]> Git Repo - linux.git/blob - mm/ksm.c
mm: add optional close() to struct vm_special_mapping
[linux.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/rwsem.h>
26 #include <linux/pagemap.h>
27 #include <linux/rmap.h>
28 #include <linux/spinlock.h>
29 #include <linux/xxhash.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/wait.h>
33 #include <linux/slab.h>
34 #include <linux/rbtree.h>
35 #include <linux/memory.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/swap.h>
38 #include <linux/ksm.h>
39 #include <linux/hashtable.h>
40 #include <linux/freezer.h>
41 #include <linux/oom.h>
42 #include <linux/numa.h>
43 #include <linux/pagewalk.h>
44
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 #include "mm_slot.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ksm.h>
51
52 #ifdef CONFIG_NUMA
53 #define NUMA(x)         (x)
54 #define DO_NUMA(x)      do { (x); } while (0)
55 #else
56 #define NUMA(x)         (0)
57 #define DO_NUMA(x)      do { } while (0)
58 #endif
59
60 typedef u8 rmap_age_t;
61
62 /**
63  * DOC: Overview
64  *
65  * A few notes about the KSM scanning process,
66  * to make it easier to understand the data structures below:
67  *
68  * In order to reduce excessive scanning, KSM sorts the memory pages by their
69  * contents into a data structure that holds pointers to the pages' locations.
70  *
71  * Since the contents of the pages may change at any moment, KSM cannot just
72  * insert the pages into a normal sorted tree and expect it to find anything.
73  * Therefore KSM uses two data structures - the stable and the unstable tree.
74  *
75  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76  * by their contents.  Because each such page is write-protected, searching on
77  * this tree is fully assured to be working (except when pages are unmapped),
78  * and therefore this tree is called the stable tree.
79  *
80  * The stable tree node includes information required for reverse
81  * mapping from a KSM page to virtual addresses that map this page.
82  *
83  * In order to avoid large latencies of the rmap walks on KSM pages,
84  * KSM maintains two types of nodes in the stable tree:
85  *
86  * * the regular nodes that keep the reverse mapping structures in a
87  *   linked list
88  * * the "chains" that link nodes ("dups") that represent the same
89  *   write protected memory content, but each "dup" corresponds to a
90  *   different KSM page copy of that content
91  *
92  * Internally, the regular nodes, "dups" and "chains" are represented
93  * using the same struct ksm_stable_node structure.
94  *
95  * In addition to the stable tree, KSM uses a second data structure called the
96  * unstable tree: this tree holds pointers to pages which have been found to
97  * be "unchanged for a period of time".  The unstable tree sorts these pages
98  * by their contents, but since they are not write-protected, KSM cannot rely
99  * upon the unstable tree to work correctly - the unstable tree is liable to
100  * be corrupted as its contents are modified, and so it is called unstable.
101  *
102  * KSM solves this problem by several techniques:
103  *
104  * 1) The unstable tree is flushed every time KSM completes scanning all
105  *    memory areas, and then the tree is rebuilt again from the beginning.
106  * 2) KSM will only insert into the unstable tree, pages whose hash value
107  *    has not changed since the previous scan of all memory areas.
108  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109  *    colors of the nodes and not on their contents, assuring that even when
110  *    the tree gets "corrupted" it won't get out of balance, so scanning time
111  *    remains the same (also, searching and inserting nodes in an rbtree uses
112  *    the same algorithm, so we have no overhead when we flush and rebuild).
113  * 4) KSM never flushes the stable tree, which means that even if it were to
114  *    take 10 attempts to find a page in the unstable tree, once it is found,
115  *    it is secured in the stable tree.  (When we scan a new page, we first
116  *    compare it against the stable tree, and then against the unstable tree.)
117  *
118  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119  * stable trees and multiple unstable trees: one of each for each NUMA node.
120  */
121
122 /**
123  * struct ksm_mm_slot - ksm information per mm that is being scanned
124  * @slot: hash lookup from mm to mm_slot
125  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126  */
127 struct ksm_mm_slot {
128         struct mm_slot slot;
129         struct ksm_rmap_item *rmap_list;
130 };
131
132 /**
133  * struct ksm_scan - cursor for scanning
134  * @mm_slot: the current mm_slot we are scanning
135  * @address: the next address inside that to be scanned
136  * @rmap_list: link to the next rmap to be scanned in the rmap_list
137  * @seqnr: count of completed full scans (needed when removing unstable node)
138  *
139  * There is only the one ksm_scan instance of this cursor structure.
140  */
141 struct ksm_scan {
142         struct ksm_mm_slot *mm_slot;
143         unsigned long address;
144         struct ksm_rmap_item **rmap_list;
145         unsigned long seqnr;
146 };
147
148 /**
149  * struct ksm_stable_node - node of the stable rbtree
150  * @node: rb node of this ksm page in the stable tree
151  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153  * @list: linked into migrate_nodes, pending placement in the proper node tree
154  * @hlist: hlist head of rmap_items using this ksm page
155  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156  * @chain_prune_time: time of the last full garbage collection
157  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159  */
160 struct ksm_stable_node {
161         union {
162                 struct rb_node node;    /* when node of stable tree */
163                 struct {                /* when listed for migration */
164                         struct list_head *head;
165                         struct {
166                                 struct hlist_node hlist_dup;
167                                 struct list_head list;
168                         };
169                 };
170         };
171         struct hlist_head hlist;
172         union {
173                 unsigned long kpfn;
174                 unsigned long chain_prune_time;
175         };
176         /*
177          * STABLE_NODE_CHAIN can be any negative number in
178          * rmap_hlist_len negative range, but better not -1 to be able
179          * to reliably detect underflows.
180          */
181 #define STABLE_NODE_CHAIN -1024
182         int rmap_hlist_len;
183 #ifdef CONFIG_NUMA
184         int nid;
185 #endif
186 };
187
188 /**
189  * struct ksm_rmap_item - reverse mapping item for virtual addresses
190  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192  * @nid: NUMA node id of unstable tree in which linked (may not match page)
193  * @mm: the memory structure this rmap_item is pointing into
194  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195  * @oldchecksum: previous checksum of the page at that virtual address
196  * @node: rb node of this rmap_item in the unstable tree
197  * @head: pointer to stable_node heading this list in the stable tree
198  * @hlist: link into hlist of rmap_items hanging off that stable_node
199  * @age: number of scan iterations since creation
200  * @remaining_skips: how many scans to skip
201  */
202 struct ksm_rmap_item {
203         struct ksm_rmap_item *rmap_list;
204         union {
205                 struct anon_vma *anon_vma;      /* when stable */
206 #ifdef CONFIG_NUMA
207                 int nid;                /* when node of unstable tree */
208 #endif
209         };
210         struct mm_struct *mm;
211         unsigned long address;          /* + low bits used for flags below */
212         unsigned int oldchecksum;       /* when unstable */
213         rmap_age_t age;
214         rmap_age_t remaining_skips;
215         union {
216                 struct rb_node node;    /* when node of unstable tree */
217                 struct {                /* when listed from stable tree */
218                         struct ksm_stable_node *head;
219                         struct hlist_node hlist;
220                 };
221         };
222 };
223
224 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
226 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
227
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
233
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240
241 static struct ksm_mm_slot ksm_mm_head = {
242         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243 };
244 static struct ksm_scan ksm_scan = {
245         .mm_slot = &ksm_mm_head,
246 };
247
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
251
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
254
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
257
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
260
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
263
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
266
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
269
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
272
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
275
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
281
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
287
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
290
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
293
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
297
298 /* The number of zero pages which is placed by KSM */
299 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
300
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
303
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
309
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu =  70;
312
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
315
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
318
319 /**
320  * struct advisor_ctx - metadata for KSM advisor
321  * @start_scan: start time of the current scan
322  * @scan_time: scan time of previous scan
323  * @change: change in percent to pages_to_scan parameter
324  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325  */
326 struct advisor_ctx {
327         ktime_t start_scan;
328         unsigned long scan_time;
329         unsigned long change;
330         unsigned long long cpu_time;
331 };
332 static struct advisor_ctx advisor_ctx;
333
334 /* Define different advisor's */
335 enum ksm_advisor_type {
336         KSM_ADVISOR_NONE,
337         KSM_ADVISOR_SCAN_TIME,
338 };
339 static enum ksm_advisor_type ksm_advisor;
340
341 #ifdef CONFIG_SYSFS
342 /*
343  * Only called through the sysfs control interface:
344  */
345
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349 static void set_advisor_defaults(void)
350 {
351         if (ksm_advisor == KSM_ADVISOR_NONE) {
352                 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353         } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354                 advisor_ctx = (const struct advisor_ctx){ 0 };
355                 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356         }
357 }
358 #endif /* CONFIG_SYSFS */
359
360 static inline void advisor_start_scan(void)
361 {
362         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363                 advisor_ctx.start_scan = ktime_get();
364 }
365
366 /*
367  * Use previous scan time if available, otherwise use current scan time as an
368  * approximation for the previous scan time.
369  */
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371                                            unsigned long scan_time)
372 {
373         return ctx->scan_time ? ctx->scan_time : scan_time;
374 }
375
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
378 {
379         return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380 }
381
382 /*
383  * The scan time advisor is based on the current scan rate and the target
384  * scan rate.
385  *
386  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387  *
388  * To avoid perturbations it calculates a change factor of previous changes.
389  * A new change factor is calculated for each iteration and it uses an
390  * exponentially weighted moving average. The new pages_to_scan value is
391  * multiplied with that change factor:
392  *
393  *      new_pages_to_scan *= change facor
394  *
395  * The new_pages_to_scan value is limited by the cpu min and max values. It
396  * calculates the cpu percent for the last scan and calculates the new
397  * estimated cpu percent cost for the next scan. That value is capped by the
398  * cpu min and max setting.
399  *
400  * In addition the new pages_to_scan value is capped by the max and min
401  * limits.
402  */
403 static void scan_time_advisor(void)
404 {
405         unsigned int cpu_percent;
406         unsigned long cpu_time;
407         unsigned long cpu_time_diff;
408         unsigned long cpu_time_diff_ms;
409         unsigned long pages;
410         unsigned long per_page_cost;
411         unsigned long factor;
412         unsigned long change;
413         unsigned long last_scan_time;
414         unsigned long scan_time;
415
416         /* Convert scan time to seconds */
417         scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418                             MSEC_PER_SEC);
419         scan_time = scan_time ? scan_time : 1;
420
421         /* Calculate CPU consumption of ksmd background thread */
422         cpu_time = task_sched_runtime(current);
423         cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424         cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426         cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427         cpu_percent = cpu_percent ? cpu_percent : 1;
428         last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430         /* Calculate scan time as percentage of target scan time */
431         factor = ksm_advisor_target_scan_time * 100 / scan_time;
432         factor = factor ? factor : 1;
433
434         /*
435          * Calculate scan time as percentage of last scan time and use
436          * exponentially weighted average to smooth it
437          */
438         change = scan_time * 100 / last_scan_time;
439         change = change ? change : 1;
440         change = ewma(advisor_ctx.change, change);
441
442         /* Calculate new scan rate based on target scan rate. */
443         pages = ksm_thread_pages_to_scan * 100 / factor;
444         /* Update pages_to_scan by weighted change percentage. */
445         pages = pages * change / 100;
446
447         /* Cap new pages_to_scan value */
448         per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449         per_page_cost = per_page_cost ? per_page_cost : 1;
450
451         pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452         pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453         pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455         /* Update advisor context */
456         advisor_ctx.change = change;
457         advisor_ctx.scan_time = scan_time;
458         advisor_ctx.cpu_time = cpu_time;
459
460         ksm_thread_pages_to_scan = pages;
461         trace_ksm_advisor(scan_time, pages, cpu_percent);
462 }
463
464 static void advisor_stop_scan(void)
465 {
466         if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467                 scan_time_advisor();
468 }
469
470 #ifdef CONFIG_NUMA
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
474 #else
475 #define ksm_merge_across_nodes  1U
476 #define ksm_nr_node_ids         1
477 #endif
478
479 #define KSM_RUN_STOP    0
480 #define KSM_RUN_MERGE   1
481 #define KSM_RUN_UNMERGE 2
482 #define KSM_RUN_OFFLINE 4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
485
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
491 static int __init ksm_slab_init(void)
492 {
493         rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
494         if (!rmap_item_cache)
495                 goto out;
496
497         stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
498         if (!stable_node_cache)
499                 goto out_free1;
500
501         mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
502         if (!mm_slot_cache)
503                 goto out_free2;
504
505         return 0;
506
507 out_free2:
508         kmem_cache_destroy(stable_node_cache);
509 out_free1:
510         kmem_cache_destroy(rmap_item_cache);
511 out:
512         return -ENOMEM;
513 }
514
515 static void __init ksm_slab_free(void)
516 {
517         kmem_cache_destroy(mm_slot_cache);
518         kmem_cache_destroy(stable_node_cache);
519         kmem_cache_destroy(rmap_item_cache);
520         mm_slot_cache = NULL;
521 }
522
523 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
524 {
525         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
526 }
527
528 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
529 {
530         return dup->head == STABLE_NODE_DUP_HEAD;
531 }
532
533 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
534                                              struct ksm_stable_node *chain)
535 {
536         VM_BUG_ON(is_stable_node_dup(dup));
537         dup->head = STABLE_NODE_DUP_HEAD;
538         VM_BUG_ON(!is_stable_node_chain(chain));
539         hlist_add_head(&dup->hlist_dup, &chain->hlist);
540         ksm_stable_node_dups++;
541 }
542
543 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
544 {
545         VM_BUG_ON(!is_stable_node_dup(dup));
546         hlist_del(&dup->hlist_dup);
547         ksm_stable_node_dups--;
548 }
549
550 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
551 {
552         VM_BUG_ON(is_stable_node_chain(dup));
553         if (is_stable_node_dup(dup))
554                 __stable_node_dup_del(dup);
555         else
556                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
557 #ifdef CONFIG_DEBUG_VM
558         dup->head = NULL;
559 #endif
560 }
561
562 static inline struct ksm_rmap_item *alloc_rmap_item(void)
563 {
564         struct ksm_rmap_item *rmap_item;
565
566         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
567                                                 __GFP_NORETRY | __GFP_NOWARN);
568         if (rmap_item)
569                 ksm_rmap_items++;
570         return rmap_item;
571 }
572
573 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
574 {
575         ksm_rmap_items--;
576         rmap_item->mm->ksm_rmap_items--;
577         rmap_item->mm = NULL;   /* debug safety */
578         kmem_cache_free(rmap_item_cache, rmap_item);
579 }
580
581 static inline struct ksm_stable_node *alloc_stable_node(void)
582 {
583         /*
584          * The allocation can take too long with GFP_KERNEL when memory is under
585          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
586          * grants access to memory reserves, helping to avoid this problem.
