]> Git Repo - linux.git/blob - kernel/irq/manage.c
efi/x86: add headroom to decompressor BSS to account for setup block
[linux.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30
31 static int __init setup_forced_irqthreads(char *arg)
32 {
33         force_irqthreads = true;
34         return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38
39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41         struct irq_data *irqd = irq_desc_get_irq_data(desc);
42         bool inprogress;
43
44         do {
45                 unsigned long flags;
46
47                 /*
48                  * Wait until we're out of the critical section.  This might
49                  * give the wrong answer due to the lack of memory barriers.
50                  */
51                 while (irqd_irq_inprogress(&desc->irq_data))
52                         cpu_relax();
53
54                 /* Ok, that indicated we're done: double-check carefully. */
55                 raw_spin_lock_irqsave(&desc->lock, flags);
56                 inprogress = irqd_irq_inprogress(&desc->irq_data);
57
58                 /*
59                  * If requested and supported, check at the chip whether it
60                  * is in flight at the hardware level, i.e. already pending
61                  * in a CPU and waiting for service and acknowledge.
62                  */
63                 if (!inprogress && sync_chip) {
64                         /*
65                          * Ignore the return code. inprogress is only updated
66                          * when the chip supports it.
67                          */
68                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69                                                 &inprogress);
70                 }
71                 raw_spin_unlock_irqrestore(&desc->lock, flags);
72
73                 /* Oops, that failed? */
74         } while (inprogress);
75 }
76
77 /**
78  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *      @irq: interrupt number to wait for
80  *
81  *      This function waits for any pending hard IRQ handlers for this
82  *      interrupt to complete before returning. If you use this
83  *      function while holding a resource the IRQ handler may need you
84  *      will deadlock. It does not take associated threaded handlers
85  *      into account.
86  *
87  *      Do not use this for shutdown scenarios where you must be sure
88  *      that all parts (hardirq and threaded handler) have completed.
89  *
90  *      Returns: false if a threaded handler is active.
91  *
92  *      This function may be called - with care - from IRQ context.
93  *
94  *      It does not check whether there is an interrupt in flight at the
95  *      hardware level, but not serviced yet, as this might deadlock when
96  *      called with interrupts disabled and the target CPU of the interrupt
97  *      is the current CPU.
98  */
99 bool synchronize_hardirq(unsigned int irq)
100 {
101         struct irq_desc *desc = irq_to_desc(irq);
102
103         if (desc) {
104                 __synchronize_hardirq(desc, false);
105                 return !atomic_read(&desc->threads_active);
106         }
107
108         return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111
112 /**
113  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *      @irq: interrupt number to wait for
115  *
116  *      This function waits for any pending IRQ handlers for this interrupt
117  *      to complete before returning. If you use this function while
118  *      holding a resource the IRQ handler may need you will deadlock.
119  *
120  *      Can only be called from preemptible code as it might sleep when
121  *      an interrupt thread is associated to @irq.
122  *
123  *      It optionally makes sure (when the irq chip supports that method)
124  *      that the interrupt is not pending in any CPU and waiting for
125  *      service.
126  */
127 void synchronize_irq(unsigned int irq)
128 {
129         struct irq_desc *desc = irq_to_desc(irq);
130
131         if (desc) {
132                 __synchronize_hardirq(desc, true);
133                 /*
134                  * We made sure that no hardirq handler is
135                  * running. Now verify that no threaded handlers are
136                  * active.
137                  */
138                 wait_event(desc->wait_for_threads,
139                            !atomic_read(&desc->threads_active));
140         }
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146
147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149         if (!desc || !irqd_can_balance(&desc->irq_data) ||
150             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151                 return false;
152         return true;
153 }
154
155 /**
156  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *      @irq:           Interrupt to check
158  *
159  */
160 int irq_can_set_affinity(unsigned int irq)
161 {
162         return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:        Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174         struct irq_desc *desc = irq_to_desc(irq);
175
176         return __irq_can_set_affinity(desc) &&
177                 !irqd_affinity_is_managed(&desc->irq_data);
178 }
179
180 /**
181  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *      @desc:          irq descriptor which has affitnity changed
183  *
184  *      We just set IRQTF_AFFINITY and delegate the affinity setting
185  *      to the interrupt thread itself. We can not call
186  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *      code can be called from hard interrupt context.
188  */
189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191         struct irqaction *action;
192
193         for_each_action_of_desc(desc, action)
194                 if (action->thread)
195                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
201         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202         struct irq_chip *chip = irq_data_get_irq_chip(data);
203
204         if (!cpumask_empty(m))
205                 return;
206         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207                      chip->name, data->irq);
208 #endif
209 }
210
211 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
212                         bool force)
213 {
214         struct irq_desc *desc = irq_data_to_desc(data);
215         struct irq_chip *chip = irq_data_get_irq_chip(data);
216         int ret;
217
218         if (!chip || !chip->irq_set_affinity)
219                 return -EINVAL;
220
221         /*
222          * If this is a managed interrupt and housekeeping is enabled on
223          * it check whether the requested affinity mask intersects with
224          * a housekeeping CPU. If so, then remove the isolated CPUs from
225          * the mask and just keep the housekeeping CPU(s). This prevents
226          * the affinity setter from routing the interrupt to an isolated
227          * CPU to avoid that I/O submitted from a housekeeping CPU causes
228          * interrupts on an isolated one.
229          *
230          * If the masks do not intersect or include online CPU(s) then
231          * keep the requested mask. The isolated target CPUs are only
232          * receiving interrupts when the I/O operation was submitted
233          * directly from them.
234          *
235          * If all housekeeping CPUs in the affinity mask are offline, the
236          * interrupt will be migrated by the CPU hotplug code once a
237          * housekeeping CPU which belongs to the affinity mask comes
238          * online.
239          */
240         if (irqd_affinity_is_managed(data) &&
241             housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
242                 const struct cpumask *hk_mask, *prog_mask;
243
244                 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
245                 static struct cpumask tmp_mask;
246
247                 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
248
249                 raw_spin_lock(&tmp_mask_lock);
250                 cpumask_and(&tmp_mask, mask, hk_mask);
251                 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
252                         prog_mask = mask;
253                 else
254                         prog_mask = &tmp_mask;
255                 ret = chip->irq_set_affinity(data, prog_mask, force);
256                 raw_spin_unlock(&tmp_mask_lock);
257         } else {
258                 ret = chip->irq_set_affinity(data, mask, force);
259         }
260         switch (ret) {
261         case IRQ_SET_MASK_OK:
262         case IRQ_SET_MASK_OK_DONE:
263                 cpumask_copy(desc->irq_common_data.affinity, mask);
264                 /* fall through */
265         case IRQ_SET_MASK_OK_NOCOPY:
266                 irq_validate_effective_affinity(data);
267                 irq_set_thread_affinity(desc);
268                 ret = 0;
269         }
270
271         return ret;
272 }
273
274 #ifdef CONFIG_GENERIC_PENDING_IRQ
275 static inline int irq_set_affinity_pending(struct irq_data *data,
276                                            const struct cpumask *dest)
277 {
278         struct irq_desc *desc = irq_data_to_desc(data);
279
280         irqd_set_move_pending(data);
281         irq_copy_pending(desc, dest);
282         return 0;
283 }
284 #else
285 static inline int irq_set_affinity_pending(struct irq_data *data,
286                                            const struct cpumask *dest)
287 {
288         return -EBUSY;
289 }
290 #endif
291
292 static int irq_try_set_affinity(struct irq_data *data,
293                                 const struct cpumask *dest, bool force)
294 {
295         int ret = irq_do_set_affinity(data, dest, force);
296
297         /*
298          * In case that the underlying vector management is busy and the
299          * architecture supports the generic pending mechanism then utilize
300          * this to avoid returning an error to user space.
301          */
302         if (ret == -EBUSY && !force)
303                 ret = irq_set_affinity_pending(data, dest);
304         return ret;
305 }
306
307 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
308                             bool force)
309 {
310         struct irq_chip *chip = irq_data_get_irq_chip(data);
311         struct irq_desc *desc = irq_data_to_desc(data);
312         int ret = 0;
313
314         if (!chip || !chip->irq_set_affinity)
315                 return -EINVAL;
316
317         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
318                 ret = irq_try_set_affinity(data, mask, force);
319         } else {
320                 irqd_set_move_pending(data);
321                 irq_copy_pending(desc, mask);
322         }
323
324         if (desc->affinity_notify) {
325                 kref_get(&desc->affinity_notify->kref);
326                 schedule_work(&desc->affinity_notify->work);
327         }
328         irqd_set(data, IRQD_AFFINITY_SET);
329
330         return ret;
331 }
332
333 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
334 {
335         struct irq_desc *desc = irq_to_desc(irq);
336         unsigned long flags;
337         int ret;
338
339         if (!desc)
340                 return -EINVAL;
341
342         raw_spin_lock_irqsave(&desc->lock, flags);
343         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
344         raw_spin_unlock_irqrestore(&desc->lock, flags);
345         return ret;
346 }
347
348 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
349 {
350         unsigned long flags;
351         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
352
353         if (!desc)
354                 return -EINVAL;
355         desc->affinity_hint = m;
356         irq_put_desc_unlock(desc, flags);
357         /* set the initial affinity to prevent every interrupt being on CPU0 */
358         if (m)
359                 __irq_set_affinity(irq, m, false);
360         return 0;
361 }
362 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
363
364 static void irq_affinity_notify(struct work_struct *work)
365 {
366         struct irq_affinity_notify *notify =
367                 container_of(work, struct irq_affinity_notify, work);
368         struct irq_desc *desc = irq_to_desc(notify->irq);
369         cpumask_var_t cpumask;
370         unsigned long flags;
371
372         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
373                 goto out;
374
375         raw_spin_lock_irqsave(&desc->lock, flags);
376         if (irq_move_pending(&desc->irq_data))
377                 irq_get_pending(cpumask, desc);
378         else
379                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
380         raw_spin_unlock_irqrestore(&desc->lock, flags);
381
382         notify->notify(notify, cpumask);
383
384         free_cpumask_var(cpumask);
385 out:
386         kref_put(&notify->kref, notify->release);
387 }
388
389 /**
390  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
391  *      @irq:           Interrupt for which to enable/disable notification
392  *      @notify:        Context for notification, or %NULL to disable
393  *                      notification.  Function pointers must be initialised;
394  *                      the other fields will be initialised by this function.
