]> Git Repo - linux.git/blob - mm/swapfile.c
mm: add optional close() to struct vm_special_mapping
[linux.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54                                  unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif  /* CONFIG_MIGRATION */
73
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101
102 static DEFINE_MUTEX(swapon_mutex);
103
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112         if (type >= MAX_SWAPFILES)
113                 return NULL;
114
115         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
121 }
122
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY             0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED           0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL               0x4
132
133 /*
134  * returns number of pages in the folio that backs the swap entry. If positive,
135  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
136  * folio was associated with the swap entry.
137  */
138 static int __try_to_reclaim_swap(struct swap_info_struct *si,
139                                  unsigned long offset, unsigned long flags)
140 {
141         swp_entry_t entry = swp_entry(si->type, offset);
142         struct folio *folio;
143         int ret = 0;
144
145         folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
146         if (IS_ERR(folio))
147                 return 0;
148         /*
149          * When this function is called from scan_swap_map_slots() and it's
150          * called by vmscan.c at reclaiming folios. So we hold a folio lock
151          * here. We have to use trylock for avoiding deadlock. This is a special
152          * case and you should use folio_free_swap() with explicit folio_lock()
153          * in usual operations.
154          */
155         if (folio_trylock(folio)) {
156                 if ((flags & TTRS_ANYWAY) ||
157                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
158                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
159                         ret = folio_free_swap(folio);
160                 folio_unlock(folio);
161         }
162         ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio);
163         folio_put(folio);
164         return ret;
165 }
166
167 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
168 {
169         struct rb_node *rb = rb_first(&sis->swap_extent_root);
170         return rb_entry(rb, struct swap_extent, rb_node);
171 }
172
173 static inline struct swap_extent *next_se(struct swap_extent *se)
174 {
175         struct rb_node *rb = rb_next(&se->rb_node);
176         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
177 }
178
179 /*
180  * swapon tell device that all the old swap contents can be discarded,
181  * to allow the swap device to optimize its wear-levelling.
182  */
183 static int discard_swap(struct swap_info_struct *si)
184 {
185         struct swap_extent *se;
186         sector_t start_block;
187         sector_t nr_blocks;
188         int err = 0;
189
190         /* Do not discard the swap header page! */
191         se = first_se(si);
192         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
193         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
194         if (nr_blocks) {
195                 err = blkdev_issue_discard(si->bdev, start_block,
196                                 nr_blocks, GFP_KERNEL);
197                 if (err)
198                         return err;
199                 cond_resched();
200         }
201
202         for (se = next_se(se); se; se = next_se(se)) {
203                 start_block = se->start_block << (PAGE_SHIFT - 9);
204                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
205
206                 err = blkdev_issue_discard(si->bdev, start_block,
207                                 nr_blocks, GFP_KERNEL);
208                 if (err)
209                         break;
210
211                 cond_resched();
212         }
213         return err;             /* That will often be -EOPNOTSUPP */
214 }
215
216 static struct swap_extent *
217 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
218 {
219         struct swap_extent *se;
220         struct rb_node *rb;
221
222         rb = sis->swap_extent_root.rb_node;
223         while (rb) {
224                 se = rb_entry(rb, struct swap_extent, rb_node);
225                 if (offset < se->start_page)
226                         rb = rb->rb_left;
227                 else if (offset >= se->start_page + se->nr_pages)
228                         rb = rb->rb_right;
229                 else
230                         return se;
231         }
232         /* It *must* be present */
233         BUG();
234 }
235
236 sector_t swap_folio_sector(struct folio *folio)
237 {
238         struct swap_info_struct *sis = swp_swap_info(folio->swap);
239         struct swap_extent *se;
240         sector_t sector;
241         pgoff_t offset;
242
243         offset = swp_offset(folio->swap);
244         se = offset_to_swap_extent(sis, offset);
245         sector = se->start_block + (offset - se->start_page);
246         return sector << (PAGE_SHIFT - 9);
247 }
248
249 /*
250  * swap allocation tell device that a cluster of swap can now be discarded,
251  * to allow the swap device to optimize its wear-levelling.
252  */
253 static void discard_swap_cluster(struct swap_info_struct *si,
254                                  pgoff_t start_page, pgoff_t nr_pages)
255 {
256         struct swap_extent *se = offset_to_swap_extent(si, start_page);
257
258         while (nr_pages) {
259                 pgoff_t offset = start_page - se->start_page;
260                 sector_t start_block = se->start_block + offset;
261                 sector_t nr_blocks = se->nr_pages - offset;
262
263                 if (nr_blocks > nr_pages)
264                         nr_blocks = nr_pages;
265                 start_page += nr_blocks;
266                 nr_pages -= nr_blocks;
267
268                 start_block <<= PAGE_SHIFT - 9;
269                 nr_blocks <<= PAGE_SHIFT - 9;
270                 if (blkdev_issue_discard(si->bdev, start_block,
271                                         nr_blocks, GFP_NOIO))
272                         break;
273
274                 se = next_se(se);
275         }
276 }
277
278 #ifdef CONFIG_THP_SWAP
279 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
280
281 #define swap_entry_order(order) (order)
282 #else
283 #define SWAPFILE_CLUSTER        256
284
285 /*
286  * Define swap_entry_order() as constant to let compiler to optimize
287  * out some code if !CONFIG_THP_SWAP
288  */
289 #define swap_entry_order(order) 0
290 #endif
291 #define LATENCY_LIMIT           256
292
293 static inline void cluster_set_flag(struct swap_cluster_info *info,
294         unsigned int flag)
295 {
296         info->flags = flag;
297 }
298
299 static inline unsigned int cluster_count(struct swap_cluster_info *info)
300 {
301         return info->data;
302 }
303
304 static inline void cluster_set_count(struct swap_cluster_info *info,
305                                      unsigned int c)
306 {
307         info->data = c;
308 }
309
310 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
311                                          unsigned int c, unsigned int f)
312 {
313         info->flags = f;
314         info->data = c;
315 }
316
317 static inline unsigned int cluster_next(struct swap_cluster_info *info)
318 {
319         return info->data;
320 }
321
322 static inline void cluster_set_next(struct swap_cluster_info *info,
323                                     unsigned int n)
324 {
325         info->data = n;
326 }
327
328 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
329                                          unsigned int n, unsigned int f)
330 {
331         info->flags = f;
332         info->data = n;
333 }
334
335 static inline bool cluster_is_free(struct swap_cluster_info *info)
336 {
337         return info->flags & CLUSTER_FLAG_FREE;
338 }
339
340 static inline bool cluster_is_null(struct swap_cluster_info *info)
341 {
342         return info->flags & CLUSTER_FLAG_NEXT_NULL;
343 }
344
345 static inline void cluster_set_null(struct swap_cluster_info *info)
346 {
347         info->flags = CLUSTER_FLAG_NEXT_NULL;
348         info->data = 0;
349 }
350
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352                                                      unsigned long offset)
353 {
354         struct swap_cluster_info *ci;
355
356         ci = si->cluster_info;
357         if (ci) {
358                 ci += offset / SWAPFILE_CLUSTER;
359                 spin_lock(&ci->lock);
360         }
361         return ci;
362 }
363
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366         if (ci)
367                 spin_unlock(&ci->lock);
368 }
369
370 /*
371  * Determine the locking method in use for this device.  Return
372  * swap_cluster_info if SSD-style cluster-based locking is in place.
373  */
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375                 struct swap_info_struct *si, unsigned long offset)
376 {
377         struct swap_cluster_info *ci;
378
379         /* Try to use fine-grained SSD-style locking if available: */
380         ci = lock_cluster(si, offset);
381         /* Otherwise, fall back to traditional, coarse locking: */
382         if (!ci)
383                 spin_lock(&si->lock);
384
385         return ci;
386 }
387
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389                                                struct swap_cluster_info *ci)
390 {
391         if (ci)
392                 unlock_cluster(ci);
393         else
394                 spin_unlock(&si->lock);
395 }
396
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399         return cluster_is_null(&list->head);
400 }
401
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404         return cluster_next(&list->head);
405 }
406
407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409         cluster_set_null(&list->head);
410         cluster_set_null(&list->tail);
411 }
412
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414                                   struct swap_cluster_info *ci,
415                                   unsigned int idx)
416 {
417         if (cluster_list_empty(list)) {
418                 cluster_set_next_flag(&list->head, idx, 0);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         } else {
421                 struct swap_cluster_info *ci_tail;
422                 unsigned int tail = cluster_next(&list->tail);
423
424                 /*
425                  * Nested cluster lock, but both cluster locks are
426                  * only acquired when we held swap_info_struct->lock
427                  */
428                 ci_tail = ci + tail;
429                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430                 cluster_set_next(ci_tail, idx);
431                 spin_unlock(&ci_tail->lock);
432                 cluster_set_next_flag(&list->tail, idx, 0);
433         }
434 }
435
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437                                            struct swap_cluster_info *ci)
438 {
439         unsigned int idx;
440
441         idx = cluster_next(&list->head);
442         if (cluster_next(&list->tail) == idx) {
443                 cluster_set_null(&list->head);
444                 cluster_set_null(&list->tail);
445         } else
446                 cluster_set_next_flag(&list->head,
447                                       cluster_next(&ci[idx]), 0);
448
449         return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454                 unsigned int idx)
455 {
456         /*
457          * If scan_swap_map_slots() can't find a free cluster, it will check
458          * si->swap_map directly. To make sure the discarding cluster isn't
459          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460          * It will be cleared after discard
461          */
462         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467         schedule_work(&si->discard_work);
468 }
469
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472         struct swap_cluster_info *ci = si->cluster_info;
473
474         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475         cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479  * Doing discard actually. After a cluster discard is finished, the cluster
480  * will be added to free cluster list. caller should hold si->lock.
481 */
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484         struct swap_cluster_info *info, *ci;
485         unsigned int idx;
486
487         info = si->cluster_info;
488
489         while (!cluster_list_empty(&si->discard_clusters)) {
490                 idx = cluster_list_del_first(&si->discard_clusters, info);
491                 spin_unlock(&si->lock);
492
493                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494                                 SWAPFILE_CLUSTER);
495
496                 spin_lock(&si->lock);
497                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498                 __free_cluster(si, idx);
499                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500                                 0, SWAPFILE_CLUSTER);
501                 unlock_cluster(ci);
502         }
503 }
504
505 static void swap_discard_work(struct work_struct *work)
506 {
507         struct swap_info_struct *si;
508
509         si = container_of(work, struct swap_info_struct, discard_work);
510
511         spin_lock(&si->lock);
512         swap_do_scheduled_discard(si);
513         spin_unlock(&si->lock);
514 }
515
516 static void swap_users_ref_free(struct percpu_ref *ref)
517 {
518         struct swap_info_struct *si;
519
520         si = container_of(ref, struct swap_info_struct, users);
521         complete(&si->comp);
522 }
523
524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
525 {
526         struct swap_cluster_info *ci = si->cluster_info;
527
528         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529         cluster_list_del_first(&si->free_clusters, ci);
530         cluster_set_count_flag(ci + idx, 0, 0);
531 }
532
533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
534 {
535         struct swap_cluster_info *ci = si->cluster_info + idx;
536
537         VM_BUG_ON(cluster_count(ci) != 0);
538         /*
539          * If the swap is discardable, prepare discard the cluster
540          * instead of free it immediately. The cluster will be freed
541          * after discard.
542          */
543         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545                 swap_cluster_schedule_discard(si, idx);
546                 return;
547         }
548
549         __free_cluster(si, idx);
550 }
551
552 /*
553  * The cluster corresponding to page_nr will be used. The cluster will be
554  * removed from free cluster list and its usage counter will be increased by
555  * count.
556  */
557 static void add_cluster_info_page(struct swap_info_struct *p,
558         struct swap_cluster_info *cluster_info, unsigned long page_nr,
559         unsigned long count)
560 {
561         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
562
563         if (!cluster_info)
564                 return;
565         if (cluster_is_free(&cluster_info[idx]))
566                 alloc_cluster(p, idx);
567
568         VM_BUG_ON(cluster_count(&cluster_info[idx]) + count > SWAPFILE_CLUSTER);
569         cluster_set_count(&cluster_info[idx],
570                 cluster_count(&cluster_info[idx]) + count);
571 }
572
573 /*
574  * The cluster corresponding to page_nr will be used. The cluster will be
575  * removed from free cluster list and its usage counter will be increased by 1.
576  */
577 static void inc_cluster_info_page(struct swap_info_struct *p,
578         struct swap_cluster_info *cluster_info, unsigned long page_nr)
579 {
580         add_cluster_info_page(p, cluster_info, page_nr, 1);
581 }
582
583 /*
584  * The cluster corresponding to page_nr decreases one usage. If the usage
585  * counter becomes 0, which means no page in the cluster is in using, we can
586  * optionally discard the cluster and add it to free cluster list.
587  */
588 static void dec_cluster_info_page(struct swap_info_struct *p,
589         struct swap_cluster_info *cluster_info, unsigned long page_nr)
590 {
591         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
592
593         if (!cluster_info)
594                 return;
595
596         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
597         cluster_set_count(&cluster_info[idx],
598                 cluster_count(&cluster_info[idx]) - 1);
599
600         if (cluster_count(&cluster_info[idx]) == 0)
601                 free_cluster(p, idx);
602 }
603
604 /*
605  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
606  * cluster list. Avoiding such abuse to avoid list corruption.
607  */
608 static bool
609 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
610         unsigned long offset, int order)
611 {
612         struct percpu_cluster *percpu_cluster;
613         bool conflict;
614
615         offset /= SWAPFILE_CLUSTER;
616         conflict = !cluster_list_empty(&si->free_clusters) &&
617                 offset != cluster_list_first(&si->free_clusters) &&
618                 cluster_is_free(&si->cluster_info[offset]);
619
620         if (!conflict)
621                 return false;
622
623         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
624         percpu_cluster->next[order] = SWAP_NEXT_INVALID;
625         return true;
626 }
627
628 static inline bool swap_range_empty(char *swap_map, unsigned int start,
629                                     unsigned int nr_pages)
630 {
631         unsigned int i;
632
633         for (i = 0; i < nr_pages; i++) {
634                 if (swap_map[start + i])
635                         return false;
636         }
637
638         return true;
639 }
640
641 /*
642  * Try to get swap entries with specified order from current cpu's swap entry
643  * pool (a cluster). This might involve allocating a new cluster for current CPU
644  * too.