587          */
588         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
589 }
590
591 static inline void free_stable_node(struct ksm_stable_node *stable_node)
592 {
593         VM_BUG_ON(stable_node->rmap_hlist_len &&
594                   !is_stable_node_chain(stable_node));
595         kmem_cache_free(stable_node_cache, stable_node);
596 }
597
598 /*
599  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
600  * page tables after it has passed through ksm_exit() - which, if necessary,
601  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
602  * a special flag: they can just back out as soon as mm_users goes to zero.
603  * ksm_test_exit() is used throughout to make this test for exit: in some
604  * places for correctness, in some places just to avoid unnecessary work.
605  */
606 static inline bool ksm_test_exit(struct mm_struct *mm)
607 {
608         return atomic_read(&mm->mm_users) == 0;
609 }
610
611 /*
612  * We use break_ksm to break COW on a ksm page by triggering unsharing,
613  * such that the ksm page will get replaced by an exclusive anonymous page.
614  *
615  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
616  * in case the application has unmapped and remapped mm,addr meanwhile.
617  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
618  * mmap of /dev/mem, where we would not want to touch it.
619  *
620  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
621  * of the process that owns 'vma'.  We also do not want to enforce
622  * protection keys here anyway.
623  */
624 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
625 {
626         vm_fault_t ret = 0;
627
628         if (lock_vma)
629                 vma_start_write(vma);
630
631         do {
632                 bool ksm_page = false;
633                 struct folio_walk fw;
634                 struct folio *folio;
635
636                 cond_resched();
637                 folio = folio_walk_start(&fw, vma, addr,
638                                          FW_MIGRATION | FW_ZEROPAGE);
639                 if (folio) {
640                         /* Small folio implies FW_LEVEL_PTE. */
641                         if (!folio_test_large(folio) &&
642                             (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
643                                 ksm_page = true;
644                         folio_walk_end(&fw, vma);
645                 }
646
647                 if (!ksm_page)
648                         return 0;
649                 ret = handle_mm_fault(vma, addr,
650                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
651                                       NULL);
652         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
653         /*
654          * We must loop until we no longer find a KSM page because
655          * handle_mm_fault() may back out if there's any difficulty e.g. if
656          * pte accessed bit gets updated concurrently.
657          *
658          * VM_FAULT_SIGBUS could occur if we race with truncation of the
659          * backing file, which also invalidates anonymous pages: that's
660          * okay, that truncation will have unmapped the PageKsm for us.
661          *
662          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
663          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
664          * current task has TIF_MEMDIE set, and will be OOM killed on return
665          * to user; and ksmd, having no mm, would never be chosen for that.
666          *
667          * But if the mm is in a limited mem_cgroup, then the fault may fail
668          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
669          * even ksmd can fail in this way - though it's usually breaking ksm
670          * just to undo a merge it made a moment before, so unlikely to oom.
671          *
672          * That's a pity: we might therefore have more kernel pages allocated
673          * than we're counting as nodes in the stable tree; but ksm_do_scan
674          * will retry to break_cow on each pass, so should recover the page
675          * in due course.  The important thing is to not let VM_MERGEABLE
676          * be cleared while any such pages might remain in the area.
677          */
678         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
679 }
680
681 static bool vma_ksm_compatible(struct vm_area_struct *vma)
682 {
683         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
684                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
685                              VM_MIXEDMAP| VM_DROPPABLE))
686                 return false;           /* just ignore the advice */
687
688         if (vma_is_dax(vma))
689                 return false;
690
691 #ifdef VM_SAO
692         if (vma->vm_flags & VM_SAO)
693                 return false;
694 #endif
695 #ifdef VM_SPARC_ADI
696         if (vma->vm_flags & VM_SPARC_ADI)
697                 return false;
698 #endif
699
700         return true;
701 }
702
703 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
704                 unsigned long addr)
705 {
706         struct vm_area_struct *vma;
707         if (ksm_test_exit(mm))
708                 return NULL;
709         vma = vma_lookup(mm, addr);
710         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
711                 return NULL;
712         return vma;
713 }
714
715 static void break_cow(struct ksm_rmap_item *rmap_item)
716 {
717         struct mm_struct *mm = rmap_item->mm;
718         unsigned long addr = rmap_item->address;
719         struct vm_area_struct *vma;
720
721         /*
722          * It is not an accident that whenever we want to break COW
723          * to undo, we also need to drop a reference to the anon_vma.
724          */
725         put_anon_vma(rmap_item->anon_vma);
726
727         mmap_read_lock(mm);
728         vma = find_mergeable_vma(mm, addr);
729         if (vma)
730                 break_ksm(vma, addr, false);
731         mmap_read_unlock(mm);
732 }
733
734 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
735 {
736         struct mm_struct *mm = rmap_item->mm;
737         unsigned long addr = rmap_item->address;
738         struct vm_area_struct *vma;
739         struct page *page = NULL;
740         struct folio_walk fw;
741         struct folio *folio;
742
743         mmap_read_lock(mm);
744         vma = find_mergeable_vma(mm, addr);
745         if (!vma)
746                 goto out;
747
748         folio = folio_walk_start(&fw, vma, addr, 0);
749         if (folio) {
750                 if (!folio_is_zone_device(folio) &&
751                     folio_test_anon(folio)) {
752                         folio_get(folio);
753                         page = fw.page;
754                 }
755                 folio_walk_end(&fw, vma);
756         }
757 out:
758         if (page) {
759                 flush_anon_page(vma, page, addr);
760                 flush_dcache_page(page);
761         }
762         mmap_read_unlock(mm);
763         return page;
764 }
765
766 /*
767  * This helper is used for getting right index into array of tree roots.
768  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
769  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
770  * every node has its own stable and unstable tree.
771  */
772 static inline int get_kpfn_nid(unsigned long kpfn)
773 {
774         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
775 }
776
777 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
778                                                    struct rb_root *root)
779 {
780         struct ksm_stable_node *chain = alloc_stable_node();
781         VM_BUG_ON(is_stable_node_chain(dup));
782         if (likely(chain)) {
783                 INIT_HLIST_HEAD(&chain->hlist);
784                 chain->chain_prune_time = jiffies;
785                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
786 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
787                 chain->nid = NUMA_NO_NODE; /* debug */
788 #endif
789                 ksm_stable_node_chains++;
790
791                 /*
792                  * Put the stable node chain in the first dimension of
793                  * the stable tree and at the same time remove the old
794                  * stable node.
795                  */
796                 rb_replace_node(&dup->node, &chain->node, root);
797
798                 /*
799                  * Move the old stable node to the second dimension
800                  * queued in the hlist_dup. The invariant is that all
801                  * dup stable_nodes in the chain->hlist point to pages
802                  * that are write protected and have the exact same
803                  * content.
804                  */
805                 stable_node_chain_add_dup(dup, chain);
806         }
807         return chain;
808 }
809
810 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
811                                           struct rb_root *root)
812 {
813         rb_erase(&chain->node, root);
814         free_stable_node(chain);
815         ksm_stable_node_chains--;
816 }
817
818 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
819 {
820         struct ksm_rmap_item *rmap_item;
821
822         /* check it's not STABLE_NODE_CHAIN or negative */
823         BUG_ON(stable_node->rmap_hlist_len < 0);
824
825         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
826                 if (rmap_item->hlist.next) {
827                         ksm_pages_sharing--;
828                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
829                 } else {
830                         ksm_pages_shared--;
831                 }
832
833                 rmap_item->mm->ksm_merging_pages--;
834
835                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
836                 stable_node->rmap_hlist_len--;
837                 put_anon_vma(rmap_item->anon_vma);
838                 rmap_item->address &= PAGE_MASK;
839                 cond_resched();
840         }
841
842         /*
843          * We need the second aligned pointer of the migrate_nodes
844          * list_head to stay clear from the rb_parent_color union
845          * (aligned and different than any node) and also different
846          * from &migrate_nodes. This will verify that future list.h changes
847          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
848          */
849         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
850         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
851
852         trace_ksm_remove_ksm_page(stable_node->kpfn);
853         if (stable_node->head == &migrate_nodes)
854                 list_del(&stable_node->list);
855         else
856                 stable_node_dup_del(stable_node);
857         free_stable_node(stable_node);
858 }
859
860 enum ksm_get_folio_flags {
861         KSM_GET_FOLIO_NOLOCK,
862         KSM_GET_FOLIO_LOCK,
863         KSM_GET_FOLIO_TRYLOCK
864 };
865
866 /*
867  * ksm_get_folio: checks if the page indicated by the stable node
868  * is still its ksm page, despite having held no reference to it.
869  * In which case we can trust the content of the page, and it
870  * returns the gotten page; but if the page has now been zapped,
871  * remove the stale node from the stable tree and return NULL.
872  * But beware, the stable node's page might be being migrated.
873  *
874  * You would expect the stable_node to hold a reference to the ksm page.
875  * But if it increments the page's count, swapping out has to wait for
876  * ksmd to come around again before it can free the page, which may take
877  * seconds or even minutes: much too unresponsive.  So instead we use a
878  * "keyhole reference": access to the ksm page from the stable node peeps
879  * out through its keyhole to see if that page still holds the right key,
880  * pointing back to this stable node.  This relies on freeing a PageAnon
881  * page to reset its page->mapping to NULL, and relies on no other use of
882  * a page to put something that might look like our key in page->mapping.
883  * is on its way to being freed; but it is an anomaly to bear in mind.
884  */
885 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
886                                  enum ksm_get_folio_flags flags)
887 {
888         struct folio *folio;
889         void *expected_mapping;
890         unsigned long kpfn;
891
892         expected_mapping = (void *)((unsigned long)stable_node |
893                                         PAGE_MAPPING_KSM);
894 again:
895         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
896         folio = pfn_folio(kpfn);
897         if (READ_ONCE(folio->mapping) != expected_mapping)
898                 goto stale;
899
900         /*
901          * We cannot do anything with the page while its refcount is 0.
902          * Usually 0 means free, or tail of a higher-order page: in which
903          * case this node is no longer referenced, and should be freed;
904          * however, it might mean that the page is under page_ref_freeze().
905          * The __remove_mapping() case is easy, again the node is now stale;
906          * the same is in reuse_ksm_page() case; but if page is swapcache
907          * in folio_migrate_mapping(), it might still be our page,
908          * in which case it's essential to keep the node.
909          */
910         while (!folio_try_get(folio)) {
911                 /*
912                  * Another check for page->mapping != expected_mapping would
913                  * work here too.  We have chosen the !PageSwapCache test to
914                  * optimize the common case, when the page is or is about to
915                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
916                  * in the ref_freeze section of __remove_mapping(); but Anon
917                  * folio->mapping reset to NULL later, in free_pages_prepare().
918                  */
919                 if (!folio_test_swapcache(folio))
920                         goto stale;
921                 cpu_relax();
922         }
923
924         if (READ_ONCE(folio->mapping) != expected_mapping) {
925                 folio_put(folio);
926                 goto stale;
927         }
928
929         if (flags == KSM_GET_FOLIO_TRYLOCK) {
930                 if (!folio_trylock(folio)) {
931                         folio_put(folio);
932                         return ERR_PTR(-EBUSY);
933                 }
934         } else if (flags == KSM_GET_FOLIO_LOCK)
935                 folio_lock(folio);
936
937         if (flags != KSM_GET_FOLIO_NOLOCK) {
938                 if (READ_ONCE(folio->mapping) != expected_mapping) {
939                         folio_unlock(folio);
940                         folio_put(folio);
941                         goto stale;
942                 }
943         }
944         return folio;
945
946 stale:
947         /*
948          * We come here from above when page->mapping or !PageSwapCache
949          * suggests that the node is stale; but it might be under migration.
950          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
951          * before checking whether node->kpfn has been changed.
952          */
953         smp_rmb();
954         if (READ_ONCE(stable_node->kpfn) != kpfn)
955                 goto again;
956         remove_node_from_stable_tree(stable_node);
957         return NULL;
958 }
959
960 /*
961  * Removing rmap_item from stable or unstable tree.
962  * This function will clean the information from the stable/unstable tree.
963  */
964 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
965 {
966         if (rmap_item->address & STABLE_FLAG) {
967                 struct ksm_stable_node *stable_node;
968                 struct folio *folio;
969
970                 stable_node = rmap_item->head;
971                 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
972                 if (!folio)
973                         goto out;
974
975                 hlist_del(&rmap_item->hlist);
976                 folio_unlock(folio);
977                 folio_put(folio);
978
979                 if (!hlist_empty(&stable_node->hlist))
980                         ksm_pages_sharing--;
981                 else
982                         ksm_pages_shared--;
983
984                 rmap_item->mm->ksm_merging_pages--;
985
986                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
987                 stable_node->rmap_hlist_len--;
988
989                 put_anon_vma(rmap_item->anon_vma);
990                 rmap_item->head = NULL;
991                 rmap_item->address &= PAGE_MASK;
992
993         } else if (rmap_item->address & UNSTABLE_FLAG) {
994                 unsigned char age;
995                 /*
996                  * Usually ksmd can and must skip the rb_erase, because
997                  * root_unstable_tree was already reset to RB_ROOT.
998                  * But be careful when an mm is exiting: do the rb_erase
999                  * if this rmap_item was inserted by this scan, rather
1000                  * than left over from before.
1001                  */
1002                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1003                 BUG_ON(age > 1);
1004                 if (!age)
1005                         rb_erase(&rmap_item->node,
1006                                  root_unstable_tree + NUMA(rmap_item->nid));
1007                 ksm_pages_unshared--;
1008                 rmap_item->address &= PAGE_MASK;
1009         }
1010 out:
1011         cond_resched();         /* we're called from many long loops */
1012 }
1013
1014 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1015 {
1016         while (*rmap_list) {
1017                 struct ksm_rmap_item *rmap_item = *rmap_list;
1018                 *rmap_list = rmap_item->rmap_list;
1019                 remove_rmap_item_from_tree(rmap_item);
1020                 free_rmap_item(rmap_item);
1021         }
1022 }
1023
1024 /*
1025  * Though it's very tempting to unmerge rmap_items from stable tree rather
1026  * than check every pte of a given vma, the locking doesn't quite work for
1027  * that - an rmap_item is assigned to the stable tree after inserting ksm
1028  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1029  * rmap_items from parent to child at fork time (so as not to waste time
1030  * if exit comes before the next scan reaches it).
1031  *
1032  * Similarly, although we'd like to remove rmap_items (so updating counts
1033  * and freeing memory) when unmerging an area, it's easier to leave that
1034  * to the next pass of ksmd - consider, for example, how ksmd might be
1035  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1036  */
1037 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1038                              unsigned long start, unsigned long end, bool lock_vma)
1039 {
1040         unsigned long addr;
1041         int err = 0;
1042
1043         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1044                 if (ksm_test_exit(vma->vm_mm))
1045                         break;
1046                 if (signal_pending(current))
1047                         err = -ERESTARTSYS;
1048                 else
1049                         err = break_ksm(vma, addr, lock_vma);
1050         }
1051         return err;
1052 }
1053
1054 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1055 {
1056         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1057 }
1058
1059 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1060 {
1061         return folio_stable_node(page_folio(page));
1062 }
1063
1064 static inline void folio_set_stable_node(struct folio *folio,
1065                                          struct ksm_stable_node *stable_node)
1066 {
1067         VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1068         folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1069 }
1070
1071 #ifdef CONFIG_SYSFS
1072 /*
1073  * Only called through the sysfs control interface:
1074  */
1075 static int remove_stable_node(struct ksm_stable_node *stable_node)
1076 {
1077         struct folio *folio;
1078         int err;
1079
1080         folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1081         if (!folio) {
1082                 /*
1083                  * ksm_get_folio did remove_node_from_stable_tree itself.
