1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
4 #include <linux/gpio/consumer.h>
5 #include <linux/iio/consumer.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/nvmem-consumer.h>
11 #include <linux/platform_device.h>
12 #include <linux/power_supply.h>
13 #include <linux/regmap.h>
14 #include <linux/slab.h>
16 /* PMIC global control registers definition */
17 #define SC27XX_MODULE_EN0 0xc08
18 #define SC27XX_CLK_EN0 0xc18
19 #define SC27XX_FGU_EN BIT(7)
20 #define SC27XX_FGU_RTC_EN BIT(6)
22 /* FGU registers definition */
23 #define SC27XX_FGU_START 0x0
24 #define SC27XX_FGU_CONFIG 0x4
25 #define SC27XX_FGU_ADC_CONFIG 0x8
26 #define SC27XX_FGU_STATUS 0xc
27 #define SC27XX_FGU_INT_EN 0x10
28 #define SC27XX_FGU_INT_CLR 0x14
29 #define SC27XX_FGU_INT_STS 0x1c
30 #define SC27XX_FGU_VOLTAGE 0x20
31 #define SC27XX_FGU_OCV 0x24
32 #define SC27XX_FGU_POCV 0x28
33 #define SC27XX_FGU_CURRENT 0x2c
34 #define SC27XX_FGU_LOW_OVERLOAD 0x34
35 #define SC27XX_FGU_CLBCNT_SETH 0x50
36 #define SC27XX_FGU_CLBCNT_SETL 0x54
37 #define SC27XX_FGU_CLBCNT_DELTH 0x58
38 #define SC27XX_FGU_CLBCNT_DELTL 0x5c
39 #define SC27XX_FGU_CLBCNT_VALH 0x68
40 #define SC27XX_FGU_CLBCNT_VALL 0x6c
41 #define SC27XX_FGU_CLBCNT_QMAXL 0x74
42 #define SC27XX_FGU_USER_AREA_SET 0xa0
43 #define SC27XX_FGU_USER_AREA_CLEAR 0xa4
44 #define SC27XX_FGU_USER_AREA_STATUS 0xa8
46 #define SC27XX_WRITE_SELCLB_EN BIT(0)
47 #define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0)
48 #define SC27XX_FGU_CLBCNT_SHIFT 16
49 #define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0)
51 #define SC27XX_FGU_INT_MASK GENMASK(9, 0)
52 #define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0)
53 #define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2)
55 #define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12)
56 #define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0)
57 #define SC27XX_FGU_MODE_AREA_SHIFT 12
59 #define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0)
60 #define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0)
61 #define SC27XX_FGU_NORMAIL_POWERTON 0x5
63 #define SC27XX_FGU_CUR_BASIC_ADC 8192
64 #define SC27XX_FGU_SAMPLE_HZ 2
66 #define SC27XX_FGU_IDEAL_RESISTANCE 20000
69 * struct sc27xx_fgu_data: describe the FGU device
70 * @regmap: regmap for register access
71 * @dev: platform device
72 * @battery: battery power supply
73 * @base: the base offset for the controller
74 * @lock: protect the structure
75 * @gpiod: GPIO for battery detection
76 * @channel: IIO channel to get battery temperature
77 * @charge_chan: IIO channel to get charge voltage
78 * @internal_resist: the battery internal resistance in mOhm
79 * @total_cap: the total capacity of the battery in mAh
80 * @init_cap: the initial capacity of the battery in mAh
81 * @alarm_cap: the alarm capacity
82 * @init_clbcnt: the initial coulomb counter
83 * @max_volt: the maximum constant input voltage in millivolt
84 * @min_volt: the minimum drained battery voltage in microvolt
85 * @table_len: the capacity table length
86 * @resist_table_len: the resistance table length
87 * @cur_1000ma_adc: ADC value corresponding to 1000 mA
88 * @vol_1000mv_adc: ADC value corresponding to 1000 mV
89 * @calib_resist: the real resistance of coulomb counter chip in uOhm
90 * @cap_table: capacity table with corresponding ocv
91 * @resist_table: resistance percent table with corresponding temperature
93 struct sc27xx_fgu_data {
94 struct regmap *regmap;
96 struct power_supply *battery;
99 struct gpio_desc *gpiod;
100 struct iio_channel *channel;
101 struct iio_channel *charge_chan;
111 int resist_table_len;
115 struct power_supply_battery_ocv_table *cap_table;
116 struct power_supply_resistance_temp_table *resist_table;
119 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
120 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
121 int cap, bool int_mode);
122 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
123 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);
125 static const char * const sc27xx_charger_supply_name[] = {
132 static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, int adc)
134 return DIV_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
137 static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, int adc)
139 return DIV_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
142 static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
144 return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
147 static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
149 int ret, status, cap, mode;
151 ret = regmap_read(data->regmap,
152 data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
157 * We use low 4 bits to save the last battery capacity and high 12 bits
158 * to save the system boot mode.