395  *
396  *      Must be called in process context.  Notification may only be enabled
397  *      after the IRQ is allocated and must be disabled before the IRQ is
398  *      freed using free_irq().
399  */
400 int
401 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
402 {
403         struct irq_desc *desc = irq_to_desc(irq);
404         struct irq_affinity_notify *old_notify;
405         unsigned long flags;
406
407         /* The release function is promised process context */
408         might_sleep();
409
410         if (!desc || desc->istate & IRQS_NMI)
411                 return -EINVAL;
412
413         /* Complete initialisation of *notify */
414         if (notify) {
415                 notify->irq = irq;
416                 kref_init(&notify->kref);
417                 INIT_WORK(&notify->work, irq_affinity_notify);
418         }
419
420         raw_spin_lock_irqsave(&desc->lock, flags);
421         old_notify = desc->affinity_notify;
422         desc->affinity_notify = notify;
423         raw_spin_unlock_irqrestore(&desc->lock, flags);
424
425         if (old_notify) {
426                 cancel_work_sync(&old_notify->work);
427                 kref_put(&old_notify->kref, old_notify->release);
428         }
429
430         return 0;
431 }
432 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
433
434 #ifndef CONFIG_AUTO_IRQ_AFFINITY
435 /*
436  * Generic version of the affinity autoselector.
437  */
438 int irq_setup_affinity(struct irq_desc *desc)
439 {
440         struct cpumask *set = irq_default_affinity;
441         int ret, node = irq_desc_get_node(desc);
442         static DEFINE_RAW_SPINLOCK(mask_lock);
443         static struct cpumask mask;
444
445         /* Excludes PER_CPU and NO_BALANCE interrupts */
446         if (!__irq_can_set_affinity(desc))
447                 return 0;
448
449         raw_spin_lock(&mask_lock);
450         /*
451          * Preserve the managed affinity setting and a userspace affinity
452          * setup, but make sure that one of the targets is online.
453          */
454         if (irqd_affinity_is_managed(&desc->irq_data) ||
455             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
456                 if (cpumask_intersects(desc->irq_common_data.affinity,
457                                        cpu_online_mask))
458                         set = desc->irq_common_data.affinity;
459                 else
460                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
461         }
462
463         cpumask_and(&mask, cpu_online_mask, set);
464         if (cpumask_empty(&mask))
465                 cpumask_copy(&mask, cpu_online_mask);
466
467         if (node != NUMA_NO_NODE) {
468                 const struct cpumask *nodemask = cpumask_of_node(node);
469
470                 /* make sure at least one of the cpus in nodemask is online */
471                 if (cpumask_intersects(&mask, nodemask))
472                         cpumask_and(&mask, &mask, nodemask);
473         }
474         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
475         raw_spin_unlock(&mask_lock);
476         return ret;
477 }
478 #else
479 /* Wrapper for ALPHA specific affinity selector magic */
480 int irq_setup_affinity(struct irq_desc *desc)
481 {
482         return irq_select_affinity(irq_desc_get_irq(desc));
483 }
484 #endif
485
486 /*
487  * Called when a bogus affinity is set via /proc/irq
488  */
489 int irq_select_affinity_usr(unsigned int irq)
490 {
491         struct irq_desc *desc = irq_to_desc(irq);
492         unsigned long flags;
493         int ret;
494
495         raw_spin_lock_irqsave(&desc->lock, flags);
496         ret = irq_setup_affinity(desc);
497         raw_spin_unlock_irqrestore(&desc->lock, flags);
498         return ret;
499 }
500 #endif
501
502 /**
503  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
504  *      @irq: interrupt number to set affinity
505  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
506  *                  specific data for percpu_devid interrupts
507  *
508  *      This function uses the vCPU specific data to set the vCPU
509  *      affinity for an irq. The vCPU specific data is passed from
510  *      outside, such as KVM. One example code path is as below:
511  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
512  */
513 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
514 {
515         unsigned long flags;
516         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
517         struct irq_data *data;
518         struct irq_chip *chip;
519         int ret = -ENOSYS;
520
521         if (!desc)
522                 return -EINVAL;
523
524         data = irq_desc_get_irq_data(desc);
525         do {
526                 chip = irq_data_get_irq_chip(data);
527                 if (chip && chip->irq_set_vcpu_affinity)
528                         break;
529 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
530                 data = data->parent_data;
531 #else
532                 data = NULL;
533 #endif
534         } while (data);
535
536         if (data)
537                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
538         irq_put_desc_unlock(desc, flags);
539
540         return ret;
541 }
542 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
543
544 void __disable_irq(struct irq_desc *desc)
545 {
546         if (!desc->depth++)
547                 irq_disable(desc);
548 }
549
550 static int __disable_irq_nosync(unsigned int irq)
551 {
552         unsigned long flags;
553         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
554
555         if (!desc)
556                 return -EINVAL;
557         __disable_irq(desc);
558         irq_put_desc_busunlock(desc, flags);
559         return 0;
560 }
561
562 /**
563  *      disable_irq_nosync - disable an irq without waiting
564  *      @irq: Interrupt to disable
565  *
566  *      Disable the selected interrupt line.  Disables and Enables are
567  *      nested.
568  *      Unlike disable_irq(), this function does not ensure existing
569  *      instances of the IRQ handler have completed before returning.
570  *
571  *      This function may be called from IRQ context.
572  */
573 void disable_irq_nosync(unsigned int irq)
574 {
575         __disable_irq_nosync(irq);
576 }
577 EXPORT_SYMBOL(disable_irq_nosync);
578
579 /**
580  *      disable_irq - disable an irq and wait for completion
581  *      @irq: Interrupt to disable
582  *
583  *      Disable the selected interrupt line.  Enables and Disables are
584  *      nested.
585  *      This function waits for any pending IRQ handlers for this interrupt
586  *      to complete before returning. If you use this function while
587  *      holding a resource the IRQ handler may need you will deadlock.
588  *
589  *      This function may be called - with care - from IRQ context.
590  */
591 void disable_irq(unsigned int irq)
592 {
593         if (!__disable_irq_nosync(irq))
594                 synchronize_irq(irq);
595 }
596 EXPORT_SYMBOL(disable_irq);
597
598 /**
599  *      disable_hardirq - disables an irq and waits for hardirq completion
600  *      @irq: Interrupt to disable
601  *
602  *      Disable the selected interrupt line.  Enables and Disables are
603  *      nested.
604  *      This function waits for any pending hard IRQ handlers for this
605  *      interrupt to complete before returning. If you use this function while
606  *      holding a resource the hard IRQ handler may need you will deadlock.
607  *
608  *      When used to optimistically disable an interrupt from atomic context
609  *      the return value must be checked.
610  *
611  *      Returns: false if a threaded handler is active.
612  *
613  *      This function may be called - with care - from IRQ context.
614  */
615 bool disable_hardirq(unsigned int irq)
616 {
617         if (!__disable_irq_nosync(irq))
618                 return synchronize_hardirq(irq);
619
620         return false;
621 }
622 EXPORT_SYMBOL_GPL(disable_hardirq);
623
624 /**
625  *      disable_nmi_nosync - disable an nmi without waiting
626  *      @irq: Interrupt to disable
627  *
628  *      Disable the selected interrupt line. Disables and enables are
629  *      nested.
630  *      The interrupt to disable must have been requested through request_nmi.
631  *      Unlike disable_nmi(), this function does not ensure existing
632  *      instances of the IRQ handler have completed before returning.
633  */
634 void disable_nmi_nosync(unsigned int irq)
635 {
636         disable_irq_nosync(irq);
637 }
638
639 void __enable_irq(struct irq_desc *desc)
640 {
641         switch (desc->depth) {
642         case 0:
643  err_out:
644                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
645                      irq_desc_get_irq(desc));
646                 break;
647         case 1: {
648                 if (desc->istate & IRQS_SUSPENDED)
649                         goto err_out;
650                 /* Prevent probing on this irq: */
651                 irq_settings_set_noprobe(desc);
652                 /*
653                  * Call irq_startup() not irq_enable() here because the
654                  * interrupt might be marked NOAUTOEN. So irq_startup()
655                  * needs to be invoked when it gets enabled the first
656                  * time. If it was already started up, then irq_startup()
657                  * will invoke irq_enable() under the hood.
658                  */
659                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
660                 break;
661         }
662         default:
663                 desc->depth--;
664         }
665 }
666
667 /**
668  *      enable_irq - enable handling of an irq
669  *      @irq: Interrupt to enable
670  *
671  *      Undoes the effect of one call to disable_irq().  If this
672  *      matches the last disable, processing of interrupts on this
673  *      IRQ line is re-enabled.
674  *
675  *      This function may be called from IRQ context only when
676  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
677  */
678 void enable_irq(unsigned int irq)
679 {
680         unsigned long flags;
681         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
682
683         if (!desc)
684                 return;
685         if (WARN(!desc->irq_data.chip,
686                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
687                 goto out;
688
689         __enable_irq(desc);
690 out:
691         irq_put_desc_busunlock(desc, flags);
692 }
693 EXPORT_SYMBOL(enable_irq);
694
695 /**
696  *      enable_nmi - enable handling of an nmi
697  *      @irq: Interrupt to enable
698  *
699  *      The interrupt to enable must have been requested through request_nmi.
700  *      Undoes the effect of one call to disable_nmi(). If this
701  *      matches the last disable, processing of interrupts on this
702  *      IRQ line is re-enabled.
703  */
704 void enable_nmi(unsigned int irq)
705 {
706         enable_irq(irq);
707 }
708
709 static int set_irq_wake_real(unsigned int irq, unsigned int on)
710 {
711         struct irq_desc *desc = irq_to_desc(irq);
712         int ret = -ENXIO;
713
714         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
715                 return 0;
716
717         if (desc->irq_data.chip->irq_set_wake)
718                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
719
720         return ret;
721 }
722
723 /**
724  *      irq_set_irq_wake - control irq power management wakeup
725  *      @irq:   interrupt to control
726  *      @on:    enable/disable power management wakeup
727  *
728  *      Enable/disable power management wakeup mode, which is
729  *      disabled by default.  Enables and disables must match,
730  *      just as they match for non-wakeup mode support.
731  *
732  *      Wakeup mode lets this IRQ wake the system from sleep
733  *      states like "suspend to RAM".