645  */
646 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
647         unsigned long *offset, unsigned long *scan_base, int order)
648 {
649         unsigned int nr_pages = 1 << order;
650         struct percpu_cluster *cluster;
651         struct swap_cluster_info *ci;
652         unsigned int tmp, max;
653
654 new_cluster:
655         cluster = this_cpu_ptr(si->percpu_cluster);
656         tmp = cluster->next[order];
657         if (tmp == SWAP_NEXT_INVALID) {
658                 if (!cluster_list_empty(&si->free_clusters)) {
659                         tmp = cluster_next(&si->free_clusters.head) *
660                                         SWAPFILE_CLUSTER;
661                 } else if (!cluster_list_empty(&si->discard_clusters)) {
662                         /*
663                          * we don't have free cluster but have some clusters in
664                          * discarding, do discard now and reclaim them, then
665                          * reread cluster_next_cpu since we dropped si->lock
666                          */
667                         swap_do_scheduled_discard(si);
668                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
669                         *offset = *scan_base;
670                         goto new_cluster;
671                 } else
672                         return false;
673         }
674
675         /*
676          * Other CPUs can use our cluster if they can't find a free cluster,
677          * check if there is still free entry in the cluster, maintaining
678          * natural alignment.
679          */
680         max = min_t(unsigned long, si->max, ALIGN(tmp + 1, SWAPFILE_CLUSTER));
681         if (tmp < max) {
682                 ci = lock_cluster(si, tmp);
683                 while (tmp < max) {
684                         if (swap_range_empty(si->swap_map, tmp, nr_pages))
685                                 break;
686                         tmp += nr_pages;
687                 }
688                 unlock_cluster(ci);
689         }
690         if (tmp >= max) {
691                 cluster->next[order] = SWAP_NEXT_INVALID;
692                 goto new_cluster;
693         }
694         *offset = tmp;
695         *scan_base = tmp;
696         tmp += nr_pages;
697         cluster->next[order] = tmp < max ? tmp : SWAP_NEXT_INVALID;
698         return true;
699 }
700
701 static void __del_from_avail_list(struct swap_info_struct *p)
702 {
703         int nid;
704
705         assert_spin_locked(&p->lock);
706         for_each_node(nid)
707                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
708 }
709
710 static void del_from_avail_list(struct swap_info_struct *p)
711 {
712         spin_lock(&swap_avail_lock);
713         __del_from_avail_list(p);
714         spin_unlock(&swap_avail_lock);
715 }
716
717 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
718                              unsigned int nr_entries)
719 {
720         unsigned int end = offset + nr_entries - 1;
721
722         if (offset == si->lowest_bit)
723                 si->lowest_bit += nr_entries;
724         if (end == si->highest_bit)
725                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
726         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
727         if (si->inuse_pages == si->pages) {
728                 si->lowest_bit = si->max;
729                 si->highest_bit = 0;
730                 del_from_avail_list(si);
731         }
732 }
733
734 static void add_to_avail_list(struct swap_info_struct *p)
735 {
736         int nid;
737
738         spin_lock(&swap_avail_lock);
739         for_each_node(nid)
740                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
741         spin_unlock(&swap_avail_lock);
742 }
743
744 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
745                             unsigned int nr_entries)
746 {
747         unsigned long begin = offset;
748         unsigned long end = offset + nr_entries - 1;
749         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
750
751         if (offset < si->lowest_bit)
752                 si->lowest_bit = offset;
753         if (end > si->highest_bit) {
754                 bool was_full = !si->highest_bit;
755
756                 WRITE_ONCE(si->highest_bit, end);
757                 if (was_full && (si->flags & SWP_WRITEOK))
758                         add_to_avail_list(si);
759         }
760         if (si->flags & SWP_BLKDEV)
761                 swap_slot_free_notify =
762                         si->bdev->bd_disk->fops->swap_slot_free_notify;
763         else
764                 swap_slot_free_notify = NULL;
765         while (offset <= end) {
766                 arch_swap_invalidate_page(si->type, offset);
767                 if (swap_slot_free_notify)
768                         swap_slot_free_notify(si->bdev, offset);
769                 offset++;
770         }
771         clear_shadow_from_swap_cache(si->type, begin, end);
772
773         /*
774          * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
775          * only after the above cleanups are done.
776          */
777         smp_wmb();
778         atomic_long_add(nr_entries, &nr_swap_pages);
779         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
780 }
781
782 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
783 {
784         unsigned long prev;
785
786         if (!(si->flags & SWP_SOLIDSTATE)) {
787                 si->cluster_next = next;
788                 return;
789         }
790
791         prev = this_cpu_read(*si->cluster_next_cpu);
792         /*
793          * Cross the swap address space size aligned trunk, choose
794          * another trunk randomly to avoid lock contention on swap
795          * address space if possible.
796          */
797         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
798             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
799                 /* No free swap slots available */
800                 if (si->highest_bit <= si->lowest_bit)
801                         return;
802                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
803                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
804                 next = max_t(unsigned int, next, si->lowest_bit);
805         }
806         this_cpu_write(*si->cluster_next_cpu, next);
807 }
808
809 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
810                                              unsigned long offset)
811 {
812         if (data_race(!si->swap_map[offset])) {
813                 spin_lock(&si->lock);
814                 return true;
815         }
816
817         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
818                 spin_lock(&si->lock);
819                 return true;
820         }
821
822         return false;
823 }
824
825 static int scan_swap_map_slots(struct swap_info_struct *si,
826                                unsigned char usage, int nr,
827                                swp_entry_t slots[], int order)
828 {
829         struct swap_cluster_info *ci;
830         unsigned long offset;
831         unsigned long scan_base;
832         unsigned long last_in_cluster = 0;
833         int latency_ration = LATENCY_LIMIT;
834         unsigned int nr_pages = 1 << order;
835         int n_ret = 0;
836         bool scanned_many = false;
837
838         /*
839          * We try to cluster swap pages by allocating them sequentially
840          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
841          * way, however, we resort to first-free allocation, starting
842          * a new cluster.  This prevents us from scattering swap pages
843          * all over the entire swap partition, so that we reduce
844          * overall disk seek times between swap pages.  -- sct
845          * But we do now try to find an empty cluster.  -Andrea
846          * And we let swap pages go all over an SSD partition.  Hugh
847          */
848
849         if (order > 0) {
850                 /*
851                  * Should not even be attempting large allocations when huge
852                  * page swap is disabled.  Warn and fail the allocation.
853                  */
854                 if (!IS_ENABLED(CONFIG_THP_SWAP) ||
855                     nr_pages > SWAPFILE_CLUSTER) {
856                         VM_WARN_ON_ONCE(1);
857                         return 0;
858                 }
859
860                 /*
861                  * Swapfile is not block device or not using clusters so unable
862                  * to allocate large entries.
863                  */
864                 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
865                         return 0;
866         }
867
868         si->flags += SWP_SCANNING;
869         /*
870          * Use percpu scan base for SSD to reduce lock contention on
871          * cluster and swap cache.  For HDD, sequential access is more
872          * important.
873          */
874         if (si->flags & SWP_SOLIDSTATE)
875                 scan_base = this_cpu_read(*si->cluster_next_cpu);
876         else
877                 scan_base = si->cluster_next;
878         offset = scan_base;
879
880         /* SSD algorithm */
881         if (si->cluster_info) {
882                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) {
883                         if (order > 0)
884                                 goto no_page;
885                         goto scan;
886                 }
887         } else if (unlikely(!si->cluster_nr--)) {
888                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
889                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
890                         goto checks;
891                 }
892
893                 spin_unlock(&si->lock);
894
895                 /*
896                  * If seek is expensive, start searching for new cluster from
897                  * start of partition, to minimize the span of allocated swap.
898                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
899                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
900                  */
901                 scan_base = offset = si->lowest_bit;
902                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
903
904                 /* Locate the first empty (unaligned) cluster */
905                 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
906                         if (si->swap_map[offset])
907                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
908                         else if (offset == last_in_cluster) {
909                                 spin_lock(&si->lock);
910                                 offset -= SWAPFILE_CLUSTER - 1;
911                                 si->cluster_next = offset;
912                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
913                                 goto checks;
914                         }
915                         if (unlikely(--latency_ration < 0)) {
916                                 cond_resched();
917                                 latency_ration = LATENCY_LIMIT;
918                         }
919                 }
920
921                 offset = scan_base;
922                 spin_lock(&si->lock);
923                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
924         }
925
926 checks:
927         if (si->cluster_info) {
928                 while (scan_swap_map_ssd_cluster_conflict(si, offset, order)) {
929                 /* take a break if we already got some slots */
930                         if (n_ret)
931                                 goto done;
932                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
933                                                         &scan_base, order)) {
934                                 if (order > 0)
935                                         goto no_page;
936                                 goto scan;
937                         }
938                 }
939         }
940         if (!(si->flags & SWP_WRITEOK))
941                 goto no_page;
942         if (!si->highest_bit)
943                 goto no_page;
944         if (offset > si->highest_bit)
945                 scan_base = offset = si->lowest_bit;
946
947         ci = lock_cluster(si, offset);
948         /* reuse swap entry of cache-only swap if not busy. */
949         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
950                 int swap_was_freed;
951                 unlock_cluster(ci);
952                 spin_unlock(&si->lock);
953                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
954                 spin_lock(&si->lock);
955                 /* entry was freed successfully, try to use this again */
956                 if (swap_was_freed > 0)
957                         goto checks;
958                 goto scan; /* check next one */
959         }
960
961         if (si->swap_map[offset]) {
962                 unlock_cluster(ci);
963                 if (!n_ret)
964                         goto scan;
965                 else
966                         goto done;
967         }
968         memset(si->swap_map + offset, usage, nr_pages);
969         add_cluster_info_page(si, si->cluster_info, offset, nr_pages);
970         unlock_cluster(ci);
971
972         swap_range_alloc(si, offset, nr_pages);
973         slots[n_ret++] = swp_entry(si->type, offset);
974
975         /* got enough slots or reach max slots? */
976         if ((n_ret == nr) || (offset >= si->highest_bit))
977                 goto done;
978
979         /* search for next available slot */
980
981         /* time to take a break? */
982         if (unlikely(--latency_ration < 0)) {
983                 if (n_ret)
984                         goto done;
985                 spin_unlock(&si->lock);
986                 cond_resched();
987                 spin_lock(&si->lock);
988                 latency_ration = LATENCY_LIMIT;
989         }
990
991         /* try to get more slots in cluster */
992         if (si->cluster_info) {
993                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order))
994                         goto checks;
995                 if (order > 0)
996                         goto done;
997         } else if (si->cluster_nr && !si->swap_map[++offset]) {
998                 /* non-ssd case, still more slots in cluster? */
999                 --si->cluster_nr;
1000                 goto checks;
1001         }
1002
1003         /*
1004          * Even if there's no free clusters available (fragmented),
1005          * try to scan a little more quickly with lock held unless we
1006          * have scanned too many slots already.
1007          */
1008         if (!scanned_many) {
1009                 unsigned long scan_limit;
1010
1011                 if (offset < scan_base)
1012                         scan_limit = scan_base;
1013                 else
1014                         scan_limit = si->highest_bit;
1015                 for (; offset <= scan_limit && --latency_ration > 0;
1016                      offset++) {
1017                         if (!si->swap_map[offset])
1018                                 goto checks;
1019                 }
1020         }
1021
1022 done:
1023         if (order == 0)
1024                 set_cluster_next(si, offset + 1);
1025         si->flags -= SWP_SCANNING;
1026         return n_ret;
1027
1028 scan:
1029         VM_WARN_ON(order > 0);
1030         spin_unlock(&si->lock);
1031         while (++offset <= READ_ONCE(si->highest_bit)) {
1032                 if (unlikely(--latency_ration < 0)) {
1033                         cond_resched();
1034                         latency_ration = LATENCY_LIMIT;
1035                         scanned_many = true;
1036                 }
1037                 if (swap_offset_available_and_locked(si, offset))
1038                         goto checks;
1039         }
1040         offset = si->lowest_bit;
1041         while (offset < scan_base) {
1042                 if (unlikely(--latency_ration < 0)) {
1043                         cond_resched();
1044                         latency_ration = LATENCY_LIMIT;
1045                         scanned_many = true;
1046                 }
1047                 if (swap_offset_available_and_locked(si, offset))
1048                         goto checks;
1049                 offset++;
1050         }
1051         spin_lock(&si->lock);
1052
1053 no_page:
1054         si->flags -= SWP_SCANNING;
1055         return n_ret;
1056 }
1057
1058 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1059 {
1060         unsigned long offset = idx * SWAPFILE_CLUSTER;
1061         struct swap_cluster_info *ci;
1062
1063         ci = lock_cluster(si, offset);
1064         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1065         cluster_set_count_flag(ci, 0, 0);
1066         free_cluster(si, idx);
1067         unlock_cluster(ci);
1068         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1069 }
1070
1071 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1072 {
1073         int order = swap_entry_order(entry_order);
1074         unsigned long size = 1 << order;
1075         struct swap_info_struct *si, *next;
1076         long avail_pgs;
1077         int n_ret = 0;
1078         int node;
1079
1080         spin_lock(&swap_avail_lock);
1081
1082         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1083         if (avail_pgs <= 0) {
1084                 spin_unlock(&swap_avail_lock);
1085                 goto noswap;
1086         }
1087
1088         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1089
1090         atomic_long_sub(n_goal * size, &nr_swap_pages);
1091
1092 start_over:
1093         node = numa_node_id();
1094         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1095                 /* requeue si to after same-priority siblings */
1096                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1097                 spin_unlock(&swap_avail_lock);
1098                 spin_lock(&si->lock);
1099                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1100                         spin_lock(&swap_avail_lock);
1101                         if (plist_node_empty(&si->avail_lists[node])) {
1102                                 spin_unlock(&si->lock);
1103                                 goto nextsi;
1104                         }
1105                         WARN(!si->highest_bit,
1106                              "swap_info %d in list but !highest_bit\n",
1107                              si->type);
1108                         WARN(!(si->flags & SWP_WRITEOK),
1109                              "swap_info %d in list but !SWP_WRITEOK\n",
1110                              si->type);
1111                         __del_from_avail_list(si);
1112                         spin_unlock(&si->lock);
1113                         goto nextsi;
1114                 }
1115                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1116                                             n_goal, swp_entries, order);
1117                 spin_unlock(&si->lock);
1118                 if (n_ret || size > 1)
1119                         goto check_out;
1120                 cond_resched();
1121
1122                 spin_lock(&swap_avail_lock);
1123 nextsi:
1124                 /*
1125                  * if we got here, it's likely that si was almost full before,
1126                  * and since scan_swap_map_slots() can drop the si->lock,
1127                  * multiple callers probably all tried to get a page from the
1128                  * same si and it filled up before we could get one; or, the si
1129                  * filled up between us dropping swap_avail_lock and taking
1130                  * si->lock. Since we dropped the swap_avail_lock, the
1131                  * swap_avail_head list may have been modified; so if next is
1132                  * still in the swap_avail_head list then try it, otherwise
1133                  * start over if we have not gotten any slots.
