1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2007-2017 Nicira, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/skbuff.h>
11 #include <linux/openvswitch.h>
12 #include <linux/netfilter_ipv6.h>
13 #include <linux/sctp.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <linux/in6.h>
17 #include <linux/if_arp.h>
18 #include <linux/if_vlan.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
27 #include <net/sctp/checksum.h>
31 #include "conntrack.h"
33 #include "flow_netlink.h"
35 struct deferred_action {
37 const struct nlattr *actions;
40 /* Store pkt_key clone when creating deferred action. */
41 struct sw_flow_key pkt_key;
44 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
49 __be16 inner_protocol;
50 u16 network_offset; /* valid only for MPLS */
55 u8 l2_data[MAX_L2_LEN];
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
66 /* Deferred action fifo queue storage. */
67 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70 struct action_flow_keys {
71 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79 * space. Return NULL if out of key spaces.
81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
83 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 int level = this_cpu_read(exec_actions_level);
85 struct sw_flow_key *key = NULL;
87 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 key = &keys->key[level - 1];
95 static void action_fifo_init(struct action_fifo *fifo)
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
103 return (fifo->head == fifo->tail);
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
108 if (action_fifo_is_empty(fifo))
111 return &fifo->fifo[fifo->tail++];
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
116 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
119 return &fifo->fifo[fifo->head++];
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 const struct sw_flow_key *key,
125 const struct nlattr *actions,
126 const int actions_len)
128 struct action_fifo *fifo;
129 struct deferred_action *da;
131 fifo = this_cpu_ptr(action_fifos);
132 da = action_fifo_put(fifo);
135 da->actions = actions;
136 da->actions_len = actions_len;
143 static void invalidate_flow_key(struct sw_flow_key *key)
145 key->mac_proto |= SW_FLOW_KEY_INVALID;
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
150 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 struct sw_flow_key *key,
156 const struct nlattr *actions, int len,
157 bool last, bool clone_flow_key);
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 struct sw_flow_key *key,
161 const struct nlattr *attr, int len);
163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
168 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
173 key->mac_proto = MAC_PROTO_NONE;
175 invalidate_flow_key(key);
179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
180 const __be16 ethertype)
184 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
185 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
189 if (ethertype == htons(ETH_P_TEB))
190 key->mac_proto = MAC_PROTO_ETHERNET;
192 invalidate_flow_key(key);
196 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
197 const __be32 *mpls_lse, const __be32 *mask)
199 struct mpls_shim_hdr *stack;
203 stack = mpls_hdr(skb);
204 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
205 err = skb_mpls_update_lse(skb, lse);
209 flow_key->mpls.lse[0] = lse;
213 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
217 err = skb_vlan_pop(skb);
218 if (skb_vlan_tag_present(skb)) {
219 invalidate_flow_key(key);
221 key->eth.vlan.tci = 0;
222 key->eth.vlan.tpid = 0;
227 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
228 const struct ovs_action_push_vlan *vlan)
230 if (skb_vlan_tag_present(skb)) {
231 invalidate_flow_key(key);
233 key->eth.vlan.tci = vlan->vlan_tci;
234 key->eth.vlan.tpid = vlan->vlan_tpid;
236 return skb_vlan_push(skb, vlan->vlan_tpid,
237 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
240 /* 'src' is already properly masked. */
241 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
243 u16 *dst = (u16 *)dst_;
244 const u16 *src = (const u16 *)src_;
245 const u16 *mask = (const u16 *)mask_;
247 OVS_SET_MASKED(dst[0], src[0], mask[0]);
248 OVS_SET_MASKED(dst[1], src[1], mask[1]);
249 OVS_SET_MASKED(dst[2], src[2], mask[2]);
252 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
253 const struct ovs_key_ethernet *key,
254 const struct ovs_key_ethernet *mask)
258 err = skb_ensure_writable(skb, ETH_HLEN);
262 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
264 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
266 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
269 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
