1 // SPDX-License-Identifier: GPL-2.0-only
3 * Memory merging support.
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
8 * Copyright (C) 2008-2009 Red Hat, Inc.
16 #include <linux/errno.h>
18 #include <linux/mm_inline.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/rwsem.h>
26 #include <linux/pagemap.h>
27 #include <linux/rmap.h>
28 #include <linux/spinlock.h>
29 #include <linux/xxhash.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/wait.h>
33 #include <linux/slab.h>
34 #include <linux/rbtree.h>
35 #include <linux/memory.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/swap.h>
38 #include <linux/ksm.h>
39 #include <linux/hashtable.h>
40 #include <linux/freezer.h>
41 #include <linux/oom.h>
42 #include <linux/numa.h>
43 #include <linux/pagewalk.h>
45 #include <asm/tlbflush.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ksm.h>
54 #define DO_NUMA(x) do { (x); } while (0)
57 #define DO_NUMA(x) do { } while (0)
60 typedef u8 rmap_age_t;
65 * A few notes about the KSM scanning process,
66 * to make it easier to understand the data structures below:
68 * In order to reduce excessive scanning, KSM sorts the memory pages by their
69 * contents into a data structure that holds pointers to the pages' locations.
71 * Since the contents of the pages may change at any moment, KSM cannot just
72 * insert the pages into a normal sorted tree and expect it to find anything.
73 * Therefore KSM uses two data structures - the stable and the unstable tree.
75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76 * by their contents. Because each such page is write-protected, searching on
77 * this tree is fully assured to be working (except when pages are unmapped),
78 * and therefore this tree is called the stable tree.
80 * The stable tree node includes information required for reverse
81 * mapping from a KSM page to virtual addresses that map this page.
83 * In order to avoid large latencies of the rmap walks on KSM pages,
84 * KSM maintains two types of nodes in the stable tree:
86 * * the regular nodes that keep the reverse mapping structures in a
88 * * the "chains" that link nodes ("dups") that represent the same
89 * write protected memory content, but each "dup" corresponds to a
90 * different KSM page copy of that content
92 * Internally, the regular nodes, "dups" and "chains" are represented
93 * using the same struct ksm_stable_node structure.
95 * In addition to the stable tree, KSM uses a second data structure called the
96 * unstable tree: this tree holds pointers to pages which have been found to
97 * be "unchanged for a period of time". The unstable tree sorts these pages
98 * by their contents, but since they are not write-protected, KSM cannot rely
99 * upon the unstable tree to work correctly - the unstable tree is liable to
100 * be corrupted as its contents are modified, and so it is called unstable.
102 * KSM solves this problem by several techniques:
104 * 1) The unstable tree is flushed every time KSM completes scanning all
105 * memory areas, and then the tree is rebuilt again from the beginning.
106 * 2) KSM will only insert into the unstable tree, pages whose hash value
107 * has not changed since the previous scan of all memory areas.
108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109 * colors of the nodes and not on their contents, assuring that even when
110 * the tree gets "corrupted" it won't get out of balance, so scanning time
111 * remains the same (also, searching and inserting nodes in an rbtree uses
112 * the same algorithm, so we have no overhead when we flush and rebuild).
113 * 4) KSM never flushes the stable tree, which means that even if it were to
114 * take 10 attempts to find a page in the unstable tree, once it is found,
115 * it is secured in the stable tree. (When we scan a new page, we first
116 * compare it against the stable tree, and then against the unstable tree.)
118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119 * stable trees and multiple unstable trees: one of each for each NUMA node.
123 * struct ksm_mm_slot - ksm information per mm that is being scanned
124 * @slot: hash lookup from mm to mm_slot
125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
129 struct ksm_rmap_item *rmap_list;
133 * struct ksm_scan - cursor for scanning
134 * @mm_slot: the current mm_slot we are scanning
135 * @address: the next address inside that to be scanned
136 * @rmap_list: link to the next rmap to be scanned in the rmap_list
137 * @seqnr: count of completed full scans (needed when removing unstable node)
139 * There is only the one ksm_scan instance of this cursor structure.
142 struct ksm_mm_slot *mm_slot;
143 unsigned long address;
144 struct ksm_rmap_item **rmap_list;
149 * struct ksm_stable_node - node of the stable rbtree
150 * @node: rb node of this ksm page in the stable tree
151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153 * @list: linked into migrate_nodes, pending placement in the proper node tree
154 * @hlist: hlist head of rmap_items using this ksm page
155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156 * @chain_prune_time: time of the last full garbage collection
157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
160 struct ksm_stable_node {
162 struct rb_node node; /* when node of stable tree */
163 struct { /* when listed for migration */
164 struct list_head *head;
166 struct hlist_node hlist_dup;
167 struct list_head list;
171 struct hlist_head hlist;
174 unsigned long chain_prune_time;
177 * STABLE_NODE_CHAIN can be any negative number in
178 * rmap_hlist_len negative range, but better not -1 to be able
179 * to reliably detect underflows.
181 #define STABLE_NODE_CHAIN -1024
189 * struct ksm_rmap_item - reverse mapping item for virtual addresses
190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192 * @nid: NUMA node id of unstable tree in which linked (may not match page)
193 * @mm: the memory structure this rmap_item is pointing into
194 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195 * @oldchecksum: previous checksum of the page at that virtual address
196 * @node: rb node of this rmap_item in the unstable tree
197 * @head: pointer to stable_node heading this list in the stable tree
198 * @hlist: link into hlist of rmap_items hanging off that stable_node
199 * @age: number of scan iterations since creation
200 * @remaining_skips: how many scans to skip
202 struct ksm_rmap_item {
203 struct ksm_rmap_item *rmap_list;
205 struct anon_vma *anon_vma; /* when stable */
207 int nid; /* when node of unstable tree */
210 struct mm_struct *mm;
211 unsigned long address; /* + low bits used for flags below */
212 unsigned int oldchecksum; /* when unstable */
214 rmap_age_t remaining_skips;
216 struct rb_node node; /* when node of unstable tree */
217 struct { /* when listed from stable tree */
218 struct ksm_stable_node *head;
219 struct hlist_node hlist;
224 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
226 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
241 static struct ksm_mm_slot ksm_mm_head = {
242 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
244 static struct ksm_scan ksm_scan = {
245 .mm_slot = &ksm_mm_head,
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
298 /* The number of zero pages which is placed by KSM */
299 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu = 70;
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
320 * struct advisor_ctx - metadata for KSM advisor
321 * @start_scan: start time of the current scan
322 * @scan_time: scan time of previous scan
323 * @change: change in percent to pages_to_scan parameter
324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
328 unsigned long scan_time;
329 unsigned long change;
330 unsigned long long cpu_time;
332 static struct advisor_ctx advisor_ctx;
334 /* Define different advisor's */
335 enum ksm_advisor_type {
337 KSM_ADVISOR_SCAN_TIME,
339 static enum ksm_advisor_type ksm_advisor;
343 * Only called through the sysfs control interface:
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
349 static void set_advisor_defaults(void)
351 if (ksm_advisor == KSM_ADVISOR_NONE) {
352 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 advisor_ctx = (const struct advisor_ctx){ 0 };
355 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
358 #endif /* CONFIG_SYSFS */
360 static inline void advisor_start_scan(void)
362 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 advisor_ctx.start_scan = ktime_get();
367 * Use previous scan time if available, otherwise use current scan time as an
368 * approximation for the previous scan time.
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 unsigned long scan_time)
373 return ctx->scan_time ? ctx->scan_time : scan_time;
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
379 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
383 * The scan time advisor is based on the current scan rate and the target
386 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
388 * To avoid perturbations it calculates a change factor of previous changes.
389 * A new change factor is calculated for each iteration and it uses an
390 * exponentially weighted moving average. The new pages_to_scan value is
391 * multiplied with that change factor:
393 * new_pages_to_scan *= change facor
395 * The new_pages_to_scan value is limited by the cpu min and max values. It
396 * calculates the cpu percent for the last scan and calculates the new
397 * estimated cpu percent cost for the next scan. That value is capped by the
398 * cpu min and max setting.
400 * In addition the new pages_to_scan value is capped by the max and min
403 static void scan_time_advisor(void)
405 unsigned int cpu_percent;
406 unsigned long cpu_time;
407 unsigned long cpu_time_diff;
408 unsigned long cpu_time_diff_ms;
410 unsigned long per_page_cost;
411 unsigned long factor;
412 unsigned long change;
413 unsigned long last_scan_time;
414 unsigned long scan_time;
416 /* Convert scan time to seconds */
417 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
419 scan_time = scan_time ? scan_time : 1;
421 /* Calculate CPU consumption of ksmd background thread */
422 cpu_time = task_sched_runtime(current);
423 cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
426 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 cpu_percent = cpu_percent ? cpu_percent : 1;
428 last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
430 /* Calculate scan time as percentage of target scan time */
431 factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 factor = factor ? factor : 1;
435 * Calculate scan time as percentage of last scan time and use
436 * exponentially weighted average to smooth it
438 change = scan_time * 100 / last_scan_time;
439 change = change ? change : 1;
440 change = ewma(advisor_ctx.change, change);
442 /* Calculate new scan rate based on target scan rate. */
443 pages = ksm_thread_pages_to_scan * 100 / factor;
444 /* Update pages_to_scan by weighted change percentage. */
445 pages = pages * change / 100;
447 /* Cap new pages_to_scan value */
448 per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 per_page_cost = per_page_cost ? per_page_cost : 1;
451 pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 pages = min(pages, ksm_advisor_max_pages_to_scan);
455 /* Update advisor context */
456 advisor_ctx.change = change;
457 advisor_ctx.scan_time = scan_time;
458 advisor_ctx.cpu_time = cpu_time;
460 ksm_thread_pages_to_scan = pages;
461 trace_ksm_advisor(scan_time, pages, cpu_percent);
464 static void advisor_stop_scan(void)
466 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
475 #define ksm_merge_across_nodes 1U
476 #define ksm_nr_node_ids 1
479 #define KSM_RUN_STOP 0
480 #define KSM_RUN_MERGE 1
481 #define KSM_RUN_UNMERGE 2
482 #define KSM_RUN_OFFLINE 4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
491 static int __init ksm_slab_init(void)
493 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
494 if (!rmap_item_cache)
497 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
498 if (!stable_node_cache)
501 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
508 kmem_cache_destroy(stable_node_cache);
510 kmem_cache_destroy(rmap_item_cache);
515 static void __init ksm_slab_free(void)
517 kmem_cache_destroy(mm_slot_cache);
518 kmem_cache_destroy(stable_node_cache);
519 kmem_cache_destroy(rmap_item_cache);
520 mm_slot_cache = NULL;
523 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
525 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
528 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
530 return dup->head == STABLE_NODE_DUP_HEAD;
533 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
534 struct ksm_stable_node *chain)
536 VM_BUG_ON(is_stable_node_dup(dup));
537 dup->head = STABLE_NODE_DUP_HEAD;
538 VM_BUG_ON(!is_stable_node_chain(chain));
539 hlist_add_head(&dup->hlist_dup, &chain->hlist);
540 ksm_stable_node_dups++;
543 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
545 VM_BUG_ON(!is_stable_node_dup(dup));
546 hlist_del(&dup->hlist_dup);
547 ksm_stable_node_dups--;
550 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
552 VM_BUG_ON(is_stable_node_chain(dup));
553 if (is_stable_node_dup(dup))
554 __stable_node_dup_del(dup);
556 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
557 #ifdef CONFIG_DEBUG_VM
562 static inline struct ksm_rmap_item *alloc_rmap_item(void)
564 struct ksm_rmap_item *rmap_item;
566 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
567 __GFP_NORETRY | __GFP_NOWARN);
573 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
576 rmap_item->mm->ksm_rmap_items--;
577 rmap_item->mm = NULL; /* debug safety */
578 kmem_cache_free(rmap_item_cache, rmap_item);
581 static inline struct ksm_stable_node *alloc_stable_node(void)
584 * The allocation can take too long with GFP_KERNEL when memory is under
585 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
586 * grants access to memory reserves, helping to avoid this problem.