1134                  */
1135                 if (plist_node_empty(&next->avail_lists[node]))
1136                         goto start_over;
1137         }
1138
1139         spin_unlock(&swap_avail_lock);
1140
1141 check_out:
1142         if (n_ret < n_goal)
1143                 atomic_long_add((long)(n_goal - n_ret) * size,
1144                                 &nr_swap_pages);
1145 noswap:
1146         return n_ret;
1147 }
1148
1149 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1150 {
1151         struct swap_info_struct *p;
1152         unsigned long offset;
1153
1154         if (!entry.val)
1155                 goto out;
1156         p = swp_swap_info(entry);
1157         if (!p)
1158                 goto bad_nofile;
1159         if (data_race(!(p->flags & SWP_USED)))
1160                 goto bad_device;
1161         offset = swp_offset(entry);
1162         if (offset >= p->max)
1163                 goto bad_offset;
1164         if (data_race(!p->swap_map[swp_offset(entry)]))
1165                 goto bad_free;
1166         return p;
1167
1168 bad_free:
1169         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1170         goto out;
1171 bad_offset:
1172         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1173         goto out;
1174 bad_device:
1175         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1176         goto out;
1177 bad_nofile:
1178         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1179 out:
1180         return NULL;
1181 }
1182
1183 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1184                                         struct swap_info_struct *q)
1185 {
1186         struct swap_info_struct *p;
1187
1188         p = _swap_info_get(entry);
1189
1190         if (p != q) {
1191                 if (q != NULL)
1192                         spin_unlock(&q->lock);
1193                 if (p != NULL)
1194                         spin_lock(&p->lock);
1195         }
1196         return p;
1197 }
1198
1199 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1200                                               unsigned long offset,
1201                                               unsigned char usage)
1202 {
1203         unsigned char count;
1204         unsigned char has_cache;
1205
1206         count = p->swap_map[offset];
1207
1208         has_cache = count & SWAP_HAS_CACHE;
1209         count &= ~SWAP_HAS_CACHE;
1210
1211         if (usage == SWAP_HAS_CACHE) {
1212                 VM_BUG_ON(!has_cache);
1213                 has_cache = 0;
1214         } else if (count == SWAP_MAP_SHMEM) {
1215                 /*
1216                  * Or we could insist on shmem.c using a special
1217                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1218                  */
1219                 count = 0;
1220         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1221                 if (count == COUNT_CONTINUED) {
1222                         if (swap_count_continued(p, offset, count))
1223                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1224                         else
1225                                 count = SWAP_MAP_MAX;
1226                 } else
1227                         count--;
1228         }
1229
1230         usage = count | has_cache;
1231         if (usage)
1232                 WRITE_ONCE(p->swap_map[offset], usage);
1233         else
1234                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1235
1236         return usage;
1237 }
1238
1239 /*
1240  * When we get a swap entry, if there aren't some other ways to
1241  * prevent swapoff, such as the folio in swap cache is locked, RCU
1242  * reader side is locked, etc., the swap entry may become invalid
1243  * because of swapoff.  Then, we need to enclose all swap related
1244  * functions with get_swap_device() and put_swap_device(), unless the
1245  * swap functions call get/put_swap_device() by themselves.
1246  *
1247  * RCU reader side lock (including any spinlock) is sufficient to
1248  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1249  * before freeing data structures.
1250  *
1251  * Check whether swap entry is valid in the swap device.  If so,
1252  * return pointer to swap_info_struct, and keep the swap entry valid
1253  * via preventing the swap device from being swapoff, until
1254  * put_swap_device() is called.  Otherwise return NULL.
1255  *
1256  * Notice that swapoff or swapoff+swapon can still happen before the
1257  * percpu_ref_tryget_live() in get_swap_device() or after the
1258  * percpu_ref_put() in put_swap_device() if there isn't any other way
1259  * to prevent swapoff.  The caller must be prepared for that.  For
1260  * example, the following situation is possible.
1261  *
1262  *   CPU1                               CPU2
1263  *   do_swap_page()
1264  *     ...                              swapoff+swapon
1265  *     __read_swap_cache_async()
1266  *       swapcache_prepare()
1267  *         __swap_duplicate()
1268  *           // check swap_map
1269  *     // verify PTE not changed
1270  *
1271  * In __swap_duplicate(), the swap_map need to be checked before
1272  * changing partly because the specified swap entry may be for another
1273  * swap device which has been swapoff.  And in do_swap_page(), after
1274  * the page is read from the swap device, the PTE is verified not
1275  * changed with the page table locked to check whether the swap device
1276  * has been swapoff or swapoff+swapon.
1277  */
1278 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1279 {
1280         struct swap_info_struct *si;
1281         unsigned long offset;
1282
1283         if (!entry.val)
1284                 goto out;
1285         si = swp_swap_info(entry);
1286         if (!si)
1287                 goto bad_nofile;
1288         if (!percpu_ref_tryget_live(&si->users))
1289                 goto out;
1290         /*
1291          * Guarantee the si->users are checked before accessing other
1292          * fields of swap_info_struct.
1293          *
1294          * Paired with the spin_unlock() after setup_swap_info() in
1295          * enable_swap_info().
1296          */
1297         smp_rmb();
1298         offset = swp_offset(entry);
1299         if (offset >= si->max)
1300                 goto put_out;
1301
1302         return si;
1303 bad_nofile:
1304         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1305 out:
1306         return NULL;
1307 put_out:
1308         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1309         percpu_ref_put(&si->users);
1310         return NULL;
1311 }
1312
1313 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1314                                        swp_entry_t entry)
1315 {
1316         struct swap_cluster_info *ci;
1317         unsigned long offset = swp_offset(entry);
1318         unsigned char usage;
1319
1320         ci = lock_cluster_or_swap_info(p, offset);
1321         usage = __swap_entry_free_locked(p, offset, 1);
1322         unlock_cluster_or_swap_info(p, ci);
1323         if (!usage)
1324                 free_swap_slot(entry);
1325
1326         return usage;
1327 }
1328
1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1330 {
1331         struct swap_cluster_info *ci;
1332         unsigned long offset = swp_offset(entry);
1333         unsigned char count;
1334
1335         ci = lock_cluster(p, offset);
1336         count = p->swap_map[offset];
1337         VM_BUG_ON(count != SWAP_HAS_CACHE);
1338         p->swap_map[offset] = 0;
1339         dec_cluster_info_page(p, p->cluster_info, offset);
1340         unlock_cluster(ci);
1341
1342         mem_cgroup_uncharge_swap(entry, 1);
1343         swap_range_free(p, offset, 1);
1344 }
1345
1346 static void cluster_swap_free_nr(struct swap_info_struct *sis,
1347                 unsigned long offset, int nr_pages,
1348                 unsigned char usage)
1349 {
1350         struct swap_cluster_info *ci;
1351         DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1352         int i, nr;
1353
1354         ci = lock_cluster_or_swap_info(sis, offset);
1355         while (nr_pages) {
1356                 nr = min(BITS_PER_LONG, nr_pages);
1357                 for (i = 0; i < nr; i++) {
1358                         if (!__swap_entry_free_locked(sis, offset + i, usage))
1359                                 bitmap_set(to_free, i, 1);
1360                 }
1361                 if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1362                         unlock_cluster_or_swap_info(sis, ci);
1363                         for_each_set_bit(i, to_free, BITS_PER_LONG)
1364                                 free_swap_slot(swp_entry(sis->type, offset + i));
1365                         if (nr == nr_pages)
1366                                 return;
1367                         bitmap_clear(to_free, 0, BITS_PER_LONG);
1368                         ci = lock_cluster_or_swap_info(sis, offset);
1369                 }
1370                 offset += nr;
1371                 nr_pages -= nr;
1372         }
1373         unlock_cluster_or_swap_info(sis, ci);
1374 }
1375
1376 /*
1377  * Caller has made sure that the swap device corresponding to entry
1378  * is still around or has not been recycled.
1379  */
1380 void swap_free_nr(swp_entry_t entry, int nr_pages)
1381 {
1382         int nr;
1383         struct swap_info_struct *sis;
1384         unsigned long offset = swp_offset(entry);
1385
1386         sis = _swap_info_get(entry);
1387         if (!sis)
1388                 return;
1389
1390         while (nr_pages) {
1391                 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1392                 cluster_swap_free_nr(sis, offset, nr, 1);
1393                 offset += nr;
1394                 nr_pages -= nr;
1395         }
1396 }
1397
1398 /*
1399  * Called after dropping swapcache to decrease refcnt to swap entries.
1400  */
1401 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1402 {
1403         unsigned long offset = swp_offset(entry);
1404         unsigned long idx = offset / SWAPFILE_CLUSTER;
1405         struct swap_cluster_info *ci;
1406         struct swap_info_struct *si;
1407         unsigned char *map;
1408         unsigned int i, free_entries = 0;
1409         unsigned char val;
1410         int size = 1 << swap_entry_order(folio_order(folio));
1411
1412         si = _swap_info_get(entry);
1413         if (!si)
1414                 return;
1415
1416         ci = lock_cluster_or_swap_info(si, offset);
1417         if (size == SWAPFILE_CLUSTER) {
1418                 map = si->swap_map + offset;
1419                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1420                         val = map[i];
1421                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1422                         if (val == SWAP_HAS_CACHE)
1423                                 free_entries++;
1424                 }
1425                 if (free_entries == SWAPFILE_CLUSTER) {
1426                         unlock_cluster_or_swap_info(si, ci);
1427                         spin_lock(&si->lock);
1428                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1429                         swap_free_cluster(si, idx);
1430                         spin_unlock(&si->lock);
1431                         return;
1432                 }
1433         }
1434         for (i = 0; i < size; i++, entry.val++) {
1435                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1436                         unlock_cluster_or_swap_info(si, ci);
1437                         free_swap_slot(entry);
1438                         if (i == size - 1)
1439                                 return;
1440                         lock_cluster_or_swap_info(si, offset);
1441                 }
1442         }
1443         unlock_cluster_or_swap_info(si, ci);
1444 }
1445
1446 static int swp_entry_cmp(const void *ent1, const void *ent2)
1447 {
1448         const swp_entry_t *e1 = ent1, *e2 = ent2;
1449
1450         return (int)swp_type(*e1) - (int)swp_type(*e2);
1451 }
1452
1453 void swapcache_free_entries(swp_entry_t *entries, int n)
1454 {
1455         struct swap_info_struct *p, *prev;
1456         int i;
1457
1458         if (n <= 0)
1459                 return;
1460
1461         prev = NULL;
1462         p = NULL;
1463
1464         /*
1465          * Sort swap entries by swap device, so each lock is only taken once.
1466          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1467          * so low that it isn't necessary to optimize further.
1468          */
1469         if (nr_swapfiles > 1)
1470                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1471         for (i = 0; i < n; ++i) {
1472                 p = swap_info_get_cont(entries[i], prev);
1473                 if (p)
1474                         swap_entry_free(p, entries[i]);
1475                 prev = p;
1476         }
1477         if (p)
1478                 spin_unlock(&p->lock);
1479 }
1480
1481 int __swap_count(swp_entry_t entry)
1482 {
1483         struct swap_info_struct *si = swp_swap_info(entry);
1484         pgoff_t offset = swp_offset(entry);
1485
1486         return swap_count(si->swap_map[offset]);
1487 }
1488
1489 /*
1490  * How many references to @entry are currently swapped out?
1491  * This does not give an exact answer when swap count is continued,
1492  * but does include the high COUNT_CONTINUED flag to allow for that.
1493  */
1494 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1495 {
1496         pgoff_t offset = swp_offset(entry);
1497         struct swap_cluster_info *ci;
1498         int count;
1499
1500         ci = lock_cluster_or_swap_info(si, offset);
1501         count = swap_count(si->swap_map[offset]);
1502         unlock_cluster_or_swap_info(si, ci);
1503         return count;
1504 }
1505
1506 /*
1507  * How many references to @entry are currently swapped out?
1508  * This considers COUNT_CONTINUED so it returns exact answer.
