1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1994 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
12 #include <linux/pagewalk.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <linux/pgtable.h>
32 #include <linux/sched/sysctl.h>
33 #include <linux/userfaultfd_k.h>
34 #include <linux/memory-tiers.h>
35 #include <uapi/linux/mman.h>
36 #include <asm/cacheflush.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
43 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
48 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
51 /* Don't touch entries that are not even readable. */
52 if (pte_protnone(pte))
55 /* Do we need write faults for softdirty tracking? */
56 if (pte_needs_soft_dirty_wp(vma, pte))
59 /* Do we need write faults for uffd-wp tracking? */
60 if (userfaultfd_pte_wp(vma, pte))
63 if (!(vma->vm_flags & VM_SHARED)) {
65 * Writable MAP_PRIVATE mapping: We can only special-case on
66 * exclusive anonymous pages, because we know that our
67 * write-fault handler similarly would map them writable without
68 * any additional checks while holding the PT lock.
70 page = vm_normal_page(vma, addr, pte);
71 return page && PageAnon(page) && PageAnonExclusive(page);
74 VM_WARN_ON_ONCE(is_zero_pfn(pte_pfn(pte)) && pte_dirty(pte));
77 * Writable MAP_SHARED mapping: "clean" might indicate that the FS still
78 * needs a real write-fault for writenotify
79 * (see vma_wants_writenotify()). If "dirty", the assumption is that the
80 * FS was already notified and we can simply mark the PTE writable
81 * just like the write-fault handler would do.
83 return pte_dirty(pte);
86 static long change_pte_range(struct mmu_gather *tlb,
87 struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr,
88 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
93 int target_node = NUMA_NO_NODE;
94 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
95 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
96 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
98 tlb_change_page_size(tlb, PAGE_SIZE);
99 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
103 /* Get target node for single threaded private VMAs */
104 if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
105 atomic_read(&vma->vm_mm->mm_users) == 1)
106 target_node = numa_node_id();
108 flush_tlb_batched_pending(vma->vm_mm);
109 arch_enter_lazy_mmu_mode();
111 oldpte = ptep_get(pte);
112 if (pte_present(oldpte)) {
116 * Avoid trapping faults against the zero or KSM
117 * pages. See similar comment in change_huge_pmd.
124 /* Avoid TLB flush if possible */
125 if (pte_protnone(oldpte))
128 folio = vm_normal_folio(vma, addr, oldpte);
129 if (!folio || folio_is_zone_device(folio) ||
130 folio_test_ksm(folio))
133 /* Also skip shared copy-on-write pages */
134 if (is_cow_mapping(vma->vm_flags) &&
135 (folio_maybe_dma_pinned(folio) ||
136 folio_likely_mapped_shared(folio)))
140 * While migration can move some dirty pages,
141 * it cannot move them all from MIGRATE_ASYNC
144 if (folio_is_file_lru(folio) &&
145 folio_test_dirty(folio))
149 * Don't mess with PTEs if page is already on the node
150 * a single-threaded process is running on.
152 nid = folio_nid(folio);
153 if (target_node == nid)
155 toptier = node_is_toptier(nid);
158 * Skip scanning top tier node if normal numa
159 * balancing is disabled
161 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
164 if (folio_use_access_time(folio))
165 folio_xchg_access_time(folio,
166 jiffies_to_msecs(jiffies));
169 oldpte = ptep_modify_prot_start(vma, addr, pte);
170 ptent = pte_modify(oldpte, newprot);
173 ptent = pte_mkuffd_wp(ptent);
174 else if (uffd_wp_resolve)
175 ptent = pte_clear_uffd_wp(ptent);
178 * In some writable, shared mappings, we might want
179 * to catch actual write access -- see
180 * vma_wants_writenotify().
182 * In all writable, private mappings, we have to
183 * properly handle COW.
185 * In both cases, we can sometimes still change PTEs
186 * writable and avoid the write-fault handler, for
187 * example, if a PTE is already dirty and no other
188 * COW or special handling is required.
