_extent *new_se;
2310 * place the new node at the right most since the
2311 * function is called in ascending page order.
2315 link = &parent->rb_right;
2319 se = rb_entry(parent, struct swap_extent, rb_node);
2320 BUG_ON(se->start_page + se->nr_pages != start_page);
2321 if (se->start_block + se->nr_pages == start_block) {
2323 se->nr_pages += nr_pages;
2328 /* No merge, insert a new extent. */
2329 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2332 new_se->start_page = start_page;
2333 new_se->nr_pages = nr_pages;
2334 new_se->start_block = start_block;
2336 rb_link_node(&new_se->rb_node, parent, link);
2337 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2340 EXPORT_SYMBOL_GPL(add_swap_extent);
2343 * A `swap extent' is a simple thing which maps a contiguous range of pages
2344 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2345 * built at swapon time and is then used at swap_writepage/swap_read_folio
2346 * time for locating where on disk a page belongs.
2348 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2349 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2350 * swap files identically.
2352 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2353 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2354 * swapfiles are handled *identically* after swapon time.
2356 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2357 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2358 * blocks are found which do not fall within the PAGE_SIZE alignment
2359 * requirements, they are simply tossed out - we will never use those blocks
2362 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2363 * prevents users from writing to the swap device, which will corrupt memory.
2365 * The amount of disk space which a single swap extent represents varies.
2366 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2367 * extents in the rbtree. - akpm.
2369 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2371 struct file *swap_file = sis->swap_file;
2372 struct address_space *mapping = swap_file->f_mapping;
2373 struct inode *inode = mapping->host;
2376 if (S_ISBLK(inode->i_mode)) {
2377 ret = add_swap_extent(sis, 0, sis->max, 0);
2382 if (mapping->a_ops->swap_activate) {
2383 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2386 sis->flags |= SWP_ACTIVATED;
2387 if ((sis->flags & SWP_FS_OPS) &&
2388 sio_pool_init() != 0) {
2389 destroy_swap_extents(sis);
2395 return generic_swapfile_activate(sis, swap_file, span);
2398 static int swap_node(struct swap_info_struct *p)
2400 struct block_device *bdev;
2405 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2407 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2410 static void setup_swap_info(struct swap_info_struct *p, int prio,
2411 unsigned char *swap_map,
2412 struct swap_cluster_info *cluster_info)
2419 p->prio = --least_priority;
2421 * the plist prio is negated because plist ordering is
2422 * low-to-high, while swap ordering is high-to-low
2424 p->list.prio = -p->prio;
2427 p->avail_lists[i].prio = -p->prio;
2429 if (swap_node(p) == i)
2430 p->avail_lists[i].prio = 1;
2432 p->avail_lists[i].prio = -p->prio;
2435 p->swap_map = swap_map;
2436 p->cluster_info = cluster_info;
2439 static void _enable_swap_info(struct swap_info_struct *p)
2441 p->flags |= SWP_WRITEOK;
2442 atomic_long_add(p->pages, &nr_swap_pages);
2443 total_swap_pages += p->pages;
2445 assert_spin_locked(&swap_lock);
2447 * both lists are plists, and thus priority ordered.
2448 * swap_active_head needs to be priority ordered for swapoff(),
2449 * which on removal of any swap_info_struct with an auto-assigned
2450 * (i.e. negative) priority increments the auto-assigned priority
2451 * of any lower-priority swap_info_structs.
2452 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2453 * which allocates swap pages from the highest available priority
2456 plist_add(&p->list, &swap_active_head);
2458 /* add to available list iff swap device is not full */
2460 add_to_avail_list(p);
2463 static void enable_swap_info(struct swap_info_struct *p, int prio,
2464 unsigned char *swap_map,
2465 struct swap_cluster_info *cluster_info)
2467 spin_lock(&swap_lock);
2468 spin_lock(&p->lock);
2469 setup_swap_info(p, prio, swap_map, cluster_info);
2470 spin_unlock(&p->lock);
2471 spin_unlock(&swap_lock);
2473 * Finished initializing swap device, now it's safe to reference it.