271 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
272 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
276 /* pop_eth does not support VLAN packets as this action is never called
279 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
281 skb_pull_rcsum(skb, ETH_HLEN);
282 skb_reset_mac_header(skb);
283 skb_reset_mac_len(skb);
285 /* safe right before invalidate_flow_key */
286 key->mac_proto = MAC_PROTO_NONE;
287 invalidate_flow_key(key);
291 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
292 const struct ovs_action_push_eth *ethh)
296 /* Add the new Ethernet header */
297 if (skb_cow_head(skb, ETH_HLEN) < 0)
300 skb_push(skb, ETH_HLEN);
301 skb_reset_mac_header(skb);
302 skb_reset_mac_len(skb);
305 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
306 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
307 hdr->h_proto = skb->protocol;
309 skb_postpush_rcsum(skb, hdr, ETH_HLEN);
311 /* safe right before invalidate_flow_key */
312 key->mac_proto = MAC_PROTO_ETHERNET;
313 invalidate_flow_key(key);
317 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
318 const struct nshhdr *nh)
322 err = nsh_push(skb, nh);
326 /* safe right before invalidate_flow_key */
327 key->mac_proto = MAC_PROTO_NONE;
328 invalidate_flow_key(key);
332 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
340 /* safe right before invalidate_flow_key */
341 if (skb->protocol == htons(ETH_P_TEB))
342 key->mac_proto = MAC_PROTO_ETHERNET;
344 key->mac_proto = MAC_PROTO_NONE;
345 invalidate_flow_key(key);
349 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
350 __be32 addr, __be32 new_addr)
352 int transport_len = skb->len - skb_transport_offset(skb);
354 if (nh->frag_off & htons(IP_OFFSET))
357 if (nh->protocol == IPPROTO_TCP) {
358 if (likely(transport_len >= sizeof(struct tcphdr)))
359 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
360 addr, new_addr, true);
361 } else if (nh->protocol == IPPROTO_UDP) {
362 if (likely(transport_len >= sizeof(struct udphdr))) {
363 struct udphdr *uh = udp_hdr(skb);
365 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
366 inet_proto_csum_replace4(&uh->check, skb,
367 addr, new_addr, true);
369 uh->check = CSUM_MANGLED_0;
375 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
376 __be32 *addr, __be32 new_addr)
378 update_ip_l4_checksum(skb, nh, *addr, new_addr);
379 csum_replace4(&nh->check, *addr, new_addr);
384 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
385 __be32 addr[4], const __be32 new_addr[4])
387 int transport_len = skb->len - skb_transport_offset(skb);
389 if (l4_proto == NEXTHDR_TCP) {
390 if (likely(transport_len >= sizeof(struct tcphdr)))
391 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
392 addr, new_addr, true);
393 } else if (l4_proto == NEXTHDR_UDP) {
394 if (likely(transport_len >= sizeof(struct udphdr))) {
395 struct udphdr *uh = udp_hdr(skb);
397 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
398 inet_proto_csum_replace16(&uh->check, skb,
399 addr, new_addr, true);
401 uh->check = CSUM_MANGLED_0;
404 } else if (l4_proto == NEXTHDR_ICMP) {
405 if (likely(transport_len >= sizeof(struct icmp6hdr)))
406 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
407 skb, addr, new_addr, true);
411 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
412 const __be32 mask[4], __be32 masked[4])
414 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
415 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
416 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
417 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
420 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
421 __be32 addr[4], const __be32 new_addr[4],
422 bool recalculate_csum)
424 if (recalculate_csum)
425 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
428 memcpy(addr, new_addr, sizeof(__be32[4]));
431 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
433 /* Bits 21-24 are always unmasked, so this retains their values. */
434 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
435 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
436 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
439 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
442 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
444 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
448 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
449 const struct ovs_key_ipv4 *key,
450 const struct ovs_key_ipv4 *mask)
456 err = skb_ensure_writable(skb, skb_network_offset(skb) +
457 sizeof(struct iphdr));
463 /* Setting an IP addresses is typically only a side effect of
464 * matching on them in the current userspace implementation, so it
465 * makes sense to check if the value actually changed.
