]> Git Repo - linux.git/blob - drivers/net/wireless/ralink/rt2x00/rt2400pci.c
efi/x86: add headroom to decompressor BSS to account for setup block
[linux.git] / drivers / net / wireless / ralink / rt2x00 / rt2400pci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3         Copyright (C) 2004 - 2009 Ivo van Doorn <[email protected]>
4         <http://rt2x00.serialmonkey.com>
5
6  */
7
8 /*
9         Module: rt2400pci
10         Abstract: rt2400pci device specific routines.
11         Supported chipsets: RT2460.
12  */
13
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 #include <linux/eeprom_93cx6.h>
20 #include <linux/slab.h>
21
22 #include "rt2x00.h"
23 #include "rt2x00mmio.h"
24 #include "rt2x00pci.h"
25 #include "rt2400pci.h"
26
27 /*
28  * Register access.
29  * All access to the CSR registers will go through the methods
30  * rt2x00mmio_register_read and rt2x00mmio_register_write.
31  * BBP and RF register require indirect register access,
32  * and use the CSR registers BBPCSR and RFCSR to achieve this.
33  * These indirect registers work with busy bits,
34  * and we will try maximal REGISTER_BUSY_COUNT times to access
35  * the register while taking a REGISTER_BUSY_DELAY us delay
36  * between each attempt. When the busy bit is still set at that time,
37  * the access attempt is considered to have failed,
38  * and we will print an error.
39  */
40 #define WAIT_FOR_BBP(__dev, __reg) \
41         rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
42 #define WAIT_FOR_RF(__dev, __reg) \
43         rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
44
45 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
46                                 const unsigned int word, const u8 value)
47 {
48         u32 reg;
49
50         mutex_lock(&rt2x00dev->csr_mutex);
51
52         /*
53          * Wait until the BBP becomes available, afterwards we
54          * can safely write the new data into the register.
55          */
56         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
57                 reg = 0;
58                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
59                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
60                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
61                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
62
63                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
64         }
65
66         mutex_unlock(&rt2x00dev->csr_mutex);
67 }
68
69 static u8 rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
70                              const unsigned int word)
71 {
72         u32 reg;
73         u8 value;
74
75         mutex_lock(&rt2x00dev->csr_mutex);
76
77         /*
78          * Wait until the BBP becomes available, afterwards we
79          * can safely write the read request into the register.
80          * After the data has been written, we wait until hardware
81          * returns the correct value, if at any time the register
82          * doesn't become available in time, reg will be 0xffffffff
83          * which means we return 0xff to the caller.
84          */
85         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
86                 reg = 0;
87                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
88                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
89                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
90
91                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
92
93                 WAIT_FOR_BBP(rt2x00dev, &reg);
94         }
95
96         value = rt2x00_get_field32(reg, BBPCSR_VALUE);
97
98         mutex_unlock(&rt2x00dev->csr_mutex);
99
100         return value;
101 }
102
103 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
104                                const unsigned int word, const u32 value)
105 {
106         u32 reg;
107
108         mutex_lock(&rt2x00dev->csr_mutex);
109
110         /*
111          * Wait until the RF becomes available, afterwards we
112          * can safely write the new data into the register.
113          */
114         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
115                 reg = 0;
116                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
117                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
118                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
119                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
120
121                 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
122                 rt2x00_rf_write(rt2x00dev, word, value);
123         }
124
125         mutex_unlock(&rt2x00dev->csr_mutex);
126 }
127
128 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
129 {
130         struct rt2x00_dev *rt2x00dev = eeprom->data;
131         u32 reg;
132
133         reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
134
135         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
136         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
137         eeprom->reg_data_clock =
138             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
139         eeprom->reg_chip_select =
140             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
141 }
142
143 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
144 {
145         struct rt2x00_dev *rt2x00dev = eeprom->data;
146         u32 reg = 0;
147
148         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
149         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
150         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
151                            !!eeprom->reg_data_clock);
152         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
153                            !!eeprom->reg_chip_select);
154
155         rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
156 }
157
158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
159 static const struct rt2x00debug rt2400pci_rt2x00debug = {
160         .owner  = THIS_MODULE,
161         .csr    = {
162                 .read           = rt2x00mmio_register_read,
163                 .write          = rt2x00mmio_register_write,
164                 .flags          = RT2X00DEBUGFS_OFFSET,
165                 .word_base      = CSR_REG_BASE,
166                 .word_size      = sizeof(u32),
167                 .word_count     = CSR_REG_SIZE / sizeof(u32),
168         },
169         .eeprom = {
170                 .read           = rt2x00_eeprom_read,
171                 .write          = rt2x00_eeprom_write,
172                 .word_base      = EEPROM_BASE,
173                 .word_size      = sizeof(u16),
174                 .word_count     = EEPROM_SIZE / sizeof(u16),
175         },
176         .bbp    = {
177                 .read           = rt2400pci_bbp_read,
178                 .write          = rt2400pci_bbp_write,
179                 .word_base      = BBP_BASE,
180                 .word_size      = sizeof(u8),
181                 .word_count     = BBP_SIZE / sizeof(u8),
182         },
183         .rf     = {
184                 .read           = rt2x00_rf_read,
185                 .write          = rt2400pci_rf_write,
186                 .word_base      = RF_BASE,
187                 .word_size      = sizeof(u32),
188                 .word_count     = RF_SIZE / sizeof(u32),
189         },
190 };
191 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
192
193 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
194 {
195         u32 reg;
196
197         reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
198         return rt2x00_get_field32(reg, GPIOCSR_VAL0);
199 }
200
201 #ifdef CONFIG_RT2X00_LIB_LEDS
202 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
203                                      enum led_brightness brightness)
204 {
205         struct rt2x00_led *led =
206             container_of(led_cdev, struct rt2x00_led, led_dev);
207         unsigned int enabled = brightness != LED_OFF;
208         u32 reg;
209
210         reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
211
212         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
213                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
214         else if (led->type == LED_TYPE_ACTIVITY)
215                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
216
217         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
218 }
219
220 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
221                                unsigned long *delay_on,
222                                unsigned long *delay_off)
223 {
224         struct rt2x00_led *led =
225             container_of(led_cdev, struct rt2x00_led, led_dev);
226         u32 reg;
227
228         reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
229         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
230         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
231         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
232
233         return 0;
234 }
235
236 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
237                                struct rt2x00_led *led,
238                                enum led_type type)
239 {
240         led->rt2x00dev = rt2x00dev;
241         led->type = type;
242         led->led_dev.brightness_set = rt2400pci_brightness_set;
243         led->led_dev.blink_set = rt2400pci_blink_set;
244         led->flags = LED_INITIALIZED;
245 }
246 #endif /* CONFIG_RT2X00_LIB_LEDS */
247
248 /*
249  * Configuration handlers.