190 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) &&
192 can_change_pte_writable(vma, addr, ptent))
193 ptent = pte_mkwrite(ptent, vma);
195 ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
196 if (pte_needs_flush(oldpte, ptent))
197 tlb_flush_pte_range(tlb, addr, PAGE_SIZE);
199 } else if (is_swap_pte(oldpte)) {
200 swp_entry_t entry = pte_to_swp_entry(oldpte);
203 if (is_writable_migration_entry(entry)) {
204 struct folio *folio = pfn_swap_entry_folio(entry);
207 * A protection check is difficult so
208 * just be safe and disable write
210 if (folio_test_anon(folio))
211 entry = make_readable_exclusive_migration_entry(
214 entry = make_readable_migration_entry(swp_offset(entry));
215 newpte = swp_entry_to_pte(entry);
216 if (pte_swp_soft_dirty(oldpte))
217 newpte = pte_swp_mksoft_dirty(newpte);
218 } else if (is_writable_device_private_entry(entry)) {
220 * We do not preserve soft-dirtiness. See
221 * copy_nonpresent_pte() for explanation.
223 entry = make_readable_device_private_entry(
225 newpte = swp_entry_to_pte(entry);
226 if (pte_swp_uffd_wp(oldpte))
227 newpte = pte_swp_mkuffd_wp(newpte);
228 } else if (is_writable_device_exclusive_entry(entry)) {
229 entry = make_readable_device_exclusive_entry(
231 newpte = swp_entry_to_pte(entry);
232 if (pte_swp_soft_dirty(oldpte))
233 newpte = pte_swp_mksoft_dirty(newpte);
234 if (pte_swp_uffd_wp(oldpte))
235 newpte = pte_swp_mkuffd_wp(newpte);
236 } else if (is_pte_marker_entry(entry)) {
238 * Ignore error swap entries unconditionally,
239 * because any access should sigbus anyway.
241 if (is_poisoned_swp_entry(entry))
244 * If this is uffd-wp pte marker and we'd like
245 * to unprotect it, drop it; the next page
246 * fault will trigger without uffd trapping.
248 if (uffd_wp_resolve) {
249 pte_clear(vma->vm_mm, addr, pte);
258 newpte = pte_swp_mkuffd_wp(newpte);
259 else if (uffd_wp_resolve)
260 newpte = pte_swp_clear_uffd_wp(newpte);
262 if (!pte_same(oldpte, newpte)) {
263 set_pte_at(vma->vm_mm, addr, pte, newpte);
267 /* It must be an none page, or what else?.. */
268 WARN_ON_ONCE(!pte_none(oldpte));
271 * Nobody plays with any none ptes besides
272 * userfaultfd when applying the protections.
274 if (likely(!uffd_wp))
277 if (userfaultfd_wp_use_markers(vma)) {
279 * For file-backed mem, we need to be able to
280 * wr-protect a none pte, because even if the
281 * pte is none, the page/swap cache could
282 * exist. Doing that by install a marker.
284 set_pte_at(vma->vm_mm, addr, pte,
285 make_pte_marker(PTE_MARKER_UFFD_WP));
289 } while (pte++, addr += PAGE_SIZE, addr != end);
290 arch_leave_lazy_mmu_mode();
291 pte_unmap_unlock(pte - 1, ptl);
297 * Return true if we want to split THPs into PTE mappings in change
298 * protection procedure, false otherwise.
301 pgtable_split_needed(struct vm_area_struct *vma, unsigned long cp_flags)
304 * pte markers only resides in pte level, if we need pte markers,
305 * we need to split. For example, we cannot wr-protect a file thp
306 * (e.g. 2M shmem) because file thp is handled differently when
307 * split by erasing the pmd so far.
309 return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma);
313 * Return true if we want to populate pgtables in change protection
314 * procedure, false otherwise
317 pgtable_populate_needed(struct vm_area_struct *vma, unsigned long cp_flags)
319 /* If not within ioctl(UFFDIO_WRITEPROTECT), then don't bother */
320 if (!(cp_flags & MM_CP_UFFD_WP))
323 /* Populate if the userfaultfd mode requires pte markers */
324 return userfaultfd_wp_use_markers(vma);
328 * Populate the pgtable underneath for whatever reason if requested.