2475 percpu_ref_resurrect(&p->users);
2476 spin_lock(&swap_lock);
2477 spin_lock(&p->lock);
2478 _enable_swap_info(p);
2479 spin_unlock(&p->lock);
2480 spin_unlock(&swap_lock);
2483 static void reinsert_swap_info(struct swap_info_struct *p)
2485 spin_lock(&swap_lock);
2486 spin_lock(&p->lock);
2487 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2488 _enable_swap_info(p);
2489 spin_unlock(&p->lock);
2490 spin_unlock(&swap_lock);
2493 static bool __has_usable_swap(void)
2495 return !plist_head_empty(&swap_active_head);
2498 bool has_usable_swap(void)
2502 spin_lock(&swap_lock);
2503 ret = __has_usable_swap();
2504 spin_unlock(&swap_lock);
2508 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2510 struct swap_info_struct *p = NULL;
2511 unsigned char *swap_map;
2512 struct swap_cluster_info *cluster_info;
2513 struct file *swap_file, *victim;
2514 struct address_space *mapping;
2515 struct inode *inode;
2516 struct filename *pathname;
2519 if (!capable(CAP_SYS_ADMIN))
2522 BUG_ON(!current->mm);
2524 pathname = getname(specialfile);
2525 if (IS_ERR(pathname))
2526 return PTR_ERR(pathname);
2528 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2529 err = PTR_ERR(victim);
2533 mapping = victim->f_mapping;
2534 spin_lock(&swap_lock);
2535 plist_for_each_entry(p, &swap_active_head, list) {
2536 if (p->flags & SWP_WRITEOK) {
2537 if (p->swap_file->f_mapping == mapping) {
2545 spin_unlock(&swap_lock);
2548 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2549 vm_unacct_memory(p->pages);
2552 spin_unlock(&swap_lock);
2555 spin_lock(&p->lock);
2556 del_from_avail_list(p);
2558 struct swap_info_struct *si = p;
2561 plist_for_each_entry_continue(si, &swap_active_head, list) {
2564 for_each_node(nid) {
2565 if (si->avail_lists[nid].prio != 1)
2566 si->avail_lists[nid].prio--;
2571 plist_del(&p->list, &swap_active_head);
2572 atomic_long_sub(p->pages, &nr_swap_pages);
2573 total_swap_pages -= p->pages;
2574 p->flags &= ~SWP_WRITEOK;
2575 spin_unlock(&p->lock);
2576 spin_unlock(&swap_lock);
2578 disable_swap_slots_cache_lock();
2580 set_current_oom_origin();
2581 err = try_to_unuse(p->type);
2582 clear_current_oom_origin();
2585 /* re-insert swap space back into swap_list */
2586 reinsert_swap_info(p);
2587 reenable_swap_slots_cache_unlock();
2591 reenable_swap_slots_cache_unlock();
2594 * Wait for swap operations protected by get/put_swap_device()
2595 * to complete. Because of synchronize_rcu() here, all swap
2596 * operations protected by RCU reader side lock (including any
2597 * spinlock) will be waited too. This makes it easy to
2598 * prevent folio_test_swapcache() and the following swap cache
2599 * operations from racing with swapoff.
2601 percpu_ref_kill(&p->users);
2603 wait_for_completion(&p->comp);
2605 flush_work(&p->discard_work);
2607 destroy_swap_extents(p);
2608 if (p->flags & SWP_CONTINUED)
2609 free_swap_count_continuations(p);
2611 if (!p->bdev || !bdev_nonrot(p->bdev))
2612 atomic_dec(&nr_rotate_swap);
2614 mutex_lock(&swapon_mutex);
2615 spin_lock(&swap_lock);
2616 spin_lock(&p->lock);
2619 /* wait for anyone still in scan_swap_map_slots */
2620 p->highest_bit = 0; /* cuts scans short */
2621 while (p->flags >= SWP_SCANNING) {
2622 spin_unlock(&p->lock);
2623 spin_unlock(&swap_lock);
2624 schedule_timeout_uninterruptible(1);
2625 spin_lock(&swap_lock);
2626 spin_lock(&p->lock);
2629 swap_file = p->swap_file;
2630 p->swap_file = NULL;
2632 swap_map = p->swap_map;
2634 cluster_info = p->cluster_info;
2635 p->cluster_info = NULL;
2636 spin_unlock(&p->lock);
2637 spin_unlock(&swap_lock);
2638 arch_swap_invalidate_area(p->type);
2639 zswap_swapoff(p->type);
2640 mutex_unlock(&swapon_mutex);
2641 free_percpu(p->percpu_cluster);
2642 p->percpu_cluster = NULL;
2643 free_percpu(p->cluster_next_cpu);
2644 p->cluster_next_cpu = NULL;
2646 kvfree(cluster_info);
2647 /* Destroy swap account information */
2648 swap_cgroup_swapoff(p->type);
2649 exit_swap_address_space(p->type);
2651 inode = mapping->host;
2654 inode->i_flags &= ~S_SWAPFILE;
2655 inode_unlock(inode);
2656 filp_close(swap_file, NULL);
2659 * Clear the SWP_USED flag after all resources are freed so that swapon
2660 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2661 * not hold p->lock after we cleared its SWP_WRITEOK.