588 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
591 static inline void free_stable_node(struct ksm_stable_node *stable_node)
593 VM_BUG_ON(stable_node->rmap_hlist_len &&
594 !is_stable_node_chain(stable_node));
595 kmem_cache_free(stable_node_cache, stable_node);
599 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
600 * page tables after it has passed through ksm_exit() - which, if necessary,
601 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
602 * a special flag: they can just back out as soon as mm_users goes to zero.
603 * ksm_test_exit() is used throughout to make this test for exit: in some
604 * places for correctness, in some places just to avoid unnecessary work.
606 static inline bool ksm_test_exit(struct mm_struct *mm)
608 return atomic_read(&mm->mm_users) == 0;
612 * We use break_ksm to break COW on a ksm page by triggering unsharing,
613 * such that the ksm page will get replaced by an exclusive anonymous page.
615 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
616 * in case the application has unmapped and remapped mm,addr meanwhile.
617 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
618 * mmap of /dev/mem, where we would not want to touch it.
620 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
621 * of the process that owns 'vma'. We also do not want to enforce
622 * protection keys here anyway.
624 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
629 vma_start_write(vma);
632 bool ksm_page = false;
633 struct folio_walk fw;
637 folio = folio_walk_start(&fw, vma, addr,
638 FW_MIGRATION | FW_ZEROPAGE);
640 /* Small folio implies FW_LEVEL_PTE. */
641 if (!folio_test_large(folio) &&
642 (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
644 folio_walk_end(&fw, vma);
649 ret = handle_mm_fault(vma, addr,
650 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
652 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
654 * We must loop until we no longer find a KSM page because
655 * handle_mm_fault() may back out if there's any difficulty e.g. if
656 * pte accessed bit gets updated concurrently.
658 * VM_FAULT_SIGBUS could occur if we race with truncation of the
659 * backing file, which also invalidates anonymous pages: that's
660 * okay, that truncation will have unmapped the PageKsm for us.
662 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
663 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
664 * current task has TIF_MEMDIE set, and will be OOM killed on return
665 * to user; and ksmd, having no mm, would never be chosen for that.
667 * But if the mm is in a limited mem_cgroup, then the fault may fail
668 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
669 * even ksmd can fail in this way - though it's usually breaking ksm
670 * just to undo a merge it made a moment before, so unlikely to oom.
672 * That's a pity: we might therefore have more kernel pages allocated
673 * than we're counting as nodes in the stable tree; but ksm_do_scan
674 * will retry to break_cow on each pass, so should recover the page
675 * in due course. The important thing is to not let VM_MERGEABLE
676 * be cleared while any such pages might remain in the area.
678 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
681 static bool vma_ksm_compatible(struct vm_area_struct *vma)
683 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
684 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
685 VM_MIXEDMAP| VM_DROPPABLE))
686 return false; /* just ignore the advice */
692 if (vma->vm_flags & VM_SAO)
696 if (vma->vm_flags & VM_SPARC_ADI)
703 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
706 struct vm_area_struct *vma;
707 if (ksm_test_exit(mm))
709 vma = vma_lookup(mm, addr);
710 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
715 static void break_cow(struct ksm_rmap_item *rmap_item)
717 struct mm_struct *mm = rmap_item->mm;
718 unsigned long addr = rmap_item->address;
719 struct vm_area_struct *vma;
722 * It is not an accident that whenever we want to break COW
723 * to undo, we also need to drop a reference to the anon_vma.
725 put_anon_vma(rmap_item->anon_vma);
728 vma = find_mergeable_vma(mm, addr);
730 break_ksm(vma, addr, false);
731 mmap_read_unlock(mm);
734 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
736 struct mm_struct *mm = rmap_item->mm;
737 unsigned long addr = rmap_item->address;
738 struct vm_area_struct *vma;
739 struct page *page = NULL;
740 struct folio_walk fw;
744 vma = find_mergeable_vma(mm, addr);
748 folio = folio_walk_start(&fw, vma, addr, 0);
750 if (!folio_is_zone_device(folio) &&
751 folio_test_anon(folio)) {
755 folio_walk_end(&fw, vma);
759 flush_anon_page(vma, page, addr);
760 flush_dcache_page(page);
762 mmap_read_unlock(mm);
767 * This helper is used for getting right index into array of tree roots.
768 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
769 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
770 * every node has its own stable and unstable tree.
772 static inline int get_kpfn_nid(unsigned long kpfn)
774 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
777 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
778 struct rb_root *root)
780 struct ksm_stable_node *chain = alloc_stable_node();
781 VM_BUG_ON(is_stable_node_chain(dup));
783 INIT_HLIST_HEAD(&chain->hlist);
784 chain->chain_prune_time = jiffies;
785 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
786 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
787 chain->nid = NUMA_NO_NODE; /* debug */
789 ksm_stable_node_chains++;
792 * Put the stable node chain in the first dimension of
793 * the stable tree and at the same time remove the old
796 rb_replace_node(&dup->node, &chain->node, root);
799 * Move the old stable node to the second dimension
800 * queued in the hlist_dup. The invariant is that all
801 * dup stable_nodes in the chain->hlist point to pages
802 * that are write protected and have the exact same
805 stable_node_chain_add_dup(dup, chain);
810 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
811 struct rb_root *root)
813 rb_erase(&chain->node, root);
814 free_stable_node(chain);
815 ksm_stable_node_chains--;
818 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
820 struct ksm_rmap_item *rmap_item;
822 /* check it's not STABLE_NODE_CHAIN or negative */
823 BUG_ON(stable_node->rmap_hlist_len < 0);
825 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
826 if (rmap_item->hlist.next) {
828 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
833 rmap_item->mm->ksm_merging_pages--;
835 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
836 stable_node->rmap_hlist_len--;
837 put_anon_vma(rmap_item->anon_vma);
838 rmap_item->address &= PAGE_MASK;
843 * We need the second aligned pointer of the migrate_nodes
844 * list_head to stay clear from the rb_parent_color union
845 * (aligned and different than any node) and also different
846 * from &migrate_nodes. This will verify that future list.h changes
847 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
849 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
850 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
852 trace_ksm_remove_ksm_page(stable_node->kpfn);
853 if (stable_node->head == &migrate_nodes)
854 list_del(&stable_node->list);
856 stable_node_dup_del(stable_node);
857 free_stable_node(stable_node);
860 enum ksm_get_folio_flags {
861 KSM_GET_FOLIO_NOLOCK,
863 KSM_GET_FOLIO_TRYLOCK
867 * ksm_get_folio: checks if the page indicated by the stable node
868 * is still its ksm page, despite having held no reference to it.
869 * In which case we can trust the content of the page, and it
870 * returns the gotten page; but if the page has now been zapped,
871 * remove the stale node from the stable tree and return NULL.
872 * But beware, the stable node's page might be being migrated.
874 * You would expect the stable_node to hold a reference to the ksm page.
875 * But if it increments the page's count, swapping out has to wait for
876 * ksmd to come around again before it can free the page, which may take
877 * seconds or even minutes: much too unresponsive. So instead we use a
878 * "keyhole reference": access to the ksm page from the stable node peeps
879 * out through its keyhole to see if that page still holds the right key,
880 * pointing back to this stable node. This relies on freeing a PageAnon
881 * page to reset its page->mapping to NULL, and relies on no other use of
882 * a page to put something that might look like our key in page->mapping.
883 * is on its way to being freed; but it is an anomaly to bear in mind.
885 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
886 enum ksm_get_folio_flags flags)
889 void *expected_mapping;
892 expected_mapping = (void *)((unsigned long)stable_node |
895 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
896 folio = pfn_folio(kpfn);
897 if (READ_ONCE(folio->mapping) != expected_mapping)
901 * We cannot do anything with the page while its refcount is 0.
902 * Usually 0 means free, or tail of a higher-order page: in which
903 * case this node is no longer referenced, and should be freed;
904 * however, it might mean that the page is under page_ref_freeze().
905 * The __remove_mapping() case is easy, again the node is now stale;
906 * the same is in reuse_ksm_page() case; but if page is swapcache
907 * in folio_migrate_mapping(), it might still be our page,
908 * in which case it's essential to keep the node.
910 while (!folio_try_get(folio)) {
912 * Another check for page->mapping != expected_mapping would
913 * work here too. We have chosen the !PageSwapCache test to
914 * optimize the common case, when the page is or is about to
915 * be freed: PageSwapCache is cleared (under spin_lock_irq)
916 * in the ref_freeze section of __remove_mapping(); but Anon
917 * folio->mapping reset to NULL later, in free_pages_prepare().
919 if (!folio_test_swapcache(folio))
924 if (READ_ONCE(folio->mapping) != expected_mapping) {
929 if (flags == KSM_GET_FOLIO_TRYLOCK) {
930 if (!folio_trylock(folio)) {
932 return ERR_PTR(-EBUSY);
934 } else if (flags == KSM_GET_FOLIO_LOCK)
937 if (flags != KSM_GET_FOLIO_NOLOCK) {
938 if (READ_ONCE(folio->mapping) != expected_mapping) {
948 * We come here from above when page->mapping or !PageSwapCache
949 * suggests that the node is stale; but it might be under migration.
950 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
951 * before checking whether node->kpfn has been changed.
954 if (READ_ONCE(stable_node->kpfn) != kpfn)
956 remove_node_from_stable_tree(stable_node);
961 * Removing rmap_item from stable or unstable tree.
962 * This function will clean the information from the stable/unstable tree.
964 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
966 if (rmap_item->address & STABLE_FLAG) {
967 struct ksm_stable_node *stable_node;
970 stable_node = rmap_item->head;
971 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
975 hlist_del(&rmap_item->hlist);
979 if (!hlist_empty(&stable_node->hlist))
984 rmap_item->mm->ksm_merging_pages--;
986 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
987 stable_node->rmap_hlist_len--;
989 put_anon_vma(rmap_item->anon_vma);
990 rmap_item->head = NULL;
991 rmap_item->address &= PAGE_MASK;
993 } else if (rmap_item->address & UNSTABLE_FLAG) {
996 * Usually ksmd can and must skip the rb_erase, because
997 * root_unstable_tree was already reset to RB_ROOT.
998 * But be careful when an mm is exiting: do the rb_erase
999 * if this rmap_item was inserted by this scan, rather
1000 * than left over from before.