250  */
251 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
252                                     const unsigned int filter_flags)
253 {
254         u32 reg;
255
256         /*
257          * Start configuration steps.
258          * Note that the version error will always be dropped
259          * since there is no filter for it at this time.
260          */
261         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
262         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
263                            !(filter_flags & FIF_FCSFAIL));
264         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
265                            !(filter_flags & FIF_PLCPFAIL));
266         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
267                            !(filter_flags & FIF_CONTROL));
268         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
269                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
270         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
271                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
272                            !rt2x00dev->intf_ap_count);
273         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
274         rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
275 }
276
277 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
278                                   struct rt2x00_intf *intf,
279                                   struct rt2x00intf_conf *conf,
280                                   const unsigned int flags)
281 {
282         unsigned int bcn_preload;
283         u32 reg;
284
285         if (flags & CONFIG_UPDATE_TYPE) {
286                 /*
287                  * Enable beacon config
288                  */
289                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
290                 reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
291                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
292                 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
293
294                 /*
295                  * Enable synchronisation.
296                  */
297                 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
298                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
299                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
300         }
301
302         if (flags & CONFIG_UPDATE_MAC)
303                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
304                                                conf->mac, sizeof(conf->mac));
305
306         if (flags & CONFIG_UPDATE_BSSID)
307                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
308                                                conf->bssid,
309                                                sizeof(conf->bssid));
310 }
311
312 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
313                                  struct rt2x00lib_erp *erp,
314                                  u32 changed)
315 {
316         int preamble_mask;
317         u32 reg;
318
319         /*
320          * When short preamble is enabled, we should set bit 0x08
321          */
322         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
323                 preamble_mask = erp->short_preamble << 3;
324
325                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
326                 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
327                 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
328                 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
329                 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
330                 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
331
332                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
333                 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
334                 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
335                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
336                                    GET_DURATION(ACK_SIZE, 10));
337                 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
338
339                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
340                 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
341                 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
342                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
343                                    GET_DURATION(ACK_SIZE, 20));
344                 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
345
346                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
347                 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
348                 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
349                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
350                                    GET_DURATION(ACK_SIZE, 55));
351                 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
352
353                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
354                 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
355                 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
356                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
357                                    GET_DURATION(ACK_SIZE, 110));
358                 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
359         }
360
361         if (changed & BSS_CHANGED_BASIC_RATES)
362                 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
363
364         if (changed & BSS_CHANGED_ERP_SLOT) {
365                 reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
366                 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
367                 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
368
369                 reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
370                 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
371                 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
372                 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
373
374                 reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
375                 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
376                 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
377                 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
378         }
379
380         if (changed & BSS_CHANGED_BEACON_INT) {
381                 reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
382                 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
383                                    erp->beacon_int * 16);
384                 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
385                                    erp->beacon_int * 16);
386                 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
387         }
388 }
389
390 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
391                                  struct antenna_setup *ant)
392 {
393         u8 r1;
394         u8 r4;
395
396         /*
397          * We should never come here because rt2x00lib is supposed
398          * to catch this and send us the correct antenna explicitely.
399          */
400         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
401                ant->tx == ANTENNA_SW_DIVERSITY);
402
403         r4 = rt2400pci_bbp_read(rt2x00dev, 4);
404         r1 = rt2400pci_bbp_read(rt2x00dev, 1);
405
406         /*
407          * Configure the TX antenna.
408          */
409         switch (ant->tx) {
410         case ANTENNA_HW_DIVERSITY:
411                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
412                 break;
413         case ANTENNA_A:
414                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
415                 break;
416         case ANTENNA_B:
417         default:
418                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
419                 break;
420         }
421
422         /*
423          * Configure the RX antenna.
424          */
425         switch (ant->rx) {
426         case ANTENNA_HW_DIVERSITY:
427                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
428                 break;
429         case ANTENNA_A:
430                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
431                 break;
432         case ANTENNA_B:
433         default:
434                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
435                 break;
436         }
437
438         rt2400pci_bbp_write(rt2x00dev, 4, r4);
439         rt2400pci_bbp_write(rt2x00dev, 1, r1);
440 }
441
442 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
443                                      struct rf_channel *rf)
444 {
445         /*
446          * Switch on tuning bits.