1509  */
1510 int swp_swapcount(swp_entry_t entry)
1511 {
1512         int count, tmp_count, n;
1513         struct swap_info_struct *p;
1514         struct swap_cluster_info *ci;
1515         struct page *page;
1516         pgoff_t offset;
1517         unsigned char *map;
1518
1519         p = _swap_info_get(entry);
1520         if (!p)
1521                 return 0;
1522
1523         offset = swp_offset(entry);
1524
1525         ci = lock_cluster_or_swap_info(p, offset);
1526
1527         count = swap_count(p->swap_map[offset]);
1528         if (!(count & COUNT_CONTINUED))
1529                 goto out;
1530
1531         count &= ~COUNT_CONTINUED;
1532         n = SWAP_MAP_MAX + 1;
1533
1534         page = vmalloc_to_page(p->swap_map + offset);
1535         offset &= ~PAGE_MASK;
1536         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1537
1538         do {
1539                 page = list_next_entry(page, lru);
1540                 map = kmap_local_page(page);
1541                 tmp_count = map[offset];
1542                 kunmap_local(map);
1543
1544                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1545                 n *= (SWAP_CONT_MAX + 1);
1546         } while (tmp_count & COUNT_CONTINUED);
1547 out:
1548         unlock_cluster_or_swap_info(p, ci);
1549         return count;
1550 }
1551
1552 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1553                                          swp_entry_t entry, int order)
1554 {
1555         struct swap_cluster_info *ci;
1556         unsigned char *map = si->swap_map;
1557         unsigned int nr_pages = 1 << order;
1558         unsigned long roffset = swp_offset(entry);
1559         unsigned long offset = round_down(roffset, nr_pages);
1560         int i;
1561         bool ret = false;
1562
1563         ci = lock_cluster_or_swap_info(si, offset);
1564         if (!ci || nr_pages == 1) {
1565                 if (swap_count(map[roffset]))
1566                         ret = true;
1567                 goto unlock_out;
1568         }
1569         for (i = 0; i < nr_pages; i++) {
1570                 if (swap_count(map[offset + i])) {
1571                         ret = true;
1572                         break;
1573                 }
1574         }
1575 unlock_out:
1576         unlock_cluster_or_swap_info(si, ci);
1577         return ret;
1578 }
1579
1580 static bool folio_swapped(struct folio *folio)
1581 {
1582         swp_entry_t entry = folio->swap;
1583         struct swap_info_struct *si = _swap_info_get(entry);
1584
1585         if (!si)
1586                 return false;
1587
1588         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1589                 return swap_swapcount(si, entry) != 0;
1590
1591         return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1592 }
1593
1594 /**
1595  * folio_free_swap() - Free the swap space used for this folio.
1596  * @folio: The folio to remove.
1597  *
1598  * If swap is getting full, or if there are no more mappings of this folio,
1599  * then call folio_free_swap to free its swap space.
1600  *
1601  * Return: true if we were able to release the swap space.
1602  */
1603 bool folio_free_swap(struct folio *folio)
1604 {
1605         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1606
1607         if (!folio_test_swapcache(folio))
1608                 return false;
1609         if (folio_test_writeback(folio))
1610                 return false;
1611         if (folio_swapped(folio))
1612                 return false;
1613
1614         /*
1615          * Once hibernation has begun to create its image of memory,
1616          * there's a danger that one of the calls to folio_free_swap()
1617          * - most probably a call from __try_to_reclaim_swap() while
1618          * hibernation is allocating its own swap pages for the image,
1619          * but conceivably even a call from memory reclaim - will free
1620          * the swap from a folio which has already been recorded in the
1621          * image as a clean swapcache folio, and then reuse its swap for
1622          * another page of the image.  On waking from hibernation, the
1623          * original folio might be freed under memory pressure, then
1624          * later read back in from swap, now with the wrong data.
1625          *
1626          * Hibernation suspends storage while it is writing the image
1627          * to disk so check that here.
1628          */
1629         if (pm_suspended_storage())
1630                 return false;
1631
1632         delete_from_swap_cache(folio);
1633         folio_set_dirty(folio);
1634         return true;
1635 }
1636
1637 /**
1638  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1639  *                            reclaim their cache if no more references remain.
1640  * @entry: First entry of range.
1641  * @nr: Number of entries in range.
1642  *
1643  * For each swap entry in the contiguous range, release a reference. If any swap
1644  * entries become free, try to reclaim their underlying folios, if present. The
1645  * offset range is defined by [entry.offset, entry.offset + nr).
1646  */
1647 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1648 {
1649         const unsigned long start_offset = swp_offset(entry);
1650         const unsigned long end_offset = start_offset + nr;
1651         unsigned int type = swp_type(entry);
1652         struct swap_info_struct *si;
1653         bool any_only_cache = false;
1654         unsigned long offset;
1655         unsigned char count;
1656
1657         if (non_swap_entry(entry))
1658                 return;
1659
1660         si = get_swap_device(entry);
1661         if (!si)
1662                 return;
1663
1664         if (WARN_ON(end_offset > si->max))
1665                 goto out;
1666
1667         /*
1668          * First free all entries in the range.
1669          */
1670         for (offset = start_offset; offset < end_offset; offset++) {
1671                 if (data_race(si->swap_map[offset])) {
1672                         count = __swap_entry_free(si, swp_entry(type, offset));
1673                         if (count == SWAP_HAS_CACHE)
1674                                 any_only_cache = true;
1675                 } else {
1676                         WARN_ON_ONCE(1);
1677                 }
1678         }
1679
1680         /*
1681          * Short-circuit the below loop if none of the entries had their
1682          * reference drop to zero.
1683          */
1684         if (!any_only_cache)
1685                 goto out;
1686
1687         /*
1688          * Now go back over the range trying to reclaim the swap cache. This is
1689          * more efficient for large folios because we will only try to reclaim
1690          * the swap once per folio in the common case. If we do
1691          * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1692          * latter will get a reference and lock the folio for every individual
1693          * page but will only succeed once the swap slot for every subpage is
1694          * zero.
1695          */
1696         for (offset = start_offset; offset < end_offset; offset += nr) {
1697                 nr = 1;
1698                 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1699                         /*
1700                          * Folios are always naturally aligned in swap so
1701                          * advance forward to the next boundary. Zero means no
1702                          * folio was found for the swap entry, so advance by 1
1703                          * in this case. Negative value means folio was found
1704                          * but could not be reclaimed. Here we can still advance
1705                          * to the next boundary.
1706                          */
1707                         nr = __try_to_reclaim_swap(si, offset,
1708                                               TTRS_UNMAPPED | TTRS_FULL);
1709                         if (nr == 0)
1710                                 nr = 1;
1711                         else if (nr < 0)
1712                                 nr = -nr;
1713                         nr = ALIGN(offset + 1, nr) - offset;
1714                 }
1715         }
1716
1717 out:
1718         put_swap_device(si);
1719 }
1720
1721 #ifdef CONFIG_HIBERNATION
1722
1723 swp_entry_t get_swap_page_of_type(int type)
1724 {
1725         struct swap_info_struct *si = swap_type_to_swap_info(type);
1726         swp_entry_t entry = {0};
1727
1728         if (!si)
1729                 goto fail;
1730
1731         /* This is called for allocating swap entry, not cache */
1732         spin_lock(&si->lock);
1733         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1734                 atomic_long_dec(&nr_swap_pages);
1735         spin_unlock(&si->lock);
1736 fail:
1737         return entry;
1738 }
1739
1740 /*
1741  * Find the swap type that corresponds to given device (if any).
1742  *
1743  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1744  * from 0, in which the swap header is expected to be located.
1745  *
1746  * This is needed for the suspend to disk (aka swsusp).
1747  */
1748 int swap_type_of(dev_t device, sector_t offset)
1749 {
1750         int type;
1751
1752         if (!device)
1753                 return -1;
1754
1755         spin_lock(&swap_lock);
1756         for (type = 0; type < nr_swapfiles; type++) {
1757                 struct swap_info_struct *sis = swap_info[type];
1758
1759                 if (!(sis->flags & SWP_WRITEOK))
1760                         continue;
1761
1762                 if (device == sis->bdev->bd_dev) {
1763                         struct swap_extent *se = first_se(sis);
1764
1765                         if (se->start_block == offset) {
1766                                 spin_unlock(&swap_lock);
1767                                 return type;
1768                         }
1769                 }
1770         }
1771         spin_unlock(&swap_lock);
1772         return -ENODEV;
1773 }
1774
1775 int find_first_swap(dev_t *device)
1776 {
1777         int type;
1778
1779         spin_lock(&swap_lock);
1780         for (type = 0; type < nr_swapfiles; type++) {
1781                 struct swap_info_struct *sis = swap_info[type];
1782
1783                 if (!(sis->flags & SWP_WRITEOK))
1784                         continue;
1785                 *device = sis->bdev->bd_dev;
1786                 spin_unlock(&swap_lock);
1787                 return type;
1788         }
1789         spin_unlock(&swap_lock);
1790         return -ENODEV;
1791 }
1792
1793 /*
1794  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1795  * corresponding to given index in swap_info (swap type).
1796  */
1797 sector_t swapdev_block(int type, pgoff_t offset)
1798 {
1799         struct swap_info_struct *si = swap_type_to_swap_info(type);
1800         struct swap_extent *se;
1801
1802         if (!si || !(si->flags & SWP_WRITEOK))
1803                 return 0;
1804         se = offset_to_swap_extent(si, offset);
1805         return se->start_block + (offset - se->start_page);
1806 }
1807
1808 /*
1809  * Return either the total number of swap pages of given type, or the number
1810  * of free pages of that type (depending on @free)
1811  *
1812  * This is needed for software suspend
1813  */
1814 unsigned int count_swap_pages(int type, int free)
1815 {
1816         unsigned int n = 0;
1817
1818         spin_lock(&swap_lock);
1819         if ((unsigned int)type < nr_swapfiles) {
1820                 struct swap_info_struct *sis = swap_info[type];
1821
1822                 spin_lock(&sis->lock);
1823                 if (sis->flags & SWP_WRITEOK) {
1824                         n = sis->pages;
1825                         if (free)
1826                                 n -= sis->inuse_pages;
1827                 }
1828                 spin_unlock(&sis->lock);
1829         }
1830         spin_unlock(&swap_lock);
1831         return n;
1832 }
1833 #endif /* CONFIG_HIBERNATION */
1834
1835 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1836 {
1837         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1838 }
1839
1840 /*
1841  * No need to decide whether this PTE shares the swap entry with others,
1842  * just let do_wp_page work it out if a write is requested later - to
1843  * force COW, vm_page_prot omits write permission from any private vma.
1844  */
1845 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1846                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1847 {
1848         struct page *page;
1849         struct folio *swapcache;
1850         spinlock_t *ptl;
1851         pte_t *pte, new_pte, old_pte;
1852         bool hwpoisoned = false;
1853         int ret = 1;
1854
1855         swapcache = folio;
1856         folio = ksm_might_need_to_copy(folio, vma, addr);
1857         if (unlikely(!folio))
1858                 return -ENOMEM;
1859         else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1860                 hwpoisoned = true;
1861                 folio = swapcache;
1862         }
1863
1864         page = folio_file_page(folio, swp_offset(entry));
1865         if (PageHWPoison(page))
1866                 hwpoisoned = true;
1867
1868         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1869         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1870                                                 swp_entry_to_pte(entry)))) {
1871                 ret = 0;
1872                 goto out;
1873         }
1874
1875         old_pte = ptep_get(pte);
1876
1877         if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1878                 swp_entry_t swp_entry;
1879
1880                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1881                 if (hwpoisoned) {
1882                         swp_entry = make_hwpoison_entry(page);
1883                 } else {
1884                         swp_entry = make_poisoned_swp_entry();
1885                 }
1886                 new_pte = swp_entry_to_pte(swp_entry);
1887                 ret = 0;
1888                 goto setpte;
1889         }
1890
1891         /*
1892          * Some architectures may have to restore extra metadata to the page
1893          * when reading from swap. This metadata may be indexed by swap entry
1894          * so this must be called before swap_free().
1895          */
1896         arch_swap_restore(folio_swap(entry, folio), folio);
1897
1898         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1899         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1900         folio_get(folio);
1901         if (folio == swapcache) {
1902                 rmap_t rmap_flags = RMAP_NONE;
1903
1904                 /*
1905                  * See do_swap_page(): writeback would be problematic.
1906                  * However, we do a folio_wait_writeback() just before this
1907                  * call and have the folio locked.
1908                  */
1909                 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1910                 if (pte_swp_exclusive(old_pte))
1911                         rmap_flags |= RMAP_EXCLUSIVE;
1912                 /*
1913                  * We currently only expect small !anon folios, which are either
1914                  * fully exclusive or fully shared. If we ever get large folios
1915                  * here, we have to be careful.