2663 spin_lock(&swap_lock);
2665 spin_unlock(&swap_lock);
2668 atomic_inc(&proc_poll_event);
2669 wake_up_interruptible(&proc_poll_wait);
2672 filp_close(victim, NULL);
2678 #ifdef CONFIG_PROC_FS
2679 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2681 struct seq_file *seq = file->private_data;
2683 poll_wait(file, &proc_poll_wait, wait);
2685 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2686 seq->poll_event = atomic_read(&proc_poll_event);
2687 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2690 return EPOLLIN | EPOLLRDNORM;
2694 static void *swap_start(struct seq_file *swap, loff_t *pos)
2696 struct swap_info_struct *si;
2700 mutex_lock(&swapon_mutex);
2703 return SEQ_START_TOKEN;
2705 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2706 if (!(si->flags & SWP_USED) || !si->swap_map)
2715 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2717 struct swap_info_struct *si = v;
2720 if (v == SEQ_START_TOKEN)
2723 type = si->type + 1;
2726 for (; (si = swap_type_to_swap_info(type)); type++) {
2727 if (!(si->flags & SWP_USED) || !si->swap_map)
2735 static void swap_stop(struct seq_file *swap, void *v)
2737 mutex_unlock(&swapon_mutex);
2740 static int swap_show(struct seq_file *swap, void *v)
2742 struct swap_info_struct *si = v;
2745 unsigned long bytes, inuse;
2747 if (si == SEQ_START_TOKEN) {
2748 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2752 bytes = K(si->pages);
2753 inuse = K(READ_ONCE(si->inuse_pages));
2755 file = si->swap_file;
2756 len = seq_file_path(swap, file, " \t\n\\");
2757 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2758 len < 40 ? 40 - len : 1, " ",
2759 S_ISBLK(file_inode(file)->i_mode) ?
2760 "partition" : "file\t",
2761 bytes, bytes < 10000000 ? "\t" : "",
2762 inuse, inuse < 10000000 ? "\t" : "",
2767 static const struct seq_operations swaps_op = {
2768 .start = swap_start,
2774 static int swaps_open(struct inode *inode, struct file *file)
2776 struct seq_file *seq;
2779 ret = seq_open(file, &swaps_op);
2783 seq = file->private_data;
2784 seq->poll_event = atomic_read(&proc_poll_event);
2788 static const struct proc_ops swaps_proc_ops = {
2789 .proc_flags = PROC_ENTRY_PERMANENT,
2790 .proc_open = swaps_open,
2791 .proc_read = seq_read,
2792 .proc_lseek = seq_lseek,
2793 .proc_release = seq_release,
2794 .proc_poll = swaps_poll,
2797 static int __init procswaps_init(void)
2799 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2802 __initcall(procswaps_init);
2803 #endif /* CONFIG_PROC_FS */
2805 #ifdef MAX_SWAPFILES_CHECK
2806 static int __init max_swapfiles_check(void)
2808 MAX_SWAPFILES_CHECK();
2811 late_initcall(max_swapfiles_check);
2814 static struct swap_info_struct *alloc_swap_info(void)
2816 struct swap_info_struct *p;
2817 struct swap_info_struct *defer = NULL;
2821 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2823 return ERR_PTR(-ENOMEM);
2825 if (percpu_ref_init(&p->users, swap_users_ref_free,
2826 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2828 return ERR_PTR(-ENOMEM);
2831 spin_lock(&swap_lock);
2832 for (type = 0; type < nr_swapfiles; type++) {
2833 if (!(swap_info[type]->flags & SWP_USED))
2836 if (type >= MAX_SWAPFILES) {
2837 spin_unlock(&swap_lock);
2838 percpu_ref_exit(&p->users);
2840 return ERR_PTR(-EPERM);
2842 if (type >= nr_swapfiles) {
2845 * Publish the swap_info_struct after initializing it.
