1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 /* ethtool support for igb */
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
22 char stat_string[ETH_GSTRING_LEN];
27 #define IGB_STAT(_name, _stat) { \
28 .stat_string = _name, \
29 .sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30 .stat_offset = offsetof(struct igb_adapter, _stat) \
32 static const struct igb_stats igb_gstrings_stats[] = {
33 IGB_STAT("rx_packets", stats.gprc),
34 IGB_STAT("tx_packets", stats.gptc),
35 IGB_STAT("rx_bytes", stats.gorc),
36 IGB_STAT("tx_bytes", stats.gotc),
37 IGB_STAT("rx_broadcast", stats.bprc),
38 IGB_STAT("tx_broadcast", stats.bptc),
39 IGB_STAT("rx_multicast", stats.mprc),
40 IGB_STAT("tx_multicast", stats.mptc),
41 IGB_STAT("multicast", stats.mprc),
42 IGB_STAT("collisions", stats.colc),
43 IGB_STAT("rx_crc_errors", stats.crcerrs),
44 IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 IGB_STAT("rx_missed_errors", stats.mpc),
46 IGB_STAT("tx_aborted_errors", stats.ecol),
47 IGB_STAT("tx_carrier_errors", stats.tncrs),
48 IGB_STAT("tx_window_errors", stats.latecol),
49 IGB_STAT("tx_abort_late_coll", stats.latecol),
50 IGB_STAT("tx_deferred_ok", stats.dc),
51 IGB_STAT("tx_single_coll_ok", stats.scc),
52 IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 IGB_STAT("tx_timeout_count", tx_timeout_count),
54 IGB_STAT("rx_long_length_errors", stats.roc),
55 IGB_STAT("rx_short_length_errors", stats.ruc),
56 IGB_STAT("rx_align_errors", stats.algnerrc),
57 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 IGB_STAT("rx_long_byte_count", stats.gorc),
64 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 IGB_STAT("tx_smbus", stats.mgptc),
66 IGB_STAT("rx_smbus", stats.mgprc),
67 IGB_STAT("dropped_smbus", stats.mgpdc),
68 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 .stat_string = __stringify(_net_stat), \
79 .sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 IGB_NETDEV_STAT(rx_errors),
84 IGB_NETDEV_STAT(tx_errors),
85 IGB_NETDEV_STAT(tx_dropped),
86 IGB_NETDEV_STAT(rx_length_errors),
87 IGB_NETDEV_STAT(rx_over_errors),
88 IGB_NETDEV_STAT(rx_frame_errors),
89 IGB_NETDEV_STAT(rx_fifo_errors),
90 IGB_NETDEV_STAT(tx_fifo_errors),
91 IGB_NETDEV_STAT(tx_heartbeat_errors)
94 #define IGB_GLOBAL_STATS_LEN \
95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN \
97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 IGB_RX_QUEUE_STATS_LEN) + \
106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
111 enum igb_diagnostics_results {
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 [TEST_REG] = "Register test (offline)",
121 [TEST_EEP] = "Eeprom test (offline)",
122 [TEST_IRQ] = "Interrupt test (offline)",
123 [TEST_LOOP] = "Loopback test (offline)",
124 [TEST_LINK] = "Link test (on/offline)"
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
135 static int igb_get_link_ksettings(struct net_device *netdev,
136 struct ethtool_link_ksettings *cmd)
138 struct igb_adapter *adapter = netdev_priv(netdev);
139 struct e1000_hw *hw = &adapter->hw;
140 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
144 u32 supported, advertising;
146 status = rd32(E1000_STATUS);
147 if (hw->phy.media_type == e1000_media_type_copper) {
149 supported = (SUPPORTED_10baseT_Half |
150 SUPPORTED_10baseT_Full |
151 SUPPORTED_100baseT_Half |
152 SUPPORTED_100baseT_Full |
153 SUPPORTED_1000baseT_Full|
157 advertising = ADVERTISED_TP;
159 if (hw->mac.autoneg == 1) {
160 advertising |= ADVERTISED_Autoneg;
161 /* the e1000 autoneg seems to match ethtool nicely */
162 advertising |= hw->phy.autoneg_advertised;
165 cmd->base.port = PORT_TP;
166 cmd->base.phy_address = hw->phy.addr;
168 supported = (SUPPORTED_FIBRE |
169 SUPPORTED_1000baseKX_Full |
172 advertising = (ADVERTISED_FIBRE |
173 ADVERTISED_1000baseKX_Full);
174 if (hw->mac.type == e1000_i354) {
175 if ((hw->device_id ==
176 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
177 !(status & E1000_STATUS_2P5_SKU_OVER)) {
178 supported |= SUPPORTED_2500baseX_Full;
179 supported &= ~SUPPORTED_1000baseKX_Full;
180 advertising |= ADVERTISED_2500baseX_Full;
181 advertising &= ~ADVERTISED_1000baseKX_Full;
184 if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