1916                  */
1917                 if (!folio_test_anon(folio)) {
1918                         VM_WARN_ON_ONCE(folio_test_large(folio));
1919                         VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
1920                         folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
1921                 } else {
1922                         folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1923                 }
1924         } else { /* ksm created a completely new copy */
1925                 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
1926                 folio_add_lru_vma(folio, vma);
1927         }
1928         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1929         if (pte_swp_soft_dirty(old_pte))
1930                 new_pte = pte_mksoft_dirty(new_pte);
1931         if (pte_swp_uffd_wp(old_pte))
1932                 new_pte = pte_mkuffd_wp(new_pte);
1933 setpte:
1934         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1935         swap_free(entry);
1936 out:
1937         if (pte)
1938                 pte_unmap_unlock(pte, ptl);
1939         if (folio != swapcache) {
1940                 folio_unlock(folio);
1941                 folio_put(folio);
1942         }
1943         return ret;
1944 }
1945
1946 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1947                         unsigned long addr, unsigned long end,
1948                         unsigned int type)
1949 {
1950         pte_t *pte = NULL;
1951         struct swap_info_struct *si;
1952
1953         si = swap_info[type];
1954         do {
1955                 struct folio *folio;
1956                 unsigned long offset;
1957                 unsigned char swp_count;
1958                 swp_entry_t entry;
1959                 int ret;
1960                 pte_t ptent;
1961
1962                 if (!pte++) {
1963                         pte = pte_offset_map(pmd, addr);
1964                         if (!pte)
1965                                 break;
1966                 }
1967
1968                 ptent = ptep_get_lockless(pte);
1969
1970                 if (!is_swap_pte(ptent))
1971                         continue;
1972
1973                 entry = pte_to_swp_entry(ptent);
1974                 if (swp_type(entry) != type)
1975                         continue;
1976
1977                 offset = swp_offset(entry);
1978                 pte_unmap(pte);
1979                 pte = NULL;
1980
1981                 folio = swap_cache_get_folio(entry, vma, addr);
1982                 if (!folio) {
1983                         struct vm_fault vmf = {
1984                                 .vma = vma,
1985                                 .address = addr,
1986                                 .real_address = addr,
1987                                 .pmd = pmd,
1988                         };
1989
1990                         folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1991                                                 &vmf);
1992                 }
1993                 if (!folio) {
1994                         swp_count = READ_ONCE(si->swap_map[offset]);
1995                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1996                                 continue;
1997                         return -ENOMEM;
1998                 }
1999
2000                 folio_lock(folio);
2001                 folio_wait_writeback(folio);
2002                 ret = unuse_pte(vma, pmd, addr, entry, folio);
2003                 if (ret < 0) {
2004                         folio_unlock(folio);
2005                         folio_put(folio);
2006                         return ret;
2007                 }
2008
2009                 folio_free_swap(folio);
2010                 folio_unlock(folio);
2011                 folio_put(folio);
2012         } while (addr += PAGE_SIZE, addr != end);
2013
2014         if (pte)
2015                 pte_unmap(pte);
2016         return 0;
2017 }
2018
2019 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2020                                 unsigned long addr, unsigned long end,
2021                                 unsigned int type)
2022 {
2023         pmd_t *pmd;
2024         unsigned long next;
2025         int ret;
2026
2027         pmd = pmd_offset(pud, addr);
2028         do {
2029                 cond_resched();
2030                 next = pmd_addr_end(addr, end);
2031                 ret = unuse_pte_range(vma, pmd, addr, next, type);
2032                 if (ret)
2033                         return ret;
2034         } while (pmd++, addr = next, addr != end);
2035         return 0;
2036 }
2037
2038 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2039                                 unsigned long addr, unsigned long end,
2040                                 unsigned int type)
2041 {
2042         pud_t *pud;
2043         unsigned long next;
2044         int ret;
2045
2046         pud = pud_offset(p4d, addr);
2047         do {
2048                 next = pud_addr_end(addr, end);
2049                 if (pud_none_or_clear_bad(pud))
2050                         continue;
2051                 ret = unuse_pmd_range(vma, pud, addr, next, type);
2052                 if (ret)
2053                         return ret;
2054         } while (pud++, addr = next, addr != end);
2055         return 0;
2056 }
2057
2058 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2059                                 unsigned long addr, unsigned long end,
2060                                 unsigned int type)
2061 {
2062         p4d_t *p4d;
2063         unsigned long next;
2064         int ret;
2065
2066         p4d = p4d_offset(pgd, addr);
2067         do {
2068                 next = p4d_addr_end(addr, end);
2069                 if (p4d_none_or_clear_bad(p4d))
2070                         continue;
2071                 ret = unuse_pud_range(vma, p4d, addr, next, type);
2072                 if (ret)
2073                         return ret;
2074         } while (p4d++, addr = next, addr != end);
2075         return 0;
2076 }
2077
2078 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2079 {
2080         pgd_t *pgd;
2081         unsigned long addr, end, next;
2082         int ret;
2083
2084         addr = vma->vm_start;
2085         end = vma->vm_end;
2086
2087         pgd = pgd_offset(vma->vm_mm, addr);
2088         do {
2089                 next = pgd_addr_end(addr, end);
2090                 if (pgd_none_or_clear_bad(pgd))
2091                         continue;
2092                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2093                 if (ret)
2094                         return ret;
2095         } while (pgd++, addr = next, addr != end);
2096         return 0;
2097 }
2098
2099 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2100 {
2101         struct vm_area_struct *vma;
2102         int ret = 0;
2103         VMA_ITERATOR(vmi, mm, 0);
2104
2105         mmap_read_lock(mm);
2106         for_each_vma(vmi, vma) {
2107                 if (vma->anon_vma) {
2108                         ret = unuse_vma(vma, type);
2109                         if (ret)
2110                                 break;
2111                 }
2112
2113                 cond_resched();
2114         }
2115         mmap_read_unlock(mm);
2116         return ret;
2117 }
2118
2119 /*
2120  * Scan swap_map from current position to next entry still in use.
2121  * Return 0 if there are no inuse entries after prev till end of
2122  * the map.
2123  */
2124 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2125                                         unsigned int prev)
2126 {
2127         unsigned int i;
2128         unsigned char count;
2129
2130         /*
2131          * No need for swap_lock here: we're just looking
2132          * for whether an entry is in use, not modifying it; false
2133          * hits are okay, and sys_swapoff() has already prevented new
2134          * allocations from this area (while holding swap_lock).
2135          */
2136         for (i = prev + 1; i < si->max; i++) {
2137                 count = READ_ONCE(si->swap_map[i]);
2138                 if (count && swap_count(count) != SWAP_MAP_BAD)
2139                         break;
2140                 if ((i % LATENCY_LIMIT) == 0)
2141                         cond_resched();
2142         }
2143
2144         if (i == si->max)
2145                 i = 0;
2146
2147         return i;
2148 }
2149
2150 static int try_to_unuse(unsigned int type)
2151 {
2152         struct mm_struct *prev_mm;
2153         struct mm_struct *mm;
2154         struct list_head *p;
2155         int retval = 0;
2156         struct swap_info_struct *si = swap_info[type];
2157         struct folio *folio;
2158         swp_entry_t entry;
2159         unsigned int i;
2160
2161         if (!READ_ONCE(si->inuse_pages))
2162                 goto success;
2163
2164 retry:
2165         retval = shmem_unuse(type);
2166         if (retval)
2167                 return retval;
2168
2169         prev_mm = &init_mm;
2170         mmget(prev_mm);
2171
2172         spin_lock(&mmlist_lock);
2173         p = &init_mm.mmlist;
2174         while (READ_ONCE(si->inuse_pages) &&
2175                !signal_pending(current) &&
2176                (p = p->next) != &init_mm.mmlist) {
2177
2178                 mm = list_entry(p, struct mm_struct, mmlist);
2179                 if (!mmget_not_zero(mm))
2180                         continue;
2181                 spin_unlock(&mmlist_lock);
2182                 mmput(prev_mm);
2183                 prev_mm = mm;
2184                 retval = unuse_mm(mm, type);
2185                 if (retval) {
2186                         mmput(prev_mm);
2187                         return retval;
2188                 }
2189
2190                 /*
2191                  * Make sure that we aren't completely killing
2192                  * interactive performance.
2193                  */
2194                 cond_resched();
2195                 spin_lock(&mmlist_lock);
2196         }
2197         spin_unlock(&mmlist_lock);
2198
2199         mmput(prev_mm);
2200
2201         i = 0;
2202         while (READ_ONCE(si->inuse_pages) &&
2203                !signal_pending(current) &&
2204                (i = find_next_to_unuse(si, i)) != 0) {
2205
2206                 entry = swp_entry(type, i);
2207                 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2208                 if (IS_ERR(folio))
2209                         continue;
2210
2211                 /*
2212                  * It is conceivable that a racing task removed this folio from
2213                  * swap cache just before we acquired the page lock. The folio
2214                  * might even be back in swap cache on another swap area. But
2215                  * that is okay, folio_free_swap() only removes stale folios.
2216                  */
2217                 folio_lock(folio);
2218                 folio_wait_writeback(folio);
2219                 folio_free_swap(folio);
2220                 folio_unlock(folio);
2221                 folio_put(folio);
2222         }
2223
2224         /*
2225          * Lets check again to see if there are still swap entries in the map.
2226          * If yes, we would need to do retry the unuse logic again.
2227          * Under global memory pressure, swap entries can be reinserted back
2228          * into process space after the mmlist loop above passes over them.
2229          *
2230          * Limit the number of retries? No: when mmget_not_zero()
2231          * above fails, that mm is likely to be freeing swap from
2232          * exit_mmap(), which proceeds at its own independent pace;
2233          * and even shmem_writepage() could have been preempted after
2234          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2235          * and robust (though cpu-intensive) just to keep retrying.
2236          */
2237         if (READ_ONCE(si->inuse_pages)) {
2238                 if (!signal_pending(current))
2239                         goto retry;
2240                 return -EINTR;
2241         }
2242
2243 success:
2244         /*
2245          * Make sure that further cleanups after try_to_unuse() returns happen
2246          * after swap_range_free() reduces si->inuse_pages to 0.
2247          */
2248         smp_mb();
2249         return 0;
2250 }
2251
2252 /*
2253  * After a successful try_to_unuse, if no swap is now in use, we know
2254  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2255  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2256  * added to the mmlist just after page_duplicate - before would be racy.
2257  */
2258 static void drain_mmlist(void)
2259 {
2260         struct list_head *p, *next;
2261         unsigned int type;
2262
2263         for (type = 0; type < nr_swapfiles; type++)
2264                 if (swap_info[type]->inuse_pages)
2265                         return;
2266         spin_lock(&mmlist_lock);
2267         list_for_each_safe(p, next, &init_mm.mmlist)
2268                 list_del_init(p);
2269         spin_unlock(&mmlist_lock);
2270 }
2271
2272 /*
2273  * Free all of a swapdev's extent information
2274  */
2275 static void destroy_swap_extents(struct swap_info_struct *sis)
2276 {
2277         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2278                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2279                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2280
2281                 rb_erase(rb, &sis->swap_extent_root);
2282                 kfree(se);
2283         }
2284
2285         if (sis->flags & SWP_ACTIVATED) {
2286                 struct file *swap_file = sis->swap_file;
2287                 struct address_space *mapping = swap_file->f_mapping;
2288
2289                 sis->flags &= ~SWP_ACTIVATED;
2290                 if (mapping->a_ops->swap_deactivate)
2291                         mapping->a_ops->swap_deactivate(swap_file);
2292         }
2293 }
2294
2295 /*
2296  * Add a block range (and the corresponding page range) into this swapdev's
2297  * extent tree.
2298  *
2299  * This function rather assumes that it is called in ascending page order.
2300  */
2301 int
2302 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2303                 unsigned long nr_pages, sector_t start_block)
2304 {
2305         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2306         struct swap_extent *se;
2307         struct swap_extent *new_se;
2308
2309         /*
2310          * place the new node at the right most since the
2311          * function is called in ascending page order.
2312          */
2313         while (*link) {
2314                 parent = *link;
2315                 link = &parent->rb_right;
2316         }
2317
2318         if (parent) {
2319                 se = rb_entry(parent, struct swap_extent, rb_node);
2320                 BUG_ON(se->start_page + se->nr_pages != start_page);
2321                 if (se->start_block + se->nr_pages == start_block) {
2322                         /* Merge it */
2323                         se->nr_pages += nr_pages;
2324                         return 0;
2325                 }
2326         }
2327
2328         /* No merge, insert a new extent. */
2329         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2330         if (new_se == NULL)
2331                 return -ENOMEM;
2332         new_se->start_page = start_page;
2333         new_se->nr_pages = nr_pages;
2334         new_se->start_block = start_block;
2335
2336         rb_link_node(&new_se->rb_node, parent, link);
2337         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2338         return 1;
2339 }
2340 EXPORT_SYMBOL_GPL(add_swap_extent);
2341
2342 /*
2343  * A `swap extent' is a simple thing which maps a contiguous range of pages
2344  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2345  * built at swapon time and is then used at swap_writepage/swap_read_folio
2346  * time for locating where on disk a page belongs.
2347  *
2348  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2349  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2350  * swap files identically.
2351  *
2352  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2353  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2354  * swapfiles are handled *identically* after swapon time.
2355  *
2356  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2357  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2358  * blocks are found which do not fall within the PAGE_SIZE alignment
2359  * requirements, they are simply tossed out - we will never use those blocks
2360  * for swapping.
2361  *
2362  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2363  * prevents users from writing to the swap device, which will corrupt memory.
2364  *
2365  * The amount of disk space which a single swap extent represents varies.
2366  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2367  * extents in the rbtree. - akpm.
2368  */
2369 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2370 {
2371         struct file *swap_file = sis->swap_file;
2372         struct address_space *mapping = swap_file->f_mapping;
2373         struct inode *inode = mapping->host;
2374         int ret;
2375
2376         if (S_ISBLK(inode->i_mode)) {
2377                 ret = add_swap_extent(sis, 0, sis->max, 0);
2378                 *span = sis->pages;
2379                 return ret;
2380         }
2381
2382         if (mapping->a_ops->swap_activate) {
2383                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2384                 if (ret < 0)
2385                         return ret;
2386                 sis->flags |= SWP_ACTIVATED;
2387                 if ((sis->flags & SWP_FS_OPS) &&
2388                     sio_pool_init() != 0) {
2389                         destroy_swap_extents(sis);
2390                         return -ENOMEM;
2391                 }
2392                 return ret;
2393         }
2394
2395         return generic_swapfile_activate(sis, swap_file, span);
2396 }
2397
2398 static int swap_node(struct swap_info_struct *p)
2399 {
2400         struct block_device *bdev;
2401
2402         if (p->bdev)
2403                 bdev = p->bdev;
2404         else
2405                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2406
2407         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2408 }
2409
2410 static void setup_swap_info(struct swap_info_struct *p, int prio,
2411                             unsigned char *swap_map,
2412                             struct swap_cluster_info *cluster_info)
2413 {
2414         int i;
2415
2416         if (prio >= 0)
2417                 p->prio = prio;
2418         else
2419                 p->prio = --least_priority;
2420         /*
2421          * the plist prio is negated because plist ordering is
2422          * low-to-high, while swap ordering is high-to-low
2423          */
2424         p->list.prio = -p->prio;
2425         for_each_node(i) {
2426                 if (p->prio >= 0)
2427                         p->avail_lists[i].prio = -p->prio;
2428                 else {
2429                         if (swap_node(p) == i)
2430                                 p->avail_lists[i].prio = 1;
2431                         else
2432                                 p->avail_lists[i].prio = -p->prio;
2433                 }
2434         }
2435         p->swap_map = swap_map;
2436         p->cluster_info = cluster_info;
2437 }
2438
2439 static void _enable_swap_info(struct swap_info_struct *p)
2440 {
2441         p->flags |= SWP_WRITEOK;
2442         atomic_long_add(p->pages, &nr_swap_pages);
2443         total_swap_pages += p->pages;
2444
2445         assert_spin_locked(&swap_lock);
2446         /*
2447          * both lists are plists, and thus priority ordered.