467 if (mask->ipv4_src) {
468 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
470 if (unlikely(new_addr != nh->saddr)) {
471 set_ip_addr(skb, nh, &nh->saddr, new_addr);
472 flow_key->ipv4.addr.src = new_addr;
475 if (mask->ipv4_dst) {
476 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
478 if (unlikely(new_addr != nh->daddr)) {
479 set_ip_addr(skb, nh, &nh->daddr, new_addr);
480 flow_key->ipv4.addr.dst = new_addr;
483 if (mask->ipv4_tos) {
484 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
485 flow_key->ip.tos = nh->tos;
487 if (mask->ipv4_ttl) {
488 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
489 flow_key->ip.ttl = nh->ttl;
495 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
497 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
500 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
501 const struct ovs_key_ipv6 *key,
502 const struct ovs_key_ipv6 *mask)
507 err = skb_ensure_writable(skb, skb_network_offset(skb) +
508 sizeof(struct ipv6hdr));
514 /* Setting an IP addresses is typically only a side effect of
515 * matching on them in the current userspace implementation, so it
516 * makes sense to check if the value actually changed.
518 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
519 __be32 *saddr = (__be32 *)&nh->saddr;
522 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
524 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
525 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
527 memcpy(&flow_key->ipv6.addr.src, masked,
528 sizeof(flow_key->ipv6.addr.src));
531 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
532 unsigned int offset = 0;
533 int flags = IP6_FH_F_SKIP_RH;
534 bool recalc_csum = true;
535 __be32 *daddr = (__be32 *)&nh->daddr;
538 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
540 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
541 if (ipv6_ext_hdr(nh->nexthdr))
542 recalc_csum = (ipv6_find_hdr(skb, &offset,
547 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
549 memcpy(&flow_key->ipv6.addr.dst, masked,
550 sizeof(flow_key->ipv6.addr.dst));
553 if (mask->ipv6_tclass) {
554 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
555 flow_key->ip.tos = ipv6_get_dsfield(nh);
557 if (mask->ipv6_label) {
558 set_ipv6_fl(nh, ntohl(key->ipv6_label),
559 ntohl(mask->ipv6_label));
560 flow_key->ipv6.label =
561 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
563 if (mask->ipv6_hlimit) {
564 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
566 flow_key->ip.ttl = nh->hop_limit;
571 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
572 const struct nlattr *a)
581 struct ovs_key_nsh key;
582 struct ovs_key_nsh mask;
584 err = nsh_key_from_nlattr(a, &key, &mask);
588 /* Make sure the NSH base header is there */
589 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
593 length = nsh_hdr_len(nh);
595 /* Make sure the whole NSH header is there */
596 err = skb_ensure_writable(skb, skb_network_offset(skb) +
602 skb_postpull_rcsum(skb, nh, length);
603 flags = nsh_get_flags(nh);
604 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
605 flow_key->nsh.base.flags = flags;
606 ttl = nsh_get_ttl(nh);
607 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
608 flow_key->nsh.base.ttl = ttl;
609 nsh_set_flags_and_ttl(nh, flags, ttl);
610 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
612 flow_key->nsh.base.path_hdr = nh->path_hdr;
613 switch (nh->mdtype) {
615 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
617 OVS_MASKED(nh->md1.context[i], key.context[i],
620 memcpy(flow_key->nsh.context, nh->md1.context,
621 sizeof(nh->md1.context));
624 memset(flow_key->nsh.context, 0,
625 sizeof(flow_key->nsh.context));
630 skb_postpush_rcsum(skb, nh, length);
634 /* Must follow skb_ensure_writable() since that can move the skb data. */
635 static void set_tp_port(struct sk_buff *skb, __be16 *port,
636 __be16 new_port, __sum16 *check)
638 inet_proto_csum_replace2(check, skb, *port, new_port, false);
642 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