1002 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1005 rb_erase(&rmap_item->node,
1006 root_unstable_tree + NUMA(rmap_item->nid));
1007 ksm_pages_unshared--;
1008 rmap_item->address &= PAGE_MASK;
1011 cond_resched(); /* we're called from many long loops */
1014 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1016 while (*rmap_list) {
1017 struct ksm_rmap_item *rmap_item = *rmap_list;
1018 *rmap_list = rmap_item->rmap_list;
1019 remove_rmap_item_from_tree(rmap_item);
1020 free_rmap_item(rmap_item);
1025 * Though it's very tempting to unmerge rmap_items from stable tree rather
1026 * than check every pte of a given vma, the locking doesn't quite work for
1027 * that - an rmap_item is assigned to the stable tree after inserting ksm
1028 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
1029 * rmap_items from parent to child at fork time (so as not to waste time
1030 * if exit comes before the next scan reaches it).
1032 * Similarly, although we'd like to remove rmap_items (so updating counts
1033 * and freeing memory) when unmerging an area, it's easier to leave that
1034 * to the next pass of ksmd - consider, for example, how ksmd might be
1035 * in cmp_and_merge_page on one of the rmap_items we would be removing.
1037 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1038 unsigned long start, unsigned long end, bool lock_vma)
1043 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1044 if (ksm_test_exit(vma->vm_mm))
1046 if (signal_pending(current))
1049 err = break_ksm(vma, addr, lock_vma);
1054 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1056 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1059 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1061 return folio_stable_node(page_folio(page));
1064 static inline void folio_set_stable_node(struct folio *folio,
1065 struct ksm_stable_node *stable_node)
1067 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1068 folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1073 * Only called through the sysfs control interface:
1075 static int remove_stable_node(struct ksm_stable_node *stable_node)
1077 struct folio *folio;
1080 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1083 * ksm_get_folio did remove_node_from_stable_tree itself.
1089 * Page could be still mapped if this races with __mmput() running in
1090 * between ksm_exit() and exit_mmap(). Just refuse to let
1091 * merge_across_nodes/max_page_sharing be switched.
1094 if (!folio_mapped(folio)) {
1096 * The stable node did not yet appear stale to ksm_get_folio(),
1097 * since that allows for an unmapped ksm folio to be recognized
1098 * right up until it is freed; but the node is safe to remove.
1099 * This folio might be in an LRU cache waiting to be freed,
1100 * or it might be in the swapcache (perhaps under writeback),
1101 * or it might have been removed from swapcache a moment ago.
1103 folio_set_stable_node(folio, NULL);
1104 remove_node_from_stable_tree(stable_node);
1108 folio_unlock(folio);
1113 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1114 struct rb_root *root)
1116 struct ksm_stable_node *dup;
1117 struct hlist_node *hlist_safe;
1119 if (!is_stable_node_chain(stable_node)) {
1120 VM_BUG_ON(is_stable_node_dup(stable_node));
1121 if (remove_stable_node(stable_node))
1127 hlist_for_each_entry_safe(dup, hlist_safe,
1128 &stable_node->hlist, hlist_dup) {
1129 VM_BUG_ON(!is_stable_node_dup(dup));
1130 if (remove_stable_node(dup))
1133 BUG_ON(!hlist_empty(&stable_node->hlist));
1134 free_stable_node_chain(stable_node, root);
1138 static int remove_all_stable_nodes(void)
1140 struct ksm_stable_node *stable_node, *next;
1144 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1145 while (root_stable_tree[nid].rb_node) {
1146 stable_node = rb_entry(root_stable_tree[nid].rb_node,
1147 struct ksm_stable_node, node);
1148 if (remove_stable_node_chain(stable_node,
1149 root_stable_tree + nid)) {
1151 break; /* proceed to next nid */
1156 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1157 if (remove_stable_node(stable_node))
1164 static int unmerge_and_remove_all_rmap_items(void)
1166 struct ksm_mm_slot *mm_slot;
1167 struct mm_slot *slot;
1168 struct mm_struct *mm;
1169 struct vm_area_struct *vma;
1172 spin_lock(&ksm_mmlist_lock);
1173 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1174 struct mm_slot, mm_node);
1175 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1176 spin_unlock(&ksm_mmlist_lock);
1178 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1179 mm_slot = ksm_scan.mm_slot) {
1180 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1182 mm = mm_slot->slot.mm;
1186 * Exit right away if mm is exiting to avoid lockdep issue in
1189 if (ksm_test_exit(mm))
1192 for_each_vma(vmi, vma) {
1193 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1195 err = unmerge_ksm_pages(vma,
1196 vma->vm_start, vma->vm_end, false);
1202 remove_trailing_rmap_items(&mm_slot->rmap_list);
1203 mmap_read_unlock(mm);
1205 spin_lock(&ksm_mmlist_lock);
1206 slot = list_entry(mm_slot->slot.mm_node.next,
1207 struct mm_slot, mm_node);
1208 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209 if (ksm_test_exit(mm)) {
1210 hash_del(&mm_slot->slot.hash);
1211 list_del(&mm_slot->slot.mm_node);
1212 spin_unlock(&ksm_mmlist_lock);
1214 mm_slot_free(mm_slot_cache, mm_slot);
1215 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1216 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1219 spin_unlock(&ksm_mmlist_lock);
1222 /* Clean up stable nodes, but don't worry if some are still busy */
1223 remove_all_stable_nodes();
1228 mmap_read_unlock(mm);
1229 spin_lock(&ksm_mmlist_lock);
1230 ksm_scan.mm_slot = &ksm_mm_head;
1231 spin_unlock(&ksm_mmlist_lock);
1234 #endif /* CONFIG_SYSFS */
1236 static u32 calc_checksum(struct page *page)
1239 void *addr = kmap_local_page(page);
1240 checksum = xxhash(addr, PAGE_SIZE, 0);
1245 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1248 struct mm_struct *mm = vma->vm_mm;
1249 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1252 struct mmu_notifier_range range;
1253 bool anon_exclusive;
1256 if (WARN_ON_ONCE(folio_test_large(folio)))
1259 pvmw.address = page_address_in_vma(&folio->page, vma);
1260 if (pvmw.address == -EFAULT)
1263 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1264 pvmw.address + PAGE_SIZE);
1265 mmu_notifier_invalidate_range_start(&range);
1267 if (!page_vma_mapped_walk(&pvmw))
1269 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1272 anon_exclusive = PageAnonExclusive(&folio->page);
1273 entry = ptep_get(pvmw.pte);
1274 if (pte_write(entry) || pte_dirty(entry) ||
1275 anon_exclusive || mm_tlb_flush_pending(mm)) {
1276 swapped = folio_test_swapcache(folio);
1277 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1279 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1280 * take any lock, therefore the check that we are going to make
1281 * with the pagecount against the mapcount is racy and
1282 * O_DIRECT can happen right after the check.
1283 * So we clear the pte and flush the tlb before the check
1284 * this assure us that no O_DIRECT can happen after the check
1285 * or in the middle of the check.
1287 * No need to notify as we are downgrading page table to read
1288 * only not changing it to point to a new page.
1290 * See Documentation/mm/mmu_notifier.rst
1292 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1294 * Check that no O_DIRECT or similar I/O is in progress on the
1297 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1298 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1302 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1303 if (anon_exclusive &&
1304 folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1305 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1309 if (pte_dirty(entry))
1310 folio_mark_dirty(folio);
1311 entry = pte_mkclean(entry);
1313 if (pte_write(entry))
1314 entry = pte_wrprotect(entry);
1316 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1322 page_vma_mapped_walk_done(&pvmw);
1324 mmu_notifier_invalidate_range_end(&range);
1330 * replace_page - replace page in vma by new ksm page
1331 * @vma: vma that holds the pte pointing to page
1332 * @page: the page we are replacing by kpage
1333 * @kpage: the ksm page we replace page by
1334 * @orig_pte: the original value of the pte
1336 * Returns 0 on success, -EFAULT on failure.
1338 static int replace_page(struct vm_area_struct *vma, struct page *page,
1339 struct page *kpage, pte_t orig_pte)
1341 struct folio *kfolio = page_folio(kpage);
1342 struct mm_struct *mm = vma->vm_mm;
1343 struct folio *folio;
1351 struct mmu_notifier_range range;
1353 addr = page_address_in_vma(page, vma);
1354 if (addr == -EFAULT)
1357 pmd = mm_find_pmd(mm, addr);
1361 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1362 * without holding anon_vma lock for write. So when looking for a
1363 * genuine pmde (in which to find pte), test present and !THP together.
1365 pmde = pmdp_get_lockless(pmd);
1366 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1369 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1371 mmu_notifier_invalidate_range_start(&range);
1373 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1376 if (!pte_same(ptep_get(ptep), orig_pte)) {
1377 pte_unmap_unlock(ptep, ptl);
1380 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1381 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1385 * No need to check ksm_use_zero_pages here: we can only have a
1386 * zero_page here if ksm_use_zero_pages was enabled already.
1388 if (!is_zero_pfn(page_to_pfn(kpage))) {
1390 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1391 newpte = mk_pte(kpage, vma->vm_page_prot);
1394 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1395 * we can easily track all KSM-placed zero pages by checking if
1396 * the dirty bit in zero page's PTE is set.
1398 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1399 ksm_map_zero_page(mm);
1401 * We're replacing an anonymous page with a zero page, which is
1402 * not anonymous. We need to do proper accounting otherwise we
1403 * will get wrong values in /proc, and a BUG message in dmesg
1404 * when tearing down the mm.
1406 dec_mm_counter(mm, MM_ANONPAGES);
1409 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1411 * No need to notify as we are replacing a read only page with another
1412 * read only page with the same content.
1414 * See Documentation/mm/mmu_notifier.rst
1416 ptep_clear_flush(vma, addr, ptep);
1417 set_pte_at(mm, addr, ptep, newpte);
1419 folio = page_folio(page);
1420 folio_remove_rmap_pte(folio, page, vma);
1421 if (!folio_mapped(folio))
1422 folio_free_swap(folio);
1425 pte_unmap_unlock(ptep, ptl);
1428 mmu_notifier_invalidate_range_end(&range);
1434 * try_to_merge_one_page - take two pages and merge them into one
1435 * @vma: the vma that holds the pte pointing to page
1436 * @page: the PageAnon page that we want to replace with kpage
1437 * @kpage: the PageKsm page that we want to map instead of page,
1438 * or NULL the first time when we want to use page as kpage.
1440 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1442 static int try_to_merge_one_page(struct vm_area_struct *vma,
1443 struct page *page, struct page *kpage)
1445 pte_t orig_pte = __pte(0);
1448 if (page == kpage) /* ksm page forked */
1451 if (!PageAnon(page))
1455 * We need the page lock to read a stable PageSwapCache in
1456 * write_protect_page(). We use trylock_page() instead of
1457 * lock_page() because we don't want to wait here - we
1458 * prefer to continue scanning and merging different pages,
1459 * then come back to this page when it is unlocked.
1461 if (!trylock_page(page))
1464 if (PageTransCompound(page)) {
1465 if (split_huge_page(page))
1470 * If this anonymous page is mapped only here, its pte may need
1471 * to be write-protected. If it's mapped elsewhere, all of its
1472 * ptes are necessarily already write-protected. But in either
1473 * case, we need to lock and check page_count is not raised.
1475 if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
1478 * While we hold page lock, upgrade page from
1479 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1480 * stable_tree_insert() will update stable_node.