447          */
448         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
449         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
450
451         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
452         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
453         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
454
455         /*
456          * RF2420 chipset don't need any additional actions.
457          */
458         if (rt2x00_rf(rt2x00dev, RF2420))
459                 return;
460
461         /*
462          * For the RT2421 chipsets we need to write an invalid
463          * reference clock rate to activate auto_tune.
464          * After that we set the value back to the correct channel.
465          */
466         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
467         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
468         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
469
470         msleep(1);
471
472         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
473         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
474         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
475
476         msleep(1);
477
478         /*
479          * Switch off tuning bits.
480          */
481         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
482         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
483
484         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
485         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486
487         /*
488          * Clear false CRC during channel switch.
489          */
490         rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
491 }
492
493 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
494 {
495         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
496 }
497
498 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
499                                          struct rt2x00lib_conf *libconf)
500 {
501         u32 reg;
502
503         reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
504         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
505                            libconf->conf->long_frame_max_tx_count);
506         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
507                            libconf->conf->short_frame_max_tx_count);
508         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
509 }
510
511 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
512                                 struct rt2x00lib_conf *libconf)
513 {
514         enum dev_state state =
515             (libconf->conf->flags & IEEE80211_CONF_PS) ?
516                 STATE_SLEEP : STATE_AWAKE;
517         u32 reg;
518
519         if (state == STATE_SLEEP) {
520                 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
521                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
522                                    (rt2x00dev->beacon_int - 20) * 16);
523                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
524                                    libconf->conf->listen_interval - 1);
525
526                 /* We must first disable autowake before it can be enabled */
527                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
528                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
529
530                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
531                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
532         } else {
533                 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
534                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
535                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
536         }
537
538         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
539 }
540
541 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
542                              struct rt2x00lib_conf *libconf,
543                              const unsigned int flags)
544 {
545         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
546                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
547         if (flags & IEEE80211_CONF_CHANGE_POWER)
548                 rt2400pci_config_txpower(rt2x00dev,
549                                          libconf->conf->power_level);
550         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
551                 rt2400pci_config_retry_limit(rt2x00dev, libconf);
552         if (flags & IEEE80211_CONF_CHANGE_PS)
553                 rt2400pci_config_ps(rt2x00dev, libconf);
554 }
555
556 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
557                                 const int cw_min, const int cw_max)
558 {
559         u32 reg;
560
561         reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
562         rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
563         rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
564         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
565 }
566
567 /*
568  * Link tuning
569  */
570 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
571                                  struct link_qual *qual)
572 {
573         u32 reg;
574         u8 bbp;
575
576         /*
577          * Update FCS error count from register.
578          */
579         reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
580         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
581
582         /*
583          * Update False CCA count from register.
584          */
585         bbp = rt2400pci_bbp_read(rt2x00dev, 39);
586         qual->false_cca = bbp;
587 }
588
589 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
590                                      struct link_qual *qual, u8 vgc_level)
591 {
592         if (qual->vgc_level_reg != vgc_level) {
593                 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
594                 qual->vgc_level = vgc_level;
595                 qual->vgc_level_reg = vgc_level;
596         }
597 }
598
599 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
600                                   struct link_qual *qual)
601 {
602         rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
603 }
604
605 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
606                                  struct link_qual *qual, const u32 count)
607 {
608         /*
609          * The link tuner should not run longer then 60 seconds,
610          * and should run once every 2 seconds.
611          */
612         if (count > 60 || !(count & 1))
613                 return;
614
615         /*
616          * Base r13 link tuning on the false cca count.
617          */
618         if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
619                 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
620         else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
621                 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
622 }
623
624 /*
625  * Queue handlers.
626  */
627 static void rt2400pci_start_queue(struct data_queue *queue)
628 {
629         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
630         u32 reg;
631
632         switch (queue->qid) {
633         case QID_RX:
634                 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
635                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
636                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
637                 break;
638         case QID_BEACON:
639                 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
640                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
641                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
642                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
643                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
644                 break;
645         default:
646                 break;
647         }
648 }
649
650 static void rt2400pci_kick_queue(struct data_queue *queue)
651 {
652         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
653         u32 reg;
654
655         switch (queue->qid) {
656         case QID_AC_VO:
657                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
658                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
659                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
660                 break;
661         case QID_AC_VI:
662                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
663                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
664                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
665                 break;
666         case QID_ATIM:
667                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
668                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
669                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
670                 break;
671         default:
672                 break;
673         }
674 }
675
676 static void rt2400pci_stop_queue(struct data_queue *queue)
677 {
678         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
679         u32 reg;
680
681         switch (queue->qid) {
682         case QID_AC_VO:
683         case QID_AC_VI:
684         case QID_ATIM:
685                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
686                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
687                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
688                 break;
689         case QID_RX:
690                 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
691                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
692                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
693                 break;
694         case QID_BEACON:
695                 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
696                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
697                 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
698                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
699                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
700
701                 /*
702                  * Wait for possibly running tbtt tasklets.
703                  */
704                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
705                 break;
706         default:
707                 break;
708         }
709 }
710
711 /*
712  * Initialization functions.