643 const struct ovs_key_udp *key,
644 const struct ovs_key_udp *mask)
650 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
651 sizeof(struct udphdr));
656 /* Either of the masks is non-zero, so do not bother checking them. */
657 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
658 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
660 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
661 if (likely(src != uh->source)) {
662 set_tp_port(skb, &uh->source, src, &uh->check);
663 flow_key->tp.src = src;
665 if (likely(dst != uh->dest)) {
666 set_tp_port(skb, &uh->dest, dst, &uh->check);
667 flow_key->tp.dst = dst;
670 if (unlikely(!uh->check))
671 uh->check = CSUM_MANGLED_0;
675 flow_key->tp.src = src;
676 flow_key->tp.dst = dst;
684 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
685 const struct ovs_key_tcp *key,
686 const struct ovs_key_tcp *mask)
692 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
693 sizeof(struct tcphdr));
698 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
699 if (likely(src != th->source)) {
700 set_tp_port(skb, &th->source, src, &th->check);
701 flow_key->tp.src = src;
703 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
704 if (likely(dst != th->dest)) {
705 set_tp_port(skb, &th->dest, dst, &th->check);
706 flow_key->tp.dst = dst;
713 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
714 const struct ovs_key_sctp *key,
715 const struct ovs_key_sctp *mask)
717 unsigned int sctphoff = skb_transport_offset(skb);
719 __le32 old_correct_csum, new_csum, old_csum;
722 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
727 old_csum = sh->checksum;
728 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
730 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
731 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
733 new_csum = sctp_compute_cksum(skb, sctphoff);
735 /* Carry any checksum errors through. */
736 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
739 flow_key->tp.src = sh->source;
740 flow_key->tp.dst = sh->dest;
745 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
747 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
748 struct vport *vport = data->vport;
750 if (skb_cow_head(skb, data->l2_len) < 0) {
755 __skb_dst_copy(skb, data->dst);
756 *OVS_CB(skb) = data->cb;
757 skb->inner_protocol = data->inner_protocol;
758 if (data->vlan_tci & VLAN_CFI_MASK)
759 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
761 __vlan_hwaccel_clear_tag(skb);
763 /* Reconstruct the MAC header. */
764 skb_push(skb, data->l2_len);
765 memcpy(skb->data, &data->l2_data, data->l2_len);
766 skb_postpush_rcsum(skb, skb->data, data->l2_len);
767 skb_reset_mac_header(skb);
769 if (eth_p_mpls(skb->protocol)) {
770 skb->inner_network_header = skb->network_header;
771 skb_set_network_header(skb, data->network_offset);
772 skb_reset_mac_len(skb);
775 ovs_vport_send(vport, skb, data->mac_proto);
780 ovs_dst_get_mtu(const struct dst_entry *dst)
782 return dst->dev->mtu;
785 static struct dst_ops ovs_dst_ops = {
787 .mtu = ovs_dst_get_mtu,
790 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
791 * ovs_vport_output(), which is called once per fragmented packet.
793 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
794 u16 orig_network_offset, u8 mac_proto)
796 unsigned int hlen = skb_network_offset(skb);
797 struct ovs_frag_data *data;
799 data = this_cpu_ptr(&ovs_frag_data_storage);
800 data->dst = skb->_skb_refdst;
802 data->cb = *OVS_CB(skb);
803 data->inner_protocol = skb->inner_protocol;
804 data->network_offset = orig_network_offset;
805 if (skb_vlan_tag_present(skb))
806 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
809 data->vlan_proto = skb->vlan_proto;
810 data->mac_proto = mac_proto;
812 memcpy(&data->l2_data, skb->data, hlen);
814 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
818 static void ovs_fragment(struct net *net, struct vport *vport,
819 struct sk_buff *skb, u16 mru,
820 struct sw_flow_key *key)
822 u16 orig_network_offset = 0;
824 if (eth_p_mpls(skb->protocol)) {