160 mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
161 cap = status & SC27XX_FGU_CAP_AREA_MASK;
164 * When FGU has been powered down, the user area registers became
165 * default value (0xffff), which can be used to valid if the system is
166 * first power on or not.
168 if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
174 static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
179 ret = regmap_update_bits(data->regmap,
180 data->base + SC27XX_FGU_USER_AREA_CLEAR,
181 SC27XX_FGU_MODE_AREA_MASK,
182 SC27XX_FGU_MODE_AREA_MASK);
187 * Since the user area registers are put on power always-on region,
188 * then these registers changing time will be a little long. Thus
189 * here we should delay 200us to wait until values are updated
190 * successfully according to the datasheet.
194 ret = regmap_update_bits(data->regmap,
195 data->base + SC27XX_FGU_USER_AREA_SET,
196 SC27XX_FGU_MODE_AREA_MASK,
197 boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
202 * Since the user area registers are put on power always-on region,
203 * then these registers changing time will be a little long. Thus
204 * here we should delay 200us to wait until values are updated
205 * successfully according to the datasheet.
210 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
211 * make the user area data available, otherwise we can not save the user
214 return regmap_update_bits(data->regmap,
215 data->base + SC27XX_FGU_USER_AREA_CLEAR,
216 SC27XX_FGU_MODE_AREA_MASK, 0);
219 static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
223 ret = regmap_update_bits(data->regmap,
224 data->base + SC27XX_FGU_USER_AREA_CLEAR,
225 SC27XX_FGU_CAP_AREA_MASK,
226 SC27XX_FGU_CAP_AREA_MASK);
231 * Since the user area registers are put on power always-on region,
232 * then these registers changing time will be a little long. Thus
233 * here we should delay 200us to wait until values are updated
234 * successfully according to the datasheet.
238 ret = regmap_update_bits(data->regmap,
239 data->base + SC27XX_FGU_USER_AREA_SET,
240 SC27XX_FGU_CAP_AREA_MASK, cap);
245 * Since the user area registers are put on power always-on region,
246 * then these registers changing time will be a little long. Thus
247 * here we should delay 200us to wait until values are updated
248 * successfully according to the datasheet.
253 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
254 * make the user area data available, otherwise we can not save the user
257 return regmap_update_bits(data->regmap,
258 data->base + SC27XX_FGU_USER_AREA_CLEAR,
259 SC27XX_FGU_CAP_AREA_MASK, 0);
262 static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
266 ret = regmap_read(data->regmap,
267 data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
271 *cap = value & SC27XX_FGU_CAP_AREA_MASK;
276 * When system boots on, we can not read battery capacity from coulomb
277 * registers, since now the coulomb registers are invalid. So we should
278 * calculate the battery open circuit voltage, and get current battery
279 * capacity according to the capacity table.
281 static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
283 int volt, cur, oci, ocv, ret;
284 bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
287 * If system is not the first power on, we should use the last saved
288 * battery capacity as the initial battery capacity. Otherwise we should
289 * re-calculate the initial battery capacity.