329 * When {pte|pmd|...}_alloc() failed we treat it the same way as pgtable
330 * allocation failures during page faults by kicking OOM and returning
333 #define change_pmd_prepare(vma, pmd, cp_flags) \
336 if (unlikely(pgtable_populate_needed(vma, cp_flags))) { \
337 if (pte_alloc(vma->vm_mm, pmd)) \
344 * This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to
345 * have separate change_pmd_prepare() because pte_alloc() returns 0 on success,
346 * while {pmd|pud|p4d}_alloc() returns the valid pointer on success.
348 #define change_prepare(vma, high, low, addr, cp_flags) \
351 if (unlikely(pgtable_populate_needed(vma, cp_flags))) { \
352 low##_t *p = low##_alloc(vma->vm_mm, high, addr); \
359 static inline long change_pmd_range(struct mmu_gather *tlb,
360 struct vm_area_struct *vma, pud_t *pud, unsigned long addr,
361 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
366 unsigned long nr_huge_updates = 0;
368 pmd = pmd_offset(pud, addr);
373 next = pmd_addr_end(addr, end);
375 ret = change_pmd_prepare(vma, pmd, cp_flags);
384 _pmd = pmdp_get_lockless(pmd);
385 if (is_swap_pmd(_pmd) || pmd_trans_huge(_pmd) || pmd_devmap(_pmd)) {
386 if ((next - addr != HPAGE_PMD_SIZE) ||
387 pgtable_split_needed(vma, cp_flags)) {
388 __split_huge_pmd(vma, pmd, addr, false, NULL);
390 * For file-backed, the pmd could have been
391 * cleared; make sure pmd populated if
392 * necessary, then fall-through to pte level.
394 ret = change_pmd_prepare(vma, pmd, cp_flags);
400 ret = change_huge_pmd(tlb, vma, pmd,
401 addr, newprot, cp_flags);
403 if (ret == HPAGE_PMD_NR) {
404 pages += HPAGE_PMD_NR;
408 /* huge pmd was handled */
412 /* fall through, the trans huge pmd just split */
415 ret = change_pte_range(tlb, vma, pmd, addr, next, newprot,
422 } while (pmd++, addr = next, addr != end);
425 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
429 static inline long change_pud_range(struct mmu_gather *tlb,
430 struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr,
431 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
433 struct mmu_notifier_range range;
440 pudp = pud_offset(p4d, addr);
443 next = pud_addr_end(addr, end);
444 ret = change_prepare(vma, pudp, pmd, addr, cp_flags);
450 pud = READ_ONCE(*pudp);
455 mmu_notifier_range_init(&range,
456 MMU_NOTIFY_PROTECTION_VMA, 0,
457 vma->vm_mm, addr, end);
458 mmu_notifier_invalidate_range_start(&range);
462 if ((next - addr != PUD_SIZE) ||
463 pgtable_split_needed(vma, cp_flags)) {
464 __split_huge_pud(vma, pudp, addr);
467 ret = change_huge_pud(tlb, vma, pudp,
468 addr, newprot, cp_flags);
471 /* huge pud was handled */
472 if (ret == HPAGE_PUD_NR)
473 pages += HPAGE_PUD_NR;
478 pages += change_pmd_range(tlb, vma, pudp, addr, next, newprot,
480 } while (pudp++, addr = next, addr != end);
483 mmu_notifier_invalidate_range_end(&range);
488 static inline long change_p4d_range(struct mmu_gather *tlb,
489 struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr,
490 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
496 p4d = p4d_offset(pgd, addr);
498 next = p4d_addr_end(addr, end);
499 ret = change_prepare(vma, p4d, pud, addr, cp_flags);
502 if (p4d_none_or_clear_bad(p4d))
504 pages += change_pud_range(tlb, vma, p4d, addr, next, newprot,
506 } while (p4d++, addr = next, addr != end);
511 static long change_protection_range(struct mmu_gather *tlb,
512 struct vm_area_struct *vma, unsigned long addr,
513 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
515 struct mm_struct *mm = vma->vm_mm;
521 pgd = pgd_offset(mm, addr);
522 tlb_start_vma(tlb, vma);
524 next = pgd_addr_end(addr, end);
525 ret = change_prepare(vma, pgd, p4d, addr, cp_flags);
530 if (pgd_none_or_clear_bad(pgd))
532 pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot,
534 } while (pgd++, addr = next, addr != end);
536 tlb_end_vma(tlb, vma);
541 long change_protection(struct mmu_gather *tlb,
542 struct vm_area_struct *vma, unsigned long start,
543 unsigned long end, unsigned long cp_flags)
545 pgprot_t newprot = vma->vm_page_prot;
548 BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
550 #ifdef CONFIG_NUMA_BALANCING
552 * Ordinary protection updates (mprotect, uffd-wp, softdirty tracking)
553 * are expected to reflect their requirements via VMA flags such that
554 * vma_set_page_prot() will adjust vma->vm_page_prot accordingly.