825 orig_network_offset = skb_network_offset(skb);
826 skb->network_header = skb->inner_network_header;
829 if (skb_network_offset(skb) > MAX_L2_LEN) {
830 OVS_NLERR(1, "L2 header too long to fragment");
834 if (key->eth.type == htons(ETH_P_IP)) {
835 struct dst_entry ovs_dst;
836 unsigned long orig_dst;
838 prepare_frag(vport, skb, orig_network_offset,
839 ovs_key_mac_proto(key));
840 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
841 DST_OBSOLETE_NONE, DST_NOCOUNT);
842 ovs_dst.dev = vport->dev;
844 orig_dst = skb->_skb_refdst;
845 skb_dst_set_noref(skb, &ovs_dst);
846 IPCB(skb)->frag_max_size = mru;
848 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
849 refdst_drop(orig_dst);
850 } else if (key->eth.type == htons(ETH_P_IPV6)) {
851 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
852 unsigned long orig_dst;
853 struct rt6_info ovs_rt;
858 prepare_frag(vport, skb, orig_network_offset,
859 ovs_key_mac_proto(key));
860 memset(&ovs_rt, 0, sizeof(ovs_rt));
861 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
862 DST_OBSOLETE_NONE, DST_NOCOUNT);
863 ovs_rt.dst.dev = vport->dev;
865 orig_dst = skb->_skb_refdst;
866 skb_dst_set_noref(skb, &ovs_rt.dst);
867 IP6CB(skb)->frag_max_size = mru;
869 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
870 refdst_drop(orig_dst);
872 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
873 ovs_vport_name(vport), ntohs(key->eth.type), mru,
883 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
884 struct sw_flow_key *key)
886 struct vport *vport = ovs_vport_rcu(dp, out_port);
889 u16 mru = OVS_CB(skb)->mru;
890 u32 cutlen = OVS_CB(skb)->cutlen;
892 if (unlikely(cutlen > 0)) {
893 if (skb->len - cutlen > ovs_mac_header_len(key))
894 pskb_trim(skb, skb->len - cutlen);
896 pskb_trim(skb, ovs_mac_header_len(key));
900 (skb->len <= mru + vport->dev->hard_header_len))) {
901 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
902 } else if (mru <= vport->dev->mtu) {
903 struct net *net = read_pnet(&dp->net);
905 ovs_fragment(net, vport, skb, mru, key);
914 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
915 struct sw_flow_key *key, const struct nlattr *attr,
916 const struct nlattr *actions, int actions_len,
919 struct dp_upcall_info upcall;
920 const struct nlattr *a;
923 memset(&upcall, 0, sizeof(upcall));
924 upcall.cmd = OVS_PACKET_CMD_ACTION;
925 upcall.mru = OVS_CB(skb)->mru;
927 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
928 a = nla_next(a, &rem)) {
929 switch (nla_type(a)) {
930 case OVS_USERSPACE_ATTR_USERDATA:
934 case OVS_USERSPACE_ATTR_PID:
935 upcall.portid = nla_get_u32(a);
938 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
939 /* Get out tunnel info. */
942 vport = ovs_vport_rcu(dp, nla_get_u32(a));
946 err = dev_fill_metadata_dst(vport->dev, skb);
948 upcall.egress_tun_info = skb_tunnel_info(skb);
954 case OVS_USERSPACE_ATTR_ACTIONS: {
955 /* Include actions. */
956 upcall.actions = actions;
957 upcall.actions_len = actions_len;
961 } /* End of switch. */
964 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
967 /* When 'last' is true, sample() should always consume the 'skb'.
968 * Otherwise, sample() should keep 'skb' intact regardless what
969 * actions are executed within sample().
971 static int sample(struct datapath *dp, struct sk_buff *skb,
972 struct sw_flow_key *key, const struct nlattr *attr,
975 struct nlattr *actions;
976 struct nlattr *sample_arg;
977 int rem = nla_len(attr);
978 const struct sample_arg *arg;
981 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
982 sample_arg = nla_data(attr);
983 arg = nla_data(sample_arg);
984 actions = nla_next(sample_arg, &rem);
986 if ((arg->probability != U32_MAX) &&
987 (!arg->probability || prandom_u32() > arg->probability)) {
993 clone_flow_key = !arg->exec;
994 return clone_execute(dp, skb, key, 0, actions, rem, last,
998 /* When 'last' is true, clone() should always consume the 'skb'.
999 * Otherwise, clone() should keep 'skb' intact regardless what
1000 * actions are executed within clone().