734  *
735  *      Note: irq enable/disable state is completely orthogonal
736  *      to the enable/disable state of irq wake. An irq can be
737  *      disabled with disable_irq() and still wake the system as
738  *      long as the irq has wake enabled. If this does not hold,
739  *      then the underlying irq chip and the related driver need
740  *      to be investigated.
741  */
742 int irq_set_irq_wake(unsigned int irq, unsigned int on)
743 {
744         unsigned long flags;
745         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
746         int ret = 0;
747
748         if (!desc)
749                 return -EINVAL;
750
751         /* Don't use NMIs as wake up interrupts please */
752         if (desc->istate & IRQS_NMI) {
753                 ret = -EINVAL;
754                 goto out_unlock;
755         }
756
757         /* wakeup-capable irqs can be shared between drivers that
758          * don't need to have the same sleep mode behaviors.
759          */
760         if (on) {
761                 if (desc->wake_depth++ == 0) {
762                         ret = set_irq_wake_real(irq, on);
763                         if (ret)
764                                 desc->wake_depth = 0;
765                         else
766                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
767                 }
768         } else {
769                 if (desc->wake_depth == 0) {
770                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
771                 } else if (--desc->wake_depth == 0) {
772                         ret = set_irq_wake_real(irq, on);
773                         if (ret)
774                                 desc->wake_depth = 1;
775                         else
776                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
777                 }
778         }
779
780 out_unlock:
781         irq_put_desc_busunlock(desc, flags);
782         return ret;
783 }
784 EXPORT_SYMBOL(irq_set_irq_wake);
785
786 /*
787  * Internal function that tells the architecture code whether a
788  * particular irq has been exclusively allocated or is available
789  * for driver use.
790  */
791 int can_request_irq(unsigned int irq, unsigned long irqflags)
792 {
793         unsigned long flags;
794         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
795         int canrequest = 0;
796
797         if (!desc)
798                 return 0;
799
800         if (irq_settings_can_request(desc)) {
801                 if (!desc->action ||
802                     irqflags & desc->action->flags & IRQF_SHARED)
803                         canrequest = 1;
804         }
805         irq_put_desc_unlock(desc, flags);
806         return canrequest;
807 }
808
809 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
810 {
811         struct irq_chip *chip = desc->irq_data.chip;
812         int ret, unmask = 0;
813
814         if (!chip || !chip->irq_set_type) {
815                 /*
816                  * IRQF_TRIGGER_* but the PIC does not support multiple
817                  * flow-types?
818                  */
819                 pr_debug("No set_type function for IRQ %d (%s)\n",
820                          irq_desc_get_irq(desc),
821                          chip ? (chip->name ? : "unknown") : "unknown");
822                 return 0;
823         }
824
825         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
826                 if (!irqd_irq_masked(&desc->irq_data))
827                         mask_irq(desc);
828                 if (!irqd_irq_disabled(&desc->irq_data))
829                         unmask = 1;
830         }
831
832         /* Mask all flags except trigger mode */
833         flags &= IRQ_TYPE_SENSE_MASK;
834         ret = chip->irq_set_type(&desc->irq_data, flags);
835
836         switch (ret) {
837         case IRQ_SET_MASK_OK:
838         case IRQ_SET_MASK_OK_DONE:
839                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
840                 irqd_set(&desc->irq_data, flags);
841                 /* fall through */
842
843         case IRQ_SET_MASK_OK_NOCOPY:
844                 flags = irqd_get_trigger_type(&desc->irq_data);
845                 irq_settings_set_trigger_mask(desc, flags);
846                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
847                 irq_settings_clr_level(desc);
848                 if (flags & IRQ_TYPE_LEVEL_MASK) {
849                         irq_settings_set_level(desc);
850                         irqd_set(&desc->irq_data, IRQD_LEVEL);
851                 }
852
853                 ret = 0;
854                 break;
855         default:
856                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
857                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
858         }
859         if (unmask)
860                 unmask_irq(desc);
861         return ret;
862 }
863
864 #ifdef CONFIG_HARDIRQS_SW_RESEND
865 int irq_set_parent(int irq, int parent_irq)
866 {
867         unsigned long flags;
868         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
869
870         if (!desc)
871                 return -EINVAL;
872
873         desc->parent_irq = parent_irq;
874
875         irq_put_desc_unlock(desc, flags);
876         return 0;
877 }
878 EXPORT_SYMBOL_GPL(irq_set_parent);
879 #endif
880
881 /*
882  * Default primary interrupt handler for threaded interrupts. Is
883  * assigned as primary handler when request_threaded_irq is called
884  * with handler == NULL. Useful for oneshot interrupts.
885  */
886 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
887 {
888         return IRQ_WAKE_THREAD;
889 }
890
891 /*
892  * Primary handler for nested threaded interrupts. Should never be
893  * called.
894  */
895 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
896 {
897         WARN(1, "Primary handler called for nested irq %d\n", irq);
898         return IRQ_NONE;
899 }
900
901 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
902 {
903         WARN(1, "Secondary action handler called for irq %d\n", irq);
904         return IRQ_NONE;
905 }
906
907 static int irq_wait_for_interrupt(struct irqaction *action)
908 {
909         for (;;) {
910                 set_current_state(TASK_INTERRUPTIBLE);
911
912                 if (kthread_should_stop()) {
913                         /* may need to run one last time */
914                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
915                                                &action->thread_flags)) {
916                                 __set_current_state(TASK_RUNNING);
917                                 return 0;
918                         }
919                         __set_current_state(TASK_RUNNING);
920                         return -1;
921                 }
922
923                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
924                                        &action->thread_flags)) {
925                         __set_current_state(TASK_RUNNING);
926                         return 0;
927                 }
928                 schedule();
929         }
930 }
931
932 /*
933  * Oneshot interrupts keep the irq line masked until the threaded
934  * handler finished. unmask if the interrupt has not been disabled and
935  * is marked MASKED.
936  */
937 static void irq_finalize_oneshot(struct irq_desc *desc,
938                                  struct irqaction *action)
939 {
940         if (!(desc->istate & IRQS_ONESHOT) ||
941             action->handler == irq_forced_secondary_handler)
942                 return;
943 again:
944         chip_bus_lock(desc);
945         raw_spin_lock_irq(&desc->lock);
946
947         /*
948          * Implausible though it may be we need to protect us against
949          * the following scenario:
950          *
951          * The thread is faster done than the hard interrupt handler
952          * on the other CPU. If we unmask the irq line then the
953          * interrupt can come in again and masks the line, leaves due
954          * to IRQS_INPROGRESS and the irq line is masked forever.
955          *
956          * This also serializes the state of shared oneshot handlers
957          * versus "desc->threads_onehsot |= action->thread_mask;" in
958          * irq_wake_thread(). See the comment there which explains the
959          * serialization.
960          */
961         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
962                 raw_spin_unlock_irq(&desc->lock);
963                 chip_bus_sync_unlock(desc);
964                 cpu_relax();
965                 goto again;
966         }
967
968         /*
969          * Now check again, whether the thread should run. Otherwise
970          * we would clear the threads_oneshot bit of this thread which
971          * was just set.
972          */
973         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
974                 goto out_unlock;
975
976         desc->threads_oneshot &= ~action->thread_mask;
977
978         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
979             irqd_irq_masked(&desc->irq_data))
980                 unmask_threaded_irq(desc);
981
982 out_unlock:
983         raw_spin_unlock_irq(&desc->lock);
984         chip_bus_sync_unlock(desc);
985 }
986
987 #ifdef CONFIG_SMP
988 /*
989  * Check whether we need to change the affinity of the interrupt thread.
990  */
991 static void
992 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
993 {
994         cpumask_var_t mask;
995         bool valid = true;
996
997         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
998                 return;
999
1000         /*
1001          * In case we are out of memory we set IRQTF_AFFINITY again and
1002          * try again next time
1003          */
1004         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1005                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1006                 return;
1007         }
1008
1009         raw_spin_lock_irq(&desc->lock);
1010         /*
1011          * This code is triggered unconditionally. Check the affinity
1012          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1013          */
1014         if (cpumask_available(desc->irq_common_data.affinity)) {
1015                 const struct cpumask *m;
1016
1017                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1018                 cpumask_copy(mask, m);
1019         } else {
1020                 valid = false;
1021         }
1022         raw_spin_unlock_irq(&desc->lock);
1023
1024         if (valid)
1025                 set_cpus_allowed_ptr(current, mask);
1026         free_cpumask_var(mask);
1027 }
1028 #else
1029 static inline void
1030 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1031 #endif
1032
1033 /*
1034  * Interrupts which are not explicitly requested as threaded
1035  * interrupts rely on the implicit bh/preempt disable of the hard irq
1036  * context. So we need to disable bh here to avoid deadlocks and other
1037  * side effects.
1038  */
1039 static irqreturn_t
1040 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1041 {
1042         irqreturn_t ret;
1043
1044         local_bh_disable();
1045         ret = action->thread_fn(action->irq, action->dev_id);
1046         if (ret == IRQ_HANDLED)
1047                 atomic_inc(&desc->threads_handled);
1048
1049         irq_finalize_oneshot(desc, action);
1050         local_bh_enable();
1051         return ret;
1052 }
1053
1054 /*
1055  * Interrupts explicitly requested as threaded interrupts want to be
1056  * preemtible - many of them need to sleep and wait for slow busses to
1057  * complete.
1058  */
1059 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1060                 struct irqaction *action)
1061 {
1062         irqreturn_t ret;
1063
1064         ret = action->thread_fn(action->irq, action->dev_id);
1065         if (ret == IRQ_HANDLED)
1066                 atomic_inc(&desc->threads_handled);
1067
1068         irq_finalize_oneshot(desc, action);
1069         return ret;
1070 }
1071
1072 static void wake_threads_waitq(struct irq_desc *desc)
1073 {
1074         if (atomic_dec_and_test(&desc->threads_active))
1075                 wake_up(&desc->wait_for_threads);
1076 }
1077
1078 static void irq_thread_dtor(struct callback_head *unused)
1079 {
1080         struct task_struct *tsk = current;
1081         struct irq_desc *desc;
1082         struct irqaction *action;
1083
1084         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1085                 return;
1086
1087         action = kthread_data(tsk);
1088
1089         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1090                tsk->comm, tsk->pid, action->irq);
1091
1092
1093         desc = irq_to_desc(action->irq);
1094         /*
1095          * If IRQTF_RUNTHREAD is set, we need to decrement
1096          * desc->threads_active and wake possible waiters.