2448          * swap_active_head needs to be priority ordered for swapoff(),
2449          * which on removal of any swap_info_struct with an auto-assigned
2450          * (i.e. negative) priority increments the auto-assigned priority
2451          * of any lower-priority swap_info_structs.
2452          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2453          * which allocates swap pages from the highest available priority
2454          * swap_info_struct.
2455          */
2456         plist_add(&p->list, &swap_active_head);
2457
2458         /* add to available list iff swap device is not full */
2459         if (p->highest_bit)
2460                 add_to_avail_list(p);
2461 }
2462
2463 static void enable_swap_info(struct swap_info_struct *p, int prio,
2464                                 unsigned char *swap_map,
2465                                 struct swap_cluster_info *cluster_info)
2466 {
2467         spin_lock(&swap_lock);
2468         spin_lock(&p->lock);
2469         setup_swap_info(p, prio, swap_map, cluster_info);
2470         spin_unlock(&p->lock);
2471         spin_unlock(&swap_lock);
2472         /*
2473          * Finished initializing swap device, now it's safe to reference it.
2474          */
2475         percpu_ref_resurrect(&p->users);
2476         spin_lock(&swap_lock);
2477         spin_lock(&p->lock);
2478         _enable_swap_info(p);
2479         spin_unlock(&p->lock);
2480         spin_unlock(&swap_lock);
2481 }
2482
2483 static void reinsert_swap_info(struct swap_info_struct *p)
2484 {
2485         spin_lock(&swap_lock);
2486         spin_lock(&p->lock);
2487         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2488         _enable_swap_info(p);
2489         spin_unlock(&p->lock);
2490         spin_unlock(&swap_lock);
2491 }
2492
2493 static bool __has_usable_swap(void)
2494 {
2495         return !plist_head_empty(&swap_active_head);
2496 }
2497
2498 bool has_usable_swap(void)
2499 {
2500         bool ret;
2501
2502         spin_lock(&swap_lock);
2503         ret = __has_usable_swap();
2504         spin_unlock(&swap_lock);
2505         return ret;
2506 }
2507
2508 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2509 {
2510         struct swap_info_struct *p = NULL;
2511         unsigned char *swap_map;
2512         struct swap_cluster_info *cluster_info;
2513         struct file *swap_file, *victim;
2514         struct address_space *mapping;
2515         struct inode *inode;
2516         struct filename *pathname;
2517         int err, found = 0;
2518
2519         if (!capable(CAP_SYS_ADMIN))
2520                 return -EPERM;
2521
2522         BUG_ON(!current->mm);
2523
2524         pathname = getname(specialfile);
2525         if (IS_ERR(pathname))
2526                 return PTR_ERR(pathname);
2527
2528         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2529         err = PTR_ERR(victim);
2530         if (IS_ERR(victim))
2531                 goto out;
2532
2533         mapping = victim->f_mapping;
2534         spin_lock(&swap_lock);
2535         plist_for_each_entry(p, &swap_active_head, list) {
2536                 if (p->flags & SWP_WRITEOK) {
2537                         if (p->swap_file->f_mapping == mapping) {
2538                                 found = 1;
2539                                 break;
2540                         }
2541                 }
2542         }
2543         if (!found) {
2544                 err = -EINVAL;
2545                 spin_unlock(&swap_lock);
2546                 goto out_dput;
2547         }
2548         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2549                 vm_unacct_memory(p->pages);
2550         else {
2551                 err = -ENOMEM;
2552                 spin_unlock(&swap_lock);
2553                 goto out_dput;
2554         }
2555         spin_lock(&p->lock);
2556         del_from_avail_list(p);
2557         if (p->prio < 0) {
2558                 struct swap_info_struct *si = p;
2559                 int nid;
2560
2561                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2562                         si->prio++;
2563                         si->list.prio--;
2564                         for_each_node(nid) {
2565                                 if (si->avail_lists[nid].prio != 1)
2566                                         si->avail_lists[nid].prio--;
2567                         }
2568                 }
2569                 least_priority++;
2570         }
2571         plist_del(&p->list, &swap_active_head);
2572         atomic_long_sub(p->pages, &nr_swap_pages);
2573         total_swap_pages -= p->pages;
2574         p->flags &= ~SWP_WRITEOK;
2575         spin_unlock(&p->lock);
2576         spin_unlock(&swap_lock);
2577
2578         disable_swap_slots_cache_lock();
2579
2580         set_current_oom_origin();
2581         err = try_to_unuse(p->type);
2582         clear_current_oom_origin();
2583
2584         if (err) {
2585                 /* re-insert swap space back into swap_list */
2586                 reinsert_swap_info(p);
2587                 reenable_swap_slots_cache_unlock();
2588                 goto out_dput;
2589         }
2590
2591         reenable_swap_slots_cache_unlock();
2592
2593         /*
2594          * Wait for swap operations protected by get/put_swap_device()
2595          * to complete.  Because of synchronize_rcu() here, all swap
2596          * operations protected by RCU reader side lock (including any
2597          * spinlock) will be waited too.  This makes it easy to
2598          * prevent folio_test_swapcache() and the following swap cache
2599          * operations from racing with swapoff.
2600          */
2601         percpu_ref_kill(&p->users);
2602         synchronize_rcu();
2603         wait_for_completion(&p->comp);
2604
2605         flush_work(&p->discard_work);
2606
2607         destroy_swap_extents(p);
2608         if (p->flags & SWP_CONTINUED)
2609                 free_swap_count_continuations(p);
2610
2611         if (!p->bdev || !bdev_nonrot(p->bdev))
2612                 atomic_dec(&nr_rotate_swap);
2613
2614         mutex_lock(&swapon_mutex);
2615         spin_lock(&swap_lock);
2616         spin_lock(&p->lock);
2617         drain_mmlist();
2618
2619         /* wait for anyone still in scan_swap_map_slots */
2620         p->highest_bit = 0;             /* cuts scans short */
2621         while (p->flags >= SWP_SCANNING) {
2622                 spin_unlock(&p->lock);
2623                 spin_unlock(&swap_lock);
2624                 schedule_timeout_uninterruptible(1);
2625                 spin_lock(&swap_lock);
2626                 spin_lock(&p->lock);
2627         }
2628
2629         swap_file = p->swap_file;
2630         p->swap_file = NULL;
2631         p->max = 0;
2632         swap_map = p->swap_map;
2633         p->swap_map = NULL;
2634         cluster_info = p->cluster_info;
2635         p->cluster_info = NULL;
2636         spin_unlock(&p->lock);
2637         spin_unlock(&swap_lock);
2638         arch_swap_invalidate_area(p->type);
2639         zswap_swapoff(p->type);
2640         mutex_unlock(&swapon_mutex);
2641         free_percpu(p->percpu_cluster);
2642         p->percpu_cluster = NULL;
2643         free_percpu(p->cluster_next_cpu);
2644         p->cluster_next_cpu = NULL;
2645         vfree(swap_map);
2646         kvfree(cluster_info);
2647         /* Destroy swap account information */
2648         swap_cgroup_swapoff(p->type);
2649         exit_swap_address_space(p->type);
2650
2651         inode = mapping->host;
2652
2653         inode_lock(inode);
2654         inode->i_flags &= ~S_SWAPFILE;
2655         inode_unlock(inode);
2656         filp_close(swap_file, NULL);
2657
2658         /*
2659          * Clear the SWP_USED flag after all resources are freed so that swapon
2660          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2661          * not hold p->lock after we cleared its SWP_WRITEOK.
2662          */
2663         spin_lock(&swap_lock);
2664         p->flags = 0;
2665         spin_unlock(&swap_lock);
2666
2667         err = 0;
2668         atomic_inc(&proc_poll_event);
2669         wake_up_interruptible(&proc_poll_wait);
2670
2671 out_dput:
2672         filp_close(victim, NULL);
2673 out:
2674         putname(pathname);
2675         return err;
2676 }
2677
2678 #ifdef CONFIG_PROC_FS
2679 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2680 {
2681         struct seq_file *seq = file->private_data;
2682
2683         poll_wait(file, &proc_poll_wait, wait);
2684
2685         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2686                 seq->poll_event = atomic_read(&proc_poll_event);
2687                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2688         }
2689
2690         return EPOLLIN | EPOLLRDNORM;
2691 }
2692
2693 /* iterator */
2694 static void *swap_start(struct seq_file *swap, loff_t *pos)
2695 {
2696         struct swap_info_struct *si;
2697         int type;
2698         loff_t l = *pos;
2699
2700         mutex_lock(&swapon_mutex);
2701
2702         if (!l)
2703                 return SEQ_START_TOKEN;
2704
2705         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2706                 if (!(si->flags & SWP_USED) || !si->swap_map)
2707                         continue;
2708                 if (!--l)
2709                         return si;
2710         }
2711
2712         return NULL;
2713 }
2714
2715 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2716 {
2717         struct swap_info_struct *si = v;
2718         int type;
2719
2720         if (v == SEQ_START_TOKEN)
2721                 type = 0;
2722         else
2723                 type = si->type + 1;
2724
2725         ++(*pos);
2726         for (; (si = swap_type_to_swap_info(type)); type++) {
2727                 if (!(si->flags & SWP_USED) || !si->swap_map)
2728                         continue;
2729                 return si;
2730         }
2731
2732         return NULL;
2733 }
2734
2735 static void swap_stop(struct seq_file *swap, void *v)
2736 {
2737         mutex_unlock(&swapon_mutex);
2738 }
2739
2740 static int swap_show(struct seq_file *swap, void *v)
2741 {
2742         struct swap_info_struct *si = v;
2743         struct file *file;
2744         int len;
2745         unsigned long bytes, inuse;
2746
2747         if (si == SEQ_START_TOKEN) {
2748                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2749                 return 0;
2750         }
2751
2752         bytes = K(si->pages);
2753         inuse = K(READ_ONCE(si->inuse_pages));
2754
2755         file = si->swap_file;
2756         len = seq_file_path(swap, file, " \t\n\\");
2757         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2758                         len < 40 ? 40 - len : 1, " ",
2759                         S_ISBLK(file_inode(file)->i_mode) ?
2760                                 "partition" : "file\t",
2761                         bytes, bytes < 10000000 ? "\t" : "",
2762                         inuse, inuse < 10000000 ? "\t" : "",
2763                         si->prio);
2764         return 0;
2765 }
2766
2767 static const struct seq_operations swaps_op = {
2768         .start =        swap_start,
2769         .next =         swap_next,
2770         .stop =         swap_stop,
2771         .show =         swap_show
2772 };
2773
2774 static int swaps_open(struct inode *inode, struct file *file)
2775 {
2776         struct seq_file *seq;
2777         int ret;
2778
2779         ret = seq_open(file, &swaps_op);
2780         if (ret)
2781                 return ret;
2782
2783         seq = file->private_data;
2784         seq->poll_event = atomic_read(&proc_poll_event);
2785         return 0;
2786 }
2787
2788 static const struct proc_ops swaps_proc_ops = {
2789         .proc_flags     = PROC_ENTRY_PERMANENT,
2790         .proc_open      = swaps_open,
2791         .proc_read      = seq_read,
2792         .proc_lseek     = seq_lseek,
2793         .proc_release   = seq_release,
2794         .proc_poll      = swaps_poll,
2795 };
2796
2797 static int __init procswaps_init(void)
2798 {
2799         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2800         return 0;
2801 }
2802 __initcall(procswaps_init);
2803 #endif /* CONFIG_PROC_FS */
2804
2805 #ifdef MAX_SWAPFILES_CHECK
2806 static int __init max_swapfiles_check(void)
2807 {
2808         MAX_SWAPFILES_CHECK();
2809         return 0;
2810 }
2811 late_initcall(max_swapfiles_check);
2812 #endif
2813
2814 static struct swap_info_struct *alloc_swap_info(void)
2815 {
2816         struct swap_info_struct *p;
2817         struct swap_info_struct *defer = NULL;
2818         unsigned int type;
2819         int i;
2820
2821         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2822         if (!p)
2823                 return ERR_PTR(-ENOMEM);
2824
2825         if (percpu_ref_init(&p->users, swap_users_ref_free,
2826                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2827                 kvfree(p);
2828                 return ERR_PTR(-ENOMEM);
2829         }
2830
2831         spin_lock(&swap_lock);
2832         for (type = 0; type < nr_swapfiles; type++) {
2833                 if (!(swap_info[type]->flags & SWP_USED))
2834                         break;
2835         }
2836         if (type >= MAX_SWAPFILES) {
2837                 spin_unlock(&swap_lock);
2838                 percpu_ref_exit(&p->users);
2839                 kvfree(p);
2840                 return ERR_PTR(-EPERM);
2841         }
2842         if (type >= nr_swapfiles) {
2843                 p->type = type;
2844                 /*
2845                  * Publish the swap_info_struct after initializing it.
2846                  * Note that kvzalloc() above zeroes all its fields.
2847                  */
2848                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2849                 nr_swapfiles++;
2850         } else {
2851                 defer = p;
2852                 p = swap_info[type];
2853                 /*
2854                  * Do not memset this entry: a racing procfs swap_next()
2855                  * would be relying on p->type to remain valid.
2856                  */
2857         }
2858         p->swap_extent_root = RB_ROOT;
2859         plist_node_init(&p->list, 0);
2860         for_each_node(i)
2861                 plist_node_init(&p->avail_lists[i], 0);
2862         p->flags = SWP_USED;
2863         spin_unlock(&swap_lock);
2864         if (defer) {
2865                 percpu_ref_exit(&defer->users);
2866                 kvfree(defer);
2867         }
2868         spin_lock_init(&p->lock);
2869         spin_lock_init(&p->cont_lock);
2870         init_completion(&p->comp);
2871
2872         return p;
2873 }
2874
2875 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2876 {
2877         if (S_ISBLK(inode->i_mode)) {
2878                 p->bdev = I_BDEV(inode);
2879                 /*
2880                  * Zoned block devices contain zones that have a sequential
2881                  * write only restriction.  Hence zoned block devices are not
2882                  * suitable for swapping.  Disallow them here.