713  */
714 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
715 {
716         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
717         u32 word;
718
719         if (entry->queue->qid == QID_RX) {
720                 word = rt2x00_desc_read(entry_priv->desc, 0);
721
722                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
723         } else {
724                 word = rt2x00_desc_read(entry_priv->desc, 0);
725
726                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
727                         rt2x00_get_field32(word, TXD_W0_VALID));
728         }
729 }
730
731 static void rt2400pci_clear_entry(struct queue_entry *entry)
732 {
733         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
734         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
735         u32 word;
736
737         if (entry->queue->qid == QID_RX) {
738                 word = rt2x00_desc_read(entry_priv->desc, 2);
739                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
740                 rt2x00_desc_write(entry_priv->desc, 2, word);
741
742                 word = rt2x00_desc_read(entry_priv->desc, 1);
743                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
744                 rt2x00_desc_write(entry_priv->desc, 1, word);
745
746                 word = rt2x00_desc_read(entry_priv->desc, 0);
747                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
748                 rt2x00_desc_write(entry_priv->desc, 0, word);
749         } else {
750                 word = rt2x00_desc_read(entry_priv->desc, 0);
751                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
752                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
753                 rt2x00_desc_write(entry_priv->desc, 0, word);
754         }
755 }
756
757 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
758 {
759         struct queue_entry_priv_mmio *entry_priv;
760         u32 reg;
761
762         /*
763          * Initialize registers.
764          */
765         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
766         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
767         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
768         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
769         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
770         rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
771
772         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
773         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
774         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
775                            entry_priv->desc_dma);
776         rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
777
778         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
779         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
780         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
781                            entry_priv->desc_dma);
782         rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
783
784         entry_priv = rt2x00dev->atim->entries[0].priv_data;
785         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
786         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
787                            entry_priv->desc_dma);
788         rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
789
790         entry_priv = rt2x00dev->bcn->entries[0].priv_data;
791         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
792         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
793                            entry_priv->desc_dma);
794         rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
795
796         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
797         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
798         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
799         rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
800
801         entry_priv = rt2x00dev->rx->entries[0].priv_data;
802         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
803         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
804                            entry_priv->desc_dma);
805         rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
806
807         return 0;
808 }
809
810 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
811 {
812         u32 reg;
813
814         rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
815         rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
816         rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
817         rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
818
819         reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
820         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
821         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
822         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
823         rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
824
825         reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
826         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
827                            (rt2x00dev->rx->data_size / 128));
828         rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
829
830         reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
831         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
832         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
833         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
834         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
835         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
836         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
837         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
838         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
839         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
840
841         rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
842
843         reg = rt2x00mmio_register_read(rt2x00dev, ARCSR0);
844         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
845         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
846         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
847         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
848         rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
849
850         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
851         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
852         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
853         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
854         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
855         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
856         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
857         rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
858
859         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
860
861         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
862                 return -EBUSY;
863
864         rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
865         rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
866
867         reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
868         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
869         rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
870
871         reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
872         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
873         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
874         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
875         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
876         rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
877
878         reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
879         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
880         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
881         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
882         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
883
884         reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
885         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
886         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
887         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
888
889         /*
890          * We must clear the FCS and FIFO error count.
891          * These registers are cleared on read,
892          * so we may pass a useless variable to store the value.
893          */
894         reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
895         reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
896
897         return 0;
898 }
899
900 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
901 {
902         unsigned int i;
903         u8 value;
904
905         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
906                 value = rt2400pci_bbp_read(rt2x00dev, 0);
907                 if ((value != 0xff) && (value != 0x00))
908                         return 0;
909                 udelay(REGISTER_BUSY_DELAY);
910         }
911
912         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
913         return -EACCES;
914 }
915
916 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
917 {
918         unsigned int i;
919         u16 eeprom;
920         u8 reg_id;
921         u8 value;
922
923         if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
924                 return -EACCES;
925
926         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
927         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
928         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
929         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
930         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
931         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
932         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
933         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
934         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
935         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
936         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
937         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
938         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
939         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
940
941         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
942                 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
943
944                 if (eeprom != 0xffff && eeprom != 0x0000) {
945                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
946                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
947                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
948                 }
949         }
950
951         return 0;
952 }
953
954 /*
955  * Device state switch handlers.
956  */
957 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
958                                  enum dev_state state)
959 {
960         int mask = (state == STATE_RADIO_IRQ_OFF);
961         u32 reg;
962         unsigned long flags;
963
964         /*
965          * When interrupts are being enabled, the interrupt registers
966          * should clear the register to assure a clean state.
967          */
968         if (state == STATE_RADIO_IRQ_ON) {
969                 reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
970                 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
971         }
972
973         /*
974          * Only toggle the interrupts bits we are going to use.
975          * Non-checked interrupt bits are disabled by default.
976          */
977         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
978
979         reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
980         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
981         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
982         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
983         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
984         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
985         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
986
987         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
988
989         if (state == STATE_RADIO_IRQ_OFF) {
990                 /*
991                  * Ensure that all tasklets are finished before
992                  * disabling the interrupts.
993                  */
994                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
995                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
996                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
997         }
998 }
999
1000 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1001 {
1002         /*
1003          * Initialize all registers.
1004          */
1005         if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1006                      rt2400pci_init_registers(rt2x00dev) ||
1007                      rt2400pci_init_bbp(rt2x00dev)))
1008                 return -EIO;
1009
1010         return 0;
1011 }
1012
1013 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1014 {
1015         /*
1016          * Disable power
1017          */
1018         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1019 }
1020
1021 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1022                                enum dev_state state)
1023 {
1024         u32 reg, reg2;
1025         unsigned int i;
1026         char put_to_sleep;
1027         char bbp_state;
1028         char rf_state;
1029
1030         put_to_sleep = (state != STATE_AWAKE);
1031
1032         reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1033         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1034         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1035         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1036         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1037         rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1038
1039         /*
1040          * Device is not guaranteed to be in the requested state yet.