1097          */
1098         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1099                 wake_threads_waitq(desc);
1100
1101         /* Prevent a stale desc->threads_oneshot */
1102         irq_finalize_oneshot(desc, action);
1103 }
1104
1105 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1106 {
1107         struct irqaction *secondary = action->secondary;
1108
1109         if (WARN_ON_ONCE(!secondary))
1110                 return;
1111
1112         raw_spin_lock_irq(&desc->lock);
1113         __irq_wake_thread(desc, secondary);
1114         raw_spin_unlock_irq(&desc->lock);
1115 }
1116
1117 /*
1118  * Interrupt handler thread
1119  */
1120 static int irq_thread(void *data)
1121 {
1122         struct callback_head on_exit_work;
1123         struct irqaction *action = data;
1124         struct irq_desc *desc = irq_to_desc(action->irq);
1125         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1126                         struct irqaction *action);
1127
1128         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1129                                         &action->thread_flags))
1130                 handler_fn = irq_forced_thread_fn;
1131         else
1132                 handler_fn = irq_thread_fn;
1133
1134         init_task_work(&on_exit_work, irq_thread_dtor);
1135         task_work_add(current, &on_exit_work, false);
1136
1137         irq_thread_check_affinity(desc, action);
1138
1139         while (!irq_wait_for_interrupt(action)) {
1140                 irqreturn_t action_ret;
1141
1142                 irq_thread_check_affinity(desc, action);
1143
1144                 action_ret = handler_fn(desc, action);
1145                 if (action_ret == IRQ_WAKE_THREAD)
1146                         irq_wake_secondary(desc, action);
1147
1148                 wake_threads_waitq(desc);
1149         }
1150
1151         /*
1152          * This is the regular exit path. __free_irq() is stopping the
1153          * thread via kthread_stop() after calling
1154          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1155          * oneshot mask bit can be set.
1156          */
1157         task_work_cancel(current, irq_thread_dtor);
1158         return 0;
1159 }
1160
1161 /**
1162  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1163  *      @irq:           Interrupt line
1164  *      @dev_id:        Device identity for which the thread should be woken
1165  *
1166  */
1167 void irq_wake_thread(unsigned int irq, void *dev_id)
1168 {
1169         struct irq_desc *desc = irq_to_desc(irq);
1170         struct irqaction *action;
1171         unsigned long flags;
1172
1173         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1174                 return;
1175
1176         raw_spin_lock_irqsave(&desc->lock, flags);
1177         for_each_action_of_desc(desc, action) {
1178                 if (action->dev_id == dev_id) {
1179                         if (action->thread)
1180                                 __irq_wake_thread(desc, action);
1181                         break;
1182                 }
1183         }
1184         raw_spin_unlock_irqrestore(&desc->lock, flags);
1185 }
1186 EXPORT_SYMBOL_GPL(irq_wake_thread);
1187
1188 static int irq_setup_forced_threading(struct irqaction *new)
1189 {
1190         if (!force_irqthreads)
1191                 return 0;
1192         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1193                 return 0;
1194
1195         /*
1196          * No further action required for interrupts which are requested as
1197          * threaded interrupts already
1198          */
1199         if (new->handler == irq_default_primary_handler)
1200                 return 0;
1201
1202         new->flags |= IRQF_ONESHOT;
1203
1204         /*
1205          * Handle the case where we have a real primary handler and a
1206          * thread handler. We force thread them as well by creating a
1207          * secondary action.
1208          */
1209         if (new->handler && new->thread_fn) {
1210                 /* Allocate the secondary action */
1211                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1212                 if (!new->secondary)
1213                         return -ENOMEM;
1214                 new->secondary->handler = irq_forced_secondary_handler;
1215                 new->secondary->thread_fn = new->thread_fn;
1216                 new->secondary->dev_id = new->dev_id;
1217                 new->secondary->irq = new->irq;
1218                 new->secondary->name = new->name;
1219         }
1220         /* Deal with the primary handler */
1221         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1222         new->thread_fn = new->handler;
1223         new->handler = irq_default_primary_handler;
1224         return 0;
1225 }
1226
1227 static int irq_request_resources(struct irq_desc *desc)
1228 {
1229         struct irq_data *d = &desc->irq_data;
1230         struct irq_chip *c = d->chip;
1231
1232         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1233 }
1234
1235 static void irq_release_resources(struct irq_desc *desc)
1236 {
1237         struct irq_data *d = &desc->irq_data;
1238         struct irq_chip *c = d->chip;
1239
1240         if (c->irq_release_resources)
1241                 c->irq_release_resources(d);
1242 }
1243
1244 static bool irq_supports_nmi(struct irq_desc *desc)
1245 {
1246         struct irq_data *d = irq_desc_get_irq_data(desc);
1247
1248 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1249         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1250         if (d->parent_data)
1251                 return false;
1252 #endif
1253         /* Don't support NMIs for chips behind a slow bus */
1254         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1255                 return false;
1256
1257         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1258 }
1259
1260 static int irq_nmi_setup(struct irq_desc *desc)
1261 {
1262         struct irq_data *d = irq_desc_get_irq_data(desc);
1263         struct irq_chip *c = d->chip;
1264
1265         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1266 }
1267
1268 static void irq_nmi_teardown(struct irq_desc *desc)
1269 {
1270         struct irq_data *d = irq_desc_get_irq_data(desc);
1271         struct irq_chip *c = d->chip;
1272
1273         if (c->irq_nmi_teardown)
1274                 c->irq_nmi_teardown(d);
1275 }
1276
1277 static int
1278 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1279 {
1280         struct task_struct *t;
1281         struct sched_param param = {
1282                 .sched_priority = MAX_USER_RT_PRIO/2,
1283         };
1284
1285         if (!secondary) {
1286                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1287                                    new->name);
1288         } else {
1289                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1290                                    new->name);
1291                 param.sched_priority -= 1;
1292         }
1293
1294         if (IS_ERR(t))
1295                 return PTR_ERR(t);
1296
1297         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1298
1299         /*
1300          * We keep the reference to the task struct even if
1301          * the thread dies to avoid that the interrupt code
1302          * references an already freed task_struct.
1303          */
1304         new->thread = get_task_struct(t);
1305         /*
1306          * Tell the thread to set its affinity. This is
1307          * important for shared interrupt handlers as we do
1308          * not invoke setup_affinity() for the secondary
1309          * handlers as everything is already set up. Even for
1310          * interrupts marked with IRQF_NO_BALANCE this is
1311          * correct as we want the thread to move to the cpu(s)
1312          * on which the requesting code placed the interrupt.
1313          */
1314         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1315         return 0;
1316 }
1317
1318 /*
1319  * Internal function to register an irqaction - typically used to
1320  * allocate special interrupts that are part of the architecture.
1321  *
1322  * Locking rules:
1323  *
1324  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1325  *   chip_bus_lock      Provides serialization for slow bus operations
1326  *     desc->lock       Provides serialization against hard interrupts
1327  *
1328  * chip_bus_lock and desc->lock are sufficient for all other management and
1329  * interrupt related functions. desc->request_mutex solely serializes
1330  * request/free_irq().
1331  */
1332 static int
1333 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1334 {
1335         struct irqaction *old, **old_ptr;
1336         unsigned long flags, thread_mask = 0;
1337         int ret, nested, shared = 0;
1338
1339         if (!desc)
1340                 return -EINVAL;
1341
1342         if (desc->irq_data.chip == &no_irq_chip)
1343                 return -ENOSYS;
1344         if (!try_module_get(desc->owner))
1345                 return -ENODEV;
1346
1347         new->irq = irq;
1348
1349         /*
1350          * If the trigger type is not specified by the caller,
1351          * then use the default for this interrupt.
1352          */
1353         if (!(new->flags & IRQF_TRIGGER_MASK))
1354                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1355
1356         /*
1357          * Check whether the interrupt nests into another interrupt
1358          * thread.
1359          */
1360         nested = irq_settings_is_nested_thread(desc);
1361         if (nested) {
1362                 if (!new->thread_fn) {
1363                         ret = -EINVAL;
1364                         goto out_mput;
1365                 }
1366                 /*
1367                  * Replace the primary handler which was provided from
1368                  * the driver for non nested interrupt handling by the
1369                  * dummy function which warns when called.
1370                  */
1371                 new->handler = irq_nested_primary_handler;
1372         } else {
1373                 if (irq_settings_can_thread(desc)) {
1374                         ret = irq_setup_forced_threading(new);
1375                         if (ret)
1376                                 goto out_mput;
1377                 }
1378         }
1379
1380         /*
1381          * Create a handler thread when a thread function is supplied
1382          * and the interrupt does not nest into another interrupt
1383          * thread.
1384          */
1385         if (new->thread_fn && !nested) {
1386                 ret = setup_irq_thread(new, irq, false);
1387                 if (ret)
1388                         goto out_mput;
1389                 if (new->secondary) {
1390                         ret = setup_irq_thread(new->secondary, irq, true);
1391                         if (ret)
1392                                 goto out_thread;
1393                 }
1394         }
1395
1396         /*
1397          * Drivers are often written to work w/o knowledge about the
1398          * underlying irq chip implementation, so a request for a
1399          * threaded irq without a primary hard irq context handler
1400          * requires the ONESHOT flag to be set. Some irq chips like
1401          * MSI based interrupts are per se one shot safe. Check the
1402          * chip flags, so we can avoid the unmask dance at the end of
1403          * the threaded handler for those.
1404          */
1405         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1406                 new->flags &= ~IRQF_ONESHOT;
1407
1408         /*
1409          * Protects against a concurrent __free_irq() call which might wait
1410          * for synchronize_hardirq() to complete without holding the optional
1411          * chip bus lock and desc->lock. Also protects against handing out
1412          * a recycled oneshot thread_mask bit while it's still in use by
1413          * its previous owner.
1414          */
1415         mutex_lock(&desc->request_mutex);
1416
1417         /*
1418          * Acquire bus lock as the irq_request_resources() callback below
1419          * might rely on the serialization or the magic power management
1420          * functions which are abusing the irq_bus_lock() callback,
1421          */
1422         chip_bus_lock(desc);
1423
1424         /* First installed action requests resources. */
1425         if (!desc->action) {
1426                 ret = irq_request_resources(desc);
1427                 if (ret) {
1428                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1429                                new->name, irq, desc->irq_data.chip->name);
1430                         goto out_bus_unlock;
1431                 }
1432         }
1433
1434         /*
1435          * The following block of code has to be executed atomically
1436          * protected against a concurrent interrupt and any of the other
1437          * management calls which are not serialized via
1438          * desc->request_mutex or the optional bus lock.