2883                  */
2884                 if (bdev_is_zoned(p->bdev))
2885                         return -EINVAL;
2886                 p->flags |= SWP_BLKDEV;
2887         } else if (S_ISREG(inode->i_mode)) {
2888                 p->bdev = inode->i_sb->s_bdev;
2889         }
2890
2891         return 0;
2892 }
2893
2894
2895 /*
2896  * Find out how many pages are allowed for a single swap device. There
2897  * are two limiting factors:
2898  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2899  * 2) the number of bits in the swap pte, as defined by the different
2900  * architectures.
2901  *
2902  * In order to find the largest possible bit mask, a swap entry with
2903  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2904  * decoded to a swp_entry_t again, and finally the swap offset is
2905  * extracted.
2906  *
2907  * This will mask all the bits from the initial ~0UL mask that can't
2908  * be encoded in either the swp_entry_t or the architecture definition
2909  * of a swap pte.
2910  */
2911 unsigned long generic_max_swapfile_size(void)
2912 {
2913         return swp_offset(pte_to_swp_entry(
2914                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2915 }
2916
2917 /* Can be overridden by an architecture for additional checks. */
2918 __weak unsigned long arch_max_swapfile_size(void)
2919 {
2920         return generic_max_swapfile_size();
2921 }
2922
2923 static unsigned long read_swap_header(struct swap_info_struct *p,
2924                                         union swap_header *swap_header,
2925                                         struct inode *inode)
2926 {
2927         int i;
2928         unsigned long maxpages;
2929         unsigned long swapfilepages;
2930         unsigned long last_page;
2931
2932         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2933                 pr_err("Unable to find swap-space signature\n");
2934                 return 0;
2935         }
2936
2937         /* swap partition endianness hack... */
2938         if (swab32(swap_header->info.version) == 1) {
2939                 swab32s(&swap_header->info.version);
2940                 swab32s(&swap_header->info.last_page);
2941                 swab32s(&swap_header->info.nr_badpages);
2942                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2943                         return 0;
2944                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2945                         swab32s(&swap_header->info.badpages[i]);
2946         }
2947         /* Check the swap header's sub-version */
2948         if (swap_header->info.version != 1) {
2949                 pr_warn("Unable to handle swap header version %d\n",
2950                         swap_header->info.version);
2951                 return 0;
2952         }
2953
2954         p->lowest_bit  = 1;
2955         p->cluster_next = 1;
2956         p->cluster_nr = 0;
2957
2958         maxpages = swapfile_maximum_size;
2959         last_page = swap_header->info.last_page;
2960         if (!last_page) {
2961                 pr_warn("Empty swap-file\n");
2962                 return 0;
2963         }
2964         if (last_page > maxpages) {
2965                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2966                         K(maxpages), K(last_page));
2967         }
2968         if (maxpages > last_page) {
2969                 maxpages = last_page + 1;
2970                 /* p->max is an unsigned int: don't overflow it */
2971                 if ((unsigned int)maxpages == 0)
2972                         maxpages = UINT_MAX;
2973         }
2974         p->highest_bit = maxpages - 1;
2975
2976         if (!maxpages)
2977                 return 0;
2978         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2979         if (swapfilepages && maxpages > swapfilepages) {
2980                 pr_warn("Swap area shorter than signature indicates\n");
2981                 return 0;
2982         }
2983         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2984                 return 0;
2985         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2986                 return 0;
2987
2988         return maxpages;
2989 }
2990
2991 #define SWAP_CLUSTER_INFO_COLS                                          \
2992         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2993 #define SWAP_CLUSTER_SPACE_COLS                                         \
2994         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2995 #define SWAP_CLUSTER_COLS                                               \
2996         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2997
2998 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2999                                         union swap_header *swap_header,
3000                                         unsigned char *swap_map,
3001                                         struct swap_cluster_info *cluster_info,
3002                                         unsigned long maxpages,
3003                                         sector_t *span)
3004 {
3005         unsigned int j, k;
3006         unsigned int nr_good_pages;
3007         int nr_extents;
3008         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3009         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3010         unsigned long i, idx;
3011
3012         nr_good_pages = maxpages - 1;   /* omit header page */
3013
3014         cluster_list_init(&p->free_clusters);
3015         cluster_list_init(&p->discard_clusters);
3016
3017         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3018                 unsigned int page_nr = swap_header->info.badpages[i];
3019                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3020                         return -EINVAL;
3021                 if (page_nr < maxpages) {
3022                         swap_map[page_nr] = SWAP_MAP_BAD;
3023                         nr_good_pages--;
3024                         /*
3025                          * Haven't marked the cluster free yet, no list
3026                          * operation involved
3027                          */
3028                         inc_cluster_info_page(p, cluster_info, page_nr);
3029                 }
3030         }
3031
3032         /* Haven't marked the cluster free yet, no list operation involved */
3033         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3034                 inc_cluster_info_page(p, cluster_info, i);
3035
3036         if (nr_good_pages) {
3037                 swap_map[0] = SWAP_MAP_BAD;
3038                 /*
3039                  * Not mark the cluster free yet, no list
3040                  * operation involved
3041                  */
3042                 inc_cluster_info_page(p, cluster_info, 0);
3043                 p->max = maxpages;
3044                 p->pages = nr_good_pages;
3045                 nr_extents = setup_swap_extents(p, span);
3046                 if (nr_extents < 0)
3047                         return nr_extents;
3048                 nr_good_pages = p->pages;
3049         }
3050         if (!nr_good_pages) {
3051                 pr_warn("Empty swap-file\n");
3052                 return -EINVAL;
3053         }
3054
3055         if (!cluster_info)
3056                 return nr_extents;
3057
3058
3059         /*
3060          * Reduce false cache line sharing between cluster_info and
3061          * sharing same address space.
3062          */
3063         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3064                 j = (k + col) % SWAP_CLUSTER_COLS;
3065                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3066                         idx = i * SWAP_CLUSTER_COLS + j;
3067                         if (idx >= nr_clusters)
3068                                 continue;
3069                         if (cluster_count(&cluster_info[idx]))
3070                                 continue;
3071                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3072                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3073                                               idx);
3074                 }
3075         }
3076         return nr_extents;
3077 }
3078
3079 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3080 {
3081         struct swap_info_struct *p;
3082         struct filename *name;
3083         struct file *swap_file = NULL;
3084         struct address_space *mapping;
3085         struct dentry *dentry;
3086         int prio;
3087         int error;
3088         union swap_header *swap_header;
3089         int nr_extents;
3090         sector_t span;
3091         unsigned long maxpages;
3092         unsigned char *swap_map = NULL;
3093         struct swap_cluster_info *cluster_info = NULL;
3094         struct page *page = NULL;
3095         struct inode *inode = NULL;
3096         bool inced_nr_rotate_swap = false;
3097
3098         if (swap_flags & ~SWAP_FLAGS_VALID)
3099                 return -EINVAL;
3100
3101         if (!capable(CAP_SYS_ADMIN))
3102                 return -EPERM;
3103
3104         if (!swap_avail_heads)
3105                 return -ENOMEM;
3106
3107         p = alloc_swap_info();
3108         if (IS_ERR(p))
3109                 return PTR_ERR(p);
3110
3111         INIT_WORK(&p->discard_work, swap_discard_work);
3112
3113         name = getname(specialfile);
3114         if (IS_ERR(name)) {
3115                 error = PTR_ERR(name);
3116                 name = NULL;
3117                 goto bad_swap;
3118         }
3119         swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3120         if (IS_ERR(swap_file)) {
3121                 error = PTR_ERR(swap_file);
3122                 swap_file = NULL;
3123                 goto bad_swap;
3124         }
3125
3126         p->swap_file = swap_file;
3127         mapping = swap_file->f_mapping;
3128         dentry = swap_file->f_path.dentry;
3129         inode = mapping->host;
3130
3131         error = claim_swapfile(p, inode);
3132         if (unlikely(error))
3133                 goto bad_swap;
3134
3135         inode_lock(inode);
3136         if (d_unlinked(dentry) || cant_mount(dentry)) {
3137                 error = -ENOENT;
3138                 goto bad_swap_unlock_inode;
3139         }
3140         if (IS_SWAPFILE(inode)) {
3141                 error = -EBUSY;
3142                 goto bad_swap_unlock_inode;
3143         }
3144
3145         /*
3146          * Read the swap header.
3147          */
3148         if (!mapping->a_ops->read_folio) {
3149                 error = -EINVAL;
3150                 goto bad_swap_unlock_inode;
3151         }
3152         page = read_mapping_page(mapping, 0, swap_file);
3153         if (IS_ERR(page)) {
3154                 error = PTR_ERR(page);
3155                 goto bad_swap_unlock_inode;
3156         }
3157         swap_header = kmap(page);
3158
3159         maxpages = read_swap_header(p, swap_header, inode);
3160         if (unlikely(!maxpages)) {
3161                 error = -EINVAL;
3162                 goto bad_swap_unlock_inode;
3163         }
3164
3165         /* OK, set up the swap map and apply the bad block list */
3166         swap_map = vzalloc(maxpages);
3167         if (!swap_map) {
3168                 error = -ENOMEM;
3169                 goto bad_swap_unlock_inode;
3170         }
3171
3172         if (p->bdev && bdev_stable_writes(p->bdev))
3173                 p->flags |= SWP_STABLE_WRITES;
3174
3175         if (p->bdev && bdev_synchronous(p->bdev))
3176                 p->flags |= SWP_SYNCHRONOUS_IO;
3177
3178         if (p->bdev && bdev_nonrot(p->bdev)) {
3179                 int cpu, i;
3180                 unsigned long ci, nr_cluster;
3181
3182                 p->flags |= SWP_SOLIDSTATE;
3183                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3184                 if (!p->cluster_next_cpu) {
3185                         error = -ENOMEM;
3186                         goto bad_swap_unlock_inode;
3187                 }
3188                 /*
3189                  * select a random position to start with to help wear leveling
3190                  * SSD
3191                  */
3192                 for_each_possible_cpu(cpu) {
3193                         per_cpu(*p->cluster_next_cpu, cpu) =
3194                                 get_random_u32_inclusive(1, p->highest_bit);
3195                 }
3196                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3197
3198                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3199                                         GFP_KERNEL);
3200                 if (!cluster_info) {
3201                         error = -ENOMEM;
3202                         goto bad_swap_unlock_inode;
3203                 }
3204
3205                 for (ci = 0; ci < nr_cluster; ci++)
3206                         spin_lock_init(&((cluster_info + ci)->lock));
3207
3208                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3209                 if (!p->percpu_cluster) {
3210                         error = -ENOMEM;
3211                         goto bad_swap_unlock_inode;
3212                 }
3213                 for_each_possible_cpu(cpu) {
3214                         struct percpu_cluster *cluster;
3215
3216                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3217                         for (i = 0; i < SWAP_NR_ORDERS; i++)
3218                                 cluster->next[i] = SWAP_NEXT_INVALID;
3219                 }
3220         } else {
3221                 atomic_inc(&nr_rotate_swap);
3222                 inced_nr_rotate_swap = true;
3223         }
3224
3225         error = swap_cgroup_swapon(p->type, maxpages);
3226         if (error)
3227                 goto bad_swap_unlock_inode;
3228
3229         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3230                 cluster_info, maxpages, &span);
3231         if (unlikely(nr_extents < 0)) {
3232                 error = nr_extents;
3233                 goto bad_swap_unlock_inode;
3234         }
3235
3236         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3237             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3238                 /*
3239                  * When discard is enabled for swap with no particular
3240                  * policy flagged, we set all swap discard flags here in
3241                  * order to sustain backward compatibility with older
3242                  * swapon(8) releases.
3243                  */
3244                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3245                              SWP_PAGE_DISCARD);
3246
3247                 /*
3248                  * By flagging sys_swapon, a sysadmin can tell us to
3249                  * either do single-time area discards only, or to just
3250                  * perform discards for released swap page-clusters.
3251                  * Now it's time to adjust the p->flags accordingly.
3252                  */
3253                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3254                         p->flags &= ~SWP_PAGE_DISCARD;
3255                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3256                         p->flags &= ~SWP_AREA_DISCARD;
3257
3258                 /* issue a swapon-time discard if it's still required */
3259                 if (p->flags & SWP_AREA_DISCARD) {
3260                         int err = discard_swap(p);
3261                         if (unlikely(err))
3262                                 pr_err("swapon: discard_swap(%p): %d\n",
3263                                         p, err);
3264                 }
3265         }
3266
3267         error = init_swap_address_space(p->type, maxpages);
3268         if (error)
3269                 goto bad_swap_unlock_inode;
3270
3271         error = zswap_swapon(p->type, maxpages);
3272         if (error)
3273                 goto free_swap_address_space;
3274
3275         /*
3276          * Flush any pending IO and dirty mappings before we start using this
3277          * swap device.