2846 * Note that kvzalloc() above zeroes all its fields.
2848 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2852 p = swap_info[type];
2854 * Do not memset this entry: a racing procfs swap_next()
2855 * would be relying on p->type to remain valid.
2858 p->swap_extent_root = RB_ROOT;
2859 plist_node_init(&p->list, 0);
2861 plist_node_init(&p->avail_lists[i], 0);
2862 p->flags = SWP_USED;
2863 spin_unlock(&swap_lock);
2865 percpu_ref_exit(&defer->users);
2868 spin_lock_init(&p->lock);
2869 spin_lock_init(&p->cont_lock);
2870 init_completion(&p->comp);
2875 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2877 if (S_ISBLK(inode->i_mode)) {
2878 p->bdev = I_BDEV(inode);
2880 * Zoned block devices contain zones that have a sequential
2881 * write only restriction. Hence zoned block devices are not
2882 * suitable for swapping. Disallow them here.
2884 if (bdev_is_zoned(p->bdev))
2886 p->flags |= SWP_BLKDEV;
2887 } else if (S_ISREG(inode->i_mode)) {
2888 p->bdev = inode->i_sb->s_bdev;
2896 * Find out how many pages are allowed for a single swap device. There
2897 * are two limiting factors:
2898 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2899 * 2) the number of bits in the swap pte, as defined by the different
2902 * In order to find the largest possible bit mask, a swap entry with
2903 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2904 * decoded to a swp_entry_t again, and finally the swap offset is
2907 * This will mask all the bits from the initial ~0UL mask that can't
2908 * be encoded in either the swp_entry_t or the architecture definition
2911 unsigned long generic_max_swapfile_size(void)
2913 return swp_offset(pte_to_swp_entry(
2914 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2917 /* Can be overridden by an architecture for additional checks. */
2918 __weak unsigned long arch_max_swapfile_size(void)
2920 return generic_max_swapfile_size();
2923 static unsigned long read_swap_header(struct swap_info_struct *p,
2924 union swap_header *swap_header,
2925 struct inode *inode)
2928 unsigned long maxpages;
2929 unsigned long swapfilepages;
2930 unsigned long last_page;
2932 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2933 pr_err("Unable to find swap-space signature\n");
2937 /* swap partition endianness hack... */
2938 if (swab32(swap_header->info.version) == 1) {
2939 swab32s(&swap_header->info.version);
2940 swab32s(&swap_header->info.last_page);
2941 swab32s(&swap_header->info.nr_badpages);
2942 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2944 for (i = 0; i < swap_header->info.nr_badpages; i++)
2945 swab32s(&swap_header->info.badpages[i]);
2947 /* Check the swap header's sub-version */
2948 if (swap_header->info.version != 1) {
2949 pr_warn("Unable to handle swap header version %d\n",
2950 swap_header->info.version);
2955 p->cluster_next = 1;
2958 maxpages = swapfile_maximum_size;
2959 last_page = swap_header->info.last_page;
2961 pr_warn("Empty swap-file\n");
2964 if (last_page > maxpages) {
2965 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2966 K(maxpages), K(last_page));
2968 if (maxpages > last_page) {
2969 maxpages = last_page + 1;
2970 /* p->max is an unsigned int: don't overflow it */
2971 if ((unsigned int)maxpages == 0)
2972 maxpages = UINT_MAX;
2974 p->highest_bit = maxpages - 1;
2978 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2979 if (swapfilepages && maxpages > swapfilepages) {
2980 pr_warn("Swap area shorter than signature indicates\n");
2983 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2985 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2991 #define SWAP_CLUSTER_INFO_COLS \
2992 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2993 #define SWAP_CLUSTER_SPACE_COLS \
2994 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2995 #define SWAP_CLUSTER_COLS \
2996 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2998 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2999 union swap_header *swap_header,
3000 unsigned char *swap_map,
3001 struct swap_cluster_info *cluster_info,
3002 unsigned long maxpages,
3006 unsigned int nr_good_pages;
3008 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3009 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3010 unsigned long i, idx;
3012 nr_good_pages = maxpages - 1; /* omit header page */
3014 cluster_list_init(&p->free_clusters);
3015 cluster_list_init(&p->discard_clusters);
3017 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3018 unsigned int page_nr = swap_header->info.badpages[i];
3019 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3021 if (page_nr < maxpages) {
3022 swap_map[page_nr] = SWAP_MAP_BAD;
3025 * Haven't marked the cluster free yet, no list
3026 * operation involved
3028 inc_cluster_info_page(p, cluster_info, page_nr);
3032 /* Haven't marked the cluster free yet, no list operation involved */
3033 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3034 inc_cluster_info_page(p, cluster_info, i);
3036 if (nr_good_pages) {
3037 swap_map[0] = SWAP_MAP_BAD;
3039 * Not mark the cluster free yet, no list
3040 * operation involved
3042 inc_cluster_info_page(p, cluster_info, 0);
3044 p->pages = nr_good_pages;
3045 nr_extents = setup_swap_extents(p, span);
3048 nr_good_pages = p->pages;
3050 if (!nr_good_pages) {
3051 pr_warn("Empty swap-file\n");
3060 * Reduce false cache line sharing between cluster_info and
3061 * sharing same address space.