1084                  */
1085                 return 0;
1086         }
1087
1088         /*
1089          * Page could be still mapped if this races with __mmput() running in
1090          * between ksm_exit() and exit_mmap(). Just refuse to let
1091          * merge_across_nodes/max_page_sharing be switched.
1092          */
1093         err = -EBUSY;
1094         if (!folio_mapped(folio)) {
1095                 /*
1096                  * The stable node did not yet appear stale to ksm_get_folio(),
1097                  * since that allows for an unmapped ksm folio to be recognized
1098                  * right up until it is freed; but the node is safe to remove.
1099                  * This folio might be in an LRU cache waiting to be freed,
1100                  * or it might be in the swapcache (perhaps under writeback),
1101                  * or it might have been removed from swapcache a moment ago.
1102                  */
1103                 folio_set_stable_node(folio, NULL);
1104                 remove_node_from_stable_tree(stable_node);
1105                 err = 0;
1106         }
1107
1108         folio_unlock(folio);
1109         folio_put(folio);
1110         return err;
1111 }
1112
1113 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1114                                     struct rb_root *root)
1115 {
1116         struct ksm_stable_node *dup;
1117         struct hlist_node *hlist_safe;
1118
1119         if (!is_stable_node_chain(stable_node)) {
1120                 VM_BUG_ON(is_stable_node_dup(stable_node));
1121                 if (remove_stable_node(stable_node))
1122                         return true;
1123                 else
1124                         return false;
1125         }
1126
1127         hlist_for_each_entry_safe(dup, hlist_safe,
1128                                   &stable_node->hlist, hlist_dup) {
1129                 VM_BUG_ON(!is_stable_node_dup(dup));
1130                 if (remove_stable_node(dup))
1131                         return true;
1132         }
1133         BUG_ON(!hlist_empty(&stable_node->hlist));
1134         free_stable_node_chain(stable_node, root);
1135         return false;
1136 }
1137
1138 static int remove_all_stable_nodes(void)
1139 {
1140         struct ksm_stable_node *stable_node, *next;
1141         int nid;
1142         int err = 0;
1143
1144         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1145                 while (root_stable_tree[nid].rb_node) {
1146                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
1147                                                 struct ksm_stable_node, node);
1148                         if (remove_stable_node_chain(stable_node,
1149                                                      root_stable_tree + nid)) {
1150                                 err = -EBUSY;
1151                                 break;  /* proceed to next nid */
1152                         }
1153                         cond_resched();
1154                 }
1155         }
1156         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1157                 if (remove_stable_node(stable_node))
1158                         err = -EBUSY;
1159                 cond_resched();
1160         }
1161         return err;
1162 }
1163
1164 static int unmerge_and_remove_all_rmap_items(void)
1165 {
1166         struct ksm_mm_slot *mm_slot;
1167         struct mm_slot *slot;
1168         struct mm_struct *mm;
1169         struct vm_area_struct *vma;
1170         int err = 0;
1171
1172         spin_lock(&ksm_mmlist_lock);
1173         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1174                           struct mm_slot, mm_node);
1175         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1176         spin_unlock(&ksm_mmlist_lock);
1177
1178         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1179              mm_slot = ksm_scan.mm_slot) {
1180                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1181
1182                 mm = mm_slot->slot.mm;
1183                 mmap_read_lock(mm);
1184
1185                 /*
1186                  * Exit right away if mm is exiting to avoid lockdep issue in
1187                  * the maple tree
1188                  */
1189                 if (ksm_test_exit(mm))
1190                         goto mm_exiting;
1191
1192                 for_each_vma(vmi, vma) {
1193                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1194                                 continue;
1195                         err = unmerge_ksm_pages(vma,
1196                                                 vma->vm_start, vma->vm_end, false);
1197                         if (err)
1198                                 goto error;
1199                 }
1200
1201 mm_exiting:
1202                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1203                 mmap_read_unlock(mm);
1204
1205                 spin_lock(&ksm_mmlist_lock);
1206                 slot = list_entry(mm_slot->slot.mm_node.next,
1207                                   struct mm_slot, mm_node);
1208                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209                 if (ksm_test_exit(mm)) {
1210                         hash_del(&mm_slot->slot.hash);
1211                         list_del(&mm_slot->slot.mm_node);
1212                         spin_unlock(&ksm_mmlist_lock);
1213
1214                         mm_slot_free(mm_slot_cache, mm_slot);
1215                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1216                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1217                         mmdrop(mm);
1218                 } else
1219                         spin_unlock(&ksm_mmlist_lock);
1220         }
1221
1222         /* Clean up stable nodes, but don't worry if some are still busy */
1223         remove_all_stable_nodes();
1224         ksm_scan.seqnr = 0;
1225         return 0;
1226
1227 error:
1228         mmap_read_unlock(mm);
1229         spin_lock(&ksm_mmlist_lock);
1230         ksm_scan.mm_slot = &ksm_mm_head;
1231         spin_unlock(&ksm_mmlist_lock);
1232         return err;
1233 }
1234 #endif /* CONFIG_SYSFS */
1235
1236 static u32 calc_checksum(struct page *page)
1237 {
1238         u32 checksum;
1239         void *addr = kmap_local_page(page);
1240         checksum = xxhash(addr, PAGE_SIZE, 0);
1241         kunmap_local(addr);
1242         return checksum;
1243 }
1244
1245 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1246                               pte_t *orig_pte)
1247 {
1248         struct mm_struct *mm = vma->vm_mm;
1249         DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1250         int swapped;
1251         int err = -EFAULT;
1252         struct mmu_notifier_range range;
1253         bool anon_exclusive;
1254         pte_t entry;
1255
1256         if (WARN_ON_ONCE(folio_test_large(folio)))
1257                 return err;
1258
1259         pvmw.address = page_address_in_vma(&folio->page, vma);
1260         if (pvmw.address == -EFAULT)
1261                 goto out;
1262
1263         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1264                                 pvmw.address + PAGE_SIZE);
1265         mmu_notifier_invalidate_range_start(&range);
1266
1267         if (!page_vma_mapped_walk(&pvmw))
1268                 goto out_mn;
1269         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1270                 goto out_unlock;
1271
1272         anon_exclusive = PageAnonExclusive(&folio->page);
1273         entry = ptep_get(pvmw.pte);
1274         if (pte_write(entry) || pte_dirty(entry) ||
1275             anon_exclusive || mm_tlb_flush_pending(mm)) {
1276                 swapped = folio_test_swapcache(folio);
1277                 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1278                 /*
1279                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1280                  * take any lock, therefore the check that we are going to make
1281                  * with the pagecount against the mapcount is racy and
1282                  * O_DIRECT can happen right after the check.
1283                  * So we clear the pte and flush the tlb before the check
1284                  * this assure us that no O_DIRECT can happen after the check
1285                  * or in the middle of the check.
1286                  *
1287                  * No need to notify as we are downgrading page table to read
1288                  * only not changing it to point to a new page.
1289                  *
1290                  * See Documentation/mm/mmu_notifier.rst
1291                  */
1292                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1293                 /*
1294                  * Check that no O_DIRECT or similar I/O is in progress on the
1295                  * page
1296                  */
1297                 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1298                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1299                         goto out_unlock;
1300                 }
1301
1302                 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1303                 if (anon_exclusive &&
1304                     folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1305                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1306                         goto out_unlock;
1307                 }
1308
1309                 if (pte_dirty(entry))
1310                         folio_mark_dirty(folio);
1311                 entry = pte_mkclean(entry);
1312
1313                 if (pte_write(entry))
1314                         entry = pte_wrprotect(entry);
1315
1316                 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1317         }
1318         *orig_pte = entry;
1319         err = 0;
1320
1321 out_unlock:
1322         page_vma_mapped_walk_done(&pvmw);
1323 out_mn:
1324         mmu_notifier_invalidate_range_end(&range);
1325 out:
1326         return err;
1327 }
1328
1329 /**
1330  * replace_page - replace page in vma by new ksm page
1331  * @vma:      vma that holds the pte pointing to page
1332  * @page:     the page we are replacing by kpage
1333  * @kpage:    the ksm page we replace page by
1334  * @orig_pte: the original value of the pte
1335  *
1336  * Returns 0 on success, -EFAULT on failure.
1337  */
1338 static int replace_page(struct vm_area_struct *vma, struct page *page,
1339                         struct page *kpage, pte_t orig_pte)
1340 {
1341         struct folio *kfolio = page_folio(kpage);
1342         struct mm_struct *mm = vma->vm_mm;
1343         struct folio *folio;
1344         pmd_t *pmd;
1345         pmd_t pmde;
1346         pte_t *ptep;
1347         pte_t newpte;
1348         spinlock_t *ptl;
1349         unsigned long addr;
1350         int err = -EFAULT;
1351         struct mmu_notifier_range range;
1352
1353         addr = page_address_in_vma(page, vma);
1354         if (addr == -EFAULT)
1355                 goto out;
1356
1357         pmd = mm_find_pmd(mm, addr);
1358         if (!pmd)
1359                 goto out;
1360         /*
1361          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1362          * without holding anon_vma lock for write.  So when looking for a
1363          * genuine pmde (in which to find pte), test present and !THP together.
1364          */
1365         pmde = pmdp_get_lockless(pmd);
1366         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1367                 goto out;
1368
1369         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1370                                 addr + PAGE_SIZE);
1371         mmu_notifier_invalidate_range_start(&range);
1372
1373         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1374         if (!ptep)
1375                 goto out_mn;
1376         if (!pte_same(ptep_get(ptep), orig_pte)) {
1377                 pte_unmap_unlock(ptep, ptl);
1378                 goto out_mn;
1379         }
1380         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1381         VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1382                         kfolio);
1383
1384         /*
1385          * No need to check ksm_use_zero_pages here: we can only have a
1386          * zero_page here if ksm_use_zero_pages was enabled already.
1387          */
1388         if (!is_zero_pfn(page_to_pfn(kpage))) {
1389                 folio_get(kfolio);
1390                 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1391                 newpte = mk_pte(kpage, vma->vm_page_prot);
1392         } else {
1393                 /*
1394                  * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1395                  * we can easily track all KSM-placed zero pages by checking if
1396                  * the dirty bit in zero page's PTE is set.
1397                  */
1398                 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1399                 ksm_map_zero_page(mm);
1400                 /*
1401                  * We're replacing an anonymous page with a zero page, which is
1402                  * not anonymous. We need to do proper accounting otherwise we
1403                  * will get wrong values in /proc, and a BUG message in dmesg
1404                  * when tearing down the mm.
1405                  */
1406                 dec_mm_counter(mm, MM_ANONPAGES);
1407         }
1408
1409         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1410         /*
1411          * No need to notify as we are replacing a read only page with another
1412          * read only page with the same content.
1413          *
1414          * See Documentation/mm/mmu_notifier.rst
1415          */
1416         ptep_clear_flush(vma, addr, ptep);
1417         set_pte_at(mm, addr, ptep, newpte);
1418
1419         folio = page_folio(page);
1420         folio_remove_rmap_pte(folio, page, vma);
1421         if (!folio_mapped(folio))
1422                 folio_free_swap(folio);
1423         folio_put(folio);
1424
1425         pte_unmap_unlock(ptep, ptl);
1426         err = 0;
1427 out_mn:
1428         mmu_notifier_invalidate_range_end(&range);
1429 out:
1430         return err;
1431 }
1432
1433 /*
1434  * try_to_merge_one_page - take two pages and merge them into one
1435  * @vma: the vma that holds the pte pointing to page
1436  * @page: the PageAnon page that we want to replace with kpage
1437  * @kpage: the PageKsm page that we want to map instead of page,
1438  *         or NULL the first time when we want to use page as kpage.
1439  *
1440  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1441  */
1442 static int try_to_merge_one_page(struct vm_area_struct *vma,
1443                                  struct page *page, struct page *kpage)
1444 {
1445         pte_t orig_pte = __pte(0);
1446         int err = -EFAULT;
1447
1448         if (page == kpage)                      /* ksm page forked */
1449                 return 0;
1450
1451         if (!PageAnon(page))
1452                 goto out;
1453
1454         /*
1455          * We need the page lock to read a stable PageSwapCache in
1456          * write_protect_page().  We use trylock_page() instead of
1457          * lock_page() because we don't want to wait here - we
1458          * prefer to continue scanning and merging different pages,
1459          * then come back to this page when it is unlocked.
1460          */
1461         if (!trylock_page(page))
1462                 goto out;
1463
1464         if (PageTransCompound(page)) {
1465                 if (split_huge_page(page))
1466                         goto out_unlock;
1467         }
1468
1469         /*
1470          * If this anonymous page is mapped only here, its pte may need
1471          * to be write-protected.  If it's mapped elsewhere, all of its
1472          * ptes are necessarily already write-protected.  But in either
1473          * case, we need to lock and check page_count is not raised.
1474          */
1475         if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
1476                 if (!kpage) {
1477                         /*
1478                          * While we hold page lock, upgrade page from
1479                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1480                          * stable_tree_insert() will update stable_node.
1481                          */
1482                         folio_set_stable_node(page_folio(page), NULL);
1483                         mark_page_accessed(page);
1484                         /*
1485                          * Page reclaim just frees a clean page with no dirty
1486                          * ptes: make sure that the ksm page would be swapped.
1487                          */
1488                         if (!PageDirty(page))
1489                                 SetPageDirty(page);
1490                         err = 0;
1491                 } else if (pages_identical(page, kpage))
1492                         err = replace_page(vma, page, kpage, orig_pte);
1493         }
1494
1495 out_unlock:
1496         unlock_page(page);
1497 out:
1498         return err;
1499 }
1500
1501 /*
1502  * This function returns 0 if the pages were merged or if they are
1503  * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1504  */
1505 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1506                                        struct page *page)
1507 {
1508         struct mm_struct *mm = rmap_item->mm;
1509         int err = -EFAULT;
1510
1511         /*
1512          * Same checksum as an empty page. We attempt to merge it with the
1513          * appropriate zero page if the user enabled this via sysfs.
1514          */
1515         if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1516                 struct vm_area_struct *vma;
1517
1518                 mmap_read_lock(mm);
1519                 vma = find_mergeable_vma(mm, rmap_item->address);
1520                 if (vma) {
1521                         err = try_to_merge_one_page(vma, page,
1522                                         ZERO_PAGE(rmap_item->address));
1523                         trace_ksm_merge_one_page(
1524                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
1525                                 rmap_item, mm, err);
1526                 } else {
1527                         /*
1528                          * If the vma is out of date, we do not need to
1529                          * continue.