556 if (cp_flags & MM_CP_PROT_NUMA)
559 WARN_ON_ONCE(cp_flags & MM_CP_PROT_NUMA);
562 if (is_vm_hugetlb_page(vma))
563 pages = hugetlb_change_protection(vma, start, end, newprot,
566 pages = change_protection_range(tlb, vma, start, end, newprot,
572 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
573 unsigned long next, struct mm_walk *walk)
575 return pfn_modify_allowed(pte_pfn(ptep_get(pte)),
576 *(pgprot_t *)(walk->private)) ?
580 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
581 unsigned long addr, unsigned long next,
582 struct mm_walk *walk)
584 return pfn_modify_allowed(pte_pfn(ptep_get(pte)),
585 *(pgprot_t *)(walk->private)) ?
589 static int prot_none_test(unsigned long addr, unsigned long next,
590 struct mm_walk *walk)
595 static const struct mm_walk_ops prot_none_walk_ops = {
596 .pte_entry = prot_none_pte_entry,
597 .hugetlb_entry = prot_none_hugetlb_entry,
598 .test_walk = prot_none_test,
599 .walk_lock = PGWALK_WRLOCK,
603 mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
604 struct vm_area_struct *vma, struct vm_area_struct **pprev,
605 unsigned long start, unsigned long end, unsigned long newflags)
607 struct mm_struct *mm = vma->vm_mm;
608 unsigned long oldflags = vma->vm_flags;
609 long nrpages = (end - start) >> PAGE_SHIFT;
610 unsigned int mm_cp_flags = 0;
611 unsigned long charged = 0;
614 if (newflags == oldflags) {
620 * Do PROT_NONE PFN permission checks here when we can still
621 * bail out without undoing a lot of state. This is a rather
622 * uncommon case, so doesn't need to be very optimized.
624 if (arch_has_pfn_modify_check() &&
625 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
626 (newflags & VM_ACCESS_FLAGS) == 0) {
627 pgprot_t new_pgprot = vm_get_page_prot(newflags);
629 error = walk_page_range(current->mm, start, end,
630 &prot_none_walk_ops, &new_pgprot);
636 * If we make a private mapping writable we increase our commit;
637 * but (without finer accounting) cannot reduce our commit if we
638 * make it unwritable again except in the anonymous case where no
639 * anon_vma has yet to be assigned.
641 * hugetlb mapping were accounted for even if read-only so there is
642 * no need to account for them here.
644 if (newflags & VM_WRITE) {
645 /* Check space limits when area turns into data. */
646 if (!may_expand_vm(mm, newflags, nrpages) &&
647 may_expand_vm(mm, oldflags, nrpages))
649 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
650 VM_SHARED|VM_NORESERVE))) {
652 if (security_vm_enough_memory_mm(mm, charged))
654 newflags |= VM_ACCOUNT;
656 } else if ((oldflags & VM_ACCOUNT) && vma_is_anonymous(vma) &&
658 newflags &= ~VM_ACCOUNT;
661 vma = vma_modify_flags(vmi, *pprev, vma, start, end, newflags);
663 error = PTR_ERR(vma);
670 * vm_flags and vm_page_prot are protected by the mmap_lock
671 * held in write mode.