3063 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3064 j = (k + col) % SWAP_CLUSTER_COLS;
3065 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3066 idx = i * SWAP_CLUSTER_COLS + j;
3067 if (idx >= nr_clusters)
3069 if (cluster_count(&cluster_info[idx]))
3071 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3072 cluster_list_add_tail(&p->free_clusters, cluster_info,
3079 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3081 struct swap_info_struct *p;
3082 struct filename *name;
3083 struct file *swap_file = NULL;
3084 struct address_space *mapping;
3085 struct dentry *dentry;
3088 union swap_header *swap_header;
3091 unsigned long maxpages;
3092 unsigned char *swap_map = NULL;
3093 struct swap_cluster_info *cluster_info = NULL;
3094 struct page *page = NULL;
3095 struct inode *inode = NULL;
3096 bool inced_nr_rotate_swap = false;
3098 if (swap_flags & ~SWAP_FLAGS_VALID)
3101 if (!capable(CAP_SYS_ADMIN))
3104 if (!swap_avail_heads)
3107 p = alloc_swap_info();
3111 INIT_WORK(&p->discard_work, swap_discard_work);
3113 name = getname(specialfile);
3115 error = PTR_ERR(name);
3119 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3120 if (IS_ERR(swap_file)) {
3121 error = PTR_ERR(swap_file);
3126 p->swap_file = swap_file;
3127 mapping = swap_file->f_mapping;
3128 dentry = swap_file->f_path.dentry;
3129 inode = mapping->host;
3131 error = claim_swapfile(p, inode);
3132 if (unlikely(error))
3136 if (d_unlinked(dentry) || cant_mount(dentry)) {
3138 goto bad_swap_unlock_inode;
3140 if (IS_SWAPFILE(inode)) {
3142 goto bad_swap_unlock_inode;
3146 * Read the swap header.
3148 if (!mapping->a_ops->read_folio) {
3150 goto bad_swap_unlock_inode;
3152 page = read_mapping_page(mapping, 0, swap_file);
3154 error = PTR_ERR(page);
3155 goto bad_swap_unlock_inode;
3157 swap_header = kmap(page);
3159 maxpages = read_swap_header(p, swap_header, inode);
3160 if (unlikely(!maxpages)) {
3162 goto bad_swap_unlock_inode;
3165 /* OK, set up the swap map and apply the bad block list */
3166 swap_map = vzalloc(maxpages);
3169 goto bad_swap_unlock_inode;
3172 if (p->bdev && bdev_stable_writes(p->bdev))
3173 p->flags |= SWP_STABLE_WRITES;
3175 if (p->bdev && bdev_synchronous(p->bdev))
3176 p->flags |= SWP_SYNCHRONOUS_IO;
3178 if (p->bdev && bdev_nonrot(p->bdev)) {
3180 unsigned long ci, nr_cluster;
3182 p->flags |= SWP_SOLIDSTATE;
3183 p->cluster_next_cpu = alloc_percpu(unsigned int);
3184 if (!p->cluster_next_cpu) {
3186 goto bad_swap_unlock_inode;
3189 * select a random position to start with to help wear leveling
3192 for_each_possible_cpu(cpu) {
3193 per_cpu(*p->cluster_next_cpu, cpu) =
3194 get_random_u32_inclusive(1, p->highest_bit);
3196 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3198 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3200 if (!cluster_info) {
3202 goto bad_swap_unlock_inode;
3205 for (ci = 0; ci < nr_cluster; ci++)
3206 spin_lock_init(&((cluster_info + ci)->lock));
3208 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3209 if (!p->percpu_cluster) {
3211 goto bad_swap_unlock_inode;
3213 for_each_possible_cpu(cpu) {
3214 struct percpu_cluster *cluster;
3216 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3217 for (i = 0; i < SWAP_NR_ORDERS; i++)
3218 cluster->next[i] = SWAP_NEXT_INVALID;
3221 atomic_inc(&nr_rotate_swap);
3222 inced_nr_rotate_swap = true;
3225 error = swap_cgroup_swapon(p->type, maxpages);
3227 goto bad_swap_unlock_inode;
3229 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3230 cluster_info, maxpages, &span);
3231 if (unlikely(nr_extents < 0)) {
3233 goto bad_swap_unlock_inode;
3236 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3237 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3239 * When discard is enabled for swap with no particular
3240 * policy flagged, we set all swap discard flags here in
3241 * order to sustain backward compatibility with older
3242 * swapon(8) releases.