185 supported |= SUPPORTED_100baseT_Full;
186 advertising |= ADVERTISED_100baseT_Full;
188 if (hw->mac.autoneg == 1)
189 advertising |= ADVERTISED_Autoneg;
191 cmd->base.port = PORT_FIBRE;
193 if (hw->mac.autoneg != 1)
194 advertising &= ~(ADVERTISED_Pause |
195 ADVERTISED_Asym_Pause);
197 switch (hw->fc.requested_mode) {
199 advertising |= ADVERTISED_Pause;
201 case e1000_fc_rx_pause:
202 advertising |= (ADVERTISED_Pause |
203 ADVERTISED_Asym_Pause);
205 case e1000_fc_tx_pause:
206 advertising |= ADVERTISED_Asym_Pause;
209 advertising &= ~(ADVERTISED_Pause |
210 ADVERTISED_Asym_Pause);
212 if (status & E1000_STATUS_LU) {
213 if ((status & E1000_STATUS_2P5_SKU) &&
214 !(status & E1000_STATUS_2P5_SKU_OVER)) {
216 } else if (status & E1000_STATUS_SPEED_1000) {
218 } else if (status & E1000_STATUS_SPEED_100) {
223 if ((status & E1000_STATUS_FD) ||
224 hw->phy.media_type != e1000_media_type_copper)
225 cmd->base.duplex = DUPLEX_FULL;
227 cmd->base.duplex = DUPLEX_HALF;
229 speed = SPEED_UNKNOWN;
230 cmd->base.duplex = DUPLEX_UNKNOWN;
232 cmd->base.speed = speed;
233 if ((hw->phy.media_type == e1000_media_type_fiber) ||
235 cmd->base.autoneg = AUTONEG_ENABLE;
237 cmd->base.autoneg = AUTONEG_DISABLE;
239 /* MDI-X => 2; MDI =>1; Invalid =>0 */
240 if (hw->phy.media_type == e1000_media_type_copper)
241 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
244 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246 if (hw->phy.mdix == AUTO_ALL_MODES)
247 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
253 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
259 static int igb_set_link_ksettings(struct net_device *netdev,
260 const struct ethtool_link_ksettings *cmd)
262 struct igb_adapter *adapter = netdev_priv(netdev);
263 struct e1000_hw *hw = &adapter->hw;
266 /* When SoL/IDER sessions are active, autoneg/speed/duplex
269 if (igb_check_reset_block(hw)) {
270 dev_err(&adapter->pdev->dev,
271 "Cannot change link characteristics when SoL/IDER is active.\n");
275 /* MDI setting is only allowed when autoneg enabled because
276 * some hardware doesn't allow MDI setting when speed or
279 if (cmd->base.eth_tp_mdix_ctrl) {
280 if (hw->phy.media_type != e1000_media_type_copper)
283 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
284 (cmd->base.autoneg != AUTONEG_ENABLE)) {
285 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
290 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
291 usleep_range(1000, 2000);
293 ethtool_convert_link_mode_to_legacy_u32(&advertising,
294 cmd->link_modes.advertising);
296 if (cmd->base.autoneg == AUTONEG_ENABLE) {
298 if (hw->phy.media_type == e1000_media_type_fiber) {
299 hw->phy.autoneg_advertised = advertising |
302 switch (adapter->link_speed) {
304 hw->phy.autoneg_advertised =
305 ADVERTISED_2500baseX_Full;
308 hw->phy.autoneg_advertised =
309 ADVERTISED_1000baseT_Full;
312 hw->phy.autoneg_advertised =
313 ADVERTISED_100baseT_Full;
319 hw->phy.autoneg_advertised = advertising |
323 advertising = hw->phy.autoneg_advertised;
324 if (adapter->fc_autoneg)
325 hw->fc.requested_mode = e1000_fc_default;
327 u32 speed = cmd->base.speed;
328 /* calling this overrides forced MDI setting */
329 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
330 clear_bit(__IGB_RESETTING, &adapter->state);
335 /* MDI-X => 2; MDI => 1; Auto => 3 */
336 if (cmd->base.eth_tp_mdix_ctrl) {
337 /* fix up the value for auto (3 => 0) as zero is mapped
340 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
341 hw->phy.mdix = AUTO_ALL_MODES;
343 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
347 if (netif_running(adapter->netdev)) {
353 clear_bit(__IGB_RESETTING, &adapter->state);
357 static u32 igb_get_link(struct net_device *netdev)
359 struct igb_adapter *adapter = netdev_priv(netdev);
360 struct e1000_mac_info *mac = &adapter->hw.mac;
362 /* If the link is not reported up to netdev, interrupts are disabled,
363 * and so the physical link state may have changed since we last
364 * looked. Set get_link_status to make sure that the true link
365 * state is interrogated, rather than pulling a cached and possibly
366 * stale link state from the driver.