291 if (!is_first_poweron) {
292 ret = sc27xx_fgu_read_last_cap(data, cap);
296 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
300 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
301 * the first sampled open circuit current.
303 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
309 oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
312 * Should get the OCV from SC27XX_FGU_POCV register at the system
313 * beginning. It is ADC values reading from registers which need to
314 * convert the corresponding voltage.
316 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
320 volt = sc27xx_fgu_adc_to_voltage(data, volt);
321 ocv = volt * 1000 - oci * data->internal_resist;
324 * Parse the capacity table to look up the correct capacity percent
325 * according to current battery's corresponding OCV values.
327 *cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
330 ret = sc27xx_fgu_save_last_cap(data, *cap);
334 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
337 static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
341 ret = regmap_update_bits(data->regmap,
342 data->base + SC27XX_FGU_CLBCNT_SETL,
343 SC27XX_FGU_CLBCNT_MASK, clbcnt);
347 ret = regmap_update_bits(data->regmap,
348 data->base + SC27XX_FGU_CLBCNT_SETH,
349 SC27XX_FGU_CLBCNT_MASK,
350 clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
354 return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
355 SC27XX_WRITE_SELCLB_EN,
356 SC27XX_WRITE_SELCLB_EN);
359 static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
363 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
368 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
373 *clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
374 *clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
379 static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
381 int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
383 /* Get current coulomb counters firstly */
384 ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
388 delta_clbcnt = cur_clbcnt - data->init_clbcnt;
391 * Convert coulomb counter to delta capacity (mAh), and set multiplier
392 * as 10 to improve the precision.
394 temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
395 temp = sc27xx_fgu_adc_to_current(data, temp / 1000);
398 * Convert to capacity percent of the battery total capacity,
399 * and multiplier is 100 too.
401 delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
402 *cap = delta_cap + data->init_cap;
404 /* Calibrate the battery capacity in a normal range. */
405 sc27xx_fgu_capacity_calibration(data, *cap, false);
410 static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
414 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
419 * It is ADC values reading from registers which need to convert to
420 * corresponding voltage values.
422 *val = sc27xx_fgu_adc_to_voltage(data, vol);
427 static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
431 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
436 * It is ADC values reading from registers which need to convert to
437 * corresponding current values.
439 *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
444 static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
446 int vol, cur, ret, temp, resistance;
448 ret = sc27xx_fgu_get_vbat_vol(data, &vol);
452 ret = sc27xx_fgu_get_current(data, &cur);
456 resistance = data->internal_resist;
457 if (data->resist_table_len > 0) {
458 ret = sc27xx_fgu_get_temp(data, &temp);
462 resistance = power_supply_temp2resist_simple(data->resist_table,
463 data->resist_table_len, temp);
464 resistance = data->internal_resist * resistance / 100;
467 /* Return the battery OCV in micro volts. */
468 *val = vol * 1000 - cur * resistance;
473 static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
477 ret = iio_read_channel_processed(data->charge_chan, &vol);
485 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
487 return iio_read_channel_processed(data->channel, temp);
490 static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
494 ret = sc27xx_fgu_get_vbat_vol(data, &vol);
498 if (vol > data->max_volt)
499 *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
501 *health = POWER_SUPPLY_HEALTH_GOOD;
506 static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
508 union power_supply_propval val;
509 struct power_supply *psy;
510 int i, ret = -EINVAL;
512 for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
513 psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