1041          * We must wait until the register indicates that the
1042          * device has entered the correct state.
1043          */
1044         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1045                 reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1046                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1047                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1048                 if (bbp_state == state && rf_state == state)
1049                         return 0;
1050                 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1051                 msleep(10);
1052         }
1053
1054         return -EBUSY;
1055 }
1056
1057 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1058                                       enum dev_state state)
1059 {
1060         int retval = 0;
1061
1062         switch (state) {
1063         case STATE_RADIO_ON:
1064                 retval = rt2400pci_enable_radio(rt2x00dev);
1065                 break;
1066         case STATE_RADIO_OFF:
1067                 rt2400pci_disable_radio(rt2x00dev);
1068                 break;
1069         case STATE_RADIO_IRQ_ON:
1070         case STATE_RADIO_IRQ_OFF:
1071                 rt2400pci_toggle_irq(rt2x00dev, state);
1072                 break;
1073         case STATE_DEEP_SLEEP:
1074         case STATE_SLEEP:
1075         case STATE_STANDBY:
1076         case STATE_AWAKE:
1077                 retval = rt2400pci_set_state(rt2x00dev, state);
1078                 break;
1079         default:
1080                 retval = -ENOTSUPP;
1081                 break;
1082         }
1083
1084         if (unlikely(retval))
1085                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1086                            state, retval);
1087
1088         return retval;
1089 }
1090
1091 /*
1092  * TX descriptor initialization
1093  */
1094 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1095                                     struct txentry_desc *txdesc)
1096 {
1097         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1098         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1099         __le32 *txd = entry_priv->desc;
1100         u32 word;
1101
1102         /*
1103          * Start writing the descriptor words.
1104          */
1105         word = rt2x00_desc_read(txd, 1);
1106         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1107         rt2x00_desc_write(txd, 1, word);
1108
1109         word = rt2x00_desc_read(txd, 2);
1110         rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1111         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1112         rt2x00_desc_write(txd, 2, word);
1113
1114         word = rt2x00_desc_read(txd, 3);
1115         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1116         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1117         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1118         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1119         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1120         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1121         rt2x00_desc_write(txd, 3, word);
1122
1123         word = rt2x00_desc_read(txd, 4);
1124         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1125                            txdesc->u.plcp.length_low);
1126         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1127         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1128         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1129                            txdesc->u.plcp.length_high);
1130         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1131         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1132         rt2x00_desc_write(txd, 4, word);
1133
1134         /*
1135          * Writing TXD word 0 must the last to prevent a race condition with
1136          * the device, whereby the device may take hold of the TXD before we
1137          * finished updating it.
1138          */
1139         word = rt2x00_desc_read(txd, 0);
1140         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1141         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1142         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1143                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1144         rt2x00_set_field32(&word, TXD_W0_ACK,
1145                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1146         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1147                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1148         rt2x00_set_field32(&word, TXD_W0_RTS,
1149                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1150         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1151         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1152                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1153         rt2x00_desc_write(txd, 0, word);
1154
1155         /*
1156          * Register descriptor details in skb frame descriptor.
1157          */
1158         skbdesc->desc = txd;
1159         skbdesc->desc_len = TXD_DESC_SIZE;
1160 }
1161
1162 /*
1163  * TX data initialization
1164  */
1165 static void rt2400pci_write_beacon(struct queue_entry *entry,
1166                                    struct txentry_desc *txdesc)
1167 {
1168         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1169         u32 reg;
1170
1171         /*
1172          * Disable beaconing while we are reloading the beacon data,
1173          * otherwise we might be sending out invalid data.
1174          */
1175         reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1176         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1177         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1178
1179         if (rt2x00queue_map_txskb(entry)) {
1180                 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1181                 goto out;
1182         }
1183         /*
1184          * Enable beaconing again.
1185          */
1186         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1187         /*
1188          * Write the TX descriptor for the beacon.
1189          */
1190         rt2400pci_write_tx_desc(entry, txdesc);
1191
1192         /*
1193          * Dump beacon to userspace through debugfs.
1194          */
1195         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1196 out:
1197         /*
1198          * Enable beaconing again.
1199          */
1200         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1201         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1202 }
1203
1204 /*
1205  * RX control handlers
1206  */
1207 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1208                                   struct rxdone_entry_desc *rxdesc)
1209 {
1210         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1211         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1212         u32 word0;
1213         u32 word2;
1214         u32 word3;
1215         u32 word4;
1216         u64 tsf;
1217         u32 rx_low;
1218         u32 rx_high;
1219
1220         word0 = rt2x00_desc_read(entry_priv->desc, 0);
1221         word2 = rt2x00_desc_read(entry_priv->desc, 2);
1222         word3 = rt2x00_desc_read(entry_priv->desc, 3);
1223         word4 = rt2x00_desc_read(entry_priv->desc, 4);
1224
1225         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1226                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1227         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1228                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1229
1230         /*
1231          * We only get the lower 32bits from the timestamp,
1232          * to get the full 64bits we must complement it with
1233          * the timestamp from get_tsf().
1234          * Note that when a wraparound of the lower 32bits
1235          * has occurred between the frame arrival and the get_tsf()
1236          * call, we must decrease the higher 32bits with 1 to get
1237          * to correct value.
1238          */
1239         tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1240         rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1241         rx_high = upper_32_bits(tsf);
1242
1243         if ((u32)tsf <= rx_low)
1244                 rx_high--;
1245
1246         /*
1247          * Obtain the status about this packet.