3278          */
3279         inode->i_flags |= S_SWAPFILE;
3280         error = inode_drain_writes(inode);
3281         if (error) {
3282                 inode->i_flags &= ~S_SWAPFILE;
3283                 goto free_swap_zswap;
3284         }
3285
3286         mutex_lock(&swapon_mutex);
3287         prio = -1;
3288         if (swap_flags & SWAP_FLAG_PREFER)
3289                 prio =
3290                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3291         enable_swap_info(p, prio, swap_map, cluster_info);
3292
3293         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3294                 K(p->pages), name->name, p->prio, nr_extents,
3295                 K((unsigned long long)span),
3296                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3297                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3298                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3299                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3300
3301         mutex_unlock(&swapon_mutex);
3302         atomic_inc(&proc_poll_event);
3303         wake_up_interruptible(&proc_poll_wait);
3304
3305         error = 0;
3306         goto out;
3307 free_swap_zswap:
3308         zswap_swapoff(p->type);
3309 free_swap_address_space:
3310         exit_swap_address_space(p->type);
3311 bad_swap_unlock_inode:
3312         inode_unlock(inode);
3313 bad_swap:
3314         free_percpu(p->percpu_cluster);
3315         p->percpu_cluster = NULL;
3316         free_percpu(p->cluster_next_cpu);
3317         p->cluster_next_cpu = NULL;
3318         inode = NULL;
3319         destroy_swap_extents(p);
3320         swap_cgroup_swapoff(p->type);
3321         spin_lock(&swap_lock);
3322         p->swap_file = NULL;
3323         p->flags = 0;
3324         spin_unlock(&swap_lock);
3325         vfree(swap_map);
3326         kvfree(cluster_info);
3327         if (inced_nr_rotate_swap)
3328                 atomic_dec(&nr_rotate_swap);
3329         if (swap_file)
3330                 filp_close(swap_file, NULL);
3331 out:
3332         if (page && !IS_ERR(page)) {
3333                 kunmap(page);
3334                 put_page(page);
3335         }
3336         if (name)
3337                 putname(name);
3338         if (inode)
3339                 inode_unlock(inode);
3340         if (!error)
3341                 enable_swap_slots_cache();
3342         return error;
3343 }
3344
3345 void si_swapinfo(struct sysinfo *val)
3346 {
3347         unsigned int type;
3348         unsigned long nr_to_be_unused = 0;
3349
3350         spin_lock(&swap_lock);
3351         for (type = 0; type < nr_swapfiles; type++) {
3352                 struct swap_info_struct *si = swap_info[type];
3353
3354                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3355                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3356         }
3357         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3358         val->totalswap = total_swap_pages + nr_to_be_unused;
3359         spin_unlock(&swap_lock);
3360 }
3361
3362 /*
3363  * Verify that nr swap entries are valid and increment their swap map counts.
3364  *
3365  * Returns error code in following case.
3366  * - success -> 0
3367  * - swp_entry is invalid -> EINVAL
3368  * - swp_entry is migration entry -> EINVAL
3369  * - swap-cache reference is requested but there is already one. -> EEXIST
3370  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3371  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3372  */
3373 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3374 {
3375         struct swap_info_struct *p;
3376         struct swap_cluster_info *ci;
3377         unsigned long offset;
3378         unsigned char count;
3379         unsigned char has_cache;
3380         int err, i;
3381
3382         p = swp_swap_info(entry);
3383
3384         offset = swp_offset(entry);
3385         VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3386         VM_WARN_ON(usage == 1 && nr > 1);
3387         ci = lock_cluster_or_swap_info(p, offset);
3388
3389         err = 0;
3390         for (i = 0; i < nr; i++) {
3391                 count = p->swap_map[offset + i];
3392
3393                 /*
3394                  * swapin_readahead() doesn't check if a swap entry is valid, so the
3395                  * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3396                  */
3397                 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3398                         err = -ENOENT;
3399                         goto unlock_out;
3400                 }
3401
3402                 has_cache = count & SWAP_HAS_CACHE;
3403                 count &= ~SWAP_HAS_CACHE;
3404
3405                 if (!count && !has_cache) {
3406                         err = -ENOENT;
3407                 } else if (usage == SWAP_HAS_CACHE) {
3408                         if (has_cache)
3409                                 err = -EEXIST;
3410                 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3411                         err = -EINVAL;
3412                 }
3413
3414                 if (err)
3415                         goto unlock_out;
3416         }
3417
3418         for (i = 0; i < nr; i++) {
3419                 count = p->swap_map[offset + i];
3420                 has_cache = count & SWAP_HAS_CACHE;
3421                 count &= ~SWAP_HAS_CACHE;
3422
3423                 if (usage == SWAP_HAS_CACHE)
3424                         has_cache = SWAP_HAS_CACHE;
3425                 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3426                         count += usage;
3427                 else if (swap_count_continued(p, offset + i, count))
3428                         count = COUNT_CONTINUED;
3429                 else {
3430                         /*
3431                          * Don't need to rollback changes, because if
3432                          * usage == 1, there must be nr == 1.
3433                          */
3434                         err = -ENOMEM;
3435                         goto unlock_out;
3436                 }
3437
3438                 WRITE_ONCE(p->swap_map[offset + i], count | has_cache);
3439         }
3440
3441 unlock_out:
3442         unlock_cluster_or_swap_info(p, ci);
3443         return err;
3444 }
3445
3446 /*
3447  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3448  * (in which case its reference count is never incremented).
3449  */
3450 void swap_shmem_alloc(swp_entry_t entry)
3451 {
3452         __swap_duplicate(entry, SWAP_MAP_SHMEM, 1);
3453 }
3454
3455 /*
3456  * Increase reference count of swap entry by 1.
3457  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3458  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3459  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3460  * might occur if a page table entry has got corrupted.
3461  */
3462 int swap_duplicate(swp_entry_t entry)
3463 {
3464         int err = 0;
3465
3466         while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3467                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3468         return err;
3469 }
3470
3471 /*
3472  * @entry: first swap entry from which we allocate nr swap cache.
3473  *
3474  * Called when allocating swap cache for existing swap entries,
3475  * This can return error codes. Returns 0 at success.
3476  * -EEXIST means there is a swap cache.
3477  * Note: return code is different from swap_duplicate().
3478  */
3479 int swapcache_prepare(swp_entry_t entry, int nr)
3480 {
3481         return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3482 }
3483
3484 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3485 {
3486         unsigned long offset = swp_offset(entry);
3487
3488         cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3489 }
3490
3491 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3492 {
3493         return swap_type_to_swap_info(swp_type(entry));
3494 }
3495
3496 /*
3497  * out-of-line methods to avoid include hell.
3498  */
3499 struct address_space *swapcache_mapping(struct folio *folio)
3500 {
3501         return swp_swap_info(folio->swap)->swap_file->f_mapping;
3502 }
3503 EXPORT_SYMBOL_GPL(swapcache_mapping);
3504
3505 pgoff_t __folio_swap_cache_index(struct folio *folio)
3506 {
3507         return swap_cache_index(folio->swap);
3508 }
3509 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3510
3511 /*
3512  * add_swap_count_continuation - called when a swap count is duplicated
3513  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3514  * page of the original vmalloc'ed swap_map, to hold the continuation count
3515  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3516  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3517  *
3518  * These continuation pages are seldom referenced: the common paths all work
3519  * on the original swap_map, only referring to a continuation page when the
3520  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3521  *
3522  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3523  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3524  * can be called after dropping locks.
3525  */
3526 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3527 {
3528         struct swap_info_struct *si;
3529         struct swap_cluster_info *ci;
3530         struct page *head;
3531         struct page *page;
3532         struct page *list_page;
3533         pgoff_t offset;
3534         unsigned char count;
3535         int ret = 0;
3536
3537         /*
3538          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3539          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3540          */
3541         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3542
3543         si = get_swap_device(entry);
3544         if (!si) {
3545                 /*
3546                  * An acceptable race has occurred since the failing
3547                  * __swap_duplicate(): the swap device may be swapoff
3548                  */
3549                 goto outer;
3550         }
3551         spin_lock(&si->lock);
3552
3553         offset = swp_offset(entry);
3554
3555         ci = lock_cluster(si, offset);
3556
3557         count = swap_count(si->swap_map[offset]);
3558
3559         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3560                 /*
3561                  * The higher the swap count, the more likely it is that tasks
3562                  * will race to add swap count continuation: we need to avoid
3563                  * over-provisioning.
3564                  */
3565                 goto out;
3566         }
3567
3568         if (!page) {
3569                 ret = -ENOMEM;
3570                 goto out;
3571         }
3572
3573         head = vmalloc_to_page(si->swap_map + offset);
3574         offset &= ~PAGE_MASK;
3575
3576         spin_lock(&si->cont_lock);
3577         /*
3578          * Page allocation does not initialize the page's lru field,
3579          * but it does always reset its private field.
3580          */
3581         if (!page_private(head)) {
3582                 BUG_ON(count & COUNT_CONTINUED);
3583                 INIT_LIST_HEAD(&head->lru);
3584                 set_page_private(head, SWP_CONTINUED);
3585                 si->flags |= SWP_CONTINUED;
3586         }
3587
3588         list_for_each_entry(list_page, &head->lru, lru) {
3589                 unsigned char *map;
3590
3591                 /*
3592                  * If the previous map said no continuation, but we've found
3593                  * a continuation page, free our allocation and use this one.
3594                  */
3595                 if (!(count & COUNT_CONTINUED))
3596                         goto out_unlock_cont;
3597
3598                 map = kmap_local_page(list_page) + offset;
3599                 count = *map;
3600                 kunmap_local(map);
3601
3602                 /*
3603                  * If this continuation count now has some space in it,
3604                  * free our allocation and use this one.
3605                  */
3606                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3607                         goto out_unlock_cont;
3608         }
3609
3610         list_add_tail(&page->lru, &head->lru);
3611         page = NULL;                    /* now it's attached, don't free it */
3612 out_unlock_cont:
3613         spin_unlock(&si->cont_lock);
3614 out:
3615         unlock_cluster(ci);
3616         spin_unlock(&si->lock);
3617         put_swap_device(si);
3618 outer:
3619         if (page)
3620                 __free_page(page);
3621         return ret;
3622 }
3623
3624 /*
3625  * swap_count_continued - when the original swap_map count is incremented
3626  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3627  * into, carry if so, or else fail until a new continuation page is allocated;
3628  * when the original swap_map count is decremented from 0 with continuation,
3629  * borrow from the continuation and report whether it still holds more.
3630  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3631  * lock.
3632  */
3633 static bool swap_count_continued(struct swap_info_struct *si,
3634                                  pgoff_t offset, unsigned char count)
3635 {
3636         struct page *head;
3637         struct page *page;
3638         unsigned char *map;
3639         bool ret;
3640
3641         head = vmalloc_to_page(si->swap_map + offset);
3642         if (page_private(head) != SWP_CONTINUED) {
3643                 BUG_ON(count & COUNT_CONTINUED);
3644                 return false;           /* need to add count continuation */
3645         }
3646
3647         spin_lock(&si->cont_lock);
3648         offset &= ~PAGE_MASK;
3649         page = list_next_entry(head, lru);
3650         map = kmap_local_page(page) + offset;
3651
3652         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3653                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3654
3655         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3656                 /*
3657                  * Think of how you add 1 to 999
3658                  */
3659                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3660                         kunmap_local(map);
3661                         page = list_next_entry(page, lru);
3662                         BUG_ON(page == head);
3663                         map = kmap_local_page(page) + offset;
3664                 }
3665                 if (*map == SWAP_CONT_MAX) {
3666                         kunmap_local(map);
3667                         page = list_next_entry(page, lru);
3668                         if (page == head) {
3669                                 ret = false;    /* add count continuation */
3670                                 goto out;
3671                         }
3672                         map = kmap_local_page(page) + offset;
3673 init_map:               *map = 0;               /* we didn't zero the page */
3674                 }
3675                 *map += 1;
3676                 kunmap_local(map);
3677                 while ((page = list_prev_entry(page, lru)) != head) {
3678                         map = kmap_local_page(page) + offset;
3679                         *map = COUNT_CONTINUED;
3680                         kunmap_local(map);
3681                 }
3682                 ret = true;                     /* incremented */
3683
3684         } else {                                /* decrementing */
3685                 /*
3686                  * Think of how you subtract 1 from 1000
3687                  */
3688                 BUG_ON(count != COUNT_CONTINUED);
3689                 while (*map == COUNT_CONTINUED) {
3690                         kunmap_local(map);
3691                         page = list_next_entry(page, lru);
3692                         BUG_ON(page == head);
3693                         map = kmap_local_page(page) + offset;
3694                 }
3695                 BUG_ON(*map == 0);
3696                 *map -= 1;
3697                 if (*map == 0)
3698                         count = 0;
3699                 kunmap_local(map);
3700                 while ((page = list_prev_entry(page, lru)) != head) {
3701                         map = kmap_local_page(page) + offset;
3702                         *map = SWAP_CONT_MAX | count;
3703                         count = COUNT_CONTINUED;
3704                         kunmap_local(map);
3705                 }
3706                 ret = count == COUNT_CONTINUED;
3707         }
3708 out:
3709         spin_unlock(&si->cont_lock);
3710         return ret;
3711 }
3712
3713 /*
3714  * free_swap_count_continuations - swapoff free all the continuation pages
3715  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3716  */
3717 static void free_swap_count_continuations(struct swap_info_struct *si)
3718 {
3719         pgoff_t offset;
3720
3721         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3722                 struct page *head;
3723                 head = vmalloc_to_page(si->swap_map + offset);
3724                 if (page_private(head)) {
3725                         struct page *page, *next;
3726
3727                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3728                                 list_del(&page->lru);
3729                                 __free_page(page);
3730                         }
3731                 }
3732         }
3733 }
3734
3735 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3736 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3737 {
3738         struct swap_info_struct *si, *next;
3739         int nid = folio_nid(folio);
3740
3741         if (!(gfp & __GFP_IO))
3742                 return;
3743
3744         if (!__has_usable_swap())
3745                 return;
3746
3747         if (!blk_cgroup_congested())
3748                 return;
3749
3750         /*
3751          * We've already scheduled a throttle, avoid taking the global swap
3752          * lock.
3753          */
3754         if (current->throttle_disk)
3755                 return;
3756
3757         spin_lock(&swap_avail_lock);
3758         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3759                                   avail_lists[nid]) {
3760                 if (si->bdev) {
3761                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3762                         break;
3763                 }
3764         }
3765         spin_unlock(&swap_avail_lock);
3766 }
3767 #endif
3768
3769 static int __init swapfile_init(void)
3770 {
3771         int nid;
3772
3773         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3774                                          GFP_KERNEL);
3775         if (!swap_avail_heads) {
3776                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3777                 return -ENOMEM;
3778         }
3779
3780         for_each_node(nid)
3781                 plist_head_init(&swap_avail_heads[nid]);
3782
3783         swapfile_maximum_size = arch_max_swapfile_size();
3784
3785 #ifdef CONFIG_MIGRATION
3786         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3787                 swap_migration_ad_supported = true;
3788 #endif  /* CONFIG_MIGRATION */
3789
3790         return 0;
3791 }
3792 subsys_initcall(swapfile_init);
This page took 0.243176 seconds and 4 git commands to generate.