3244 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3248 * By flagging sys_swapon, a sysadmin can tell us to
3249 * either do single-time area discards only, or to just
3250 * perform discards for released swap page-clusters.
3251 * Now it's time to adjust the p->flags accordingly.
3253 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3254 p->flags &= ~SWP_PAGE_DISCARD;
3255 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3256 p->flags &= ~SWP_AREA_DISCARD;
3258 /* issue a swapon-time discard if it's still required */
3259 if (p->flags & SWP_AREA_DISCARD) {
3260 int err = discard_swap(p);
3262 pr_err("swapon: discard_swap(%p): %d\n",
3267 error = init_swap_address_space(p->type, maxpages);
3269 goto bad_swap_unlock_inode;
3271 error = zswap_swapon(p->type, maxpages);
3273 goto free_swap_address_space;
3276 * Flush any pending IO and dirty mappings before we start using this
3279 inode->i_flags |= S_SWAPFILE;
3280 error = inode_drain_writes(inode);
3282 inode->i_flags &= ~S_SWAPFILE;
3283 goto free_swap_zswap;
3286 mutex_lock(&swapon_mutex);
3288 if (swap_flags & SWAP_FLAG_PREFER)
3290 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3291 enable_swap_info(p, prio, swap_map, cluster_info);
3293 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3294 K(p->pages), name->name, p->prio, nr_extents,
3295 K((unsigned long long)span),
3296 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3297 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3298 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3299 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3301 mutex_unlock(&swapon_mutex);
3302 atomic_inc(&proc_poll_event);
3303 wake_up_interruptible(&proc_poll_wait);
3308 zswap_swapoff(p->type);
3309 free_swap_address_space:
3310 exit_swap_address_space(p->type);
3311 bad_swap_unlock_inode:
3312 inode_unlock(inode);
3314 free_percpu(p->percpu_cluster);
3315 p->percpu_cluster = NULL;
3316 free_percpu(p->cluster_next_cpu);
3317 p->cluster_next_cpu = NULL;
3319 destroy_swap_extents(p);
3320 swap_cgroup_swapoff(p->type);
3321 spin_lock(&swap_lock);
3322 p->swap_file = NULL;
3324 spin_unlock(&swap_lock);
3326 kvfree(cluster_info);
3327 if (inced_nr_rotate_swap)
3328 atomic_dec(&nr_rotate_swap);
3330 filp_close(swap_file, NULL);
3332 if (page && !IS_ERR(page)) {
3339 inode_unlock(inode);
3341 enable_swap_slots_cache();
3345 void si_swapinfo(struct sysinfo *val)
3348 unsigned long nr_to_be_unused = 0;
3350 spin_lock(&swap_lock);
3351 for (type = 0; type < nr_swapfiles; type++) {
3352 struct swap_info_struct *si = swap_info[type];
3354 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3355 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3357 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3358 val->totalswap = total_swap_pages + nr_to_be_unused;
3359 spin_unlock(&swap_lock);
3363 * Verify that nr swap entries are valid and increment their swap map counts.
3365 * Returns error code in following case.