1530                          */
1531                         err = 0;
1532                 }
1533                 mmap_read_unlock(mm);
1534         }
1535
1536         return err;
1537 }
1538
1539 /*
1540  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1541  * but no new kernel page is allocated: kpage must already be a ksm page.
1542  *
1543  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1544  */
1545 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1546                                       struct page *page, struct page *kpage)
1547 {
1548         struct mm_struct *mm = rmap_item->mm;
1549         struct vm_area_struct *vma;
1550         int err = -EFAULT;
1551
1552         mmap_read_lock(mm);
1553         vma = find_mergeable_vma(mm, rmap_item->address);
1554         if (!vma)
1555                 goto out;
1556
1557         err = try_to_merge_one_page(vma, page, kpage);
1558         if (err)
1559                 goto out;
1560
1561         /* Unstable nid is in union with stable anon_vma: remove first */
1562         remove_rmap_item_from_tree(rmap_item);
1563
1564         /* Must get reference to anon_vma while still holding mmap_lock */
1565         rmap_item->anon_vma = vma->anon_vma;
1566         get_anon_vma(vma->anon_vma);
1567 out:
1568         mmap_read_unlock(mm);
1569         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1570                                 rmap_item, mm, err);
1571         return err;
1572 }
1573
1574 /*
1575  * try_to_merge_two_pages - take two identical pages and prepare them
1576  * to be merged into one page.
1577  *
1578  * This function returns the kpage if we successfully merged two identical
1579  * pages into one ksm page, NULL otherwise.
1580  *
1581  * Note that this function upgrades page to ksm page: if one of the pages
1582  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1583  */
1584 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1585                                            struct page *page,
1586                                            struct ksm_rmap_item *tree_rmap_item,
1587                                            struct page *tree_page)
1588 {
1589         int err;
1590
1591         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1592         if (!err) {
1593                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1594                                                         tree_page, page);
1595                 /*
1596                  * If that fails, we have a ksm page with only one pte
1597                  * pointing to it: so break it.
1598                  */
1599                 if (err)
1600                         break_cow(rmap_item);
1601         }
1602         return err ? NULL : page;
1603 }
1604
1605 static __always_inline
1606 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1607 {
1608         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1609         /*
1610          * Check that at least one mapping still exists, otherwise
1611          * there's no much point to merge and share with this
1612          * stable_node, as the underlying tree_page of the other
1613          * sharer is going to be freed soon.
1614          */
1615         return stable_node->rmap_hlist_len &&
1616                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1617 }
1618
1619 static __always_inline
1620 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1621 {
1622         return __is_page_sharing_candidate(stable_node, 0);
1623 }
1624
1625 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1626                                      struct ksm_stable_node **_stable_node,
1627                                      struct rb_root *root,
1628                                      bool prune_stale_stable_nodes)
1629 {
1630         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1631         struct hlist_node *hlist_safe;
1632         struct folio *folio, *tree_folio = NULL;
1633         int found_rmap_hlist_len;
1634
1635         if (!prune_stale_stable_nodes ||
1636             time_before(jiffies, stable_node->chain_prune_time +
1637                         msecs_to_jiffies(
1638                                 ksm_stable_node_chains_prune_millisecs)))
1639                 prune_stale_stable_nodes = false;
1640         else
1641                 stable_node->chain_prune_time = jiffies;
1642
1643         hlist_for_each_entry_safe(dup, hlist_safe,
1644                                   &stable_node->hlist, hlist_dup) {
1645                 cond_resched();
1646                 /*
1647                  * We must walk all stable_node_dup to prune the stale
1648                  * stable nodes during lookup.
1649                  *
1650                  * ksm_get_folio can drop the nodes from the
1651                  * stable_node->hlist if they point to freed pages
1652                  * (that's why we do a _safe walk). The "dup"
1653                  * stable_node parameter itself will be freed from
1654                  * under us if it returns NULL.
1655                  */
1656                 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1657                 if (!folio)
1658                         continue;
1659                 /* Pick the best candidate if possible. */
1660                 if (!found || (is_page_sharing_candidate(dup) &&
1661                     (!is_page_sharing_candidate(found) ||
1662                      dup->rmap_hlist_len > found_rmap_hlist_len))) {
1663                         if (found)
1664                                 folio_put(tree_folio);
1665                         found = dup;
1666                         found_rmap_hlist_len = found->rmap_hlist_len;
1667                         tree_folio = folio;
1668                         /* skip put_page for found candidate */
1669                         if (!prune_stale_stable_nodes &&
1670                             is_page_sharing_candidate(found))
1671                                 break;
1672                         continue;
1673                 }
1674                 folio_put(folio);
1675         }
1676
1677         if (found) {
1678                 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1679                         /*
1680                          * If there's not just one entry it would
1681                          * corrupt memory, better BUG_ON. In KSM
1682                          * context with no lock held it's not even
1683                          * fatal.
1684                          */
1685                         BUG_ON(stable_node->hlist.first->next);
1686
1687                         /*
1688                          * There's just one entry and it is below the
1689                          * deduplication limit so drop the chain.
1690                          */
1691                         rb_replace_node(&stable_node->node, &found->node,
1692                                         root);
1693                         free_stable_node(stable_node);
1694                         ksm_stable_node_chains--;
1695                         ksm_stable_node_dups--;
1696                         /*
1697                          * NOTE: the caller depends on the stable_node
1698                          * to be equal to stable_node_dup if the chain
1699                          * was collapsed.
1700                          */
1701                         *_stable_node = found;
1702                         /*
1703                          * Just for robustness, as stable_node is
1704                          * otherwise left as a stable pointer, the
1705                          * compiler shall optimize it away at build
1706                          * time.
1707                          */
1708                         stable_node = NULL;
1709                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1710                            __is_page_sharing_candidate(found, 1)) {
1711                         /*
1712                          * If the found stable_node dup can accept one
1713                          * more future merge (in addition to the one
1714                          * that is underway) and is not at the head of
1715                          * the chain, put it there so next search will
1716                          * be quicker in the !prune_stale_stable_nodes
1717                          * case.
1718                          *
1719                          * NOTE: it would be inaccurate to use nr > 1
1720                          * instead of checking the hlist.first pointer
1721                          * directly, because in the
1722                          * prune_stale_stable_nodes case "nr" isn't
1723                          * the position of the found dup in the chain,
1724                          * but the total number of dups in the chain.
1725                          */
1726                         hlist_del(&found->hlist_dup);
1727                         hlist_add_head(&found->hlist_dup,
1728                                        &stable_node->hlist);
1729                 }
1730         } else {
1731                 /* Its hlist must be empty if no one found. */
1732                 free_stable_node_chain(stable_node, root);
1733         }
1734
1735         *_stable_node_dup = found;
1736         return tree_folio;
1737 }
1738
1739 /*
1740  * Like for ksm_get_folio, this function can free the *_stable_node and
1741  * *_stable_node_dup if the returned tree_page is NULL.
1742  *
1743  * It can also free and overwrite *_stable_node with the found
1744  * stable_node_dup if the chain is collapsed (in which case
1745  * *_stable_node will be equal to *_stable_node_dup like if the chain
1746  * never existed). It's up to the caller to verify tree_page is not
1747  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1748  *
1749  * *_stable_node_dup is really a second output parameter of this
1750  * function and will be overwritten in all cases, the caller doesn't
1751  * need to initialize it.
1752  */
1753 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1754                                          struct ksm_stable_node **_stable_node,
1755                                          struct rb_root *root,
1756                                          bool prune_stale_stable_nodes)
1757 {
1758         struct ksm_stable_node *stable_node = *_stable_node;
1759
1760         if (!is_stable_node_chain(stable_node)) {
1761                 *_stable_node_dup = stable_node;
1762                 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1763         }
1764         return stable_node_dup(_stable_node_dup, _stable_node, root,
1765                                prune_stale_stable_nodes);
1766 }
1767
1768 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1769                                                  struct ksm_stable_node **s_n,
1770                                                  struct rb_root *root)
1771 {
1772         return __stable_node_chain(s_n_d, s_n, root, true);
1773 }
1774
1775 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1776                                            struct ksm_stable_node **s_n,
1777                                            struct rb_root *root)
1778 {
1779         return __stable_node_chain(s_n_d, s_n, root, false);
1780 }
1781
1782 /*
1783  * stable_tree_search - search for page inside the stable tree
1784  *
1785  * This function checks if there is a page inside the stable tree
1786  * with identical content to the page that we are scanning right now.
1787  *
1788  * This function returns the stable tree node of identical content if found,
1789  * NULL otherwise.
1790  */
1791 static struct page *stable_tree_search(struct page *page)
1792 {
1793         int nid;
1794         struct rb_root *root;
1795         struct rb_node **new;
1796         struct rb_node *parent;
1797         struct ksm_stable_node *stable_node, *stable_node_dup;
1798         struct ksm_stable_node *page_node;
1799         struct folio *folio;
1800
1801         folio = page_folio(page);
1802         page_node = folio_stable_node(folio);
1803         if (page_node && page_node->head != &migrate_nodes) {
1804                 /* ksm page forked */
1805                 folio_get(folio);
1806                 return &folio->page;
1807         }
1808
1809         nid = get_kpfn_nid(folio_pfn(folio));
1810         root = root_stable_tree + nid;
1811 again:
1812         new = &root->rb_node;
1813         parent = NULL;
1814
1815         while (*new) {
1816                 struct folio *tree_folio;
1817                 int ret;
1818
1819                 cond_resched();
1820                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1821                 tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1822                 if (!tree_folio) {
1823                         /*
1824                          * If we walked over a stale stable_node,
1825                          * ksm_get_folio() will call rb_erase() and it
1826                          * may rebalance the tree from under us. So
1827                          * restart the search from scratch. Returning
1828                          * NULL would be safe too, but we'd generate
1829                          * false negative insertions just because some
1830                          * stable_node was stale.
1831                          */
1832                         goto again;
1833                 }
1834
1835                 ret = memcmp_pages(page, &tree_folio->page);
1836                 folio_put(tree_folio);
1837
1838                 parent = *new;
1839                 if (ret < 0)
1840                         new = &parent->rb_left;
1841                 else if (ret > 0)
1842                         new = &parent->rb_right;
1843                 else {
1844                         if (page_node) {
1845                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1846                                 /*
1847                                  * If the mapcount of our migrated KSM folio is
1848                                  * at most 1, we can merge it with another
1849                                  * KSM folio where we know that we have space
1850                                  * for one more mapping without exceeding the
1851                                  * ksm_max_page_sharing limit: see
1852                                  * chain_prune(). This way, we can avoid adding
1853                                  * this stable node to the chain.
1854                                  */
1855                                 if (folio_mapcount(folio) > 1)
1856                                         goto chain_append;
1857                         }
1858
1859                         if (!is_page_sharing_candidate(stable_node_dup)) {
1860                                 /*
1861                                  * If the stable_node is a chain and
1862                                  * we got a payload match in memcmp
1863                                  * but we cannot merge the scanned
1864                                  * page in any of the existing
1865                                  * stable_node dups because they're
1866                                  * all full, we need to wait the
1867                                  * scanned page to find itself a match
1868                                  * in the unstable tree to create a
1869                                  * brand new KSM page to add later to
1870                                  * the dups of this stable_node.
1871                                  */
1872                                 return NULL;
1873                         }
1874
1875                         /*
1876                          * Lock and unlock the stable_node's page (which
1877                          * might already have been migrated) so that page
1878                          * migration is sure to notice its raised count.
1879                          * It would be more elegant to return stable_node
1880                          * than kpage, but that involves more changes.
1881                          */
1882                         tree_folio = ksm_get_folio(stable_node_dup,
1883                                                    KSM_GET_FOLIO_TRYLOCK);
1884
1885                         if (PTR_ERR(tree_folio) == -EBUSY)
1886                                 return ERR_PTR(-EBUSY);
1887
1888                         if (unlikely(!tree_folio))
1889                                 /*
1890                                  * The tree may have been rebalanced,
1891                                  * so re-evaluate parent and new.
1892                                  */
1893                                 goto again;
1894                         folio_unlock(tree_folio);
1895
1896                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1897                             NUMA(stable_node_dup->nid)) {
1898                                 folio_put(tree_folio);
1899                                 goto replace;
1900                         }
1901                         return &tree_folio->page;
1902                 }
1903         }
1904
1905         if (!page_node)
1906                 return NULL;
1907
1908         list_del(&page_node->list);
1909         DO_NUMA(page_node->nid = nid);
1910         rb_link_node(&page_node->node, parent, new);
1911         rb_insert_color(&page_node->node, root);
1912 out:
1913         if (is_page_sharing_candidate(page_node)) {
1914                 folio_get(folio);
1915                 return &folio->page;
1916         } else
1917                 return NULL;
1918
1919 replace:
1920         /*
1921          * If stable_node was a chain and chain_prune collapsed it,
1922          * stable_node has been updated to be the new regular
1923          * stable_node. A collapse of the chain is indistinguishable
1924          * from the case there was no chain in the stable
1925          * rbtree. Otherwise stable_node is the chain and
1926          * stable_node_dup is the dup to replace.
1927          */
1928         if (stable_node_dup == stable_node) {
1929                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1930                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1931                 /* there is no chain */
1932                 if (page_node) {
1933                         VM_BUG_ON(page_node->head != &migrate_nodes);
1934                         list_del(&page_node->list);
1935                         DO_NUMA(page_node->nid = nid);
1936                         rb_replace_node(&stable_node_dup->node,
1937                                         &page_node->node,
1938                                         root);
1939                         if (is_page_sharing_candidate(page_node))
1940                                 folio_get(folio);
1941                         else
1942                                 folio = NULL;
1943                 } else {
1944                         rb_erase(&stable_node_dup->node, root);
1945                         folio = NULL;
1946                 }
1947         } else {
1948                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1949                 __stable_node_dup_del(stable_node_dup);
1950                 if (page_node) {
1951                         VM_BUG_ON(page_node->head != &migrate_nodes);
1952                         list_del(&page_node->list);
1953                         DO_NUMA(page_node->nid = nid);
1954                         stable_node_chain_add_dup(page_node, stable_node);
1955                         if (is_page_sharing_candidate(page_node))
1956                                 folio_get(folio);
1957                         else
1958                                 folio = NULL;
1959                 } else {
1960                         folio = NULL;
1961                 }
1962         }
1963         stable_node_dup->head = &migrate_nodes;
1964         list_add(&stable_node_dup->list, stable_node_dup->head);
1965         return &folio->page;
1966
1967 chain_append:
1968         /*
1969          * If stable_node was a chain and chain_prune collapsed it,
1970          * stable_node has been updated to be the new regular
1971          * stable_node. A collapse of the chain is indistinguishable
1972          * from the case there was no chain in the stable
1973          * rbtree. Otherwise stable_node is the chain and
1974          * stable_node_dup is the dup to replace.