1482 folio_set_stable_node(page_folio(page), NULL);
1483 mark_page_accessed(page);
1485 * Page reclaim just frees a clean page with no dirty
1486 * ptes: make sure that the ksm page would be swapped.
1488 if (!PageDirty(page))
1491 } else if (pages_identical(page, kpage))
1492 err = replace_page(vma, page, kpage, orig_pte);
1502 * This function returns 0 if the pages were merged or if they are
1503 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1505 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1508 struct mm_struct *mm = rmap_item->mm;
1512 * Same checksum as an empty page. We attempt to merge it with the
1513 * appropriate zero page if the user enabled this via sysfs.
1515 if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1516 struct vm_area_struct *vma;
1519 vma = find_mergeable_vma(mm, rmap_item->address);
1521 err = try_to_merge_one_page(vma, page,
1522 ZERO_PAGE(rmap_item->address));
1523 trace_ksm_merge_one_page(
1524 page_to_pfn(ZERO_PAGE(rmap_item->address)),
1525 rmap_item, mm, err);
1528 * If the vma is out of date, we do not need to
1533 mmap_read_unlock(mm);
1540 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1541 * but no new kernel page is allocated: kpage must already be a ksm page.
1543 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1545 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1546 struct page *page, struct page *kpage)
1548 struct mm_struct *mm = rmap_item->mm;
1549 struct vm_area_struct *vma;
1553 vma = find_mergeable_vma(mm, rmap_item->address);
1557 err = try_to_merge_one_page(vma, page, kpage);
1561 /* Unstable nid is in union with stable anon_vma: remove first */
1562 remove_rmap_item_from_tree(rmap_item);
1564 /* Must get reference to anon_vma while still holding mmap_lock */
1565 rmap_item->anon_vma = vma->anon_vma;
1566 get_anon_vma(vma->anon_vma);
1568 mmap_read_unlock(mm);
1569 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1570 rmap_item, mm, err);
1575 * try_to_merge_two_pages - take two identical pages and prepare them
1576 * to be merged into one page.
1578 * This function returns the kpage if we successfully merged two identical
1579 * pages into one ksm page, NULL otherwise.
1581 * Note that this function upgrades page to ksm page: if one of the pages
1582 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1584 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1586 struct ksm_rmap_item *tree_rmap_item,
1587 struct page *tree_page)
1591 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1593 err = try_to_merge_with_ksm_page(tree_rmap_item,
1596 * If that fails, we have a ksm page with only one pte
1597 * pointing to it: so break it.
1600 break_cow(rmap_item);
1602 return err ? NULL : page;
1605 static __always_inline
1606 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1608 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1610 * Check that at least one mapping still exists, otherwise
1611 * there's no much point to merge and share with this
1612 * stable_node, as the underlying tree_page of the other
1613 * sharer is going to be freed soon.
1615 return stable_node->rmap_hlist_len &&
1616 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1619 static __always_inline
1620 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1622 return __is_page_sharing_candidate(stable_node, 0);
1625 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1626 struct ksm_stable_node **_stable_node,
1627 struct rb_root *root,
1628 bool prune_stale_stable_nodes)
1630 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1631 struct hlist_node *hlist_safe;
1632 struct folio *folio, *tree_folio = NULL;
1633 int found_rmap_hlist_len;
1635 if (!prune_stale_stable_nodes ||
1636 time_before(jiffies, stable_node->chain_prune_time +
1638 ksm_stable_node_chains_prune_millisecs)))
1639 prune_stale_stable_nodes = false;
1641 stable_node->chain_prune_time = jiffies;
1643 hlist_for_each_entry_safe(dup, hlist_safe,
1644 &stable_node->hlist, hlist_dup) {
1647 * We must walk all stable_node_dup to prune the stale
1648 * stable nodes during lookup.
1650 * ksm_get_folio can drop the nodes from the
1651 * stable_node->hlist if they point to freed pages
1652 * (that's why we do a _safe walk). The "dup"
1653 * stable_node parameter itself will be freed from
1654 * under us if it returns NULL.
1656 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1659 /* Pick the best candidate if possible. */
1660 if (!found || (is_page_sharing_candidate(dup) &&
1661 (!is_page_sharing_candidate(found) ||
1662 dup->rmap_hlist_len > found_rmap_hlist_len))) {
1664 folio_put(tree_folio);
1666 found_rmap_hlist_len = found->rmap_hlist_len;
1668 /* skip put_page for found candidate */
1669 if (!prune_stale_stable_nodes &&
1670 is_page_sharing_candidate(found))
1678 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1680 * If there's not just one entry it would
1681 * corrupt memory, better BUG_ON. In KSM
1682 * context with no lock held it's not even
1685 BUG_ON(stable_node->hlist.first->next);
1688 * There's just one entry and it is below the
1689 * deduplication limit so drop the chain.
1691 rb_replace_node(&stable_node->node, &found->node,
1693 free_stable_node(stable_node);
1694 ksm_stable_node_chains--;
1695 ksm_stable_node_dups--;
1697 * NOTE: the caller depends on the stable_node
1698 * to be equal to stable_node_dup if the chain
1701 *_stable_node = found;
1703 * Just for robustness, as stable_node is
1704 * otherwise left as a stable pointer, the
1705 * compiler shall optimize it away at build
1709 } else if (stable_node->hlist.first != &found->hlist_dup &&
1710 __is_page_sharing_candidate(found, 1)) {
1712 * If the found stable_node dup can accept one
1713 * more future merge (in addition to the one
1714 * that is underway) and is not at the head of
1715 * the chain, put it there so next search will
1716 * be quicker in the !prune_stale_stable_nodes
1719 * NOTE: it would be inaccurate to use nr > 1
1720 * instead of checking the hlist.first pointer
1721 * directly, because in the
1722 * prune_stale_stable_nodes case "nr" isn't
1723 * the position of the found dup in the chain,
1724 * but the total number of dups in the chain.
1726 hlist_del(&found->hlist_dup);
1727 hlist_add_head(&found->hlist_dup,
1728 &stable_node->hlist);
1731 /* Its hlist must be empty if no one found. */
1732 free_stable_node_chain(stable_node, root);
1735 *_stable_node_dup = found;
1740 * Like for ksm_get_folio, this function can free the *_stable_node and
1741 * *_stable_node_dup if the returned tree_page is NULL.
1743 * It can also free and overwrite *_stable_node with the found
1744 * stable_node_dup if the chain is collapsed (in which case
1745 * *_stable_node will be equal to *_stable_node_dup like if the chain
1746 * never existed). It's up to the caller to verify tree_page is not
1747 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1749 * *_stable_node_dup is really a second output parameter of this
1750 * function and will be overwritten in all cases, the caller doesn't
1751 * need to initialize it.
1753 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1754 struct ksm_stable_node **_stable_node,
1755 struct rb_root *root,
1756 bool prune_stale_stable_nodes)
1758 struct ksm_stable_node *stable_node = *_stable_node;
1760 if (!is_stable_node_chain(stable_node)) {
1761 *_stable_node_dup = stable_node;
1762 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1764 return stable_node_dup(_stable_node_dup, _stable_node, root,
1765 prune_stale_stable_nodes);
1768 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1769 struct ksm_stable_node **s_n,
1770 struct rb_root *root)
1772 return __stable_node_chain(s_n_d, s_n, root, true);
1775 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1776 struct ksm_stable_node **s_n,
1777 struct rb_root *root)
1779 return __stable_node_chain(s_n_d, s_n, root, false);
1783 * stable_tree_search - search for page inside the stable tree
1785 * This function checks if there is a page inside the stable tree
1786 * with identical content to the page that we are scanning right now.
1788 * This function returns the stable tree node of identical content if found,
1791 static struct page *stable_tree_search(struct page *page)
1794 struct rb_root *root;
1795 struct rb_node **new;
1796 struct rb_node *parent;
1797 struct ksm_stable_node *stable_node, *stable_node_dup;
1798 struct ksm_stable_node *page_node;
1799 struct folio *folio;
1801 folio = page_folio(page);
1802 page_node = folio_stable_node(folio);
1803 if (page_node && page_node->head != &migrate_nodes) {
1804 /* ksm page forked */
1806 return &folio->page;
1809 nid = get_kpfn_nid(folio_pfn(folio));
1810 root = root_stable_tree + nid;
1812 new = &root->rb_node;
1816 struct folio *tree_folio;
1820 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1821 tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1824 * If we walked over a stale stable_node,
1825 * ksm_get_folio() will call rb_erase() and it
1826 * may rebalance the tree from under us. So
1827 * restart the search from scratch. Returning
1828 * NULL would be safe too, but we'd generate
1829 * false negative insertions just because some
1830 * stable_node was stale.
1835 ret = memcmp_pages(page, &tree_folio->page);
1836 folio_put(tree_folio);
1840 new = &parent->rb_left;
1842 new = &parent->rb_right;
1845 VM_BUG_ON(page_node->head != &migrate_nodes);
1847 * If the mapcount of our migrated KSM folio is
1848 * at most 1, we can merge it with another
1849 * KSM folio where we know that we have space
1850 * for one more mapping without exceeding the
1851 * ksm_max_page_sharing limit: see
1852 * chain_prune(). This way, we can avoid adding
1853 * this stable node to the chain.
1855 if (folio_mapcount(folio) > 1)
1859 if (!is_page_sharing_candidate(stable_node_dup)) {
1861 * If the stable_node is a chain and
1862 * we got a payload match in memcmp
1863 * but we cannot merge the scanned
1864 * page in any of the existing
1865 * stable_node dups because they're
1866 * all full, we need to wait the
1867 * scanned page to find itself a match
1868 * in the unstable tree to create a
1869 * brand new KSM page to add later to
1870 * the dups of this stable_node.
1876 * Lock and unlock the stable_node's page (which
1877 * might already have been migrated) so that page
1878 * migration is sure to notice its raised count.
1879 * It would be more elegant to return stable_node
1880 * than kpage, but that involves more changes.
1882 tree_folio = ksm_get_folio(stable_node_dup,
1883 KSM_GET_FOLIO_TRYLOCK);
1885 if (PTR_ERR(tree_folio) == -EBUSY)
1886 return ERR_PTR(-EBUSY);
1888 if (unlikely(!tree_folio))
1890 * The tree may have been rebalanced,
1891 * so re-evaluate parent and new.
1894 folio_unlock(tree_folio);
1896 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1897 NUMA(stable_node_dup->nid)) {
1898 folio_put(tree_folio);
1901 return &tree_folio->page;
1908 list_del(&page_node->list);
1909 DO_NUMA(page_node->nid = nid);
1910 rb_link_node(&page_node->node, parent, new);
1911 rb_insert_color(&page_node->node, root);
1913 if (is_page_sharing_candidate(page_node)) {
1915 return &folio->page;
1921 * If stable_node was a chain and chain_prune collapsed it,
1922 * stable_node has been updated to be the new regular
1923 * stable_node. A collapse of the chain is indistinguishable
1924 * from the case there was no chain in the stable
1925 * rbtree. Otherwise stable_node is the chain and
1926 * stable_node_dup is the dup to replace.