517 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
519 power_supply_put(psy);
523 *status = val.intval;
529 static int sc27xx_fgu_get_property(struct power_supply *psy,
530 enum power_supply_property psp,
531 union power_supply_propval *val)
533 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
537 mutex_lock(&data->lock);
540 case POWER_SUPPLY_PROP_STATUS:
541 ret = sc27xx_fgu_get_status(data, &value);
548 case POWER_SUPPLY_PROP_HEALTH:
549 ret = sc27xx_fgu_get_health(data, &value);
556 case POWER_SUPPLY_PROP_PRESENT:
557 val->intval = data->bat_present;
560 case POWER_SUPPLY_PROP_TEMP:
561 ret = sc27xx_fgu_get_temp(data, &value);
568 case POWER_SUPPLY_PROP_TECHNOLOGY:
569 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
572 case POWER_SUPPLY_PROP_CAPACITY:
573 ret = sc27xx_fgu_get_capacity(data, &value);
580 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
581 ret = sc27xx_fgu_get_vbat_vol(data, &value);
585 val->intval = value * 1000;
588 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
589 ret = sc27xx_fgu_get_vbat_ocv(data, &value);
596 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
597 ret = sc27xx_fgu_get_charge_vol(data, &value);
604 case POWER_SUPPLY_PROP_CURRENT_NOW:
605 case POWER_SUPPLY_PROP_CURRENT_AVG:
606 ret = sc27xx_fgu_get_current(data, &value);
610 val->intval = value * 1000;
613 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
614 val->intval = data->total_cap * 1000;
623 mutex_unlock(&data->lock);
627 static int sc27xx_fgu_set_property(struct power_supply *psy,
628 enum power_supply_property psp,
629 const union power_supply_propval *val)
631 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
634 mutex_lock(&data->lock);
637 case POWER_SUPPLY_PROP_CAPACITY:
638 ret = sc27xx_fgu_save_last_cap(data, val->intval);
640 dev_err(data->dev, "failed to save battery capacity\n");
643 case POWER_SUPPLY_PROP_CALIBRATE:
644 sc27xx_fgu_adjust_cap(data, val->intval);
652 mutex_unlock(&data->lock);
657 static void sc27xx_fgu_external_power_changed(struct power_supply *psy)
659 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
661 power_supply_changed(data->battery);
664 static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
665 enum power_supply_property psp)
667 return psp == POWER_SUPPLY_PROP_CAPACITY ||
668 psp == POWER_SUPPLY_PROP_CALIBRATE;
671 static enum power_supply_property sc27xx_fgu_props[] = {
672 POWER_SUPPLY_PROP_STATUS,
673 POWER_SUPPLY_PROP_HEALTH,
674 POWER_SUPPLY_PROP_PRESENT,
675 POWER_SUPPLY_PROP_TEMP,
676 POWER_SUPPLY_PROP_TECHNOLOGY,
677 POWER_SUPPLY_PROP_CAPACITY,
678 POWER_SUPPLY_PROP_VOLTAGE_NOW,
679 POWER_SUPPLY_PROP_VOLTAGE_OCV,
680 POWER_SUPPLY_PROP_CURRENT_NOW,
681 POWER_SUPPLY_PROP_CURRENT_AVG,
682 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
683 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
684 POWER_SUPPLY_PROP_CALIBRATE,
687 static const struct power_supply_desc sc27xx_fgu_desc = {
688 .name = "sc27xx-fgu",
689 .type = POWER_SUPPLY_TYPE_BATTERY,
690 .properties = sc27xx_fgu_props,
691 .num_properties = ARRAY_SIZE(sc27xx_fgu_props),
692 .get_property = sc27xx_fgu_get_property,
693 .set_property = sc27xx_fgu_set_property,
694 .external_power_changed = sc27xx_fgu_external_power_changed,
695 .property_is_writeable = sc27xx_fgu_property_is_writeable,
698 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
702 data->init_cap = cap;
703 ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt);
705 dev_err(data->dev, "failed to get init coulomb counter\n");
708 static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
709 int cap, bool int_mode)
711 int ret, ocv, chg_sts, adc;
713 ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
715 dev_err(data->dev, "get battery ocv error.\n");
719 ret = sc27xx_fgu_get_status(data, &chg_sts);
721 dev_err(data->dev, "get charger status error.\n");
726 * If we are in charging mode, then we do not need to calibrate the
729 if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
732 if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
734 * If current OCV value is larger than the max OCV value in
735 * OCV table, or the current capacity is larger than 100,
736 * we should force the inititial capacity to 100.
738 sc27xx_fgu_adjust_cap(data, 100);
739 } else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
741 * If current OCV value is leass than the minimum OCV value in
742 * OCV table, we should force the inititial capacity to 0.