1975          */
1976         if (stable_node_dup == stable_node) {
1977                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1978                 /* chain is missing so create it */
1979                 stable_node = alloc_stable_node_chain(stable_node_dup,
1980                                                       root);
1981                 if (!stable_node)
1982                         return NULL;
1983         }
1984         /*
1985          * Add this stable_node dup that was
1986          * migrated to the stable_node chain
1987          * of the current nid for this page
1988          * content.
1989          */
1990         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1991         VM_BUG_ON(page_node->head != &migrate_nodes);
1992         list_del(&page_node->list);
1993         DO_NUMA(page_node->nid = nid);
1994         stable_node_chain_add_dup(page_node, stable_node);
1995         goto out;
1996 }
1997
1998 /*
1999  * stable_tree_insert - insert stable tree node pointing to new ksm page
2000  * into the stable tree.
2001  *
2002  * This function returns the stable tree node just allocated on success,
2003  * NULL otherwise.
2004  */
2005 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2006 {
2007         int nid;
2008         unsigned long kpfn;
2009         struct rb_root *root;
2010         struct rb_node **new;
2011         struct rb_node *parent;
2012         struct ksm_stable_node *stable_node, *stable_node_dup;
2013         bool need_chain = false;
2014
2015         kpfn = folio_pfn(kfolio);
2016         nid = get_kpfn_nid(kpfn);
2017         root = root_stable_tree + nid;
2018 again:
2019         parent = NULL;
2020         new = &root->rb_node;
2021
2022         while (*new) {
2023                 struct folio *tree_folio;
2024                 int ret;
2025
2026                 cond_resched();
2027                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2028                 tree_folio = chain(&stable_node_dup, &stable_node, root);
2029                 if (!tree_folio) {
2030                         /*
2031                          * If we walked over a stale stable_node,
2032                          * ksm_get_folio() will call rb_erase() and it
2033                          * may rebalance the tree from under us. So
2034                          * restart the search from scratch. Returning
2035                          * NULL would be safe too, but we'd generate
2036                          * false negative insertions just because some
2037                          * stable_node was stale.
2038                          */
2039                         goto again;
2040                 }
2041
2042                 ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2043                 folio_put(tree_folio);
2044
2045                 parent = *new;
2046                 if (ret < 0)
2047                         new = &parent->rb_left;
2048                 else if (ret > 0)
2049                         new = &parent->rb_right;
2050                 else {
2051                         need_chain = true;
2052                         break;
2053                 }
2054         }
2055
2056         stable_node_dup = alloc_stable_node();
2057         if (!stable_node_dup)
2058                 return NULL;
2059
2060         INIT_HLIST_HEAD(&stable_node_dup->hlist);
2061         stable_node_dup->kpfn = kpfn;
2062         stable_node_dup->rmap_hlist_len = 0;
2063         DO_NUMA(stable_node_dup->nid = nid);
2064         if (!need_chain) {
2065                 rb_link_node(&stable_node_dup->node, parent, new);
2066                 rb_insert_color(&stable_node_dup->node, root);
2067         } else {
2068                 if (!is_stable_node_chain(stable_node)) {
2069                         struct ksm_stable_node *orig = stable_node;
2070                         /* chain is missing so create it */
2071                         stable_node = alloc_stable_node_chain(orig, root);
2072                         if (!stable_node) {
2073                                 free_stable_node(stable_node_dup);
2074                                 return NULL;
2075                         }
2076                 }
2077                 stable_node_chain_add_dup(stable_node_dup, stable_node);
2078         }
2079
2080         folio_set_stable_node(kfolio, stable_node_dup);
2081
2082         return stable_node_dup;
2083 }
2084
2085 /*
2086  * unstable_tree_search_insert - search for identical page,
2087  * else insert rmap_item into the unstable tree.
2088  *
2089  * This function searches for a page in the unstable tree identical to the
2090  * page currently being scanned; and if no identical page is found in the
2091  * tree, we insert rmap_item as a new object into the unstable tree.
2092  *
2093  * This function returns pointer to rmap_item found to be identical
2094  * to the currently scanned page, NULL otherwise.
2095  *
2096  * This function does both searching and inserting, because they share
2097  * the same walking algorithm in an rbtree.
2098  */
2099 static
2100 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2101                                               struct page *page,
2102                                               struct page **tree_pagep)
2103 {
2104         struct rb_node **new;
2105         struct rb_root *root;
2106         struct rb_node *parent = NULL;
2107         int nid;
2108
2109         nid = get_kpfn_nid(page_to_pfn(page));
2110         root = root_unstable_tree + nid;
2111         new = &root->rb_node;
2112
2113         while (*new) {
2114                 struct ksm_rmap_item *tree_rmap_item;
2115                 struct page *tree_page;
2116                 int ret;
2117
2118                 cond_resched();
2119                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2120                 tree_page = get_mergeable_page(tree_rmap_item);
2121                 if (!tree_page)
2122                         return NULL;
2123
2124                 /*
2125                  * Don't substitute a ksm page for a forked page.
2126                  */
2127                 if (page == tree_page) {
2128                         put_page(tree_page);
2129                         return NULL;
2130                 }
2131
2132                 ret = memcmp_pages(page, tree_page);
2133
2134                 parent = *new;
2135                 if (ret < 0) {
2136                         put_page(tree_page);
2137                         new = &parent->rb_left;
2138                 } else if (ret > 0) {
2139                         put_page(tree_page);
2140                         new = &parent->rb_right;
2141                 } else if (!ksm_merge_across_nodes &&
2142                            page_to_nid(tree_page) != nid) {
2143                         /*
2144                          * If tree_page has been migrated to another NUMA node,
2145                          * it will be flushed out and put in the right unstable
2146                          * tree next time: only merge with it when across_nodes.
2147                          */
2148                         put_page(tree_page);
2149                         return NULL;
2150                 } else {
2151                         *tree_pagep = tree_page;
2152                         return tree_rmap_item;
2153                 }
2154         }
2155
2156         rmap_item->address |= UNSTABLE_FLAG;
2157         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2158         DO_NUMA(rmap_item->nid = nid);
2159         rb_link_node(&rmap_item->node, parent, new);
2160         rb_insert_color(&rmap_item->node, root);
2161
2162         ksm_pages_unshared++;
2163         return NULL;
2164 }
2165
2166 /*
2167  * stable_tree_append - add another rmap_item to the linked list of
2168  * rmap_items hanging off a given node of the stable tree, all sharing
2169  * the same ksm page.
2170  */
2171 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2172                                struct ksm_stable_node *stable_node,
2173                                bool max_page_sharing_bypass)
2174 {
2175         /*
2176          * rmap won't find this mapping if we don't insert the
2177          * rmap_item in the right stable_node
2178          * duplicate. page_migration could break later if rmap breaks,
2179          * so we can as well crash here. We really need to check for
2180          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2181          * for other negative values as an underflow if detected here
2182          * for the first time (and not when decreasing rmap_hlist_len)
2183          * would be sign of memory corruption in the stable_node.
2184          */
2185         BUG_ON(stable_node->rmap_hlist_len < 0);
2186
2187         stable_node->rmap_hlist_len++;
2188         if (!max_page_sharing_bypass)
2189                 /* possibly non fatal but unexpected overflow, only warn */
2190                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2191                              ksm_max_page_sharing);
2192
2193         rmap_item->head = stable_node;
2194         rmap_item->address |= STABLE_FLAG;
2195         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2196
2197         if (rmap_item->hlist.next)
2198                 ksm_pages_sharing++;
2199         else
2200                 ksm_pages_shared++;
2201
2202         rmap_item->mm->ksm_merging_pages++;
2203 }
2204
2205 /*
2206  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2207  * if not, compare checksum to previous and if it's the same, see if page can
2208  * be inserted into the unstable tree, or merged with a page already there and
2209  * both transferred to the stable tree.
2210  *
2211  * @page: the page that we are searching identical page to.
2212  * @rmap_item: the reverse mapping into the virtual address of this page
2213  */
2214 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2215 {
2216         struct ksm_rmap_item *tree_rmap_item;
2217         struct page *tree_page = NULL;
2218         struct ksm_stable_node *stable_node;
2219         struct page *kpage;
2220         unsigned int checksum;
2221         int err;
2222         bool max_page_sharing_bypass = false;
2223
2224         stable_node = page_stable_node(page);
2225         if (stable_node) {
2226                 if (stable_node->head != &migrate_nodes &&
2227                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2228                     NUMA(stable_node->nid)) {
2229                         stable_node_dup_del(stable_node);
2230                         stable_node->head = &migrate_nodes;
2231                         list_add(&stable_node->list, stable_node->head);
2232                 }
2233                 if (stable_node->head != &migrate_nodes &&
2234                     rmap_item->head == stable_node)
2235                         return;
2236                 /*
2237                  * If it's a KSM fork, allow it to go over the sharing limit
2238                  * without warnings.
2239                  */
2240                 if (!is_page_sharing_candidate(stable_node))
2241                         max_page_sharing_bypass = true;
2242         } else {
2243                 remove_rmap_item_from_tree(rmap_item);
2244
2245                 /*
2246                  * If the hash value of the page has changed from the last time
2247                  * we calculated it, this page is changing frequently: therefore we
2248                  * don't want to insert it in the unstable tree, and we don't want
2249                  * to waste our time searching for something identical to it there.
2250                  */
2251                 checksum = calc_checksum(page);
2252                 if (rmap_item->oldchecksum != checksum) {
2253                         rmap_item->oldchecksum = checksum;
2254                         return;
2255                 }
2256
2257                 if (!try_to_merge_with_zero_page(rmap_item, page))
2258                         return;
2259         }
2260
2261         /* We first start with searching the page inside the stable tree */
2262         kpage = stable_tree_search(page);
2263         if (kpage == page && rmap_item->head == stable_node) {
2264                 put_page(kpage);
2265                 return;
2266         }
2267
2268         remove_rmap_item_from_tree(rmap_item);
2269
2270         if (kpage) {
2271                 if (PTR_ERR(kpage) == -EBUSY)
2272                         return;
2273
2274                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2275                 if (!err) {
2276                         /*
2277                          * The page was successfully merged:
2278                          * add its rmap_item to the stable tree.
2279                          */
2280                         lock_page(kpage);
2281                         stable_tree_append(rmap_item, page_stable_node(kpage),
2282                                            max_page_sharing_bypass);
2283                         unlock_page(kpage);
2284                 }
2285                 put_page(kpage);
2286                 return;
2287         }
2288
2289         tree_rmap_item =
2290                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2291         if (tree_rmap_item) {
2292                 bool split;
2293
2294                 kpage = try_to_merge_two_pages(rmap_item, page,
2295                                                 tree_rmap_item, tree_page);
2296                 /*
2297                  * If both pages we tried to merge belong to the same compound
2298                  * page, then we actually ended up increasing the reference
2299                  * count of the same compound page twice, and split_huge_page
2300                  * failed.
2301                  * Here we set a flag if that happened, and we use it later to
2302                  * try split_huge_page again. Since we call put_page right
2303                  * afterwards, the reference count will be correct and
2304                  * split_huge_page should succeed.
2305                  */
2306                 split = PageTransCompound(page)
2307                         && compound_head(page) == compound_head(tree_page);
2308                 put_page(tree_page);
2309                 if (kpage) {
2310                         /*
2311                          * The pages were successfully merged: insert new
2312                          * node in the stable tree and add both rmap_items.
2313                          */
2314                         lock_page(kpage);
2315                         stable_node = stable_tree_insert(page_folio(kpage));
2316                         if (stable_node) {
2317                                 stable_tree_append(tree_rmap_item, stable_node,
2318                                                    false);
2319                                 stable_tree_append(rmap_item, stable_node,
2320                                                    false);
2321                         }
2322                         unlock_page(kpage);
2323
2324                         /*
2325                          * If we fail to insert the page into the stable tree,
2326                          * we will have 2 virtual addresses that are pointing
2327                          * to a ksm page left outside the stable tree,
2328                          * in which case we need to break_cow on both.
2329                          */
2330                         if (!stable_node) {
2331                                 break_cow(tree_rmap_item);
2332                                 break_cow(rmap_item);
2333                         }
2334                 } else if (split) {
2335                         /*
2336                          * We are here if we tried to merge two pages and
2337                          * failed because they both belonged to the same
2338                          * compound page. We will split the page now, but no
2339                          * merging will take place.
2340                          * We do not want to add the cost of a full lock; if
2341                          * the page is locked, it is better to skip it and
2342                          * perhaps try again later.
2343                          */
2344                         if (!trylock_page(page))
2345                                 return;
2346                         split_huge_page(page);
2347                         unlock_page(page);
2348                 }
2349         }
2350 }
2351
2352 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2353                                             struct ksm_rmap_item **rmap_list,
2354                                             unsigned long addr)
2355 {
2356         struct ksm_rmap_item *rmap_item;
2357
2358         while (*rmap_list) {
2359                 rmap_item = *rmap_list;
2360                 if ((rmap_item->address & PAGE_MASK) == addr)
2361                         return rmap_item;
2362                 if (rmap_item->address > addr)
2363                         break;
2364                 *rmap_list = rmap_item->rmap_list;
2365                 remove_rmap_item_from_tree(rmap_item);
2366                 free_rmap_item(rmap_item);
2367         }
2368
2369         rmap_item = alloc_rmap_item();
2370         if (rmap_item) {
2371                 /* It has already been zeroed */
2372                 rmap_item->mm = mm_slot->slot.mm;
2373                 rmap_item->mm->ksm_rmap_items++;
2374                 rmap_item->address = addr;
2375                 rmap_item->rmap_list = *rmap_list;
2376                 *rmap_list = rmap_item;
2377         }
2378         return rmap_item;
2379 }
2380
2381 /*
2382  * Calculate skip age for the ksm page age. The age determines how often
2383  * de-duplicating has already been tried unsuccessfully. If the age is
2384  * smaller, the scanning of this page is skipped for less scans.
2385  *
2386  * @age: rmap_item age of page
2387  */
2388 static unsigned int skip_age(rmap_age_t age)
2389 {
2390         if (age <= 3)
2391                 return 1;
2392         if (age <= 5)
2393                 return 2;
2394         if (age <= 8)
2395                 return 4;
2396
2397         return 8;
2398 }
2399
2400 /*
2401  * Determines if a page should be skipped for the current scan.
2402  *
2403  * @page: page to check
2404  * @rmap_item: associated rmap_item of page
2405  */
2406 static bool should_skip_rmap_item(struct page *page,
2407                                   struct ksm_rmap_item *rmap_item)
2408 {
2409         rmap_age_t age;
2410
2411         if (!ksm_smart_scan)
2412                 return false;
2413
2414         /*
2415          * Never skip pages that are already KSM; pages cmp_and_merge_page()
2416          * will essentially ignore them, but we still have to process them
2417          * properly.