1928 if (stable_node_dup == stable_node) {
1929 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1930 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1931 /* there is no chain */
1933 VM_BUG_ON(page_node->head != &migrate_nodes);
1934 list_del(&page_node->list);
1935 DO_NUMA(page_node->nid = nid);
1936 rb_replace_node(&stable_node_dup->node,
1939 if (is_page_sharing_candidate(page_node))
1944 rb_erase(&stable_node_dup->node, root);
1948 VM_BUG_ON(!is_stable_node_chain(stable_node));
1949 __stable_node_dup_del(stable_node_dup);
1951 VM_BUG_ON(page_node->head != &migrate_nodes);
1952 list_del(&page_node->list);
1953 DO_NUMA(page_node->nid = nid);
1954 stable_node_chain_add_dup(page_node, stable_node);
1955 if (is_page_sharing_candidate(page_node))
1963 stable_node_dup->head = &migrate_nodes;
1964 list_add(&stable_node_dup->list, stable_node_dup->head);
1965 return &folio->page;
1969 * If stable_node was a chain and chain_prune collapsed it,
1970 * stable_node has been updated to be the new regular
1971 * stable_node. A collapse of the chain is indistinguishable
1972 * from the case there was no chain in the stable
1973 * rbtree. Otherwise stable_node is the chain and
1974 * stable_node_dup is the dup to replace.
1976 if (stable_node_dup == stable_node) {
1977 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1978 /* chain is missing so create it */
1979 stable_node = alloc_stable_node_chain(stable_node_dup,
1985 * Add this stable_node dup that was
1986 * migrated to the stable_node chain
1987 * of the current nid for this page
1990 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1991 VM_BUG_ON(page_node->head != &migrate_nodes);
1992 list_del(&page_node->list);
1993 DO_NUMA(page_node->nid = nid);
1994 stable_node_chain_add_dup(page_node, stable_node);
1999 * stable_tree_insert - insert stable tree node pointing to new ksm page
2000 * into the stable tree.
2002 * This function returns the stable tree node just allocated on success,
2005 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2009 struct rb_root *root;
2010 struct rb_node **new;
2011 struct rb_node *parent;
2012 struct ksm_stable_node *stable_node, *stable_node_dup;
2013 bool need_chain = false;
2015 kpfn = folio_pfn(kfolio);
2016 nid = get_kpfn_nid(kpfn);
2017 root = root_stable_tree + nid;
2020 new = &root->rb_node;
2023 struct folio *tree_folio;
2027 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2028 tree_folio = chain(&stable_node_dup, &stable_node, root);
2031 * If we walked over a stale stable_node,
2032 * ksm_get_folio() will call rb_erase() and it
2033 * may rebalance the tree from under us. So
2034 * restart the search from scratch. Returning
2035 * NULL would be safe too, but we'd generate
2036 * false negative insertions just because some
2037 * stable_node was stale.
2042 ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2043 folio_put(tree_folio);
2047 new = &parent->rb_left;
2049 new = &parent->rb_right;
2056 stable_node_dup = alloc_stable_node();
2057 if (!stable_node_dup)
2060 INIT_HLIST_HEAD(&stable_node_dup->hlist);
2061 stable_node_dup->kpfn = kpfn;
2062 stable_node_dup->rmap_hlist_len = 0;
2063 DO_NUMA(stable_node_dup->nid = nid);
2065 rb_link_node(&stable_node_dup->node, parent, new);
2066 rb_insert_color(&stable_node_dup->node, root);
2068 if (!is_stable_node_chain(stable_node)) {
2069 struct ksm_stable_node *orig = stable_node;
2070 /* chain is missing so create it */
2071 stable_node = alloc_stable_node_chain(orig, root);
2073 free_stable_node(stable_node_dup);
2077 stable_node_chain_add_dup(stable_node_dup, stable_node);
2080 folio_set_stable_node(kfolio, stable_node_dup);
2082 return stable_node_dup;
2086 * unstable_tree_search_insert - search for identical page,
2087 * else insert rmap_item into the unstable tree.
2089 * This function searches for a page in the unstable tree identical to the
2090 * page currently being scanned; and if no identical page is found in the
2091 * tree, we insert rmap_item as a new object into the unstable tree.
2093 * This function returns pointer to rmap_item found to be identical
2094 * to the currently scanned page, NULL otherwise.
2096 * This function does both searching and inserting, because they share
2097 * the same walking algorithm in an rbtree.
2100 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2102 struct page **tree_pagep)
2104 struct rb_node **new;
2105 struct rb_root *root;
2106 struct rb_node *parent = NULL;
2109 nid = get_kpfn_nid(page_to_pfn(page));
2110 root = root_unstable_tree + nid;
2111 new = &root->rb_node;
2114 struct ksm_rmap_item *tree_rmap_item;
2115 struct page *tree_page;
2119 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2120 tree_page = get_mergeable_page(tree_rmap_item);
2125 * Don't substitute a ksm page for a forked page.
2127 if (page == tree_page) {
2128 put_page(tree_page);
2132 ret = memcmp_pages(page, tree_page);
2136 put_page(tree_page);
2137 new = &parent->rb_left;
2138 } else if (ret > 0) {
2139 put_page(tree_page);
2140 new = &parent->rb_right;
2141 } else if (!ksm_merge_across_nodes &&
2142 page_to_nid(tree_page) != nid) {
2144 * If tree_page has been migrated to another NUMA node,
2145 * it will be flushed out and put in the right unstable
2146 * tree next time: only merge with it when across_nodes.
2148 put_page(tree_page);
2151 *tree_pagep = tree_page;
2152 return tree_rmap_item;
2156 rmap_item->address |= UNSTABLE_FLAG;
2157 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2158 DO_NUMA(rmap_item->nid = nid);
2159 rb_link_node(&rmap_item->node, parent, new);
2160 rb_insert_color(&rmap_item->node, root);
2162 ksm_pages_unshared++;
2167 * stable_tree_append - add another rmap_item to the linked list of
2168 * rmap_items hanging off a given node of the stable tree, all sharing
2169 * the same ksm page.
2171 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2172 struct ksm_stable_node *stable_node,
2173 bool max_page_sharing_bypass)
2176 * rmap won't find this mapping if we don't insert the
2177 * rmap_item in the right stable_node
2178 * duplicate. page_migration could break later if rmap breaks,
2179 * so we can as well crash here. We really need to check for
2180 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2181 * for other negative values as an underflow if detected here
2182 * for the first time (and not when decreasing rmap_hlist_len)
2183 * would be sign of memory corruption in the stable_node.
2185 BUG_ON(stable_node->rmap_hlist_len < 0);
2187 stable_node->rmap_hlist_len++;
2188 if (!max_page_sharing_bypass)
2189 /* possibly non fatal but unexpected overflow, only warn */
2190 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2191 ksm_max_page_sharing);
2193 rmap_item->head = stable_node;
2194 rmap_item->address |= STABLE_FLAG;
2195 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2197 if (rmap_item->hlist.next)
2198 ksm_pages_sharing++;
2202 rmap_item->mm->ksm_merging_pages++;
2206 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2207 * if not, compare checksum to previous and if it's the same, see if page can
2208 * be inserted into the unstable tree, or merged with a page already there and
2209 * both transferred to the stable tree.
2211 * @page: the page that we are searching identical page to.
2212 * @rmap_item: the reverse mapping into the virtual address of this page
2214 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2216 struct ksm_rmap_item *tree_rmap_item;
2217 struct page *tree_page = NULL;
2218 struct ksm_stable_node *stable_node;
2220 unsigned int checksum;
2222 bool max_page_sharing_bypass = false;
2224 stable_node = page_stable_node(page);
2226 if (stable_node->head != &migrate_nodes &&
2227 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2228 NUMA(stable_node->nid)) {
2229 stable_node_dup_del(stable_node);
2230 stable_node->head = &migrate_nodes;
2231 list_add(&stable_node->list, stable_node->head);
2233 if (stable_node->head != &migrate_nodes &&
2234 rmap_item->head == stable_node)
2237 * If it's a KSM fork, allow it to go over the sharing limit
2240 if (!is_page_sharing_candidate(stable_node))
2241 max_page_sharing_bypass = true;
2243 remove_rmap_item_from_tree(rmap_item);
2246 * If the hash value of the page has changed from the last time
2247 * we calculated it, this page is changing frequently: therefore we
2248 * don't want to insert it in the unstable tree, and we don't want
2249 * to waste our time searching for something identical to it there.
2251 checksum = calc_checksum(page);
2252 if (rmap_item->oldchecksum != checksum) {
2253 rmap_item->oldchecksum = checksum;
2257 if (!try_to_merge_with_zero_page(rmap_item, page))
2261 /* We first start with searching the page inside the stable tree */
2262 kpage = stable_tree_search(page);
2263 if (kpage == page && rmap_item->head == stable_node) {
2268 remove_rmap_item_from_tree(rmap_item);
2271 if (PTR_ERR(kpage) == -EBUSY)
2274 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2277 * The page was successfully merged:
2278 * add its rmap_item to the stable tree.
2281 stable_tree_append(rmap_item, page_stable_node(kpage),
2282 max_page_sharing_bypass);
2290 unstable_tree_search_insert(rmap_item, page, &tree_page);
2291 if (tree_rmap_item) {
2294 kpage = try_to_merge_two_pages(rmap_item, page,
2295 tree_rmap_item, tree_page);
2297 * If both pages we tried to merge belong to the same compound
2298 * page, then we actually ended up increasing the reference
2299 * count of the same compound page twice, and split_huge_page
2301 * Here we set a flag if that happened, and we use it later to
2302 * try split_huge_page again. Since we call put_page right
2303 * afterwards, the reference count will be correct and
2304 * split_huge_page should succeed.
2306 split = PageTransCompound(page)
2307 && compound_head(page) == compound_head(tree_page);
2308 put_page(tree_page);
2311 * The pages were successfully merged: insert new
2312 * node in the stable tree and add both rmap_items.
2315 stable_node = stable_tree_insert(page_folio(kpage));
2317 stable_tree_append(tree_rmap_item, stable_node,
2319 stable_tree_append(rmap_item, stable_node,
2325 * If we fail to insert the page into the stable tree,
2326 * we will have 2 virtual addresses that are pointing
2327 * to a ksm page left outside the stable tree,
2328 * in which case we need to break_cow on both.
2331 break_cow(tree_rmap_item);
2332 break_cow(rmap_item);
2336 * We are here if we tried to merge two pages and
2337 * failed because they both belonged to the same
2338 * compound page. We will split the page now, but no
2339 * merging will take place.
2340 * We do not want to add the cost of a full lock; if
2341 * the page is locked, it is better to skip it and
2342 * perhaps try again later.
2344 if (!trylock_page(page))
2346 split_huge_page(page);
2352 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2353 struct ksm_rmap_item **rmap_list,
2356 struct ksm_rmap_item *rmap_item;
2358 while (*rmap_list) {
2359 rmap_item = *rmap_list;
2360 if ((rmap_item->address & PAGE_MASK) == addr)
2362 if (rmap_item->address > addr)
2364 *rmap_list = rmap_item->rmap_list;
2365 remove_rmap_item_from_tree(rmap_item);
2366 free_rmap_item(rmap_item);
2369 rmap_item = alloc_rmap_item();
2371 /* It has already been zeroed */
2372 rmap_item->mm = mm_slot->slot.mm;
2373 rmap_item->mm->ksm_rmap_items++;
2374 rmap_item->address = addr;
2375 rmap_item->rmap_list = *rmap_list;
2376 *rmap_list = rmap_item;
2382 * Calculate skip age for the ksm page age. The age determines how often
2383 * de-duplicating has already been tried unsuccessfully. If the age is
2384 * smaller, the scanning of this page is skipped for less scans.