1439          */
1440         raw_spin_lock_irqsave(&desc->lock, flags);
1441         old_ptr = &desc->action;
1442         old = *old_ptr;
1443         if (old) {
1444                 /*
1445                  * Can't share interrupts unless both agree to and are
1446                  * the same type (level, edge, polarity). So both flag
1447                  * fields must have IRQF_SHARED set and the bits which
1448                  * set the trigger type must match. Also all must
1449                  * agree on ONESHOT.
1450                  * Interrupt lines used for NMIs cannot be shared.
1451                  */
1452                 unsigned int oldtype;
1453
1454                 if (desc->istate & IRQS_NMI) {
1455                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1456                                 new->name, irq, desc->irq_data.chip->name);
1457                         ret = -EINVAL;
1458                         goto out_unlock;
1459                 }
1460
1461                 /*
1462                  * If nobody did set the configuration before, inherit
1463                  * the one provided by the requester.
1464                  */
1465                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1466                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1467                 } else {
1468                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1469                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1470                 }
1471
1472                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1473                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1474                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1475                         goto mismatch;
1476
1477                 /* All handlers must agree on per-cpuness */
1478                 if ((old->flags & IRQF_PERCPU) !=
1479                     (new->flags & IRQF_PERCPU))
1480                         goto mismatch;
1481
1482                 /* add new interrupt at end of irq queue */
1483                 do {
1484                         /*
1485                          * Or all existing action->thread_mask bits,
1486                          * so we can find the next zero bit for this
1487                          * new action.
1488                          */
1489                         thread_mask |= old->thread_mask;
1490                         old_ptr = &old->next;
1491                         old = *old_ptr;
1492                 } while (old);
1493                 shared = 1;
1494         }
1495
1496         /*
1497          * Setup the thread mask for this irqaction for ONESHOT. For
1498          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1499          * conditional in irq_wake_thread().
1500          */
1501         if (new->flags & IRQF_ONESHOT) {
1502                 /*
1503                  * Unlikely to have 32 resp 64 irqs sharing one line,
1504                  * but who knows.
1505                  */
1506                 if (thread_mask == ~0UL) {
1507                         ret = -EBUSY;
1508                         goto out_unlock;
1509                 }
1510                 /*
1511                  * The thread_mask for the action is or'ed to
1512                  * desc->thread_active to indicate that the
1513                  * IRQF_ONESHOT thread handler has been woken, but not
1514                  * yet finished. The bit is cleared when a thread
1515                  * completes. When all threads of a shared interrupt
1516                  * line have completed desc->threads_active becomes
1517                  * zero and the interrupt line is unmasked. See
1518                  * handle.c:irq_wake_thread() for further information.
1519                  *
1520                  * If no thread is woken by primary (hard irq context)
1521                  * interrupt handlers, then desc->threads_active is
1522                  * also checked for zero to unmask the irq line in the
1523                  * affected hard irq flow handlers
1524                  * (handle_[fasteoi|level]_irq).
1525                  *
1526                  * The new action gets the first zero bit of
1527                  * thread_mask assigned. See the loop above which or's
1528                  * all existing action->thread_mask bits.
1529                  */
1530                 new->thread_mask = 1UL << ffz(thread_mask);
1531
1532         } else if (new->handler == irq_default_primary_handler &&
1533                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1534                 /*
1535                  * The interrupt was requested with handler = NULL, so
1536                  * we use the default primary handler for it. But it
1537                  * does not have the oneshot flag set. In combination
1538                  * with level interrupts this is deadly, because the
1539                  * default primary handler just wakes the thread, then
1540                  * the irq lines is reenabled, but the device still
1541                  * has the level irq asserted. Rinse and repeat....
1542                  *
1543                  * While this works for edge type interrupts, we play
1544                  * it safe and reject unconditionally because we can't
1545                  * say for sure which type this interrupt really
1546                  * has. The type flags are unreliable as the
1547                  * underlying chip implementation can override them.
1548                  */
1549                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1550                        new->name, irq);
1551                 ret = -EINVAL;
1552                 goto out_unlock;
1553         }
1554
1555         if (!shared) {
1556                 init_waitqueue_head(&desc->wait_for_threads);
1557
1558                 /* Setup the type (level, edge polarity) if configured: */
1559                 if (new->flags & IRQF_TRIGGER_MASK) {
1560                         ret = __irq_set_trigger(desc,
1561                                                 new->flags & IRQF_TRIGGER_MASK);
1562
1563                         if (ret)
1564                                 goto out_unlock;
1565                 }
1566
1567                 /*
1568                  * Activate the interrupt. That activation must happen
1569                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1570                  * and the callers are supposed to handle
1571                  * that. enable_irq() of an interrupt requested with
1572                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1573                  * keeps it in shutdown mode, it merily associates
1574                  * resources if necessary and if that's not possible it
1575                  * fails. Interrupts which are in managed shutdown mode
1576                  * will simply ignore that activation request.
1577                  */
1578                 ret = irq_activate(desc);
1579                 if (ret)
1580                         goto out_unlock;
1581
1582                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1583                                   IRQS_ONESHOT | IRQS_WAITING);
1584                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1585
1586                 if (new->flags & IRQF_PERCPU) {
1587                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1588                         irq_settings_set_per_cpu(desc);
1589                 }
1590
1591                 if (new->flags & IRQF_ONESHOT)
1592                         desc->istate |= IRQS_ONESHOT;
1593
1594                 /* Exclude IRQ from balancing if requested */
1595                 if (new->flags & IRQF_NOBALANCING) {
1596                         irq_settings_set_no_balancing(desc);
1597                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1598                 }
1599
1600                 if (irq_settings_can_autoenable(desc)) {
1601                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1602                 } else {
1603                         /*
1604                          * Shared interrupts do not go well with disabling
1605                          * auto enable. The sharing interrupt might request
1606                          * it while it's still disabled and then wait for
1607                          * interrupts forever.
1608                          */
1609                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1610                         /* Undo nested disables: */
1611                         desc->depth = 1;
1612                 }
1613
1614         } else if (new->flags & IRQF_TRIGGER_MASK) {
1615                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1616                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1617
1618                 if (nmsk != omsk)
1619                         /* hope the handler works with current  trigger mode */
1620                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1621                                 irq, omsk, nmsk);
1622         }
1623
1624         *old_ptr = new;
1625
1626         irq_pm_install_action(desc, new);
1627
1628         /* Reset broken irq detection when installing new handler */
1629         desc->irq_count = 0;
1630         desc->irqs_unhandled = 0;
1631
1632         /*
1633          * Check whether we disabled the irq via the spurious handler
1634          * before. Reenable it and give it another chance.
1635          */
1636         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1637                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1638                 __enable_irq(desc);
1639         }
1640
1641         raw_spin_unlock_irqrestore(&desc->lock, flags);
1642         chip_bus_sync_unlock(desc);
1643         mutex_unlock(&desc->request_mutex);
1644
1645         irq_setup_timings(desc, new);
1646
1647         /*
1648          * Strictly no need to wake it up, but hung_task complains
1649          * when no hard interrupt wakes the thread up.
1650          */
1651         if (new->thread)
1652                 wake_up_process(new->thread);
1653         if (new->secondary)
1654                 wake_up_process(new->secondary->thread);
1655
1656         register_irq_proc(irq, desc);
1657         new->dir = NULL;
1658         register_handler_proc(irq, new);
1659         return 0;
1660
1661 mismatch:
1662         if (!(new->flags & IRQF_PROBE_SHARED)) {
1663                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1664                        irq, new->flags, new->name, old->flags, old->name);
1665 #ifdef CONFIG_DEBUG_SHIRQ
1666                 dump_stack();
1667 #endif
1668         }
1669         ret = -EBUSY;
1670
1671 out_unlock:
1672         raw_spin_unlock_irqrestore(&desc->lock, flags);
1673
1674         if (!desc->action)
1675                 irq_release_resources(desc);
1676 out_bus_unlock:
1677         chip_bus_sync_unlock(desc);
1678         mutex_unlock(&desc->request_mutex);
1679
1680 out_thread:
1681         if (new->thread) {
1682                 struct task_struct *t = new->thread;
1683
1684                 new->thread = NULL;
1685                 kthread_stop(t);
1686                 put_task_struct(t);
1687         }
1688         if (new->secondary && new->secondary->thread) {
1689                 struct task_struct *t = new->secondary->thread;
1690
1691                 new->secondary->thread = NULL;
1692                 kthread_stop(t);
1693                 put_task_struct(t);
1694         }
1695 out_mput:
1696         module_put(desc->owner);
1697         return ret;
1698 }
1699
1700 /**
1701  *      setup_irq - setup an interrupt
1702  *      @irq: Interrupt line to setup
1703  *      @act: irqaction for the interrupt
1704  *
1705  * Used to statically setup interrupts in the early boot process.
1706  */
1707 int setup_irq(unsigned int irq, struct irqaction *act)
1708 {
1709         int retval;
1710         struct irq_desc *desc = irq_to_desc(irq);
1711
1712         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1713                 return -EINVAL;
1714
1715         retval = irq_chip_pm_get(&desc->irq_data);
1716         if (retval < 0)
1717                 return retval;
1718
1719         retval = __setup_irq(irq, desc, act);
1720
1721         if (retval)
1722                 irq_chip_pm_put(&desc->irq_data);
1723
1724         return retval;
1725 }
1726 EXPORT_SYMBOL_GPL(setup_irq);
1727
1728 /*
1729  * Internal function to unregister an irqaction - used to free
1730  * regular and special interrupts that are part of the architecture.