744 sc27xx_fgu_adjust_cap(data, 0);
745 } else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
746 (ocv > data->min_volt && cap <= data->alarm_cap)) {
748 * If current OCV value is not matchable with current capacity,
749 * we should re-calculate current capacity by looking up the
752 int cur_cap = power_supply_ocv2cap_simple(data->cap_table,
753 data->table_len, ocv);
755 sc27xx_fgu_adjust_cap(data, cur_cap);
756 } else if (ocv <= data->min_volt) {
758 * If current OCV value is less than the low alarm voltage, but
759 * current capacity is larger than the alarm capacity, we should
760 * adjust the inititial capacity to alarm capacity.
762 if (cap > data->alarm_cap) {
763 sc27xx_fgu_adjust_cap(data, data->alarm_cap);
768 * If current capacity is equal with 0 or less than 0
769 * (some error occurs), we should adjust inititial
770 * capacity to the capacity corresponding to current OCV
773 cur_cap = power_supply_ocv2cap_simple(data->cap_table,
776 sc27xx_fgu_adjust_cap(data, cur_cap);
783 * After adjusting the battery capacity, we should set the
784 * lowest alarm voltage instead.
786 data->min_volt = data->cap_table[data->table_len - 1].ocv;
787 data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
791 adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
792 regmap_update_bits(data->regmap,
793 data->base + SC27XX_FGU_LOW_OVERLOAD,
794 SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
798 static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
800 struct sc27xx_fgu_data *data = dev_id;
804 mutex_lock(&data->lock);
806 ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
811 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
817 * When low overload voltage interrupt happens, we should calibrate the
818 * battery capacity in lower voltage stage.
820 if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
823 ret = sc27xx_fgu_get_capacity(data, &cap);
827 sc27xx_fgu_capacity_calibration(data, cap, true);
830 mutex_unlock(&data->lock);
832 power_supply_changed(data->battery);
836 static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
838 struct sc27xx_fgu_data *data = dev_id;
841 mutex_lock(&data->lock);
843 state = gpiod_get_value_cansleep(data->gpiod);
845 dev_err(data->dev, "failed to get gpio state\n");
846 mutex_unlock(&data->lock);
847 return IRQ_RETVAL(state);
850 data->bat_present = !!state;
852 mutex_unlock(&data->lock);
854 power_supply_changed(data->battery);
858 static void sc27xx_fgu_disable(void *_data)
860 struct sc27xx_fgu_data *data = _data;
862 regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
863 regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
866 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
869 * Get current capacity (mAh) = battery total capacity (mAh) *
870 * current capacity percent (capacity / 100).
872 int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
875 * Convert current capacity (mAh) to coulomb counter according to the
876 * formula: 1 mAh =3.6 coulomb.
878 return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
881 static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
883 struct nvmem_cell *cell;
884 int calib_data, cal_4200mv;
888 cell = nvmem_cell_get(data->dev, "fgu_calib");
890 return PTR_ERR(cell);
892 buf = nvmem_cell_read(cell, &len);
893 nvmem_cell_put(cell);
898 memcpy(&calib_data, buf, min(len, sizeof(u32)));
901 * Get the ADC value corresponding to 4200 mV from eFuse controller
902 * according to below formula. Then convert to ADC values corresponding
903 * to 1000 mV and 1000 mA.
905 cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
906 data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
907 data->cur_1000ma_adc =
908 DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
909 SC27XX_FGU_IDEAL_RESISTANCE);
915 static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
917 struct power_supply_battery_info info = { };
918 struct power_supply_battery_ocv_table *table;
919 int ret, delta_clbcnt, alarm_adc;
921 ret = power_supply_get_battery_info(data->battery, &info);
923 dev_err(data->dev, "failed to get battery information\n");
927 data->total_cap = info.charge_full_design_uah / 1000;
928 data->max_volt = info.constant_charge_voltage_max_uv / 1000;
929 data->internal_resist = info.factory_internal_resistance_uohm / 1000;
930 data->min_volt = info.voltage_min_design_uv;
933 * For SC27XX fuel gauge device, we only use one ocv-capacity
934 * table in normal temperature 20 Celsius.