2418          */
2419         if (PageKsm(page))
2420                 return false;
2421
2422         age = rmap_item->age;
2423         if (age != U8_MAX)
2424                 rmap_item->age++;
2425
2426         /*
2427          * Smaller ages are not skipped, they need to get a chance to go
2428          * through the different phases of the KSM merging.
2429          */
2430         if (age < 3)
2431                 return false;
2432
2433         /*
2434          * Are we still allowed to skip? If not, then don't skip it
2435          * and determine how much more often we are allowed to skip next.
2436          */
2437         if (!rmap_item->remaining_skips) {
2438                 rmap_item->remaining_skips = skip_age(age);
2439                 return false;
2440         }
2441
2442         /* Skip this page */
2443         ksm_pages_skipped++;
2444         rmap_item->remaining_skips--;
2445         remove_rmap_item_from_tree(rmap_item);
2446         return true;
2447 }
2448
2449 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2450 {
2451         struct mm_struct *mm;
2452         struct ksm_mm_slot *mm_slot;
2453         struct mm_slot *slot;
2454         struct vm_area_struct *vma;
2455         struct ksm_rmap_item *rmap_item;
2456         struct vma_iterator vmi;
2457         int nid;
2458
2459         if (list_empty(&ksm_mm_head.slot.mm_node))
2460                 return NULL;
2461
2462         mm_slot = ksm_scan.mm_slot;
2463         if (mm_slot == &ksm_mm_head) {
2464                 advisor_start_scan();
2465                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2466
2467                 /*
2468                  * A number of pages can hang around indefinitely in per-cpu
2469                  * LRU cache, raised page count preventing write_protect_page
2470                  * from merging them.  Though it doesn't really matter much,
2471                  * it is puzzling to see some stuck in pages_volatile until
2472                  * other activity jostles them out, and they also prevented
2473                  * LTP's KSM test from succeeding deterministically; so drain
2474                  * them here (here rather than on entry to ksm_do_scan(),
2475                  * so we don't IPI too often when pages_to_scan is set low).
2476                  */
2477                 lru_add_drain_all();
2478
2479                 /*
2480                  * Whereas stale stable_nodes on the stable_tree itself
2481                  * get pruned in the regular course of stable_tree_search(),
2482                  * those moved out to the migrate_nodes list can accumulate:
2483                  * so prune them once before each full scan.
2484                  */
2485                 if (!ksm_merge_across_nodes) {
2486                         struct ksm_stable_node *stable_node, *next;
2487                         struct folio *folio;
2488
2489                         list_for_each_entry_safe(stable_node, next,
2490                                                  &migrate_nodes, list) {
2491                                 folio = ksm_get_folio(stable_node,
2492                                                       KSM_GET_FOLIO_NOLOCK);
2493                                 if (folio)
2494                                         folio_put(folio);
2495                                 cond_resched();
2496                         }
2497                 }
2498
2499                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2500                         root_unstable_tree[nid] = RB_ROOT;
2501
2502                 spin_lock(&ksm_mmlist_lock);
2503                 slot = list_entry(mm_slot->slot.mm_node.next,
2504                                   struct mm_slot, mm_node);
2505                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2506                 ksm_scan.mm_slot = mm_slot;
2507                 spin_unlock(&ksm_mmlist_lock);
2508                 /*
2509                  * Although we tested list_empty() above, a racing __ksm_exit
2510                  * of the last mm on the list may have removed it since then.
2511                  */
2512                 if (mm_slot == &ksm_mm_head)
2513                         return NULL;
2514 next_mm:
2515                 ksm_scan.address = 0;
2516                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2517         }
2518
2519         slot = &mm_slot->slot;
2520         mm = slot->mm;
2521         vma_iter_init(&vmi, mm, ksm_scan.address);
2522
2523         mmap_read_lock(mm);
2524         if (ksm_test_exit(mm))
2525                 goto no_vmas;
2526
2527         for_each_vma(vmi, vma) {
2528                 if (!(vma->vm_flags & VM_MERGEABLE))
2529                         continue;
2530                 if (ksm_scan.address < vma->vm_start)
2531                         ksm_scan.address = vma->vm_start;
2532                 if (!vma->anon_vma)
2533                         ksm_scan.address = vma->vm_end;
2534
2535                 while (ksm_scan.address < vma->vm_end) {
2536                         struct page *tmp_page = NULL;
2537                         struct folio_walk fw;
2538                         struct folio *folio;
2539
2540                         if (ksm_test_exit(mm))
2541                                 break;
2542
2543                         folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2544                         if (folio) {
2545                                 if (!folio_is_zone_device(folio) &&
2546                                      folio_test_anon(folio)) {
2547                                         folio_get(folio);
2548                                         tmp_page = fw.page;
2549                                 }
2550                                 folio_walk_end(&fw, vma);
2551                         }
2552
2553                         if (tmp_page) {
2554                                 flush_anon_page(vma, tmp_page, ksm_scan.address);
2555                                 flush_dcache_page(tmp_page);
2556                                 rmap_item = get_next_rmap_item(mm_slot,
2557                                         ksm_scan.rmap_list, ksm_scan.address);
2558                                 if (rmap_item) {
2559                                         ksm_scan.rmap_list =
2560                                                         &rmap_item->rmap_list;
2561
2562                                         if (should_skip_rmap_item(tmp_page, rmap_item)) {
2563                                                 folio_put(folio);
2564                                                 goto next_page;
2565                                         }
2566
2567                                         ksm_scan.address += PAGE_SIZE;
2568                                         *page = tmp_page;
2569                                 } else {
2570                                         folio_put(folio);
2571                                 }
2572                                 mmap_read_unlock(mm);
2573                                 return rmap_item;
2574                         }
2575 next_page:
2576                         ksm_scan.address += PAGE_SIZE;
2577                         cond_resched();
2578                 }
2579         }
2580
2581         if (ksm_test_exit(mm)) {
2582 no_vmas:
2583                 ksm_scan.address = 0;
2584                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2585         }
2586         /*
2587          * Nuke all the rmap_items that are above this current rmap:
2588          * because there were no VM_MERGEABLE vmas with such addresses.
2589          */
2590         remove_trailing_rmap_items(ksm_scan.rmap_list);
2591
2592         spin_lock(&ksm_mmlist_lock);
2593         slot = list_entry(mm_slot->slot.mm_node.next,
2594                           struct mm_slot, mm_node);
2595         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2596         if (ksm_scan.address == 0) {
2597                 /*
2598                  * We've completed a full scan of all vmas, holding mmap_lock
2599                  * throughout, and found no VM_MERGEABLE: so do the same as
2600                  * __ksm_exit does to remove this mm from all our lists now.
2601                  * This applies either when cleaning up after __ksm_exit
2602                  * (but beware: we can reach here even before __ksm_exit),
2603                  * or when all VM_MERGEABLE areas have been unmapped (and
2604                  * mmap_lock then protects against race with MADV_MERGEABLE).
2605                  */
2606                 hash_del(&mm_slot->slot.hash);
2607                 list_del(&mm_slot->slot.mm_node);
2608                 spin_unlock(&ksm_mmlist_lock);
2609
2610                 mm_slot_free(mm_slot_cache, mm_slot);
2611                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2612                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2613                 mmap_read_unlock(mm);
2614                 mmdrop(mm);
2615         } else {
2616                 mmap_read_unlock(mm);
2617                 /*
2618                  * mmap_read_unlock(mm) first because after
2619                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2620                  * already have been freed under us by __ksm_exit()
2621                  * because the "mm_slot" is still hashed and
2622                  * ksm_scan.mm_slot doesn't point to it anymore.
2623                  */
2624                 spin_unlock(&ksm_mmlist_lock);
2625         }
2626
2627         /* Repeat until we've completed scanning the whole list */
2628         mm_slot = ksm_scan.mm_slot;
2629         if (mm_slot != &ksm_mm_head)
2630                 goto next_mm;
2631
2632         advisor_stop_scan();
2633
2634         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2635         ksm_scan.seqnr++;
2636         return NULL;
2637 }
2638
2639 /**
2640  * ksm_do_scan  - the ksm scanner main worker function.
2641  * @scan_npages:  number of pages we want to scan before we return.
2642  */
2643 static void ksm_do_scan(unsigned int scan_npages)
2644 {
2645         struct ksm_rmap_item *rmap_item;
2646         struct page *page;
2647
2648         while (scan_npages-- && likely(!freezing(current))) {
2649                 cond_resched();
2650                 rmap_item = scan_get_next_rmap_item(&page);
2651                 if (!rmap_item)
2652                         return;
2653                 cmp_and_merge_page(page, rmap_item);
2654                 put_page(page);
2655                 ksm_pages_scanned++;
2656         }
2657 }
2658
2659 static int ksmd_should_run(void)
2660 {
2661         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2662 }
2663
2664 static int ksm_scan_thread(void *nothing)
2665 {
2666         unsigned int sleep_ms;
2667
2668         set_freezable();
2669         set_user_nice(current, 5);
2670
2671         while (!kthread_should_stop()) {
2672                 mutex_lock(&ksm_thread_mutex);
2673                 wait_while_offlining();
2674                 if (ksmd_should_run())
2675                         ksm_do_scan(ksm_thread_pages_to_scan);
2676                 mutex_unlock(&ksm_thread_mutex);
2677
2678                 if (ksmd_should_run()) {
2679                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2680                         wait_event_freezable_timeout(ksm_iter_wait,
2681                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2682                                 msecs_to_jiffies(sleep_ms));
2683                 } else {
2684                         wait_event_freezable(ksm_thread_wait,
2685                                 ksmd_should_run() || kthread_should_stop());
2686                 }
2687         }
2688         return 0;
2689 }
2690
2691 static void __ksm_add_vma(struct vm_area_struct *vma)
2692 {
2693         unsigned long vm_flags = vma->vm_flags;
2694
2695         if (vm_flags & VM_MERGEABLE)
2696                 return;
2697
2698         if (vma_ksm_compatible(vma))
2699                 vm_flags_set(vma, VM_MERGEABLE);
2700 }
2701
2702 static int __ksm_del_vma(struct vm_area_struct *vma)
2703 {
2704         int err;
2705
2706         if (!(vma->vm_flags & VM_MERGEABLE))
2707                 return 0;
2708
2709         if (vma->anon_vma) {
2710                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2711                 if (err)
2712                         return err;
2713         }
2714
2715         vm_flags_clear(vma, VM_MERGEABLE);
2716         return 0;
2717 }
2718 /**
2719  * ksm_add_vma - Mark vma as mergeable if compatible
2720  *
2721  * @vma:  Pointer to vma
2722  */
2723 void ksm_add_vma(struct vm_area_struct *vma)
2724 {
2725         struct mm_struct *mm = vma->vm_mm;
2726
2727         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2728                 __ksm_add_vma(vma);
2729 }
2730
2731 static void ksm_add_vmas(struct mm_struct *mm)
2732 {
2733         struct vm_area_struct *vma;
2734
2735         VMA_ITERATOR(vmi, mm, 0);
2736         for_each_vma(vmi, vma)
2737                 __ksm_add_vma(vma);
2738 }
2739
2740 static int ksm_del_vmas(struct mm_struct *mm)
2741 {
2742         struct vm_area_struct *vma;
2743         int err;
2744
2745         VMA_ITERATOR(vmi, mm, 0);
2746         for_each_vma(vmi, vma) {
2747                 err = __ksm_del_vma(vma);
2748                 if (err)
2749                         return err;
2750         }
2751         return 0;
2752 }
2753
2754 /**
2755  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2756  *                        compatible VMA's
2757  *
2758  * @mm:  Pointer to mm
2759  *
2760  * Returns 0 on success, otherwise error code
2761  */
2762 int ksm_enable_merge_any(struct mm_struct *mm)
2763 {
2764         int err;
2765
2766         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2767                 return 0;
2768
2769         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2770                 err = __ksm_enter(mm);
2771                 if (err)
2772                         return err;
2773         }
2774
2775         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2776         ksm_add_vmas(mm);
2777
2778         return 0;
2779 }
2780
2781 /**
2782  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2783  *                         previously enabled via ksm_enable_merge_any().
2784  *
2785  * Disabling merging implies unmerging any merged pages, like setting
2786  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2787  * merging on all compatible VMA's remains enabled.
2788  *
2789  * @mm: Pointer to mm
2790  *
2791  * Returns 0 on success, otherwise error code
2792  */
2793 int ksm_disable_merge_any(struct mm_struct *mm)
2794 {
2795         int err;
2796
2797         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2798                 return 0;
2799
2800         err = ksm_del_vmas(mm);
2801         if (err) {
2802                 ksm_add_vmas(mm);
2803                 return err;
2804         }
2805
2806         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2807         return 0;
2808 }
2809
2810 int ksm_disable(struct mm_struct *mm)
2811 {
2812         mmap_assert_write_locked(mm);
2813
2814         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2815                 return 0;
2816         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2817                 return ksm_disable_merge_any(mm);
2818         return ksm_del_vmas(mm);
2819 }
2820
2821 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2822                 unsigned long end, int advice, unsigned long *vm_flags)
2823 {
2824         struct mm_struct *mm = vma->vm_mm;
2825         int err;
2826
2827         switch (advice) {
2828         case MADV_MERGEABLE:
2829                 if (vma->vm_flags & VM_MERGEABLE)
2830                         return 0;
2831                 if (!vma_ksm_compatible(vma))
2832                         return 0;
2833
2834                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2835                         err = __ksm_enter(mm);
2836                         if (err)
2837                                 return err;
2838                 }
2839
2840                 *vm_flags |= VM_MERGEABLE;
2841                 break;
2842
2843         case MADV_UNMERGEABLE:
2844                 if (!(*vm_flags & VM_MERGEABLE))
2845                         return 0;               /* just ignore the advice */
2846
2847                 if (vma->anon_vma) {
2848                         err = unmerge_ksm_pages(vma, start, end, true);
2849                         if (err)
2850                                 return err;
2851                 }
2852
2853                 *vm_flags &= ~VM_MERGEABLE;
2854                 break;
2855         }
2856
2857         return 0;
2858 }
2859 EXPORT_SYMBOL_GPL(ksm_madvise);
2860
2861 int __ksm_enter(struct mm_struct *mm)
2862 {
2863         struct ksm_mm_slot *mm_slot;
2864         struct mm_slot *slot;
2865         int needs_wakeup;
2866
2867         mm_slot = mm_slot_alloc(mm_slot_cache);
2868         if (!mm_slot)
2869                 return -ENOMEM;
2870
2871         slot = &mm_slot->slot;
2872
2873         /* Check ksm_run too?  Would need tighter locking */
2874         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2875
2876         spin_lock(&ksm_mmlist_lock);
2877         mm_slot_insert(mm_slots_hash, mm, slot);
2878         /*
2879          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2880          * insert just behind the scanning cursor, to let the area settle
2881          * down a little; when fork is followed by immediate exec, we don't
2882          * want ksmd to waste time setting up and tearing down an rmap_list.
2883          *
2884          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2885          * scanning cursor, otherwise KSM pages in newly forked mms will be
2886          * missed: then we might as well insert at the end of the list.