3367 * - swp_entry is invalid -> EINVAL
3368 * - swp_entry is migration entry -> EINVAL
3369 * - swap-cache reference is requested but there is already one. -> EEXIST
3370 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3371 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3373 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3375 struct swap_info_struct *p;
3376 struct swap_cluster_info *ci;
3377 unsigned long offset;
3378 unsigned char count;
3379 unsigned char has_cache;
3382 p = swp_swap_info(entry);
3384 offset = swp_offset(entry);
3385 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3386 VM_WARN_ON(usage == 1 && nr > 1);
3387 ci = lock_cluster_or_swap_info(p, offset);
3390 for (i = 0; i < nr; i++) {
3391 count = p->swap_map[offset + i];
3394 * swapin_readahead() doesn't check if a swap entry is valid, so the
3395 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3397 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3402 has_cache = count & SWAP_HAS_CACHE;
3403 count &= ~SWAP_HAS_CACHE;
3405 if (!count && !has_cache) {
3407 } else if (usage == SWAP_HAS_CACHE) {
3410 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3418 for (i = 0; i < nr; i++) {
3419 count = p->swap_map[offset + i];
3420 has_cache = count & SWAP_HAS_CACHE;
3421 count &= ~SWAP_HAS_CACHE;
3423 if (usage == SWAP_HAS_CACHE)
3424 has_cache = SWAP_HAS_CACHE;
3425 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3427 else if (swap_count_continued(p, offset + i, count))
3428 count = COUNT_CONTINUED;
3431 * Don't need to rollback changes, because if
3432 * usage == 1, there must be nr == 1.
3438 WRITE_ONCE(p->swap_map[offset + i], count | has_cache);
3442 unlock_cluster_or_swap_info(p, ci);
3447 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3448 * (in which case its reference count is never incremented).
3450 void swap_shmem_alloc(swp_entry_t entry)
3452 __swap_duplicate(entry, SWAP_MAP_SHMEM, 1);
3456 * Increase reference count of swap entry by 1.
3457 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3458 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3459 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3460 * might occur if a page table entry has got corrupted.
3462 int swap_duplicate(swp_entry_t entry)
3466 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3467 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3472 * @entry: first swap entry from which we allocate nr swap cache.
3474 * Called when allocating swap cache for existing swap entries,
3475 * This can return error codes. Returns 0 at success.
3476 * -EEXIST means there is a swap cache.
3477 * Note: return code is different from swap_duplicate().
3479 int swapcache_prepare(swp_entry_t entry, int nr)
3481 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3484 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3486 unsigned long offset = swp_offset(entry);
3488 cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3491 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3493 return swap_type_to_swap_info(swp_type(entry));
3497 * out-of-line methods to avoid include hell.
3499 struct address_space *swapcache_mapping(struct folio *folio)
3501 return swp_swap_info(folio->swap)->swap_file->f_mapping;
3503 EXPORT_SYMBOL_GPL(swapcache_mapping);
3505 pgoff_t __folio_swap_cache_index(struct folio *folio)
3507 return swap_cache_index(folio->swap);
3509 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3512 * add_swap_count_continuation - called when a swap count is duplicated
3513 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3514 * page of the original vmalloc'ed swap_map, to hold the continuation count
3515 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3516 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3518 * These continuation pages are seldom referenced: the common paths all work
3519 * on the original swap_map, only referring to a continuation page when the
3520 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3522 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3523 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3524 * can be called after dropping locks.
3526 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3528 struct swap_info_struct *si;
3529 struct swap_cluster_info *ci;
3532 struct page *list_page;
3534 unsigned char count;
3538 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3539 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3541 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3543 si = get_swap_device(entry);
3546 * An acceptable race has occurred since the failing
3547 * __swap_duplicate(): the swap device may be swapoff
3551 spin_lock(&si->lock);
3553 offset = swp_offset(entry);
3555 ci = lock_cluster(si, offset);
3557 count = swap_count(si->swap_map[offset]);
3559 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3561 * The higher the swap count, the more likely it is that tasks
3562 * will race to add swap count continuation: we need to avoid
3563 * over-provisioning.
3573 head = vmalloc_to_page(si->swap_map + offset);
3574 offset &= ~PAGE_MASK;
3576 spin_lock(&si->cont_lock);
3578 * Page allocation does not initialize the page's lru field,
3579 * but it does always reset its private field.