2386 * @age: rmap_item age of page
2388 static unsigned int skip_age(rmap_age_t age)
2401 * Determines if a page should be skipped for the current scan.
2403 * @page: page to check
2404 * @rmap_item: associated rmap_item of page
2406 static bool should_skip_rmap_item(struct page *page,
2407 struct ksm_rmap_item *rmap_item)
2411 if (!ksm_smart_scan)
2415 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2416 * will essentially ignore them, but we still have to process them
2422 age = rmap_item->age;
2427 * Smaller ages are not skipped, they need to get a chance to go
2428 * through the different phases of the KSM merging.
2434 * Are we still allowed to skip? If not, then don't skip it
2435 * and determine how much more often we are allowed to skip next.
2437 if (!rmap_item->remaining_skips) {
2438 rmap_item->remaining_skips = skip_age(age);
2442 /* Skip this page */
2443 ksm_pages_skipped++;
2444 rmap_item->remaining_skips--;
2445 remove_rmap_item_from_tree(rmap_item);
2449 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2451 struct mm_struct *mm;
2452 struct ksm_mm_slot *mm_slot;
2453 struct mm_slot *slot;
2454 struct vm_area_struct *vma;
2455 struct ksm_rmap_item *rmap_item;
2456 struct vma_iterator vmi;
2459 if (list_empty(&ksm_mm_head.slot.mm_node))
2462 mm_slot = ksm_scan.mm_slot;
2463 if (mm_slot == &ksm_mm_head) {
2464 advisor_start_scan();
2465 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2468 * A number of pages can hang around indefinitely in per-cpu
2469 * LRU cache, raised page count preventing write_protect_page
2470 * from merging them. Though it doesn't really matter much,
2471 * it is puzzling to see some stuck in pages_volatile until
2472 * other activity jostles them out, and they also prevented
2473 * LTP's KSM test from succeeding deterministically; so drain
2474 * them here (here rather than on entry to ksm_do_scan(),
2475 * so we don't IPI too often when pages_to_scan is set low).
2477 lru_add_drain_all();
2480 * Whereas stale stable_nodes on the stable_tree itself
2481 * get pruned in the regular course of stable_tree_search(),
2482 * those moved out to the migrate_nodes list can accumulate:
2483 * so prune them once before each full scan.
2485 if (!ksm_merge_across_nodes) {
2486 struct ksm_stable_node *stable_node, *next;
2487 struct folio *folio;
2489 list_for_each_entry_safe(stable_node, next,
2490 &migrate_nodes, list) {
2491 folio = ksm_get_folio(stable_node,
2492 KSM_GET_FOLIO_NOLOCK);
2499 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2500 root_unstable_tree[nid] = RB_ROOT;
2502 spin_lock(&ksm_mmlist_lock);
2503 slot = list_entry(mm_slot->slot.mm_node.next,
2504 struct mm_slot, mm_node);
2505 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2506 ksm_scan.mm_slot = mm_slot;
2507 spin_unlock(&ksm_mmlist_lock);
2509 * Although we tested list_empty() above, a racing __ksm_exit
2510 * of the last mm on the list may have removed it since then.
2512 if (mm_slot == &ksm_mm_head)
2515 ksm_scan.address = 0;
2516 ksm_scan.rmap_list = &mm_slot->rmap_list;
2519 slot = &mm_slot->slot;
2521 vma_iter_init(&vmi, mm, ksm_scan.address);
2524 if (ksm_test_exit(mm))
2527 for_each_vma(vmi, vma) {
2528 if (!(vma->vm_flags & VM_MERGEABLE))
2530 if (ksm_scan.address < vma->vm_start)
2531 ksm_scan.address = vma->vm_start;
2533 ksm_scan.address = vma->vm_end;
2535 while (ksm_scan.address < vma->vm_end) {
2536 struct page *tmp_page = NULL;
2537 struct folio_walk fw;
2538 struct folio *folio;
2540 if (ksm_test_exit(mm))
2543 folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2545 if (!folio_is_zone_device(folio) &&
2546 folio_test_anon(folio)) {
2550 folio_walk_end(&fw, vma);
2554 flush_anon_page(vma, tmp_page, ksm_scan.address);
2555 flush_dcache_page(tmp_page);
2556 rmap_item = get_next_rmap_item(mm_slot,
2557 ksm_scan.rmap_list, ksm_scan.address);
2559 ksm_scan.rmap_list =
2560 &rmap_item->rmap_list;
2562 if (should_skip_rmap_item(tmp_page, rmap_item)) {
2567 ksm_scan.address += PAGE_SIZE;
2572 mmap_read_unlock(mm);
2576 ksm_scan.address += PAGE_SIZE;
2581 if (ksm_test_exit(mm)) {
2583 ksm_scan.address = 0;
2584 ksm_scan.rmap_list = &mm_slot->rmap_list;
2587 * Nuke all the rmap_items that are above this current rmap:
2588 * because there were no VM_MERGEABLE vmas with such addresses.
2590 remove_trailing_rmap_items(ksm_scan.rmap_list);
2592 spin_lock(&ksm_mmlist_lock);
2593 slot = list_entry(mm_slot->slot.mm_node.next,
2594 struct mm_slot, mm_node);
2595 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2596 if (ksm_scan.address == 0) {
2598 * We've completed a full scan of all vmas, holding mmap_lock
2599 * throughout, and found no VM_MERGEABLE: so do the same as
2600 * __ksm_exit does to remove this mm from all our lists now.
2601 * This applies either when cleaning up after __ksm_exit
2602 * (but beware: we can reach here even before __ksm_exit),
2603 * or when all VM_MERGEABLE areas have been unmapped (and
2604 * mmap_lock then protects against race with MADV_MERGEABLE).
2606 hash_del(&mm_slot->slot.hash);
2607 list_del(&mm_slot->slot.mm_node);
2608 spin_unlock(&ksm_mmlist_lock);
2610 mm_slot_free(mm_slot_cache, mm_slot);
2611 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2612 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2613 mmap_read_unlock(mm);
2616 mmap_read_unlock(mm);
2618 * mmap_read_unlock(mm) first because after
2619 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2620 * already have been freed under us by __ksm_exit()
2621 * because the "mm_slot" is still hashed and
2622 * ksm_scan.mm_slot doesn't point to it anymore.
2624 spin_unlock(&ksm_mmlist_lock);
2627 /* Repeat until we've completed scanning the whole list */
2628 mm_slot = ksm_scan.mm_slot;
2629 if (mm_slot != &ksm_mm_head)
2632 advisor_stop_scan();
2634 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2640 * ksm_do_scan - the ksm scanner main worker function.
2641 * @scan_npages: number of pages we want to scan before we return.
2643 static void ksm_do_scan(unsigned int scan_npages)
2645 struct ksm_rmap_item *rmap_item;
2648 while (scan_npages-- && likely(!freezing(current))) {
2650 rmap_item = scan_get_next_rmap_item(&page);
2653 cmp_and_merge_page(page, rmap_item);
2655 ksm_pages_scanned++;
2659 static int ksmd_should_run(void)
2661 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2664 static int ksm_scan_thread(void *nothing)
2666 unsigned int sleep_ms;
2669 set_user_nice(current, 5);
2671 while (!kthread_should_stop()) {
2672 mutex_lock(&ksm_thread_mutex);
2673 wait_while_offlining();
2674 if (ksmd_should_run())
2675 ksm_do_scan(ksm_thread_pages_to_scan);
2676 mutex_unlock(&ksm_thread_mutex);
2678 if (ksmd_should_run()) {
2679 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2680 wait_event_freezable_timeout(ksm_iter_wait,
2681 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2682 msecs_to_jiffies(sleep_ms));
2684 wait_event_freezable(ksm_thread_wait,
2685 ksmd_should_run() || kthread_should_stop());
2691 static void __ksm_add_vma(struct vm_area_struct *vma)
2693 unsigned long vm_flags = vma->vm_flags;
2695 if (vm_flags & VM_MERGEABLE)
2698 if (vma_ksm_compatible(vma))
2699 vm_flags_set(vma, VM_MERGEABLE);
2702 static int __ksm_del_vma(struct vm_area_struct *vma)
2706 if (!(vma->vm_flags & VM_MERGEABLE))
2709 if (vma->anon_vma) {
2710 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2715 vm_flags_clear(vma, VM_MERGEABLE);
2719 * ksm_add_vma - Mark vma as mergeable if compatible
2721 * @vma: Pointer to vma
2723 void ksm_add_vma(struct vm_area_struct *vma)
2725 struct mm_struct *mm = vma->vm_mm;
2727 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2731 static void ksm_add_vmas(struct mm_struct *mm)
2733 struct vm_area_struct *vma;
2735 VMA_ITERATOR(vmi, mm, 0);
2736 for_each_vma(vmi, vma)
2740 static int ksm_del_vmas(struct mm_struct *mm)
2742 struct vm_area_struct *vma;
2745 VMA_ITERATOR(vmi, mm, 0);
2746 for_each_vma(vmi, vma) {
2747 err = __ksm_del_vma(vma);
2755 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2758 * @mm: Pointer to mm
2760 * Returns 0 on success, otherwise error code
2762 int ksm_enable_merge_any(struct mm_struct *mm)
2766 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2769 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2770 err = __ksm_enter(mm);
2775 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2782 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2783 * previously enabled via ksm_enable_merge_any().
2785 * Disabling merging implies unmerging any merged pages, like setting
2786 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2787 * merging on all compatible VMA's remains enabled.
2789 * @mm: Pointer to mm
2791 * Returns 0 on success, otherwise error code
2793 int ksm_disable_merge_any(struct mm_struct *mm)
2797 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2800 err = ksm_del_vmas(mm);
2806 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2810 int ksm_disable(struct mm_struct *mm)
2812 mmap_assert_write_locked(mm);
2814 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2816 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2817 return ksm_disable_merge_any(mm);
2818 return ksm_del_vmas(mm);
2821 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2822 unsigned long end, int advice, unsigned long *vm_flags)
2824 struct mm_struct *mm = vma->vm_mm;
2828 case MADV_MERGEABLE:
2829 if (vma->vm_flags & VM_MERGEABLE)
2831 if (!vma_ksm_compatible(vma))
2834 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2835 err = __ksm_enter(mm);
2840 *vm_flags |= VM_MERGEABLE;
2843 case MADV_UNMERGEABLE:
2844 if (!(*vm_flags & VM_MERGEABLE))
2845 return 0; /* just ignore the advice */
2847 if (vma->anon_vma) {
2848 err = unmerge_ksm_pages(vma, start, end, true);
2853 *vm_flags &= ~VM_MERGEABLE;
2859 EXPORT_SYMBOL_GPL(ksm_madvise);
2861 int __ksm_enter(struct mm_struct *mm)
2863 struct ksm_mm_slot *mm_slot;
2864 struct mm_slot *slot;
2867 mm_slot = mm_slot_alloc(mm_slot_cache);
2871 slot = &mm_slot->slot;
2873 /* Check ksm_run too? Would need tighter locking */
2874 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2876 spin_lock(&ksm_mmlist_lock);
2877 mm_slot_insert(mm_slots_hash, mm, slot);
2879 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2880 * insert just behind the scanning cursor, to let the area settle
2881 * down a little; when fork is followed by immediate exec, we don't
2882 * want ksmd to waste time setting up and tearing down an rmap_list.