2887          */
2888         if (ksm_run & KSM_RUN_UNMERGE)
2889                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2890         else
2891                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2892         spin_unlock(&ksm_mmlist_lock);
2893
2894         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2895         mmgrab(mm);
2896
2897         if (needs_wakeup)
2898                 wake_up_interruptible(&ksm_thread_wait);
2899
2900         trace_ksm_enter(mm);
2901         return 0;
2902 }
2903
2904 void __ksm_exit(struct mm_struct *mm)
2905 {
2906         struct ksm_mm_slot *mm_slot;
2907         struct mm_slot *slot;
2908         int easy_to_free = 0;
2909
2910         /*
2911          * This process is exiting: if it's straightforward (as is the
2912          * case when ksmd was never running), free mm_slot immediately.
2913          * But if it's at the cursor or has rmap_items linked to it, use
2914          * mmap_lock to synchronize with any break_cows before pagetables
2915          * are freed, and leave the mm_slot on the list for ksmd to free.
2916          * Beware: ksm may already have noticed it exiting and freed the slot.
2917          */
2918
2919         spin_lock(&ksm_mmlist_lock);
2920         slot = mm_slot_lookup(mm_slots_hash, mm);
2921         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2922         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2923                 if (!mm_slot->rmap_list) {
2924                         hash_del(&slot->hash);
2925                         list_del(&slot->mm_node);
2926                         easy_to_free = 1;
2927                 } else {
2928                         list_move(&slot->mm_node,
2929                                   &ksm_scan.mm_slot->slot.mm_node);
2930                 }
2931         }
2932         spin_unlock(&ksm_mmlist_lock);
2933
2934         if (easy_to_free) {
2935                 mm_slot_free(mm_slot_cache, mm_slot);
2936                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2937                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2938                 mmdrop(mm);
2939         } else if (mm_slot) {
2940                 mmap_write_lock(mm);
2941                 mmap_write_unlock(mm);
2942         }
2943
2944         trace_ksm_exit(mm);
2945 }
2946
2947 struct folio *ksm_might_need_to_copy(struct folio *folio,
2948                         struct vm_area_struct *vma, unsigned long addr)
2949 {
2950         struct page *page = folio_page(folio, 0);
2951         struct anon_vma *anon_vma = folio_anon_vma(folio);
2952         struct folio *new_folio;
2953
2954         if (folio_test_large(folio))
2955                 return folio;
2956
2957         if (folio_test_ksm(folio)) {
2958                 if (folio_stable_node(folio) &&
2959                     !(ksm_run & KSM_RUN_UNMERGE))
2960                         return folio;   /* no need to copy it */
2961         } else if (!anon_vma) {
2962                 return folio;           /* no need to copy it */
2963         } else if (folio->index == linear_page_index(vma, addr) &&
2964                         anon_vma->root == vma->anon_vma->root) {
2965                 return folio;           /* still no need to copy it */
2966         }
2967         if (PageHWPoison(page))
2968                 return ERR_PTR(-EHWPOISON);
2969         if (!folio_test_uptodate(folio))
2970                 return folio;           /* let do_swap_page report the error */
2971
2972         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
2973         if (new_folio &&
2974             mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2975                 folio_put(new_folio);
2976                 new_folio = NULL;
2977         }
2978         if (new_folio) {
2979                 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
2980                                                                 addr, vma)) {
2981                         folio_put(new_folio);
2982                         return ERR_PTR(-EHWPOISON);
2983                 }
2984                 folio_set_dirty(new_folio);
2985                 __folio_mark_uptodate(new_folio);
2986                 __folio_set_locked(new_folio);
2987 #ifdef CONFIG_SWAP
2988                 count_vm_event(KSM_SWPIN_COPY);
2989 #endif
2990         }
2991
2992         return new_folio;
2993 }
2994
2995 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2996 {
2997         struct ksm_stable_node *stable_node;
2998         struct ksm_rmap_item *rmap_item;
2999         int search_new_forks = 0;
3000
3001         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3002
3003         /*
3004          * Rely on the page lock to protect against concurrent modifications
3005          * to that page's node of the stable tree.
3006          */
3007         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3008
3009         stable_node = folio_stable_node(folio);
3010         if (!stable_node)
3011                 return;
3012 again:
3013         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3014                 struct anon_vma *anon_vma = rmap_item->anon_vma;
3015                 struct anon_vma_chain *vmac;
3016                 struct vm_area_struct *vma;
3017
3018                 cond_resched();
3019                 if (!anon_vma_trylock_read(anon_vma)) {
3020                         if (rwc->try_lock) {
3021                                 rwc->contended = true;
3022                                 return;
3023                         }
3024                         anon_vma_lock_read(anon_vma);
3025                 }
3026                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3027                                                0, ULONG_MAX) {
3028                         unsigned long addr;
3029
3030                         cond_resched();
3031                         vma = vmac->vma;
3032
3033                         /* Ignore the stable/unstable/sqnr flags */
3034                         addr = rmap_item->address & PAGE_MASK;
3035
3036                         if (addr < vma->vm_start || addr >= vma->vm_end)
3037                                 continue;
3038                         /*
3039                          * Initially we examine only the vma which covers this
3040                          * rmap_item; but later, if there is still work to do,
3041                          * we examine covering vmas in other mms: in case they
3042                          * were forked from the original since ksmd passed.
3043                          */
3044                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3045                                 continue;
3046
3047                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3048                                 continue;
3049
3050                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3051                                 anon_vma_unlock_read(anon_vma);
3052                                 return;
3053                         }
3054                         if (rwc->done && rwc->done(folio)) {
3055                                 anon_vma_unlock_read(anon_vma);
3056                                 return;
3057                         }
3058                 }
3059                 anon_vma_unlock_read(anon_vma);
3060         }
3061         if (!search_new_forks++)
3062                 goto again;
3063 }
3064
3065 #ifdef CONFIG_MEMORY_FAILURE
3066 /*
3067  * Collect processes when the error hit an ksm page.
3068  */
3069 void collect_procs_ksm(struct folio *folio, struct page *page,
3070                 struct list_head *to_kill, int force_early)
3071 {
3072         struct ksm_stable_node *stable_node;
3073         struct ksm_rmap_item *rmap_item;
3074         struct vm_area_struct *vma;
3075         struct task_struct *tsk;
3076
3077         stable_node = folio_stable_node(folio);
3078         if (!stable_node)
3079                 return;
3080         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3081                 struct anon_vma *av = rmap_item->anon_vma;
3082
3083                 anon_vma_lock_read(av);
3084                 rcu_read_lock();
3085                 for_each_process(tsk) {
3086                         struct anon_vma_chain *vmac;
3087                         unsigned long addr;
3088                         struct task_struct *t =
3089                                 task_early_kill(tsk, force_early);
3090                         if (!t)
3091                                 continue;
3092                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3093                                                        ULONG_MAX)
3094                         {
3095                                 vma = vmac->vma;
3096                                 if (vma->vm_mm == t->mm) {
3097                                         addr = rmap_item->address & PAGE_MASK;
3098                                         add_to_kill_ksm(t, page, vma, to_kill,
3099                                                         addr);
3100                                 }
3101                         }
3102                 }
3103                 rcu_read_unlock();
3104                 anon_vma_unlock_read(av);
3105         }
3106 }
3107 #endif
3108
3109 #ifdef CONFIG_MIGRATION
3110 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3111 {
3112         struct ksm_stable_node *stable_node;
3113
3114         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3115         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3116         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3117
3118         stable_node = folio_stable_node(folio);
3119         if (stable_node) {
3120                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3121                 stable_node->kpfn = folio_pfn(newfolio);
3122                 /*
3123                  * newfolio->mapping was set in advance; now we need smp_wmb()
3124                  * to make sure that the new stable_node->kpfn is visible
3125                  * to ksm_get_folio() before it can see that folio->mapping
3126                  * has gone stale (or that folio_test_swapcache has been cleared).
3127                  */
3128                 smp_wmb();
3129                 folio_set_stable_node(folio, NULL);
3130         }
3131 }
3132 #endif /* CONFIG_MIGRATION */
3133
3134 #ifdef CONFIG_MEMORY_HOTREMOVE
3135 static void wait_while_offlining(void)
3136 {
3137         while (ksm_run & KSM_RUN_OFFLINE) {
3138                 mutex_unlock(&ksm_thread_mutex);
3139                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3140                             TASK_UNINTERRUPTIBLE);
3141                 mutex_lock(&ksm_thread_mutex);
3142         }
3143 }
3144
3145 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3146                                          unsigned long start_pfn,
3147                                          unsigned long end_pfn)
3148 {
3149         if (stable_node->kpfn >= start_pfn &&
3150             stable_node->kpfn < end_pfn) {
3151                 /*
3152                  * Don't ksm_get_folio, page has already gone:
3153                  * which is why we keep kpfn instead of page*
3154                  */
3155                 remove_node_from_stable_tree(stable_node);
3156                 return true;
3157         }
3158         return false;
3159 }
3160
3161 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3162                                            unsigned long start_pfn,
3163                                            unsigned long end_pfn,
3164                                            struct rb_root *root)
3165 {
3166         struct ksm_stable_node *dup;
3167         struct hlist_node *hlist_safe;
3168
3169         if (!is_stable_node_chain(stable_node)) {
3170                 VM_BUG_ON(is_stable_node_dup(stable_node));
3171                 return stable_node_dup_remove_range(stable_node, start_pfn,
3172                                                     end_pfn);
3173         }
3174
3175         hlist_for_each_entry_safe(dup, hlist_safe,
3176                                   &stable_node->hlist, hlist_dup) {
3177                 VM_BUG_ON(!is_stable_node_dup(dup));
3178                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3179         }
3180         if (hlist_empty(&stable_node->hlist)) {
3181                 free_stable_node_chain(stable_node, root);
3182                 return true; /* notify caller that tree was rebalanced */
3183         } else
3184                 return false;
3185 }
3186
3187 static void ksm_check_stable_tree(unsigned long start_pfn,
3188                                   unsigned long end_pfn)
3189 {
3190         struct ksm_stable_node *stable_node, *next;
3191         struct rb_node *node;
3192         int nid;
3193
3194         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3195                 node = rb_first(root_stable_tree + nid);
3196                 while (node) {
3197                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3198                         if (stable_node_chain_remove_range(stable_node,
3199                                                            start_pfn, end_pfn,
3200                                                            root_stable_tree +
3201                                                            nid))
3202                                 node = rb_first(root_stable_tree + nid);
3203                         else
3204                                 node = rb_next(node);
3205                         cond_resched();
3206                 }
3207         }
3208         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3209                 if (stable_node->kpfn >= start_pfn &&
3210                     stable_node->kpfn < end_pfn)
3211                         remove_node_from_stable_tree(stable_node);
3212                 cond_resched();
3213         }
3214 }
3215
3216 static int ksm_memory_callback(struct notifier_block *self,
3217                                unsigned long action, void *arg)
3218 {
3219         struct memory_notify *mn = arg;
3220
3221         switch (action) {
3222         case MEM_GOING_OFFLINE:
3223                 /*
3224                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3225                  * and remove_all_stable_nodes() while memory is going offline:
3226                  * it is unsafe for them to touch the stable tree at this time.
3227                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3228                  * which do not need the ksm_thread_mutex are all safe.
3229                  */
3230                 mutex_lock(&ksm_thread_mutex);
3231                 ksm_run |= KSM_RUN_OFFLINE;
3232                 mutex_unlock(&ksm_thread_mutex);
3233                 break;
3234
3235         case MEM_OFFLINE:
3236                 /*
3237                  * Most of the work is done by page migration; but there might
3238                  * be a few stable_nodes left over, still pointing to struct
3239                  * pages which have been offlined: prune those from the tree,
3240                  * otherwise ksm_get_folio() might later try to access a
3241                  * non-existent struct page.
3242                  */
3243                 ksm_check_stable_tree(mn->start_pfn,
3244                                       mn->start_pfn + mn->nr_pages);
3245                 fallthrough;
3246         case MEM_CANCEL_OFFLINE:
3247                 mutex_lock(&ksm_thread_mutex);
3248                 ksm_run &= ~KSM_RUN_OFFLINE;
3249                 mutex_unlock(&ksm_thread_mutex);
3250
3251                 smp_mb();       /* wake_up_bit advises this */
3252                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3253                 break;
3254         }
3255         return NOTIFY_OK;
3256 }
3257 #else
3258 static void wait_while_offlining(void)
3259 {
3260 }
3261 #endif /* CONFIG_MEMORY_HOTREMOVE */
3262
3263 #ifdef CONFIG_PROC_FS
3264 long ksm_process_profit(struct mm_struct *mm)
3265 {
3266         return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3267                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3268 }
3269 #endif /* CONFIG_PROC_FS */
3270
3271 #ifdef CONFIG_SYSFS
3272 /*
3273  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3274  */
3275
3276 #define KSM_ATTR_RO(_name) \
3277         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3278 #define KSM_ATTR(_name) \
3279         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3280
3281 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3282                                     struct kobj_attribute *attr, char *buf)
3283 {
3284         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3285 }
3286
3287 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3288                                      struct kobj_attribute *attr,
3289                                      const char *buf, size_t count)
3290 {
3291         unsigned int msecs;
3292         int err;
3293
3294         err = kstrtouint(buf, 10, &msecs);
3295         if (err)
3296                 return -EINVAL;
3297
3298         ksm_thread_sleep_millisecs = msecs;
3299         wake_up_interruptible(&ksm_iter_wait);
3300
3301         return count;
3302 }
3303 KSM_ATTR(sleep_millisecs);
3304
3305 static ssize_t pages_to_scan_show(struct kobject *kobj,
3306                                   struct kobj_attribute *attr, char *buf)
3307 {
3308         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3309 }
3310
3311 static ssize_t pages_to_scan_store(struct kobject *kobj,
3312                                    struct kobj_attribute *attr,
3313                                    const char *buf, size_t count)
3314 {
3315         unsigned int nr_pages;
3316         int err;
3317
3318         if (ksm_advisor != KSM_ADVISOR_NONE)
3319                 return -EINVAL;
3320
3321         err = kstrtouint(buf, 10, &nr_pages);
3322         if (err)
3323                 return -EINVAL;
3324
3325         ksm_thread_pages_to_scan = nr_pages;
3326
3327         return count;
3328 }
3329 KSM_ATTR(pages_to_scan);
3330
3331 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3332                         char *buf)
3333 {
3334         return sysfs_emit(buf, "%lu\n", ksm_run);
3335 }
3336
3337 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3338                          const char *buf, size_t count)
3339 {
3340         unsigned int flags;
3341         int err;
3342
3343         err = kstrtouint(buf, 10, &flags);
3344         if (err)
3345                 return -EINVAL;
3346         if (flags > KSM_RUN_UNMERGE)
3347                 return -EINVAL;
3348
3349         /*
3350          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3351          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3352          * breaking COW to free the pages_shared (but leaves mm_slots
3353          * on the list for when ksmd may be set running again).