1248          * The signal is the PLCP value, and needs to be stripped
1249          * of the preamble bit (0x08).
1250          */
1251         rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1252         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1253         rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
1254             entry->queue->rt2x00dev->rssi_offset;
1255         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1256
1257         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1258         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1259                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1260 }
1261
1262 /*
1263  * Interrupt functions.
1264  */
1265 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1266                              const enum data_queue_qid queue_idx)
1267 {
1268         struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1269         struct queue_entry_priv_mmio *entry_priv;
1270         struct queue_entry *entry;
1271         struct txdone_entry_desc txdesc;
1272         u32 word;
1273
1274         while (!rt2x00queue_empty(queue)) {
1275                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1276                 entry_priv = entry->priv_data;
1277                 word = rt2x00_desc_read(entry_priv->desc, 0);
1278
1279                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1280                     !rt2x00_get_field32(word, TXD_W0_VALID))
1281                         break;
1282
1283                 /*
1284                  * Obtain the status about this packet.
1285                  */
1286                 txdesc.flags = 0;
1287                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1288                 case 0: /* Success */
1289                 case 1: /* Success with retry */
1290                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1291                         break;
1292                 case 2: /* Failure, excessive retries */
1293                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1294                         /* Fall through - this is a failed frame! */
1295                 default: /* Failure */
1296                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1297                 }
1298                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1299
1300                 rt2x00lib_txdone(entry, &txdesc);
1301         }
1302 }
1303
1304 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1305                                               struct rt2x00_field32 irq_field)
1306 {
1307         u32 reg;
1308
1309         /*
1310          * Enable a single interrupt. The interrupt mask register
1311          * access needs locking.
1312          */
1313         spin_lock_irq(&rt2x00dev->irqmask_lock);
1314
1315         reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1316         rt2x00_set_field32(&reg, irq_field, 0);
1317         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1318
1319         spin_unlock_irq(&rt2x00dev->irqmask_lock);
1320 }
1321
1322 static void rt2400pci_txstatus_tasklet(unsigned long data)
1323 {
1324         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1325         u32 reg;
1326
1327         /*
1328          * Handle all tx queues.
1329          */
1330         rt2400pci_txdone(rt2x00dev, QID_ATIM);
1331         rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1332         rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1333
1334         /*
1335          * Enable all TXDONE interrupts again.
1336          */
1337         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1338                 spin_lock_irq(&rt2x00dev->irqmask_lock);
1339
1340                 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1341                 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1342                 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1343                 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1344                 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1345
1346                 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1347         }
1348 }
1349
1350 static void rt2400pci_tbtt_tasklet(unsigned long data)
1351 {
1352         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1353         rt2x00lib_beacondone(rt2x00dev);
1354         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1355                 rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1356 }
1357
1358 static void rt2400pci_rxdone_tasklet(unsigned long data)
1359 {
1360         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1361         if (rt2x00mmio_rxdone(rt2x00dev))
1362                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1363         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1364                 rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1365 }
1366
1367 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1368 {
1369         struct rt2x00_dev *rt2x00dev = dev_instance;
1370         u32 reg, mask;
1371
1372         /*
1373          * Get the interrupt sources & saved to local variable.
1374          * Write register value back to clear pending interrupts.
1375          */
1376         reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1377         rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1378
1379         if (!reg)
1380                 return IRQ_NONE;
1381
1382         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1383                 return IRQ_HANDLED;
1384
1385         mask = reg;
1386
1387         /*
1388          * Schedule tasklets for interrupt handling.
1389          */
1390         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1391                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1392
1393         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1394                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1395
1396         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1397             rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1398             rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1399                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1400                 /*
1401                  * Mask out all txdone interrupts.
1402                  */
1403                 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1404                 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1405                 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1406         }
1407
1408         /*
1409          * Disable all interrupts for which a tasklet was scheduled right now,
1410          * the tasklet will reenable the appropriate interrupts.
1411          */
1412         spin_lock(&rt2x00dev->irqmask_lock);
1413
1414         reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1415         reg |= mask;
1416         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1417
1418         spin_unlock(&rt2x00dev->irqmask_lock);
1419
1420
1421
1422         return IRQ_HANDLED;
1423 }
1424
1425 /*
1426  * Device probe functions.
1427  */
1428 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1429 {
1430         struct eeprom_93cx6 eeprom;
1431         u32 reg;
1432         u16 word;
1433         u8 *mac;
1434
1435         reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1436
1437         eeprom.data = rt2x00dev;
1438         eeprom.register_read = rt2400pci_eepromregister_read;
1439         eeprom.register_write = rt2400pci_eepromregister_write;
1440         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1441             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1442         eeprom.reg_data_in = 0;
1443         eeprom.reg_data_out = 0;
1444         eeprom.reg_data_clock = 0;
1445         eeprom.reg_chip_select = 0;
1446
1447         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1448                                EEPROM_SIZE / sizeof(u16));
1449
1450         /*
1451          * Start validation of the data that has been read.
1452          */
1453         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1454         rt2x00lib_set_mac_address(rt2x00dev, mac);
1455
1456         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1457         if (word == 0xffff) {
1458                 rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1459                 return -EINVAL;
1460         }
1461
1462         return 0;
1463 }
1464
1465 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1466 {
1467         u32 reg;
1468         u16 value;
1469         u16 eeprom;
1470
1471         /*
1472          * Read EEPROM word for configuration.
1473          */
1474         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1475
1476         /*
1477          * Identify RF chipset.