673 vma_start_write(vma);
674 vm_flags_reset(vma, newflags);
675 if (vma_wants_manual_pte_write_upgrade(vma))
676 mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
677 vma_set_page_prot(vma);
679 change_protection(tlb, vma, start, end, mm_cp_flags);
681 if ((oldflags & VM_ACCOUNT) && !(newflags & VM_ACCOUNT))
682 vm_unacct_memory(nrpages);
685 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
688 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
689 (newflags & VM_WRITE)) {
690 populate_vma_page_range(vma, start, end, NULL);
693 vm_stat_account(mm, oldflags, -nrpages);
694 vm_stat_account(mm, newflags, nrpages);
695 perf_event_mmap(vma);
699 vm_unacct_memory(charged);
704 * pkey==-1 when doing a legacy mprotect()
706 static int do_mprotect_pkey(unsigned long start, size_t len,
707 unsigned long prot, int pkey)
709 unsigned long nstart, end, tmp, reqprot;
710 struct vm_area_struct *vma, *prev;
712 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
713 const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
715 struct mmu_gather tlb;
716 struct vma_iterator vmi;
718 start = untagged_addr(start);
720 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
721 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
724 if (start & ~PAGE_MASK)
728 len = PAGE_ALIGN(len);
732 if (!arch_validate_prot(prot, start))
737 if (mmap_write_lock_killable(current->mm))
741 * If userspace did not allocate the pkey, do not let
745 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
748 vma_iter_init(&vmi, current->mm, start);
749 vma = vma_find(&vmi, end);
754 if (unlikely(grows & PROT_GROWSDOWN)) {
755 if (vma->vm_start >= end)
757 start = vma->vm_start;
759 if (!(vma->vm_flags & VM_GROWSDOWN))
762 if (vma->vm_start > start)
764 if (unlikely(grows & PROT_GROWSUP)) {
767 if (!(vma->vm_flags & VM_GROWSUP))
773 * checking if memory is sealed.
774 * can_modify_mm assumes we have acquired the lock on MM.
776 if (unlikely(!can_modify_mm(current->mm, start, end))) {
781 prev = vma_prev(&vmi);
782 if (start > vma->vm_start)
785 tlb_gather_mmu(&tlb, current->mm);
788 for_each_vma_range(vmi, vma, end) {
789 unsigned long mask_off_old_flags;
790 unsigned long newflags;
793 if (vma->vm_start != tmp) {
798 /* Does the application expect PROT_READ to imply PROT_EXEC */
799 if (rier && (vma->vm_flags & VM_MAYEXEC))
803 * Each mprotect() call explicitly passes r/w/x permissions.
804 * If a permission is not passed to mprotect(), it must be
805 * cleared from the VMA.
807 mask_off_old_flags = VM_ACCESS_FLAGS | VM_FLAGS_CLEAR;
809 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
810 newflags = calc_vm_prot_bits(prot, new_vma_pkey);
811 newflags |= (vma->vm_flags & ~mask_off_old_flags);
813 /* newflags >> 4 shift VM_MAY% in place of VM_% */
814 if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
819 if (map_deny_write_exec(vma, newflags)) {
824 /* Allow architectures to sanity-check the new flags */
825 if (!arch_validate_flags(newflags)) {
830 error = security_file_mprotect(vma, reqprot, prot);
838 if (vma->vm_ops && vma->vm_ops->mprotect) {
839 error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
844 error = mprotect_fixup(&vmi, &tlb, vma, &prev, nstart, tmp, newflags);
848 tmp = vma_iter_end(&vmi);
852 tlb_finish_mmu(&tlb);
854 if (!error && tmp < end)
858 mmap_write_unlock(current->mm);
862 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
865 return do_mprotect_pkey(start, len, prot, -1);
868 #ifdef CONFIG_ARCH_HAS_PKEYS
870 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
871 unsigned long, prot, int, pkey)
873 return do_mprotect_pkey(start, len, prot, pkey);
876 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
881 /* No flags supported yet. */
884 /* check for unsupported init values */
885 if (init_val & ~PKEY_ACCESS_MASK)
888 mmap_write_lock(current->mm);
889 pkey = mm_pkey_alloc(current->mm);
895 ret = arch_set_user_pkey_access(current, pkey, init_val);
897 mm_pkey_free(current->mm, pkey);
902 mmap_write_unlock(current->mm);
906 SYSCALL_DEFINE1(pkey_free, int, pkey)
910 mmap_write_lock(current->mm);
911 ret = mm_pkey_free(current->mm, pkey);
912 mmap_write_unlock(current->mm);
915 * We could provide warnings or errors if any VMA still
916 * has the pkey set here.
921 #endif /* CONFIG_ARCH_HAS_PKEYS */