3354          */
3355
3356         mutex_lock(&ksm_thread_mutex);
3357         wait_while_offlining();
3358         if (ksm_run != flags) {
3359                 ksm_run = flags;
3360                 if (flags & KSM_RUN_UNMERGE) {
3361                         set_current_oom_origin();
3362                         err = unmerge_and_remove_all_rmap_items();
3363                         clear_current_oom_origin();
3364                         if (err) {
3365                                 ksm_run = KSM_RUN_STOP;
3366                                 count = err;
3367                         }
3368                 }
3369         }
3370         mutex_unlock(&ksm_thread_mutex);
3371
3372         if (flags & KSM_RUN_MERGE)
3373                 wake_up_interruptible(&ksm_thread_wait);
3374
3375         return count;
3376 }
3377 KSM_ATTR(run);
3378
3379 #ifdef CONFIG_NUMA
3380 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3381                                        struct kobj_attribute *attr, char *buf)
3382 {
3383         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3384 }
3385
3386 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3387                                    struct kobj_attribute *attr,
3388                                    const char *buf, size_t count)
3389 {
3390         int err;
3391         unsigned long knob;
3392
3393         err = kstrtoul(buf, 10, &knob);
3394         if (err)
3395                 return err;
3396         if (knob > 1)
3397                 return -EINVAL;
3398
3399         mutex_lock(&ksm_thread_mutex);
3400         wait_while_offlining();
3401         if (ksm_merge_across_nodes != knob) {
3402                 if (ksm_pages_shared || remove_all_stable_nodes())
3403                         err = -EBUSY;
3404                 else if (root_stable_tree == one_stable_tree) {
3405                         struct rb_root *buf;
3406                         /*
3407                          * This is the first time that we switch away from the
3408                          * default of merging across nodes: must now allocate
3409                          * a buffer to hold as many roots as may be needed.
3410                          * Allocate stable and unstable together:
3411                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3412                          */
3413                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3414                                       GFP_KERNEL);
3415                         /* Let us assume that RB_ROOT is NULL is zero */
3416                         if (!buf)
3417                                 err = -ENOMEM;
3418                         else {
3419                                 root_stable_tree = buf;
3420                                 root_unstable_tree = buf + nr_node_ids;
3421                                 /* Stable tree is empty but not the unstable */
3422                                 root_unstable_tree[0] = one_unstable_tree[0];
3423                         }
3424                 }
3425                 if (!err) {
3426                         ksm_merge_across_nodes = knob;
3427                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3428                 }
3429         }
3430         mutex_unlock(&ksm_thread_mutex);
3431
3432         return err ? err : count;
3433 }
3434 KSM_ATTR(merge_across_nodes);
3435 #endif
3436
3437 static ssize_t use_zero_pages_show(struct kobject *kobj,
3438                                    struct kobj_attribute *attr, char *buf)
3439 {
3440         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3441 }
3442 static ssize_t use_zero_pages_store(struct kobject *kobj,
3443                                    struct kobj_attribute *attr,
3444                                    const char *buf, size_t count)
3445 {
3446         int err;
3447         bool value;
3448
3449         err = kstrtobool(buf, &value);
3450         if (err)
3451                 return -EINVAL;
3452
3453         ksm_use_zero_pages = value;
3454
3455         return count;
3456 }
3457 KSM_ATTR(use_zero_pages);
3458
3459 static ssize_t max_page_sharing_show(struct kobject *kobj,
3460                                      struct kobj_attribute *attr, char *buf)
3461 {
3462         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3463 }
3464
3465 static ssize_t max_page_sharing_store(struct kobject *kobj,
3466                                       struct kobj_attribute *attr,
3467                                       const char *buf, size_t count)
3468 {
3469         int err;
3470         int knob;
3471
3472         err = kstrtoint(buf, 10, &knob);
3473         if (err)
3474                 return err;
3475         /*
3476          * When a KSM page is created it is shared by 2 mappings. This
3477          * being a signed comparison, it implicitly verifies it's not
3478          * negative.
3479          */
3480         if (knob < 2)
3481                 return -EINVAL;
3482
3483         if (READ_ONCE(ksm_max_page_sharing) == knob)
3484                 return count;
3485
3486         mutex_lock(&ksm_thread_mutex);
3487         wait_while_offlining();
3488         if (ksm_max_page_sharing != knob) {
3489                 if (ksm_pages_shared || remove_all_stable_nodes())
3490                         err = -EBUSY;
3491                 else
3492                         ksm_max_page_sharing = knob;
3493         }
3494         mutex_unlock(&ksm_thread_mutex);
3495
3496         return err ? err : count;
3497 }
3498 KSM_ATTR(max_page_sharing);
3499
3500 static ssize_t pages_scanned_show(struct kobject *kobj,
3501                                   struct kobj_attribute *attr, char *buf)
3502 {
3503         return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3504 }
3505 KSM_ATTR_RO(pages_scanned);
3506
3507 static ssize_t pages_shared_show(struct kobject *kobj,
3508                                  struct kobj_attribute *attr, char *buf)
3509 {
3510         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3511 }
3512 KSM_ATTR_RO(pages_shared);
3513
3514 static ssize_t pages_sharing_show(struct kobject *kobj,
3515                                   struct kobj_attribute *attr, char *buf)
3516 {
3517         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3518 }
3519 KSM_ATTR_RO(pages_sharing);
3520
3521 static ssize_t pages_unshared_show(struct kobject *kobj,
3522                                    struct kobj_attribute *attr, char *buf)
3523 {
3524         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3525 }
3526 KSM_ATTR_RO(pages_unshared);
3527
3528 static ssize_t pages_volatile_show(struct kobject *kobj,
3529                                    struct kobj_attribute *attr, char *buf)
3530 {
3531         long ksm_pages_volatile;
3532
3533         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3534                                 - ksm_pages_sharing - ksm_pages_unshared;
3535         /*
3536          * It was not worth any locking to calculate that statistic,
3537          * but it might therefore sometimes be negative: conceal that.
3538          */
3539         if (ksm_pages_volatile < 0)
3540                 ksm_pages_volatile = 0;
3541         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3542 }
3543 KSM_ATTR_RO(pages_volatile);
3544
3545 static ssize_t pages_skipped_show(struct kobject *kobj,
3546                                   struct kobj_attribute *attr, char *buf)
3547 {
3548         return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3549 }
3550 KSM_ATTR_RO(pages_skipped);
3551
3552 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3553                                 struct kobj_attribute *attr, char *buf)
3554 {
3555         return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3556 }
3557 KSM_ATTR_RO(ksm_zero_pages);
3558
3559 static ssize_t general_profit_show(struct kobject *kobj,
3560                                    struct kobj_attribute *attr, char *buf)
3561 {
3562         long general_profit;
3563
3564         general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3565                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3566
3567         return sysfs_emit(buf, "%ld\n", general_profit);
3568 }
3569 KSM_ATTR_RO(general_profit);
3570
3571 static ssize_t stable_node_dups_show(struct kobject *kobj,
3572                                      struct kobj_attribute *attr, char *buf)
3573 {
3574         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3575 }
3576 KSM_ATTR_RO(stable_node_dups);
3577
3578 static ssize_t stable_node_chains_show(struct kobject *kobj,
3579                                        struct kobj_attribute *attr, char *buf)
3580 {
3581         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3582 }
3583 KSM_ATTR_RO(stable_node_chains);
3584
3585 static ssize_t
3586 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3587                                         struct kobj_attribute *attr,
3588                                         char *buf)
3589 {
3590         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3591 }
3592
3593 static ssize_t
3594 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3595                                          struct kobj_attribute *attr,
3596                                          const char *buf, size_t count)
3597 {
3598         unsigned int msecs;
3599         int err;
3600
3601         err = kstrtouint(buf, 10, &msecs);
3602         if (err)
3603                 return -EINVAL;
3604
3605         ksm_stable_node_chains_prune_millisecs = msecs;
3606
3607         return count;
3608 }
3609 KSM_ATTR(stable_node_chains_prune_millisecs);
3610
3611 static ssize_t full_scans_show(struct kobject *kobj,
3612                                struct kobj_attribute *attr, char *buf)
3613 {
3614         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3615 }
3616 KSM_ATTR_RO(full_scans);
3617
3618 static ssize_t smart_scan_show(struct kobject *kobj,
3619                                struct kobj_attribute *attr, char *buf)
3620 {
3621         return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3622 }
3623
3624 static ssize_t smart_scan_store(struct kobject *kobj,
3625                                 struct kobj_attribute *attr,
3626                                 const char *buf, size_t count)
3627 {
3628         int err;
3629         bool value;
3630
3631         err = kstrtobool(buf, &value);
3632         if (err)
3633                 return -EINVAL;
3634
3635         ksm_smart_scan = value;
3636         return count;
3637 }
3638 KSM_ATTR(smart_scan);
3639
3640 static ssize_t advisor_mode_show(struct kobject *kobj,
3641                                  struct kobj_attribute *attr, char *buf)
3642 {
3643         const char *output;
3644
3645         if (ksm_advisor == KSM_ADVISOR_NONE)
3646                 output = "[none] scan-time";
3647         else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3648                 output = "none [scan-time]";
3649
3650         return sysfs_emit(buf, "%s\n", output);
3651 }
3652
3653 static ssize_t advisor_mode_store(struct kobject *kobj,
3654                                   struct kobj_attribute *attr, const char *buf,
3655                                   size_t count)
3656 {
3657         enum ksm_advisor_type curr_advisor = ksm_advisor;
3658
3659         if (sysfs_streq("scan-time", buf))
3660                 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3661         else if (sysfs_streq("none", buf))
3662                 ksm_advisor = KSM_ADVISOR_NONE;
3663         else
3664                 return -EINVAL;
3665
3666         /* Set advisor default values */
3667         if (curr_advisor != ksm_advisor)
3668                 set_advisor_defaults();
3669
3670         return count;
3671 }
3672 KSM_ATTR(advisor_mode);
3673
3674 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3675                                     struct kobj_attribute *attr, char *buf)
3676 {
3677         return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3678 }
3679
3680 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3681                                      struct kobj_attribute *attr,
3682                                      const char *buf, size_t count)
3683 {
3684         int err;
3685         unsigned long value;
3686
3687         err = kstrtoul(buf, 10, &value);
3688         if (err)
3689                 return -EINVAL;
3690
3691         ksm_advisor_max_cpu = value;
3692         return count;
3693 }
3694 KSM_ATTR(advisor_max_cpu);
3695
3696 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3697                                         struct kobj_attribute *attr, char *buf)
3698 {
3699         return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3700 }
3701
3702 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3703                                         struct kobj_attribute *attr,
3704                                         const char *buf, size_t count)
3705 {
3706         int err;
3707         unsigned long value;
3708
3709         err = kstrtoul(buf, 10, &value);
3710         if (err)
3711                 return -EINVAL;
3712
3713         ksm_advisor_min_pages_to_scan = value;
3714         return count;
3715 }
3716 KSM_ATTR(advisor_min_pages_to_scan);
3717
3718 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3719                                         struct kobj_attribute *attr, char *buf)
3720 {
3721         return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3722 }
3723
3724 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3725                                         struct kobj_attribute *attr,
3726                                         const char *buf, size_t count)
3727 {
3728         int err;
3729         unsigned long value;
3730
3731         err = kstrtoul(buf, 10, &value);
3732         if (err)
3733                 return -EINVAL;
3734
3735         ksm_advisor_max_pages_to_scan = value;
3736         return count;
3737 }
3738 KSM_ATTR(advisor_max_pages_to_scan);
3739
3740 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3741                                              struct kobj_attribute *attr, char *buf)
3742 {
3743         return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3744 }
3745
3746 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3747                                               struct kobj_attribute *attr,
3748                                               const char *buf, size_t count)
3749 {
3750         int err;
3751         unsigned long value;
3752
3753         err = kstrtoul(buf, 10, &value);
3754         if (err)
3755                 return -EINVAL;
3756         if (value < 1)
3757                 return -EINVAL;
3758
3759         ksm_advisor_target_scan_time = value;
3760         return count;
3761 }
3762 KSM_ATTR(advisor_target_scan_time);
3763
3764 static struct attribute *ksm_attrs[] = {
3765         &sleep_millisecs_attr.attr,
3766         &pages_to_scan_attr.attr,
3767         &run_attr.attr,
3768         &pages_scanned_attr.attr,
3769         &pages_shared_attr.attr,
3770         &pages_sharing_attr.attr,
3771         &pages_unshared_attr.attr,
3772         &pages_volatile_attr.attr,
3773         &pages_skipped_attr.attr,
3774         &ksm_zero_pages_attr.attr,
3775         &full_scans_attr.attr,
3776 #ifdef CONFIG_NUMA
3777         &merge_across_nodes_attr.attr,
3778 #endif
3779         &max_page_sharing_attr.attr,
3780         &stable_node_chains_attr.attr,
3781         &stable_node_dups_attr.attr,
3782         &stable_node_chains_prune_millisecs_attr.attr,
3783         &use_zero_pages_attr.attr,
3784         &general_profit_attr.attr,
3785         &smart_scan_attr.attr,
3786         &advisor_mode_attr.attr,
3787         &advisor_max_cpu_attr.attr,
3788         &advisor_min_pages_to_scan_attr.attr,
3789         &advisor_max_pages_to_scan_attr.attr,
3790         &advisor_target_scan_time_attr.attr,
3791         NULL,
3792 };
3793
3794 static const struct attribute_group ksm_attr_group = {
3795         .attrs = ksm_attrs,
3796         .name = "ksm",
3797 };
3798 #endif /* CONFIG_SYSFS */
3799
3800 static int __init ksm_init(void)
3801 {
3802         struct task_struct *ksm_thread;
3803         int err;
3804
3805         /* The correct value depends on page size and endianness */
3806         zero_checksum = calc_checksum(ZERO_PAGE(0));
3807         /* Default to false for backwards compatibility */
3808         ksm_use_zero_pages = false;
3809
3810         err = ksm_slab_init();
3811         if (err)
3812                 goto out;
3813
3814         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3815         if (IS_ERR(ksm_thread)) {
3816                 pr_err("ksm: creating kthread failed\n");
3817                 err = PTR_ERR(ksm_thread);
3818                 goto out_free;
3819         }
3820
3821 #ifdef CONFIG_SYSFS
3822         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3823         if (err) {
3824                 pr_err("ksm: register sysfs failed\n");
3825                 kthread_stop(ksm_thread);
3826                 goto out_free;
3827         }
3828 #else
3829         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3830
3831 #endif /* CONFIG_SYSFS */
3832
3833 #ifdef CONFIG_MEMORY_HOTREMOVE
3834         /* There is no significance to this priority 100 */
3835         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3836 #endif
3837         return 0;
3838
3839 out_free:
3840         ksm_slab_free();
3841 out:
3842         return err;
3843 }
3844 subsys_initcall(ksm_init);
This page took 0.2459 seconds and 4 git commands to generate.