1002 static int clone(struct datapath *dp, struct sk_buff *skb,
1003 struct sw_flow_key *key, const struct nlattr *attr,
1006 struct nlattr *actions;
1007 struct nlattr *clone_arg;
1008 int rem = nla_len(attr);
1009 bool dont_clone_flow_key;
1011 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1012 clone_arg = nla_data(attr);
1013 dont_clone_flow_key = nla_get_u32(clone_arg);
1014 actions = nla_next(clone_arg, &rem);
1016 return clone_execute(dp, skb, key, 0, actions, rem, last,
1017 !dont_clone_flow_key);
1020 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1021 const struct nlattr *attr)
1023 struct ovs_action_hash *hash_act = nla_data(attr);
1026 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1027 hash = skb_get_hash(skb);
1028 hash = jhash_1word(hash, hash_act->hash_basis);
1032 key->ovs_flow_hash = hash;
1035 static int execute_set_action(struct sk_buff *skb,
1036 struct sw_flow_key *flow_key,
1037 const struct nlattr *a)
1039 /* Only tunnel set execution is supported without a mask. */
1040 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1041 struct ovs_tunnel_info *tun = nla_data(a);
1044 dst_hold((struct dst_entry *)tun->tun_dst);
1045 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1052 /* Mask is at the midpoint of the data. */
1053 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1055 static int execute_masked_set_action(struct sk_buff *skb,
1056 struct sw_flow_key *flow_key,
1057 const struct nlattr *a)
1061 switch (nla_type(a)) {
1062 case OVS_KEY_ATTR_PRIORITY:
1063 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1064 *get_mask(a, u32 *));
1065 flow_key->phy.priority = skb->priority;
1068 case OVS_KEY_ATTR_SKB_MARK:
1069 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1070 flow_key->phy.skb_mark = skb->mark;
1073 case OVS_KEY_ATTR_TUNNEL_INFO:
1074 /* Masked data not supported for tunnel. */
1078 case OVS_KEY_ATTR_ETHERNET:
1079 err = set_eth_addr(skb, flow_key, nla_data(a),
1080 get_mask(a, struct ovs_key_ethernet *));
1083 case OVS_KEY_ATTR_NSH:
1084 err = set_nsh(skb, flow_key, a);
1087 case OVS_KEY_ATTR_IPV4:
1088 err = set_ipv4(skb, flow_key, nla_data(a),
1089 get_mask(a, struct ovs_key_ipv4 *));
1092 case OVS_KEY_ATTR_IPV6:
1093 err = set_ipv6(skb, flow_key, nla_data(a),
1094 get_mask(a, struct ovs_key_ipv6 *));
1097 case OVS_KEY_ATTR_TCP:
1098 err = set_tcp(skb, flow_key, nla_data(a),
1099 get_mask(a, struct ovs_key_tcp *));
1102 case OVS_KEY_ATTR_UDP:
1103 err = set_udp(skb, flow_key, nla_data(a),
1104 get_mask(a, struct ovs_key_udp *));
1107 case OVS_KEY_ATTR_SCTP:
1108 err = set_sctp(skb, flow_key, nla_data(a),
1109 get_mask(a, struct ovs_key_sctp *));
1112 case OVS_KEY_ATTR_MPLS:
1113 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1117 case OVS_KEY_ATTR_CT_STATE:
1118 case OVS_KEY_ATTR_CT_ZONE:
1119 case OVS_KEY_ATTR_CT_MARK:
1120 case OVS_KEY_ATTR_CT_LABELS:
1121 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1122 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1130 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1131 struct sw_flow_key *key,
1132 const struct nlattr *a, bool last)
1136 if (!is_flow_key_valid(key)) {
1139 err = ovs_flow_key_update(skb, key);
1143 BUG_ON(!is_flow_key_valid(key));
1145 recirc_id = nla_get_u32(a);
1146 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1149 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1150 struct sw_flow_key *key,
1151 const struct nlattr *attr, bool last)
1153 const struct nlattr *actions, *cpl_arg;
1154 const struct check_pkt_len_arg *arg;
1155 int rem = nla_len(attr);
1156 bool clone_flow_key;
1158 /* The first netlink attribute in 'attr' is always
1159 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1161 cpl_arg = nla_data(attr);
1162 arg = nla_data(cpl_arg);
1164 if (skb->len <= arg->pkt_len) {
1165 /* Second netlink attribute in 'attr' is always
1166 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1168 actions = nla_next(cpl_arg, &rem);
1169 clone_flow_key = !arg->exec_for_lesser_equal;
1171 /* Third netlink attribute in 'attr' is always
1172 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1174 actions = nla_next(cpl_arg, &rem);
1175 actions = nla_next(actions, &rem);
1176 clone_flow_key = !arg->exec_for_greater;
1179 return clone_execute(dp, skb, key, 0, nla_data(actions),
1180 nla_len(actions), last, clone_flow_key);
1183 /* Execute a list of actions against 'skb'. */
1184 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1185 struct sw_flow_key *key,
1186 const struct nlattr *attr, int len)
1188 const struct nlattr *a;
1191 for (a = attr, rem = len; rem > 0;
1192 a = nla_next(a, &rem)) {
1195 switch (nla_type(a)) {
1196 case OVS_ACTION_ATTR_OUTPUT: {
1197 int port = nla_get_u32(a);
1198 struct sk_buff *clone;
1200 /* Every output action needs a separate clone
1201 * of 'skb', In case the output action is the
1202 * last action, cloning can be avoided.