1731  */
1732 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1733 {
1734         unsigned irq = desc->irq_data.irq;
1735         struct irqaction *action, **action_ptr;
1736         unsigned long flags;
1737
1738         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1739
1740         mutex_lock(&desc->request_mutex);
1741         chip_bus_lock(desc);
1742         raw_spin_lock_irqsave(&desc->lock, flags);
1743
1744         /*
1745          * There can be multiple actions per IRQ descriptor, find the right
1746          * one based on the dev_id:
1747          */
1748         action_ptr = &desc->action;
1749         for (;;) {
1750                 action = *action_ptr;
1751
1752                 if (!action) {
1753                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1754                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1755                         chip_bus_sync_unlock(desc);
1756                         mutex_unlock(&desc->request_mutex);
1757                         return NULL;
1758                 }
1759
1760                 if (action->dev_id == dev_id)
1761                         break;
1762                 action_ptr = &action->next;
1763         }
1764
1765         /* Found it - now remove it from the list of entries: */
1766         *action_ptr = action->next;
1767
1768         irq_pm_remove_action(desc, action);
1769
1770         /* If this was the last handler, shut down the IRQ line: */
1771         if (!desc->action) {
1772                 irq_settings_clr_disable_unlazy(desc);
1773                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1774                 irq_shutdown(desc);
1775         }
1776
1777 #ifdef CONFIG_SMP
1778         /* make sure affinity_hint is cleaned up */
1779         if (WARN_ON_ONCE(desc->affinity_hint))
1780                 desc->affinity_hint = NULL;
1781 #endif
1782
1783         raw_spin_unlock_irqrestore(&desc->lock, flags);
1784         /*
1785          * Drop bus_lock here so the changes which were done in the chip
1786          * callbacks above are synced out to the irq chips which hang
1787          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1788          *
1789          * Aside of that the bus_lock can also be taken from the threaded
1790          * handler in irq_finalize_oneshot() which results in a deadlock
1791          * because kthread_stop() would wait forever for the thread to
1792          * complete, which is blocked on the bus lock.
1793          *
1794          * The still held desc->request_mutex() protects against a
1795          * concurrent request_irq() of this irq so the release of resources
1796          * and timing data is properly serialized.
1797          */
1798         chip_bus_sync_unlock(desc);
1799
1800         unregister_handler_proc(irq, action);
1801
1802         /*
1803          * Make sure it's not being used on another CPU and if the chip
1804          * supports it also make sure that there is no (not yet serviced)
1805          * interrupt in flight at the hardware level.
1806          */
1807         __synchronize_hardirq(desc, true);
1808
1809 #ifdef CONFIG_DEBUG_SHIRQ
1810         /*
1811          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1812          * event to happen even now it's being freed, so let's make sure that
1813          * is so by doing an extra call to the handler ....
1814          *
1815          * ( We do this after actually deregistering it, to make sure that a
1816          *   'real' IRQ doesn't run in parallel with our fake. )
1817          */
1818         if (action->flags & IRQF_SHARED) {
1819                 local_irq_save(flags);
1820                 action->handler(irq, dev_id);
1821                 local_irq_restore(flags);
1822         }
1823 #endif
1824
1825         /*
1826          * The action has already been removed above, but the thread writes
1827          * its oneshot mask bit when it completes. Though request_mutex is
1828          * held across this which prevents __setup_irq() from handing out
1829          * the same bit to a newly requested action.
1830          */
1831         if (action->thread) {
1832                 kthread_stop(action->thread);
1833                 put_task_struct(action->thread);
1834                 if (action->secondary && action->secondary->thread) {
1835                         kthread_stop(action->secondary->thread);
1836                         put_task_struct(action->secondary->thread);
1837                 }
1838         }
1839
1840         /* Last action releases resources */
1841         if (!desc->action) {
1842                 /*
1843                  * Reaquire bus lock as irq_release_resources() might
1844                  * require it to deallocate resources over the slow bus.
1845                  */
1846                 chip_bus_lock(desc);
1847                 /*
1848                  * There is no interrupt on the fly anymore. Deactivate it
1849                  * completely.
1850                  */
1851                 raw_spin_lock_irqsave(&desc->lock, flags);
1852                 irq_domain_deactivate_irq(&desc->irq_data);
1853                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1854
1855                 irq_release_resources(desc);
1856                 chip_bus_sync_unlock(desc);
1857                 irq_remove_timings(desc);
1858         }
1859
1860         mutex_unlock(&desc->request_mutex);
1861
1862         irq_chip_pm_put(&desc->irq_data);
1863         module_put(desc->owner);
1864         kfree(action->secondary);
1865         return action;
1866 }
1867
1868 /**
1869  *      remove_irq - free an interrupt
1870  *      @irq: Interrupt line to free
1871  *      @act: irqaction for the interrupt
1872  *
1873  * Used to remove interrupts statically setup by the early boot process.
1874  */
1875 void remove_irq(unsigned int irq, struct irqaction *act)
1876 {
1877         struct irq_desc *desc = irq_to_desc(irq);
1878
1879         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1880                 __free_irq(desc, act->dev_id);
1881 }
1882 EXPORT_SYMBOL_GPL(remove_irq);
1883
1884 /**
1885  *      free_irq - free an interrupt allocated with request_irq
1886  *      @irq: Interrupt line to free
1887  *      @dev_id: Device identity to free
1888  *
1889  *      Remove an interrupt handler. The handler is removed and if the
1890  *      interrupt line is no longer in use by any driver it is disabled.
1891  *      On a shared IRQ the caller must ensure the interrupt is disabled
1892  *      on the card it drives before calling this function. The function
1893  *      does not return until any executing interrupts for this IRQ
1894  *      have completed.
1895  *
1896  *      This function must not be called from interrupt context.
1897  *
1898  *      Returns the devname argument passed to request_irq.
1899  */
1900 const void *free_irq(unsigned int irq, void *dev_id)
1901 {
1902         struct irq_desc *desc = irq_to_desc(irq);
1903         struct irqaction *action;
1904         const char *devname;
1905
1906         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1907                 return NULL;
1908
1909 #ifdef CONFIG_SMP
1910         if (WARN_ON(desc->affinity_notify))
1911                 desc->affinity_notify = NULL;
1912 #endif
1913
1914         action = __free_irq(desc, dev_id);
1915
1916         if (!action)
1917                 return NULL;
1918
1919         devname = action->name;
1920         kfree(action);
1921         return devname;
1922 }
1923 EXPORT_SYMBOL(free_irq);
1924
1925 /* This function must be called with desc->lock held */
1926 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1927 {
1928         const char *devname = NULL;
1929
1930         desc->istate &= ~IRQS_NMI;
1931
1932         if (!WARN_ON(desc->action == NULL)) {
1933                 irq_pm_remove_action(desc, desc->action);
1934                 devname = desc->action->name;
1935                 unregister_handler_proc(irq, desc->action);
1936
1937                 kfree(desc->action);
1938                 desc->action = NULL;
1939         }
1940
1941         irq_settings_clr_disable_unlazy(desc);
1942         irq_shutdown_and_deactivate(desc);
1943
1944         irq_release_resources(desc);
1945
1946         irq_chip_pm_put(&desc->irq_data);
1947         module_put(desc->owner);
1948
1949         return devname;
1950 }
1951
1952 const void *free_nmi(unsigned int irq, void *dev_id)
1953 {
1954         struct irq_desc *desc = irq_to_desc(irq);
1955         unsigned long flags;
1956         const void *devname;
1957
1958         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1959                 return NULL;
1960
1961         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1962                 return NULL;
1963
1964         /* NMI still enabled */
1965         if (WARN_ON(desc->depth == 0))
1966                 disable_nmi_nosync(irq);
1967
1968         raw_spin_lock_irqsave(&desc->lock, flags);
1969
1970         irq_nmi_teardown(desc);
1971         devname = __cleanup_nmi(irq, desc);
1972
1973         raw_spin_unlock_irqrestore(&desc->lock, flags);
1974
1975         return devname;
1976 }
1977
1978 /**
1979  *      request_threaded_irq - allocate an interrupt line
1980  *      @irq: Interrupt line to allocate
1981  *      @handler: Function to be called when the IRQ occurs.
1982  *                Primary handler for threaded interrupts
1983  *                If NULL and thread_fn != NULL the default
1984  *                primary handler is installed
1985  *      @thread_fn: Function called from the irq handler thread
1986  *                  If NULL, no irq thread is created
1987  *      @irqflags: Interrupt type flags
1988  *      @devname: An ascii name for the claiming device
1989  *      @dev_id: A cookie passed back to the handler function
1990  *
1991  *      This call allocates interrupt resources and enables the
1992  *      interrupt line and IRQ handling. From the point this
1993  *      call is made your handler function may be invoked. Since
1994  *      your handler function must clear any interrupt the board
1995  *      raises, you must take care both to initialise your hardware
1996  *      and to set up the interrupt handler in the right order.
1997  *
1998  *      If you want to set up a threaded irq handler for your device
1999  *      then you need to supply @handler and @thread_fn. @handler is
2000  *      still called in hard interrupt context and has to check
2001  *      whether the interrupt originates from the device. If yes it
2002  *      needs to disable the interrupt on the device and return
2003  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2004  *      @thread_fn. This split handler design is necessary to support
2005  *      shared interrupts.
2006  *
2007  *      Dev_id must be globally unique. Normally the address of the
2008  *      device data structure is used as the cookie. Since the handler
2009  *      receives this value it makes sense to use it.
2010  *
2011  *      If your interrupt is shared you must pass a non NULL dev_id
2012  *      as this is required when freeing the interrupt.
2013  *
2014  *      Flags:
2015  *
2016  *      IRQF_SHARED             Interrupt is shared
2017  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2018  *
2019  */
2020 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2021                          irq_handler_t thread_fn, unsigned long irqflags,
2022                          const char *devname, void *dev_id)
2023 {
2024         struct irqaction *action;
2025         struct irq_desc *desc;
2026         int retval;
2027
2028         if (irq == IRQ_NOTCONNECTED)
2029                 return -ENOTCONN;
2030
2031         /*
2032          * Sanity-check: shared interrupts must pass in a real dev-ID,
2033          * otherwise we'll have trouble later trying to figure out
2034          * which interrupt is which (messes up the interrupt freeing
2035          * logic etc).
2036          *
2037          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2038          * it cannot be set along with IRQF_NO_SUSPEND.
2039          */
2040         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2041             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2042             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2043                 return -EINVAL;
2044
2045         desc = irq_to_desc(irq);
2046         if (!desc)
2047                 return -EINVAL;
2048
2049         if (!irq_settings_can_request(desc) ||
2050             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2051                 return -EINVAL;
2052
2053         if (!handler) {
2054                 if (!thread_fn)
2055                         return -EINVAL;
2056                 handler = irq_default_primary_handler;
2057         }
2058
2059         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2060         if (!action)
2061                 return -ENOMEM;
2062
2063         action->handler = handler;
2064         action->thread_fn = thread_fn;
2065         action->flags = irqflags;
2066         action->name = devname;
2067         action->dev_id = dev_id;
2068
2069         retval = irq_chip_pm_get(&desc->irq_data);
2070         if (retval < 0) {
2071                 kfree(action);
2072                 return retval;
2073         }
2074
2075         retval = __setup_irq(irq, desc, action);
2076
2077         if (retval) {
2078                 irq_chip_pm_put(&desc->irq_data);
2079                 kfree(action->secondary);
2080                 kfree(action);
2081         }
2082
2083 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2084         if (!retval && (irqflags & IRQF_SHARED)) {
2085                 /*
2086                  * It's a shared IRQ -- the driver ought to be prepared for it
2087                  * to happen immediately, so let's make sure....