936 table = power_supply_find_ocv2cap_table(&info, 20, &data->table_len);
940 data->cap_table = devm_kmemdup(data->dev, table,
941 data->table_len * sizeof(*table),
943 if (!data->cap_table) {
944 power_supply_put_battery_info(data->battery, &info);
948 data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
951 if (!data->alarm_cap)
952 data->alarm_cap += 1;
954 data->resist_table_len = info.resist_table_size;
955 if (data->resist_table_len > 0) {
956 data->resist_table = devm_kmemdup(data->dev, info.resist_table,
957 data->resist_table_len *
958 sizeof(struct power_supply_resistance_temp_table),
960 if (!data->resist_table) {
961 power_supply_put_battery_info(data->battery, &info);
966 power_supply_put_battery_info(data->battery, &info);
968 ret = sc27xx_fgu_calibration(data);
972 /* Enable the FGU module */
973 ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
974 SC27XX_FGU_EN, SC27XX_FGU_EN);
976 dev_err(data->dev, "failed to enable fgu\n");
980 /* Enable the FGU RTC clock to make it work */
981 ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
982 SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
984 dev_err(data->dev, "failed to enable fgu RTC clock\n");
988 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
989 SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
991 dev_err(data->dev, "failed to clear interrupt status\n");
996 * Set the voltage low overload threshold, which means when the battery
997 * voltage is lower than this threshold, the controller will generate
998 * one interrupt to notify.
1000 alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
1001 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
1002 SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
1004 dev_err(data->dev, "failed to set fgu low overload\n");
1009 * Set the coulomb counter delta threshold, that means when the coulomb
1010 * counter change is multiples of the delta threshold, the controller
1011 * will generate one interrupt to notify the users to update the battery
1012 * capacity. Now we set the delta threshold as a counter value of 1%
1015 delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
1017 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
1018 SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
1020 dev_err(data->dev, "failed to set low delta coulomb counter\n");
1024 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
1025 SC27XX_FGU_CLBCNT_MASK,
1026 delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
1028 dev_err(data->dev, "failed to set high delta coulomb counter\n");
1033 * Get the boot battery capacity when system powers on, which is used to
1034 * initialize the coulomb counter. After that, we can read the coulomb
1035 * counter to measure the battery capacity.
1037 ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
1039 dev_err(data->dev, "failed to get boot capacity\n");
1044 * Convert battery capacity to the corresponding initial coulomb counter
1045 * and set into coulomb counter registers.
1047 data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
1048 ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
1050 dev_err(data->dev, "failed to initialize coulomb counter\n");
1057 regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
1059 regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
1064 static int sc27xx_fgu_probe(struct platform_device *pdev)
1066 struct device *dev = &pdev->dev;
1067 struct device_node *np = dev->of_node;
1068 struct power_supply_config fgu_cfg = { };
1069 struct sc27xx_fgu_data *data;
1072 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1076 data->regmap = dev_get_regmap(dev->parent, NULL);
1077 if (!data->regmap) {
1078 dev_err(dev, "failed to get regmap\n");
1082 ret = device_property_read_u32(dev, "reg", &data->base);
1084 dev_err(dev, "failed to get fgu address\n");
1088 ret = device_property_read_u32(&pdev->dev,
1089 "sprd,calib-resistance-micro-ohms",