1478          */
1479         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1480         reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1481         rt2x00_set_chip(rt2x00dev, RT2460, value,
1482                         rt2x00_get_field32(reg, CSR0_REVISION));
1483
1484         if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1485                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1486                 return -ENODEV;
1487         }
1488
1489         /*
1490          * Identify default antenna configuration.
1491          */
1492         rt2x00dev->default_ant.tx =
1493             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1494         rt2x00dev->default_ant.rx =
1495             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1496
1497         /*
1498          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1499          * I am not 100% sure about this, but the legacy drivers do not
1500          * indicate antenna swapping in software is required when
1501          * diversity is enabled.
1502          */
1503         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1504                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1505         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1506                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1507
1508         /*
1509          * Store led mode, for correct led behaviour.
1510          */
1511 #ifdef CONFIG_RT2X00_LIB_LEDS
1512         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1513
1514         rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1515         if (value == LED_MODE_TXRX_ACTIVITY ||
1516             value == LED_MODE_DEFAULT ||
1517             value == LED_MODE_ASUS)
1518                 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1519                                    LED_TYPE_ACTIVITY);
1520 #endif /* CONFIG_RT2X00_LIB_LEDS */
1521
1522         /*
1523          * Detect if this device has an hardware controlled radio.
1524          */
1525         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1526                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1527
1528         /*
1529          * Check if the BBP tuning should be enabled.
1530          */
1531         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1532                 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1533
1534         return 0;
1535 }
1536
1537 /*
1538  * RF value list for RF2420 & RF2421
1539  * Supports: 2.4 GHz
1540  */
1541 static const struct rf_channel rf_vals_b[] = {
1542         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1543         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1544         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1545         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1546         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1547         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1548         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1549         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1550         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1551         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1552         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1553         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1554         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1555         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1556 };
1557
1558 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1559 {
1560         struct hw_mode_spec *spec = &rt2x00dev->spec;
1561         struct channel_info *info;
1562         char *tx_power;
1563         unsigned int i;
1564
1565         /*
1566          * Initialize all hw fields.
1567          */
1568         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1569         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1570         ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1571         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1572
1573         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1574         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1575                                 rt2x00_eeprom_addr(rt2x00dev,
1576                                                    EEPROM_MAC_ADDR_0));
1577
1578         /*
1579          * Initialize hw_mode information.
1580          */
1581         spec->supported_bands = SUPPORT_BAND_2GHZ;
1582         spec->supported_rates = SUPPORT_RATE_CCK;
1583
1584         spec->num_channels = ARRAY_SIZE(rf_vals_b);
1585         spec->channels = rf_vals_b;
1586
1587         /*
1588          * Create channel information array
1589          */
1590         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1591         if (!info)
1592                 return -ENOMEM;
1593
1594         spec->channels_info = info;
1595
1596         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1597         for (i = 0; i < 14; i++) {
1598                 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1599                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1600         }
1601
1602         return 0;
1603 }
1604
1605 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1606 {
1607         int retval;
1608         u32 reg;
1609
1610         /*
1611          * Allocate eeprom data.
1612          */
1613         retval = rt2400pci_validate_eeprom(rt2x00dev);
1614         if (retval)
1615                 return retval;
1616
1617         retval = rt2400pci_init_eeprom(rt2x00dev);
1618         if (retval)
1619                 return retval;
1620
1621         /*
1622          * Enable rfkill polling by setting GPIO direction of the
1623          * rfkill switch GPIO pin correctly.
1624          */
1625         reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1626         rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1627         rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1628
1629         /*
1630          * Initialize hw specifications.
1631          */
1632         retval = rt2400pci_probe_hw_mode(rt2x00dev);
1633         if (retval)
1634                 return retval;
1635
1636         /*
1637          * This device requires the atim queue and DMA-mapped skbs.
1638          */
1639         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1640         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1641         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1642
1643         /*
1644          * Set the rssi offset.
1645          */
1646         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1647
1648         return 0;
1649 }
1650
1651 /*
1652  * IEEE80211 stack callback functions.
1653  */
1654 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1655                              struct ieee80211_vif *vif, u16 queue,
1656                              const struct ieee80211_tx_queue_params *params)
1657 {
1658         struct rt2x00_dev *rt2x00dev = hw->priv;
1659
1660         /*
1661          * We don't support variating cw_min and cw_max variables
1662          * per queue. So by default we only configure the TX queue,
1663          * and ignore all other configurations.
1664          */
1665         if (queue != 0)
1666                 return -EINVAL;
1667
1668         if (rt2x00mac_conf_tx(hw, vif, queue, params))
1669                 return -EINVAL;
1670
1671         /*
1672          * Write configuration to register.