1204 if (nla_is_last(a, rem)) {
1205 do_output(dp, skb, port, key);
1206 /* 'skb' has been used for output.
1211 clone = skb_clone(skb, GFP_ATOMIC);
1213 do_output(dp, clone, port, key);
1214 OVS_CB(skb)->cutlen = 0;
1218 case OVS_ACTION_ATTR_TRUNC: {
1219 struct ovs_action_trunc *trunc = nla_data(a);
1221 if (skb->len > trunc->max_len)
1222 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1226 case OVS_ACTION_ATTR_USERSPACE:
1227 output_userspace(dp, skb, key, a, attr,
1228 len, OVS_CB(skb)->cutlen);
1229 OVS_CB(skb)->cutlen = 0;
1232 case OVS_ACTION_ATTR_HASH:
1233 execute_hash(skb, key, a);
1236 case OVS_ACTION_ATTR_PUSH_MPLS: {
1237 struct ovs_action_push_mpls *mpls = nla_data(a);
1239 err = push_mpls(skb, key, mpls->mpls_lse,
1240 mpls->mpls_ethertype, skb->mac_len);
1243 case OVS_ACTION_ATTR_ADD_MPLS: {
1244 struct ovs_action_add_mpls *mpls = nla_data(a);
1247 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1248 mac_len = skb->mac_len;
1250 err = push_mpls(skb, key, mpls->mpls_lse,
1251 mpls->mpls_ethertype, mac_len);
1254 case OVS_ACTION_ATTR_POP_MPLS:
1255 err = pop_mpls(skb, key, nla_get_be16(a));
1258 case OVS_ACTION_ATTR_PUSH_VLAN:
1259 err = push_vlan(skb, key, nla_data(a));
1262 case OVS_ACTION_ATTR_POP_VLAN:
1263 err = pop_vlan(skb, key);
1266 case OVS_ACTION_ATTR_RECIRC: {
1267 bool last = nla_is_last(a, rem);
1269 err = execute_recirc(dp, skb, key, a, last);
1271 /* If this is the last action, the skb has
1272 * been consumed or freed.
1273 * Return immediately.
1280 case OVS_ACTION_ATTR_SET:
1281 err = execute_set_action(skb, key, nla_data(a));
1284 case OVS_ACTION_ATTR_SET_MASKED:
1285 case OVS_ACTION_ATTR_SET_TO_MASKED:
1286 err = execute_masked_set_action(skb, key, nla_data(a));
1289 case OVS_ACTION_ATTR_SAMPLE: {
1290 bool last = nla_is_last(a, rem);
1292 err = sample(dp, skb, key, a, last);
1299 case OVS_ACTION_ATTR_CT:
1300 if (!is_flow_key_valid(key)) {
1301 err = ovs_flow_key_update(skb, key);
1306 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1309 /* Hide stolen IP fragments from user space. */
1311 return err == -EINPROGRESS ? 0 : err;
1314 case OVS_ACTION_ATTR_CT_CLEAR:
1315 err = ovs_ct_clear(skb, key);
1318 case OVS_ACTION_ATTR_PUSH_ETH:
1319 err = push_eth(skb, key, nla_data(a));
1322 case OVS_ACTION_ATTR_POP_ETH:
1323 err = pop_eth(skb, key);
1326 case OVS_ACTION_ATTR_PUSH_NSH: {
1327 u8 buffer[NSH_HDR_MAX_LEN];
1328 struct nshhdr *nh = (struct nshhdr *)buffer;
1330 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1334 err = push_nsh(skb, key, nh);
1338 case OVS_ACTION_ATTR_POP_NSH:
1339 err = pop_nsh(skb, key);
1342 case OVS_ACTION_ATTR_METER:
1343 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1349 case OVS_ACTION_ATTR_CLONE: {
1350 bool last = nla_is_last(a, rem);
1352 err = clone(dp, skb, key, a, last);
1359 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1360 bool last = nla_is_last(a, rem);
1362 err = execute_check_pkt_len(dp, skb, key, a, last);
1370 if (unlikely(err)) {
1380 /* Execute the actions on the clone of the packet. The effect of the
1381 * execution does not affect the original 'skb' nor the original 'key'.