2088                  * We disable the irq to make sure that a 'real' IRQ doesn't
2089                  * run in parallel with our fake.
2090                  */
2091                 unsigned long flags;
2092
2093                 disable_irq(irq);
2094                 local_irq_save(flags);
2095
2096                 handler(irq, dev_id);
2097
2098                 local_irq_restore(flags);
2099                 enable_irq(irq);
2100         }
2101 #endif
2102         return retval;
2103 }
2104 EXPORT_SYMBOL(request_threaded_irq);
2105
2106 /**
2107  *      request_any_context_irq - allocate an interrupt line
2108  *      @irq: Interrupt line to allocate
2109  *      @handler: Function to be called when the IRQ occurs.
2110  *                Threaded handler for threaded interrupts.
2111  *      @flags: Interrupt type flags
2112  *      @name: An ascii name for the claiming device
2113  *      @dev_id: A cookie passed back to the handler function
2114  *
2115  *      This call allocates interrupt resources and enables the
2116  *      interrupt line and IRQ handling. It selects either a
2117  *      hardirq or threaded handling method depending on the
2118  *      context.
2119  *
2120  *      On failure, it returns a negative value. On success,
2121  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2122  */
2123 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2124                             unsigned long flags, const char *name, void *dev_id)
2125 {
2126         struct irq_desc *desc;
2127         int ret;
2128
2129         if (irq == IRQ_NOTCONNECTED)
2130                 return -ENOTCONN;
2131
2132         desc = irq_to_desc(irq);
2133         if (!desc)
2134                 return -EINVAL;
2135
2136         if (irq_settings_is_nested_thread(desc)) {
2137                 ret = request_threaded_irq(irq, NULL, handler,
2138                                            flags, name, dev_id);
2139                 return !ret ? IRQC_IS_NESTED : ret;
2140         }
2141
2142         ret = request_irq(irq, handler, flags, name, dev_id);
2143         return !ret ? IRQC_IS_HARDIRQ : ret;
2144 }
2145 EXPORT_SYMBOL_GPL(request_any_context_irq);
2146
2147 /**
2148  *      request_nmi - allocate an interrupt line for NMI delivery
2149  *      @irq: Interrupt line to allocate
2150  *      @handler: Function to be called when the IRQ occurs.
2151  *                Threaded handler for threaded interrupts.
2152  *      @irqflags: Interrupt type flags
2153  *      @name: An ascii name for the claiming device
2154  *      @dev_id: A cookie passed back to the handler function
2155  *
2156  *      This call allocates interrupt resources and enables the
2157  *      interrupt line and IRQ handling. It sets up the IRQ line
2158  *      to be handled as an NMI.
2159  *
2160  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2161  *      cannot be threaded.
2162  *
2163  *      Interrupt lines requested for NMI delivering must produce per cpu
2164  *      interrupts and have auto enabling setting disabled.
2165  *
2166  *      Dev_id must be globally unique. Normally the address of the
2167  *      device data structure is used as the cookie. Since the handler
2168  *      receives this value it makes sense to use it.
2169  *
2170  *      If the interrupt line cannot be used to deliver NMIs, function
2171  *      will fail and return a negative value.
2172  */
2173 int request_nmi(unsigned int irq, irq_handler_t handler,
2174                 unsigned long irqflags, const char *name, void *dev_id)
2175 {
2176         struct irqaction *action;
2177         struct irq_desc *desc;
2178         unsigned long flags;
2179         int retval;
2180
2181         if (irq == IRQ_NOTCONNECTED)
2182                 return -ENOTCONN;
2183
2184         /* NMI cannot be shared, used for Polling */
2185         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2186                 return -EINVAL;
2187
2188         if (!(irqflags & IRQF_PERCPU))
2189                 return -EINVAL;
2190
2191         if (!handler)
2192                 return -EINVAL;
2193
2194         desc = irq_to_desc(irq);
2195
2196         if (!desc || irq_settings_can_autoenable(desc) ||
2197             !irq_settings_can_request(desc) ||
2198             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2199             !irq_supports_nmi(desc))
2200                 return -EINVAL;
2201
2202         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2203         if (!action)
2204                 return -ENOMEM;
2205
2206         action->handler = handler;
2207         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2208         action->name = name;
2209         action->dev_id = dev_id;
2210
2211         retval = irq_chip_pm_get(&desc->irq_data);
2212         if (retval < 0)
2213                 goto err_out;
2214
2215         retval = __setup_irq(irq, desc, action);
2216         if (retval)
2217                 goto err_irq_setup;
2218
2219         raw_spin_lock_irqsave(&desc->lock, flags);
2220
2221         /* Setup NMI state */
2222         desc->istate |= IRQS_NMI;
2223         retval = irq_nmi_setup(desc);
2224         if (retval) {
2225                 __cleanup_nmi(irq, desc);
2226                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2227                 return -EINVAL;
2228         }
2229
2230         raw_spin_unlock_irqrestore(&desc->lock, flags);
2231
2232         return 0;
2233
2234 err_irq_setup:
2235         irq_chip_pm_put(&desc->irq_data);
2236 err_out:
2237         kfree(action);
2238
2239         return retval;
2240 }
2241
2242 void enable_percpu_irq(unsigned int irq, unsigned int type)
2243 {
2244         unsigned int cpu = smp_processor_id();
2245         unsigned long flags;
2246         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2247
2248         if (!desc)
2249                 return;
2250
2251         /*
2252          * If the trigger type is not specified by the caller, then
2253          * use the default for this interrupt.
2254          */
2255         type &= IRQ_TYPE_SENSE_MASK;
2256         if (type == IRQ_TYPE_NONE)
2257                 type = irqd_get_trigger_type(&desc->irq_data);
2258
2259         if (type != IRQ_TYPE_NONE) {
2260                 int ret;
2261
2262                 ret = __irq_set_trigger(desc, type);
2263
2264                 if (ret) {
2265                         WARN(1, "failed to set type for IRQ%d\n", irq);
2266                         goto out;
2267                 }
2268         }
2269
2270         irq_percpu_enable(desc, cpu);
2271 out:
2272         irq_put_desc_unlock(desc, flags);
2273 }
2274 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2275
2276 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2277 {
2278         enable_percpu_irq(irq, type);
2279 }
2280
2281 /**
2282  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2283  * @irq:        Linux irq number to check for
2284  *
2285  * Must be called from a non migratable context. Returns the enable
2286  * state of a per cpu interrupt on the current cpu.
2287  */
2288 bool irq_percpu_is_enabled(unsigned int irq)
2289 {
2290         unsigned int cpu = smp_processor_id();
2291         struct irq_desc *desc;
2292         unsigned long flags;
2293         bool is_enabled;
2294
2295         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2296         if (!desc)
2297                 return false;
2298
2299         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2300         irq_put_desc_unlock(desc, flags);
2301
2302         return is_enabled;
2303 }
2304 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2305
2306 void disable_percpu_irq(unsigned int irq)
2307 {
2308         unsigned int cpu = smp_processor_id();
2309         unsigned long flags;
2310         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2311
2312         if (!desc)
2313                 return;
2314
2315         irq_percpu_disable(desc, cpu);
2316         irq_put_desc_unlock(desc, flags);
2317 }
2318 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2319
2320 void disable_percpu_nmi(unsigned int irq)
2321 {
2322         disable_percpu_irq(irq);
2323 }
2324
2325 /*
2326  * Internal function to unregister a percpu irqaction.
2327  */
2328 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2329 {
2330         struct irq_desc *desc = irq_to_desc(irq);
2331         struct irqaction *action;
2332         unsigned long flags;
2333
2334         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2335
2336         if (!desc)
2337                 return NULL;
2338
2339         raw_spin_lock_irqsave(&desc->lock, flags);
2340
2341         action = desc->action;
2342         if (!action || action->percpu_dev_id != dev_id) {
2343                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2344                 goto bad;
2345         }
2346
2347         if (!cpumask_empty(desc->percpu_enabled)) {
2348                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2349                      irq, cpumask_first(desc->percpu_enabled));
2350                 goto bad;
2351         }
2352
2353         /* Found it - now remove it from the list of entries: */
2354         desc->action = NULL;
2355
2356         desc->istate &= ~IRQS_NMI;
2357
2358         raw_spin_unlock_irqrestore(&desc->lock, flags);
2359
2360         unregister_handler_proc(irq, action);
2361
2362         irq_chip_pm_put(&desc->irq_data);
2363         module_put(desc->owner);
2364         return action;
2365
2366 bad:
2367         raw_spin_unlock_irqrestore(&desc->lock, flags);
2368         return NULL;
2369 }
2370
2371 /**
2372  *      remove_percpu_irq - free a per-cpu interrupt
2373  *      @irq: Interrupt line to free
2374  *      @act: irqaction for the interrupt
2375  *
2376  * Used to remove interrupts statically setup by the early boot process.
2377  */
2378 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2379 {
2380         struct irq_desc *desc = irq_to_desc(irq);
2381
2382         if (desc && irq_settings_is_per_cpu_devid(desc))
2383             __free_percpu_irq(irq, act->percpu_dev_id);
2384 }
2385
2386 /**
2387  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2388  *      @irq: Interrupt line to free
2389  *      @dev_id: Device identity to free
2390  *
2391  *      Remove a percpu interrupt handler. The handler is removed, but
2392  *      the interrupt line is not disabled. This must be done on each
2393  *      CPU before calling this function. The function does not return
2394  *      until any executing interrupts for this IRQ have completed.
2395  *
2396  *      This function must not be called from interrupt context.