2884 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2885 * scanning cursor, otherwise KSM pages in newly forked mms will be
2886 * missed: then we might as well insert at the end of the list.
2888 if (ksm_run & KSM_RUN_UNMERGE)
2889 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2891 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2892 spin_unlock(&ksm_mmlist_lock);
2894 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2898 wake_up_interruptible(&ksm_thread_wait);
2900 trace_ksm_enter(mm);
2904 void __ksm_exit(struct mm_struct *mm)
2906 struct ksm_mm_slot *mm_slot;
2907 struct mm_slot *slot;
2908 int easy_to_free = 0;
2911 * This process is exiting: if it's straightforward (as is the
2912 * case when ksmd was never running), free mm_slot immediately.
2913 * But if it's at the cursor or has rmap_items linked to it, use
2914 * mmap_lock to synchronize with any break_cows before pagetables
2915 * are freed, and leave the mm_slot on the list for ksmd to free.
2916 * Beware: ksm may already have noticed it exiting and freed the slot.
2919 spin_lock(&ksm_mmlist_lock);
2920 slot = mm_slot_lookup(mm_slots_hash, mm);
2921 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2922 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2923 if (!mm_slot->rmap_list) {
2924 hash_del(&slot->hash);
2925 list_del(&slot->mm_node);
2928 list_move(&slot->mm_node,
2929 &ksm_scan.mm_slot->slot.mm_node);
2932 spin_unlock(&ksm_mmlist_lock);
2935 mm_slot_free(mm_slot_cache, mm_slot);
2936 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2937 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2939 } else if (mm_slot) {
2940 mmap_write_lock(mm);
2941 mmap_write_unlock(mm);
2947 struct folio *ksm_might_need_to_copy(struct folio *folio,
2948 struct vm_area_struct *vma, unsigned long addr)
2950 struct page *page = folio_page(folio, 0);
2951 struct anon_vma *anon_vma = folio_anon_vma(folio);
2952 struct folio *new_folio;
2954 if (folio_test_large(folio))
2957 if (folio_test_ksm(folio)) {
2958 if (folio_stable_node(folio) &&
2959 !(ksm_run & KSM_RUN_UNMERGE))
2960 return folio; /* no need to copy it */
2961 } else if (!anon_vma) {
2962 return folio; /* no need to copy it */
2963 } else if (folio->index == linear_page_index(vma, addr) &&
2964 anon_vma->root == vma->anon_vma->root) {
2965 return folio; /* still no need to copy it */
2967 if (PageHWPoison(page))
2968 return ERR_PTR(-EHWPOISON);
2969 if (!folio_test_uptodate(folio))
2970 return folio; /* let do_swap_page report the error */
2972 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
2974 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2975 folio_put(new_folio);
2979 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
2981 folio_put(new_folio);
2982 return ERR_PTR(-EHWPOISON);
2984 folio_set_dirty(new_folio);
2985 __folio_mark_uptodate(new_folio);
2986 __folio_set_locked(new_folio);
2988 count_vm_event(KSM_SWPIN_COPY);
2995 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2997 struct ksm_stable_node *stable_node;
2998 struct ksm_rmap_item *rmap_item;
2999 int search_new_forks = 0;
3001 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3004 * Rely on the page lock to protect against concurrent modifications
3005 * to that page's node of the stable tree.
3007 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3009 stable_node = folio_stable_node(folio);
3013 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3014 struct anon_vma *anon_vma = rmap_item->anon_vma;
3015 struct anon_vma_chain *vmac;
3016 struct vm_area_struct *vma;
3019 if (!anon_vma_trylock_read(anon_vma)) {
3020 if (rwc->try_lock) {
3021 rwc->contended = true;
3024 anon_vma_lock_read(anon_vma);
3026 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3033 /* Ignore the stable/unstable/sqnr flags */
3034 addr = rmap_item->address & PAGE_MASK;
3036 if (addr < vma->vm_start || addr >= vma->vm_end)
3039 * Initially we examine only the vma which covers this
3040 * rmap_item; but later, if there is still work to do,
3041 * we examine covering vmas in other mms: in case they
3042 * were forked from the original since ksmd passed.
3044 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3047 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3050 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3051 anon_vma_unlock_read(anon_vma);
3054 if (rwc->done && rwc->done(folio)) {
3055 anon_vma_unlock_read(anon_vma);
3059 anon_vma_unlock_read(anon_vma);
3061 if (!search_new_forks++)
3065 #ifdef CONFIG_MEMORY_FAILURE
3067 * Collect processes when the error hit an ksm page.
3069 void collect_procs_ksm(struct folio *folio, struct page *page,
3070 struct list_head *to_kill, int force_early)
3072 struct ksm_stable_node *stable_node;
3073 struct ksm_rmap_item *rmap_item;
3074 struct vm_area_struct *vma;
3075 struct task_struct *tsk;
3077 stable_node = folio_stable_node(folio);
3080 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3081 struct anon_vma *av = rmap_item->anon_vma;
3083 anon_vma_lock_read(av);
3085 for_each_process(tsk) {
3086 struct anon_vma_chain *vmac;
3088 struct task_struct *t =
3089 task_early_kill(tsk, force_early);
3092 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3096 if (vma->vm_mm == t->mm) {
3097 addr = rmap_item->address & PAGE_MASK;
3098 add_to_kill_ksm(t, page, vma, to_kill,
3104 anon_vma_unlock_read(av);
3109 #ifdef CONFIG_MIGRATION
3110 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3112 struct ksm_stable_node *stable_node;
3114 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3115 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3116 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3118 stable_node = folio_stable_node(folio);
3120 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3121 stable_node->kpfn = folio_pfn(newfolio);
3123 * newfolio->mapping was set in advance; now we need smp_wmb()
3124 * to make sure that the new stable_node->kpfn is visible
3125 * to ksm_get_folio() before it can see that folio->mapping
3126 * has gone stale (or that folio_test_swapcache has been cleared).
3129 folio_set_stable_node(folio, NULL);
3132 #endif /* CONFIG_MIGRATION */
3134 #ifdef CONFIG_MEMORY_HOTREMOVE
3135 static void wait_while_offlining(void)
3137 while (ksm_run & KSM_RUN_OFFLINE) {
3138 mutex_unlock(&ksm_thread_mutex);
3139 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3140 TASK_UNINTERRUPTIBLE);
3141 mutex_lock(&ksm_thread_mutex);
3145 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3146 unsigned long start_pfn,
3147 unsigned long end_pfn)
3149 if (stable_node->kpfn >= start_pfn &&
3150 stable_node->kpfn < end_pfn) {
3152 * Don't ksm_get_folio, page has already gone:
3153 * which is why we keep kpfn instead of page*
3155 remove_node_from_stable_tree(stable_node);
3161 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3162 unsigned long start_pfn,
3163 unsigned long end_pfn,
3164 struct rb_root *root)
3166 struct ksm_stable_node *dup;
3167 struct hlist_node *hlist_safe;
3169 if (!is_stable_node_chain(stable_node)) {
3170 VM_BUG_ON(is_stable_node_dup(stable_node));
3171 return stable_node_dup_remove_range(stable_node, start_pfn,
3175 hlist_for_each_entry_safe(dup, hlist_safe,
3176 &stable_node->hlist, hlist_dup) {
3177 VM_BUG_ON(!is_stable_node_dup(dup));
3178 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3180 if (hlist_empty(&stable_node->hlist)) {
3181 free_stable_node_chain(stable_node, root);
3182 return true; /* notify caller that tree was rebalanced */
3187 static void ksm_check_stable_tree(unsigned long start_pfn,
3188 unsigned long end_pfn)
3190 struct ksm_stable_node *stable_node, *next;
3191 struct rb_node *node;
3194 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3195 node = rb_first(root_stable_tree + nid);
3197 stable_node = rb_entry(node, struct ksm_stable_node, node);
3198 if (stable_node_chain_remove_range(stable_node,
3202 node = rb_first(root_stable_tree + nid);
3204 node = rb_next(node);
3208 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3209 if (stable_node->kpfn >= start_pfn &&
3210 stable_node->kpfn < end_pfn)
3211 remove_node_from_stable_tree(stable_node);
3216 static int ksm_memory_callback(struct notifier_block *self,
3217 unsigned long action, void *arg)
3219 struct memory_notify *mn = arg;
3222 case MEM_GOING_OFFLINE:
3224 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3225 * and remove_all_stable_nodes() while memory is going offline:
3226 * it is unsafe for them to touch the stable tree at this time.
3227 * But unmerge_ksm_pages(), rmap lookups and other entry points
3228 * which do not need the ksm_thread_mutex are all safe.
3230 mutex_lock(&ksm_thread_mutex);
3231 ksm_run |= KSM_RUN_OFFLINE;
3232 mutex_unlock(&ksm_thread_mutex);
3237 * Most of the work is done by page migration; but there might
3238 * be a few stable_nodes left over, still pointing to struct
3239 * pages which have been offlined: prune those from the tree,
3240 * otherwise ksm_get_folio() might later try to access a
3241 * non-existent struct page.
3243 ksm_check_stable_tree(mn->start_pfn,
3244 mn->start_pfn + mn->nr_pages);
3246 case MEM_CANCEL_OFFLINE:
3247 mutex_lock(&ksm_thread_mutex);
3248 ksm_run &= ~KSM_RUN_OFFLINE;
3249 mutex_unlock(&ksm_thread_mutex);
3251 smp_mb(); /* wake_up_bit advises this */
3252 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3258 static void wait_while_offlining(void)
3261 #endif /* CONFIG_MEMORY_HOTREMOVE */
3263 #ifdef CONFIG_PROC_FS
3264 long ksm_process_profit(struct mm_struct *mm)
3266 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3267 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3269 #endif /* CONFIG_PROC_FS */
3273 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3276 #define KSM_ATTR_RO(_name) \
3277 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3278 #define KSM_ATTR(_name) \
3279 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3281 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3282 struct kobj_attribute *attr, char *buf)
3284 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3287 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3288 struct kobj_attribute *attr,
3289 const char *buf, size_t count)
3294 err = kstrtouint(buf, 10, &msecs);
3298 ksm_thread_sleep_millisecs = msecs;
3299 wake_up_interruptible(&ksm_iter_wait);
3303 KSM_ATTR(sleep_millisecs);
3305 static ssize_t pages_to_scan_show(struct kobject *kobj,
3306 struct kobj_attribute *attr, char *buf)
3308 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3311 static ssize_t pages_to_scan_store(struct kobject *kobj,
3312 struct kobj_attribute *attr,
3313 const char *buf, size_t count)
3315 unsigned int nr_pages;
3318 if (ksm_advisor != KSM_ADVISOR_NONE)
3321 err = kstrtouint(buf, 10, &nr_pages);
3325 ksm_thread_pages_to_scan = nr_pages;
3329 KSM_ATTR(pages_to_scan);
3331 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3334 return sysfs_emit(buf, "%lu\n", ksm_run);
3337 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3338 const char *buf, size_t count)
3343 err = kstrtouint(buf, 10, &flags);
3346 if (flags > KSM_RUN_UNMERGE)
3350 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3351 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3352 * breaking COW to free the pages_shared (but leaves mm_slots
3353 * on the list for when ksmd may be set running again).