3581 if (!page_private(head)) {
3582 BUG_ON(count & COUNT_CONTINUED);
3583 INIT_LIST_HEAD(&head->lru);
3584 set_page_private(head, SWP_CONTINUED);
3585 si->flags |= SWP_CONTINUED;
3588 list_for_each_entry(list_page, &head->lru, lru) {
3592 * If the previous map said no continuation, but we've found
3593 * a continuation page, free our allocation and use this one.
3595 if (!(count & COUNT_CONTINUED))
3596 goto out_unlock_cont;
3598 map = kmap_local_page(list_page) + offset;
3603 * If this continuation count now has some space in it,
3604 * free our allocation and use this one.
3606 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3607 goto out_unlock_cont;
3610 list_add_tail(&page->lru, &head->lru);
3611 page = NULL; /* now it's attached, don't free it */
3613 spin_unlock(&si->cont_lock);
3616 spin_unlock(&si->lock);
3617 put_swap_device(si);
3625 * swap_count_continued - when the original swap_map count is incremented
3626 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3627 * into, carry if so, or else fail until a new continuation page is allocated;
3628 * when the original swap_map count is decremented from 0 with continuation,
3629 * borrow from the continuation and report whether it still holds more.
3630 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3633 static bool swap_count_continued(struct swap_info_struct *si,
3634 pgoff_t offset, unsigned char count)
3641 head = vmalloc_to_page(si->swap_map + offset);
3642 if (page_private(head) != SWP_CONTINUED) {
3643 BUG_ON(count & COUNT_CONTINUED);
3644 return false; /* need to add count continuation */
3647 spin_lock(&si->cont_lock);
3648 offset &= ~PAGE_MASK;
3649 page = list_next_entry(head, lru);
3650 map = kmap_local_page(page) + offset;
3652 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3653 goto init_map; /* jump over SWAP_CONT_MAX checks */
3655 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3657 * Think of how you add 1 to 999
3659 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3661 page = list_next_entry(page, lru);
3662 BUG_ON(page == head);
3663 map = kmap_local_page(page) + offset;
3665 if (*map == SWAP_CONT_MAX) {
3667 page = list_next_entry(page, lru);
3669 ret = false; /* add count continuation */
3672 map = kmap_local_page(page) + offset;
3673 init_map: *map = 0; /* we didn't zero the page */
3677 while ((page = list_prev_entry(page, lru)) != head) {
3678 map = kmap_local_page(page) + offset;
3679 *map = COUNT_CONTINUED;
3682 ret = true; /* incremented */
3684 } else { /* decrementing */
3686 * Think of how you subtract 1 from 1000
3688 BUG_ON(count != COUNT_CONTINUED);
3689 while (*map == COUNT_CONTINUED) {
3691 page = list_next_entry(page, lru);
3692 BUG_ON(page == head);
3693 map = kmap_local_page(page) + offset;
3700 while ((page = list_prev_entry(page, lru)) != head) {
3701 map = kmap_local_page(page) + offset;
3702 *map = SWAP_CONT_MAX | count;
3703 count = COUNT_CONTINUED;
3706 ret = count == COUNT_CONTINUED;
3709 spin_unlock(&si->cont_lock);
3714 * free_swap_count_continuations - swapoff free all the continuation pages
3715 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3717 static void free_swap_count_continuations(struct swap_info_struct *si)
3721 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3723 head = vmalloc_to_page(si->swap_map + offset);
3724 if (page_private(head)) {
3725 struct page *page, *next;
3727 list_for_each_entry_safe(page, next, &head->lru, lru) {
3728 list_del(&page->lru);
3735 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3736 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3738 struct swap_info_struct *si, *next;
3739 int nid = folio_nid(folio);
3741 if (!(gfp & __GFP_IO))
3744 if (!__has_usable_swap())
3747 if (!blk_cgroup_congested())
3751 * We've already scheduled a throttle, avoid taking the global swap
3754 if (current->throttle_disk)
3757 spin_lock(&swap_avail_lock);
3758 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3761 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3765 spin_unlock(&swap_avail_lock);
3769 static int __init swapfile_init(void)
3773 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3775 if (!swap_avail_heads) {
3776 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3781 plist_head_init(&swap_avail_heads[nid]);
3783 swapfile_maximum_size = arch_max_swapfile_size();
3785 #ifdef CONFIG_MIGRATION
3786 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3787 swap_migration_ad_supported = true;
3788 #endif /* CONFIG_MIGRATION */
3792 subsys_initcall(swapfile_init);