2397  */
2398 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2399 {
2400         struct irq_desc *desc = irq_to_desc(irq);
2401
2402         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2403                 return;
2404
2405         chip_bus_lock(desc);
2406         kfree(__free_percpu_irq(irq, dev_id));
2407         chip_bus_sync_unlock(desc);
2408 }
2409 EXPORT_SYMBOL_GPL(free_percpu_irq);
2410
2411 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2412 {
2413         struct irq_desc *desc = irq_to_desc(irq);
2414
2415         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2416                 return;
2417
2418         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2419                 return;
2420
2421         kfree(__free_percpu_irq(irq, dev_id));
2422 }
2423
2424 /**
2425  *      setup_percpu_irq - setup a per-cpu interrupt
2426  *      @irq: Interrupt line to setup
2427  *      @act: irqaction for the interrupt
2428  *
2429  * Used to statically setup per-cpu interrupts in the early boot process.
2430  */
2431 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2432 {
2433         struct irq_desc *desc = irq_to_desc(irq);
2434         int retval;
2435
2436         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2437                 return -EINVAL;
2438
2439         retval = irq_chip_pm_get(&desc->irq_data);
2440         if (retval < 0)
2441                 return retval;
2442
2443         retval = __setup_irq(irq, desc, act);
2444
2445         if (retval)
2446                 irq_chip_pm_put(&desc->irq_data);
2447
2448         return retval;
2449 }
2450
2451 /**
2452  *      __request_percpu_irq - allocate a percpu interrupt line
2453  *      @irq: Interrupt line to allocate
2454  *      @handler: Function to be called when the IRQ occurs.
2455  *      @flags: Interrupt type flags (IRQF_TIMER only)
2456  *      @devname: An ascii name for the claiming device
2457  *      @dev_id: A percpu cookie passed back to the handler function
2458  *
2459  *      This call allocates interrupt resources and enables the
2460  *      interrupt on the local CPU. If the interrupt is supposed to be
2461  *      enabled on other CPUs, it has to be done on each CPU using
2462  *      enable_percpu_irq().
2463  *
2464  *      Dev_id must be globally unique. It is a per-cpu variable, and
2465  *      the handler gets called with the interrupted CPU's instance of
2466  *      that variable.
2467  */
2468 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2469                          unsigned long flags, const char *devname,
2470                          void __percpu *dev_id)
2471 {
2472         struct irqaction *action;
2473         struct irq_desc *desc;
2474         int retval;
2475
2476         if (!dev_id)
2477                 return -EINVAL;
2478
2479         desc = irq_to_desc(irq);
2480         if (!desc || !irq_settings_can_request(desc) ||
2481             !irq_settings_is_per_cpu_devid(desc))
2482                 return -EINVAL;
2483
2484         if (flags && flags != IRQF_TIMER)
2485                 return -EINVAL;
2486
2487         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2488         if (!action)
2489                 return -ENOMEM;
2490
2491         action->handler = handler;
2492         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2493         action->name = devname;
2494         action->percpu_dev_id = dev_id;
2495
2496         retval = irq_chip_pm_get(&desc->irq_data);
2497         if (retval < 0) {
2498                 kfree(action);
2499                 return retval;
2500         }
2501
2502         retval = __setup_irq(irq, desc, action);
2503
2504         if (retval) {
2505                 irq_chip_pm_put(&desc->irq_data);
2506                 kfree(action);
2507         }
2508
2509         return retval;
2510 }
2511 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2512
2513 /**
2514  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2515  *      @irq: Interrupt line to allocate
2516  *      @handler: Function to be called when the IRQ occurs.
2517  *      @name: An ascii name for the claiming device
2518  *      @dev_id: A percpu cookie passed back to the handler function
2519  *
2520  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2521  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2522  *      being enabled on the same CPU by using enable_percpu_nmi().
2523  *
2524  *      Dev_id must be globally unique. It is a per-cpu variable, and
2525  *      the handler gets called with the interrupted CPU's instance of
2526  *      that variable.
2527  *
2528  *      Interrupt lines requested for NMI delivering should have auto enabling
2529  *      setting disabled.
2530  *
2531  *      If the interrupt line cannot be used to deliver NMIs, function
2532  *      will fail returning a negative value.
2533  */
2534 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2535                        const char *name, void __percpu *dev_id)
2536 {
2537         struct irqaction *action;
2538         struct irq_desc *desc;
2539         unsigned long flags;
2540         int retval;
2541
2542         if (!handler)
2543                 return -EINVAL;
2544
2545         desc = irq_to_desc(irq);
2546
2547         if (!desc || !irq_settings_can_request(desc) ||
2548             !irq_settings_is_per_cpu_devid(desc) ||
2549             irq_settings_can_autoenable(desc) ||
2550             !irq_supports_nmi(desc))
2551                 return -EINVAL;
2552
2553         /* The line cannot already be NMI */
2554         if (desc->istate & IRQS_NMI)
2555                 return -EINVAL;
2556
2557         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2558         if (!action)
2559                 return -ENOMEM;
2560
2561         action->handler = handler;
2562         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2563                 | IRQF_NOBALANCING;
2564         action->name = name;
2565         action->percpu_dev_id = dev_id;
2566
2567         retval = irq_chip_pm_get(&desc->irq_data);
2568         if (retval < 0)
2569                 goto err_out;
2570
2571         retval = __setup_irq(irq, desc, action);
2572         if (retval)
2573                 goto err_irq_setup;
2574
2575         raw_spin_lock_irqsave(&desc->lock, flags);
2576         desc->istate |= IRQS_NMI;
2577         raw_spin_unlock_irqrestore(&desc->lock, flags);
2578
2579         return 0;
2580
2581 err_irq_setup:
2582         irq_chip_pm_put(&desc->irq_data);
2583 err_out:
2584         kfree(action);
2585
2586         return retval;
2587 }
2588
2589 /**
2590  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2591  *      @irq: Interrupt line to prepare for NMI delivery
2592  *
2593  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2594  *      before that interrupt line gets enabled with enable_percpu_nmi().
2595  *
2596  *      As a CPU local operation, this should be called from non-preemptible
2597  *      context.
2598  *
2599  *      If the interrupt line cannot be used to deliver NMIs, function
2600  *      will fail returning a negative value.
2601  */
2602 int prepare_percpu_nmi(unsigned int irq)
2603 {
2604         unsigned long flags;
2605         struct irq_desc *desc;
2606         int ret = 0;
2607
2608         WARN_ON(preemptible());
2609
2610         desc = irq_get_desc_lock(irq, &flags,
2611                                  IRQ_GET_DESC_CHECK_PERCPU);
2612         if (!desc)
2613                 return -EINVAL;
2614
2615         if (WARN(!(desc->istate & IRQS_NMI),
2616                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2617                  irq)) {
2618                 ret = -EINVAL;
2619                 goto out;
2620         }
2621
2622         ret = irq_nmi_setup(desc);
2623         if (ret) {
2624                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2625                 goto out;
2626         }
2627
2628 out:
2629         irq_put_desc_unlock(desc, flags);
2630         return ret;
2631 }
2632
2633 /**
2634  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2635  *      @irq: Interrupt line from which CPU local NMI configuration should be
2636  *            removed
2637  *
2638  *      This call undoes the setup done by prepare_percpu_nmi().
2639  *
2640  *      IRQ line should not be enabled for the current CPU.
2641  *
2642  *      As a CPU local operation, this should be called from non-preemptible
2643  *      context.
2644  */
2645 void teardown_percpu_nmi(unsigned int irq)
2646 {
2647         unsigned long flags;
2648         struct irq_desc *desc;
2649
2650         WARN_ON(preemptible());
2651
2652         desc = irq_get_desc_lock(irq, &flags,
2653                                  IRQ_GET_DESC_CHECK_PERCPU);
2654         if (!desc)
2655                 return;
2656
2657         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2658                 goto out;
2659
2660         irq_nmi_teardown(desc);
2661 out:
2662         irq_put_desc_unlock(desc, flags);
2663 }
2664
2665 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2666                             bool *state)
2667 {
2668         struct irq_chip *chip;
2669         int err = -EINVAL;
2670
2671         do {
2672                 chip = irq_data_get_irq_chip(data);
2673                 if (chip->irq_get_irqchip_state)
2674                         break;
2675 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2676                 data = data->parent_data;
2677 #else
2678                 data = NULL;
2679 #endif
2680         } while (data);
2681
2682         if (data)
2683                 err = chip->irq_get_irqchip_state(data, which, state);
2684         return err;
2685 }
2686
2687 /**
2688  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2689  *      @irq: Interrupt line that is forwarded to a VM
2690  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2691  *      @state: a pointer to a boolean where the state is to be storeed
2692  *
2693  *      This call snapshots the internal irqchip state of an
2694  *      interrupt, returning into @state the bit corresponding to
2695  *      stage @which
2696  *
2697  *      This function should be called with preemption disabled if the
2698  *      interrupt controller has per-cpu registers.
2699  */
2700 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2701                           bool *state)
2702 {
2703         struct irq_desc *desc;
2704         struct irq_data *data;
2705         unsigned long flags;
2706         int err = -EINVAL;
2707
2708         desc = irq_get_desc_buslock(irq, &flags, 0);
2709         if (!desc)
2710                 return err;
2711
2712         data = irq_desc_get_irq_data(desc);
2713
2714         err = __irq_get_irqchip_state(data, which, state);
2715
2716         irq_put_desc_busunlock(desc, flags);
2717         return err;
2718 }
2719 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2720
2721 /**
2722  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2723  *      @irq: Interrupt line that is forwarded to a VM
2724  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2725  *      @val: Value corresponding to @which
2726  *
2727  *      This call sets the internal irqchip state of an interrupt,
2728  *      depending on the value of @which.
2729  *
2730  *      This function should be called with preemption disabled if the
2731  *      interrupt controller has per-cpu registers.
2732  */
2733 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2734                           bool val)
2735 {
2736         struct irq_desc *desc;
2737         struct irq_data *data;
2738         struct irq_chip *chip;
2739         unsigned long flags;
2740         int err = -EINVAL;
2741
2742         desc = irq_get_desc_buslock(irq, &flags, 0);
2743         if (!desc)
2744                 return err;
2745
2746         data = irq_desc_get_irq_data(desc);
2747
2748         do {
2749                 chip = irq_data_get_irq_chip(data);
2750                 if (chip->irq_set_irqchip_state)
2751                         break;
2752 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2753                 data = data->parent_data;
2754 #else
2755                 data = NULL;
2756 #endif
2757         } while (data);
2758
2759         if (data)
2760                 err = chip->irq_set_irqchip_state(data, which, val);
2761
2762         irq_put_desc_busunlock(desc, flags);
2763         return err;
2764 }
2765 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
This page took 0.182364 seconds and 4 git commands to generate.