3356 mutex_lock(&ksm_thread_mutex);
3357 wait_while_offlining();
3358 if (ksm_run != flags) {
3360 if (flags & KSM_RUN_UNMERGE) {
3361 set_current_oom_origin();
3362 err = unmerge_and_remove_all_rmap_items();
3363 clear_current_oom_origin();
3365 ksm_run = KSM_RUN_STOP;
3370 mutex_unlock(&ksm_thread_mutex);
3372 if (flags & KSM_RUN_MERGE)
3373 wake_up_interruptible(&ksm_thread_wait);
3380 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3381 struct kobj_attribute *attr, char *buf)
3383 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3386 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3387 struct kobj_attribute *attr,
3388 const char *buf, size_t count)
3393 err = kstrtoul(buf, 10, &knob);
3399 mutex_lock(&ksm_thread_mutex);
3400 wait_while_offlining();
3401 if (ksm_merge_across_nodes != knob) {
3402 if (ksm_pages_shared || remove_all_stable_nodes())
3404 else if (root_stable_tree == one_stable_tree) {
3405 struct rb_root *buf;
3407 * This is the first time that we switch away from the
3408 * default of merging across nodes: must now allocate
3409 * a buffer to hold as many roots as may be needed.
3410 * Allocate stable and unstable together:
3411 * MAXSMP NODES_SHIFT 10 will use 16kB.
3413 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3415 /* Let us assume that RB_ROOT is NULL is zero */
3419 root_stable_tree = buf;
3420 root_unstable_tree = buf + nr_node_ids;
3421 /* Stable tree is empty but not the unstable */
3422 root_unstable_tree[0] = one_unstable_tree[0];
3426 ksm_merge_across_nodes = knob;
3427 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3430 mutex_unlock(&ksm_thread_mutex);
3432 return err ? err : count;
3434 KSM_ATTR(merge_across_nodes);
3437 static ssize_t use_zero_pages_show(struct kobject *kobj,
3438 struct kobj_attribute *attr, char *buf)
3440 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3442 static ssize_t use_zero_pages_store(struct kobject *kobj,
3443 struct kobj_attribute *attr,
3444 const char *buf, size_t count)
3449 err = kstrtobool(buf, &value);
3453 ksm_use_zero_pages = value;
3457 KSM_ATTR(use_zero_pages);
3459 static ssize_t max_page_sharing_show(struct kobject *kobj,
3460 struct kobj_attribute *attr, char *buf)
3462 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3465 static ssize_t max_page_sharing_store(struct kobject *kobj,
3466 struct kobj_attribute *attr,
3467 const char *buf, size_t count)
3472 err = kstrtoint(buf, 10, &knob);
3476 * When a KSM page is created it is shared by 2 mappings. This
3477 * being a signed comparison, it implicitly verifies it's not
3483 if (READ_ONCE(ksm_max_page_sharing) == knob)
3486 mutex_lock(&ksm_thread_mutex);
3487 wait_while_offlining();
3488 if (ksm_max_page_sharing != knob) {
3489 if (ksm_pages_shared || remove_all_stable_nodes())
3492 ksm_max_page_sharing = knob;
3494 mutex_unlock(&ksm_thread_mutex);
3496 return err ? err : count;
3498 KSM_ATTR(max_page_sharing);
3500 static ssize_t pages_scanned_show(struct kobject *kobj,
3501 struct kobj_attribute *attr, char *buf)
3503 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3505 KSM_ATTR_RO(pages_scanned);
3507 static ssize_t pages_shared_show(struct kobject *kobj,
3508 struct kobj_attribute *attr, char *buf)
3510 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3512 KSM_ATTR_RO(pages_shared);
3514 static ssize_t pages_sharing_show(struct kobject *kobj,
3515 struct kobj_attribute *attr, char *buf)
3517 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3519 KSM_ATTR_RO(pages_sharing);
3521 static ssize_t pages_unshared_show(struct kobject *kobj,
3522 struct kobj_attribute *attr, char *buf)
3524 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3526 KSM_ATTR_RO(pages_unshared);
3528 static ssize_t pages_volatile_show(struct kobject *kobj,
3529 struct kobj_attribute *attr, char *buf)
3531 long ksm_pages_volatile;
3533 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3534 - ksm_pages_sharing - ksm_pages_unshared;
3536 * It was not worth any locking to calculate that statistic,
3537 * but it might therefore sometimes be negative: conceal that.
3539 if (ksm_pages_volatile < 0)
3540 ksm_pages_volatile = 0;
3541 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3543 KSM_ATTR_RO(pages_volatile);
3545 static ssize_t pages_skipped_show(struct kobject *kobj,
3546 struct kobj_attribute *attr, char *buf)
3548 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3550 KSM_ATTR_RO(pages_skipped);
3552 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3553 struct kobj_attribute *attr, char *buf)
3555 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3557 KSM_ATTR_RO(ksm_zero_pages);
3559 static ssize_t general_profit_show(struct kobject *kobj,
3560 struct kobj_attribute *attr, char *buf)
3562 long general_profit;
3564 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3565 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3567 return sysfs_emit(buf, "%ld\n", general_profit);
3569 KSM_ATTR_RO(general_profit);
3571 static ssize_t stable_node_dups_show(struct kobject *kobj,
3572 struct kobj_attribute *attr, char *buf)
3574 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3576 KSM_ATTR_RO(stable_node_dups);
3578 static ssize_t stable_node_chains_show(struct kobject *kobj,
3579 struct kobj_attribute *attr, char *buf)
3581 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3583 KSM_ATTR_RO(stable_node_chains);
3586 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3587 struct kobj_attribute *attr,
3590 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3594 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3595 struct kobj_attribute *attr,
3596 const char *buf, size_t count)
3601 err = kstrtouint(buf, 10, &msecs);
3605 ksm_stable_node_chains_prune_millisecs = msecs;
3609 KSM_ATTR(stable_node_chains_prune_millisecs);
3611 static ssize_t full_scans_show(struct kobject *kobj,
3612 struct kobj_attribute *attr, char *buf)
3614 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3616 KSM_ATTR_RO(full_scans);
3618 static ssize_t smart_scan_show(struct kobject *kobj,
3619 struct kobj_attribute *attr, char *buf)
3621 return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3624 static ssize_t smart_scan_store(struct kobject *kobj,
3625 struct kobj_attribute *attr,
3626 const char *buf, size_t count)
3631 err = kstrtobool(buf, &value);
3635 ksm_smart_scan = value;
3638 KSM_ATTR(smart_scan);
3640 static ssize_t advisor_mode_show(struct kobject *kobj,
3641 struct kobj_attribute *attr, char *buf)
3645 if (ksm_advisor == KSM_ADVISOR_NONE)
3646 output = "[none] scan-time";
3647 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3648 output = "none [scan-time]";
3650 return sysfs_emit(buf, "%s\n", output);
3653 static ssize_t advisor_mode_store(struct kobject *kobj,
3654 struct kobj_attribute *attr, const char *buf,
3657 enum ksm_advisor_type curr_advisor = ksm_advisor;
3659 if (sysfs_streq("scan-time", buf))
3660 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3661 else if (sysfs_streq("none", buf))
3662 ksm_advisor = KSM_ADVISOR_NONE;
3666 /* Set advisor default values */
3667 if (curr_advisor != ksm_advisor)
3668 set_advisor_defaults();
3672 KSM_ATTR(advisor_mode);
3674 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3675 struct kobj_attribute *attr, char *buf)
3677 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3680 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3681 struct kobj_attribute *attr,
3682 const char *buf, size_t count)
3685 unsigned long value;
3687 err = kstrtoul(buf, 10, &value);
3691 ksm_advisor_max_cpu = value;
3694 KSM_ATTR(advisor_max_cpu);
3696 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3697 struct kobj_attribute *attr, char *buf)
3699 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3702 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3703 struct kobj_attribute *attr,
3704 const char *buf, size_t count)
3707 unsigned long value;
3709 err = kstrtoul(buf, 10, &value);
3713 ksm_advisor_min_pages_to_scan = value;
3716 KSM_ATTR(advisor_min_pages_to_scan);
3718 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3719 struct kobj_attribute *attr, char *buf)
3721 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3724 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3725 struct kobj_attribute *attr,
3726 const char *buf, size_t count)
3729 unsigned long value;
3731 err = kstrtoul(buf, 10, &value);
3735 ksm_advisor_max_pages_to_scan = value;
3738 KSM_ATTR(advisor_max_pages_to_scan);
3740 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3741 struct kobj_attribute *attr, char *buf)
3743 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3746 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3747 struct kobj_attribute *attr,
3748 const char *buf, size_t count)
3751 unsigned long value;
3753 err = kstrtoul(buf, 10, &value);
3759 ksm_advisor_target_scan_time = value;
3762 KSM_ATTR(advisor_target_scan_time);
3764 static struct attribute *ksm_attrs[] = {
3765 &sleep_millisecs_attr.attr,
3766 &pages_to_scan_attr.attr,
3768 &pages_scanned_attr.attr,
3769 &pages_shared_attr.attr,
3770 &pages_sharing_attr.attr,
3771 &pages_unshared_attr.attr,
3772 &pages_volatile_attr.attr,
3773 &pages_skipped_attr.attr,
3774 &ksm_zero_pages_attr.attr,
3775 &full_scans_attr.attr,
3777 &merge_across_nodes_attr.attr,
3779 &max_page_sharing_attr.attr,
3780 &stable_node_chains_attr.attr,
3781 &stable_node_dups_attr.attr,
3782 &stable_node_chains_prune_millisecs_attr.attr,
3783 &use_zero_pages_attr.attr,
3784 &general_profit_attr.attr,
3785 &smart_scan_attr.attr,
3786 &advisor_mode_attr.attr,
3787 &advisor_max_cpu_attr.attr,
3788 &advisor_min_pages_to_scan_attr.attr,
3789 &advisor_max_pages_to_scan_attr.attr,
3790 &advisor_target_scan_time_attr.attr,
3794 static const struct attribute_group ksm_attr_group = {
3798 #endif /* CONFIG_SYSFS */
3800 static int __init ksm_init(void)
3802 struct task_struct *ksm_thread;
3805 /* The correct value depends on page size and endianness */
3806 zero_checksum = calc_checksum(ZERO_PAGE(0));
3807 /* Default to false for backwards compatibility */
3808 ksm_use_zero_pages = false;
3810 err = ksm_slab_init();
3814 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3815 if (IS_ERR(ksm_thread)) {
3816 pr_err("ksm: creating kthread failed\n");
3817 err = PTR_ERR(ksm_thread);
3822 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3824 pr_err("ksm: register sysfs failed\n");
3825 kthread_stop(ksm_thread);
3829 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3831 #endif /* CONFIG_SYSFS */
3833 #ifdef CONFIG_MEMORY_HOTREMOVE
3834 /* There is no significance to this priority 100 */
3835 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3844 subsys_initcall(ksm_init);