1090 &data->calib_resist);
1093 "failed to get fgu calibration resistance\n");
1097 data->channel = devm_iio_channel_get(dev, "bat-temp");
1098 if (IS_ERR(data->channel)) {
1099 dev_err(dev, "failed to get IIO channel\n");
1100 return PTR_ERR(data->channel);
1103 data->charge_chan = devm_iio_channel_get(dev, "charge-vol");
1104 if (IS_ERR(data->charge_chan)) {
1105 dev_err(dev, "failed to get charge IIO channel\n");
1106 return PTR_ERR(data->charge_chan);
1109 data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN);
1110 if (IS_ERR(data->gpiod)) {
1111 dev_err(dev, "failed to get battery detection GPIO\n");
1112 return PTR_ERR(data->gpiod);
1115 ret = gpiod_get_value_cansleep(data->gpiod);
1117 dev_err(dev, "failed to get gpio state\n");
1121 data->bat_present = !!ret;
1122 mutex_init(&data->lock);
1124 platform_set_drvdata(pdev, data);
1126 fgu_cfg.drv_data = data;
1127 fgu_cfg.of_node = np;
1128 data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc,
1130 if (IS_ERR(data->battery)) {
1131 dev_err(dev, "failed to register power supply\n");
1132 return PTR_ERR(data->battery);
1135 ret = sc27xx_fgu_hw_init(data);
1137 dev_err(dev, "failed to initialize fgu hardware\n");
1141 ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
1143 dev_err(dev, "failed to add fgu disable action\n");
1147 irq = platform_get_irq(pdev, 0);
1149 dev_err(dev, "no irq resource specified\n");
1153 ret = devm_request_threaded_irq(data->dev, irq, NULL,
1154 sc27xx_fgu_interrupt,
1155 IRQF_NO_SUSPEND | IRQF_ONESHOT,
1158 dev_err(data->dev, "failed to request fgu IRQ\n");
1162 irq = gpiod_to_irq(data->gpiod);
1164 dev_err(dev, "failed to translate GPIO to IRQ\n");
1168 ret = devm_request_threaded_irq(dev, irq, NULL,
1169 sc27xx_fgu_bat_detection,
1170 IRQF_ONESHOT | IRQF_TRIGGER_RISING |
1171 IRQF_TRIGGER_FALLING,
1174 dev_err(dev, "failed to request IRQ\n");
1181 #ifdef CONFIG_PM_SLEEP
1182 static int sc27xx_fgu_resume(struct device *dev)
1184 struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1187 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1188 SC27XX_FGU_LOW_OVERLOAD_INT |
1189 SC27XX_FGU_CLBCNT_DELTA_INT, 0);
1191 dev_err(data->dev, "failed to disable fgu interrupts\n");
1198 static int sc27xx_fgu_suspend(struct device *dev)
1200 struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1201 int ret, status, ocv;
1203 ret = sc27xx_fgu_get_status(data, &status);
1208 * If we are charging, then no need to enable the FGU interrupts to
1209 * adjust the battery capacity.
1211 if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
1212 status != POWER_SUPPLY_STATUS_DISCHARGING)
1215 ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1216 SC27XX_FGU_LOW_OVERLOAD_INT,
1217 SC27XX_FGU_LOW_OVERLOAD_INT);
1219 dev_err(data->dev, "failed to enable low voltage interrupt\n");
1223 ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
1228 * If current OCV is less than the minimum voltage, we should enable the
1229 * coulomb counter threshold interrupt to notify events to adjust the
1232 if (ocv < data->min_volt) {
1233 ret = regmap_update_bits(data->regmap,
1234 data->base + SC27XX_FGU_INT_EN,
1235 SC27XX_FGU_CLBCNT_DELTA_INT,
1236 SC27XX_FGU_CLBCNT_DELTA_INT);
1239 "failed to enable coulomb threshold int\n");
1247 regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1248 SC27XX_FGU_LOW_OVERLOAD_INT, 0);
1253 static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
1254 SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
1257 static const struct of_device_id sc27xx_fgu_of_match[] = {
1258 { .compatible = "sprd,sc2731-fgu", },
1262 static struct platform_driver sc27xx_fgu_driver = {
1263 .probe = sc27xx_fgu_probe,
1265 .name = "sc27xx-fgu",
1266 .of_match_table = sc27xx_fgu_of_match,
1267 .pm = &sc27xx_fgu_pm_ops,
1271 module_platform_driver(sc27xx_fgu_driver);
1273 MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
1274 MODULE_LICENSE("GPL v2");