1383 * The execution may be deferred in case the actions can not be executed
1386 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1387 struct sw_flow_key *key, u32 recirc_id,
1388 const struct nlattr *actions, int len,
1389 bool last, bool clone_flow_key)
1391 struct deferred_action *da;
1392 struct sw_flow_key *clone;
1394 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1396 /* Out of memory, skip this action.
1401 /* When clone_flow_key is false, the 'key' will not be change
1402 * by the actions, then the 'key' can be used directly.
1403 * Otherwise, try to clone key from the next recursion level of
1404 * 'flow_keys'. If clone is successful, execute the actions
1405 * without deferring.
1407 clone = clone_flow_key ? clone_key(key) : key;
1411 if (actions) { /* Sample action */
1413 __this_cpu_inc(exec_actions_level);
1415 err = do_execute_actions(dp, skb, clone,
1419 __this_cpu_dec(exec_actions_level);
1420 } else { /* Recirc action */
1421 clone->recirc_id = recirc_id;
1422 ovs_dp_process_packet(skb, clone);
1427 /* Out of 'flow_keys' space. Defer actions */
1428 da = add_deferred_actions(skb, key, actions, len);
1430 if (!actions) { /* Recirc action */
1432 key->recirc_id = recirc_id;
1435 /* Out of per CPU action FIFO space. Drop the 'skb' and
1440 if (net_ratelimit()) {
1441 if (actions) { /* Sample action */
1442 pr_warn("%s: deferred action limit reached, drop sample action\n",
1444 } else { /* Recirc action */
1445 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1453 static void process_deferred_actions(struct datapath *dp)
1455 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1457 /* Do not touch the FIFO in case there is no deferred actions. */
1458 if (action_fifo_is_empty(fifo))
1461 /* Finishing executing all deferred actions. */
1463 struct deferred_action *da = action_fifo_get(fifo);
1464 struct sk_buff *skb = da->skb;
1465 struct sw_flow_key *key = &da->pkt_key;
1466 const struct nlattr *actions = da->actions;
1467 int actions_len = da->actions_len;
1470 do_execute_actions(dp, skb, key, actions, actions_len);
1472 ovs_dp_process_packet(skb, key);
1473 } while (!action_fifo_is_empty(fifo));
1475 /* Reset FIFO for the next packet. */
1476 action_fifo_init(fifo);
1479 /* Execute a list of actions against 'skb'. */
1480 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1481 const struct sw_flow_actions *acts,
1482 struct sw_flow_key *key)
1486 level = __this_cpu_inc_return(exec_actions_level);
1487 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1488 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1495 OVS_CB(skb)->acts_origlen = acts->orig_len;
1496 err = do_execute_actions(dp, skb, key,
1497 acts->actions, acts->actions_len);
1500 process_deferred_actions(dp);
1503 __this_cpu_dec(exec_actions_level);
1507 int action_fifos_init(void)
1509 action_fifos = alloc_percpu(struct action_fifo);
1513 flow_keys = alloc_percpu(struct action_flow_keys);
1515 free_percpu(action_fifos);
1522 void action_fifos_exit(void)
1524 free_percpu(action_fifos);
1525 free_percpu(flow_keys);