1673          */
1674         rt2400pci_config_cw(rt2x00dev,
1675                             rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1676
1677         return 0;
1678 }
1679
1680 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1681                              struct ieee80211_vif *vif)
1682 {
1683         struct rt2x00_dev *rt2x00dev = hw->priv;
1684         u64 tsf;
1685         u32 reg;
1686
1687         reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1688         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1689         reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1690         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1691
1692         return tsf;
1693 }
1694
1695 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1696 {
1697         struct rt2x00_dev *rt2x00dev = hw->priv;
1698         u32 reg;
1699
1700         reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
1701         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1702 }
1703
1704 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1705         .tx                     = rt2x00mac_tx,
1706         .start                  = rt2x00mac_start,
1707         .stop                   = rt2x00mac_stop,
1708         .add_interface          = rt2x00mac_add_interface,
1709         .remove_interface       = rt2x00mac_remove_interface,
1710         .config                 = rt2x00mac_config,
1711         .configure_filter       = rt2x00mac_configure_filter,
1712         .sw_scan_start          = rt2x00mac_sw_scan_start,
1713         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1714         .get_stats              = rt2x00mac_get_stats,
1715         .bss_info_changed       = rt2x00mac_bss_info_changed,
1716         .conf_tx                = rt2400pci_conf_tx,
1717         .get_tsf                = rt2400pci_get_tsf,
1718         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1719         .rfkill_poll            = rt2x00mac_rfkill_poll,
1720         .flush                  = rt2x00mac_flush,
1721         .set_antenna            = rt2x00mac_set_antenna,
1722         .get_antenna            = rt2x00mac_get_antenna,
1723         .get_ringparam          = rt2x00mac_get_ringparam,
1724         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1725 };
1726
1727 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1728         .irq_handler            = rt2400pci_interrupt,
1729         .txstatus_tasklet       = rt2400pci_txstatus_tasklet,
1730         .tbtt_tasklet           = rt2400pci_tbtt_tasklet,
1731         .rxdone_tasklet         = rt2400pci_rxdone_tasklet,
1732         .probe_hw               = rt2400pci_probe_hw,
1733         .initialize             = rt2x00mmio_initialize,
1734         .uninitialize           = rt2x00mmio_uninitialize,
1735         .get_entry_state        = rt2400pci_get_entry_state,
1736         .clear_entry            = rt2400pci_clear_entry,
1737         .set_device_state       = rt2400pci_set_device_state,
1738         .rfkill_poll            = rt2400pci_rfkill_poll,
1739         .link_stats             = rt2400pci_link_stats,
1740         .reset_tuner            = rt2400pci_reset_tuner,
1741         .link_tuner             = rt2400pci_link_tuner,
1742         .start_queue            = rt2400pci_start_queue,
1743         .kick_queue             = rt2400pci_kick_queue,
1744         .stop_queue             = rt2400pci_stop_queue,
1745         .flush_queue            = rt2x00mmio_flush_queue,
1746         .write_tx_desc          = rt2400pci_write_tx_desc,
1747         .write_beacon           = rt2400pci_write_beacon,
1748         .fill_rxdone            = rt2400pci_fill_rxdone,
1749         .config_filter          = rt2400pci_config_filter,
1750         .config_intf            = rt2400pci_config_intf,
1751         .config_erp             = rt2400pci_config_erp,
1752         .config_ant             = rt2400pci_config_ant,
1753         .config                 = rt2400pci_config,
1754 };
1755
1756 static void rt2400pci_queue_init(struct data_queue *queue)
1757 {
1758         switch (queue->qid) {
1759         case QID_RX:
1760                 queue->limit = 24;
1761                 queue->data_size = DATA_FRAME_SIZE;
1762                 queue->desc_size = RXD_DESC_SIZE;
1763                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1764                 break;
1765
1766         case QID_AC_VO:
1767         case QID_AC_VI:
1768         case QID_AC_BE:
1769         case QID_AC_BK:
1770                 queue->limit = 24;
1771                 queue->data_size = DATA_FRAME_SIZE;
1772                 queue->desc_size = TXD_DESC_SIZE;
1773                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1774                 break;
1775
1776         case QID_BEACON:
1777                 queue->limit = 1;
1778                 queue->data_size = MGMT_FRAME_SIZE;
1779                 queue->desc_size = TXD_DESC_SIZE;
1780                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1781                 break;
1782
1783         case QID_ATIM:
1784                 queue->limit = 8;
1785                 queue->data_size = DATA_FRAME_SIZE;
1786                 queue->desc_size = TXD_DESC_SIZE;
1787                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1788                 break;
1789
1790         default:
1791                 BUG();
1792                 break;
1793         }
1794 }
1795
1796 static const struct rt2x00_ops rt2400pci_ops = {
1797         .name                   = KBUILD_MODNAME,
1798         .max_ap_intf            = 1,
1799         .eeprom_size            = EEPROM_SIZE,
1800         .rf_size                = RF_SIZE,
1801         .tx_queues              = NUM_TX_QUEUES,
1802         .queue_init             = rt2400pci_queue_init,
1803         .lib                    = &rt2400pci_rt2x00_ops,
1804         .hw                     = &rt2400pci_mac80211_ops,
1805 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1806         .debugfs                = &rt2400pci_rt2x00debug,
1807 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1808 };
1809
1810 /*
1811  * RT2400pci module information.
1812  */
1813 static const struct pci_device_id rt2400pci_device_table[] = {
1814         { PCI_DEVICE(0x1814, 0x0101) },
1815         { 0, }
1816 };
1817
1818
1819 MODULE_AUTHOR(DRV_PROJECT);
1820 MODULE_VERSION(DRV_VERSION);
1821 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1822 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1823 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1824 MODULE_LICENSE("GPL");
1825
1826 static int rt2400pci_probe(struct pci_dev *pci_dev,
1827                            const struct pci_device_id *id)
1828 {
1829         return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1830 }
1831
1832 static struct pci_driver rt2400pci_driver = {
1833         .name           = KBUILD_MODNAME,
1834         .id_table       = rt2400pci_device_table,
1835         .probe          = rt2400pci_probe,
1836         .remove         = rt2x00pci_remove,
1837         .suspend        = rt2x00pci_suspend,
1838         .resume         = rt2x00pci_resume,
1839 };
1840
1841 module_pci_driver(rt2400pci_driver);
This page took 0.138022 seconds and 4 git commands to generate.