368 if (!netif_carrier_ok(netdev))
369 mac->get_link_status = 1;
371 return igb_has_link(adapter);
374 static void igb_get_pauseparam(struct net_device *netdev,
375 struct ethtool_pauseparam *pause)
377 struct igb_adapter *adapter = netdev_priv(netdev);
378 struct e1000_hw *hw = &adapter->hw;
381 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383 if (hw->fc.current_mode == e1000_fc_rx_pause)
385 else if (hw->fc.current_mode == e1000_fc_tx_pause)
387 else if (hw->fc.current_mode == e1000_fc_full) {
393 static int igb_set_pauseparam(struct net_device *netdev,
394 struct ethtool_pauseparam *pause)
396 struct igb_adapter *adapter = netdev_priv(netdev);
397 struct e1000_hw *hw = &adapter->hw;
401 /* 100basefx does not support setting link flow control */
402 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
405 adapter->fc_autoneg = pause->autoneg;
407 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
408 usleep_range(1000, 2000);
410 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
411 hw->fc.requested_mode = e1000_fc_default;
412 if (netif_running(adapter->netdev)) {
419 if (pause->rx_pause && pause->tx_pause)
420 hw->fc.requested_mode = e1000_fc_full;
421 else if (pause->rx_pause && !pause->tx_pause)
422 hw->fc.requested_mode = e1000_fc_rx_pause;
423 else if (!pause->rx_pause && pause->tx_pause)
424 hw->fc.requested_mode = e1000_fc_tx_pause;
425 else if (!pause->rx_pause && !pause->tx_pause)
426 hw->fc.requested_mode = e1000_fc_none;
428 hw->fc.current_mode = hw->fc.requested_mode;
430 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
431 igb_force_mac_fc(hw) : igb_setup_link(hw));
433 /* Make sure SRRCTL considers new fc settings for each ring */
434 for (i = 0; i < adapter->num_rx_queues; i++) {
435 struct igb_ring *ring = adapter->rx_ring[i];
437 igb_setup_srrctl(adapter, ring);
441 clear_bit(__IGB_RESETTING, &adapter->state);
445 static u32 igb_get_msglevel(struct net_device *netdev)
447 struct igb_adapter *adapter = netdev_priv(netdev);
448 return adapter->msg_enable;
451 static void igb_set_msglevel(struct net_device *netdev, u32 data)
453 struct igb_adapter *adapter = netdev_priv(netdev);
454 adapter->msg_enable = data;
457 static int igb_get_regs_len(struct net_device *netdev)
459 #define IGB_REGS_LEN 740
460 return IGB_REGS_LEN * sizeof(u32);
463 static void igb_get_regs(struct net_device *netdev,
464 struct ethtool_regs *regs, void *p)
466 struct igb_adapter *adapter = netdev_priv(netdev);
467 struct e1000_hw *hw = &adapter->hw;
471 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
473 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
475 /* General Registers */
476 regs_buff[0] = rd32(E1000_CTRL);
477 regs_buff[1] = rd32(E1000_STATUS);
478 regs_buff[2] = rd32(E1000_CTRL_EXT);
479 regs_buff[3] = rd32(E1000_MDIC);
480 regs_buff[4] = rd32(E1000_SCTL);
481 regs_buff[5] = rd32(E1000_CONNSW);
482 regs_buff[6] = rd32(E1000_VET);
483 regs_buff[7] = rd32(E1000_LEDCTL);
484 regs_buff[8] = rd32(E1000_PBA);
485 regs_buff[9] = rd32(E1000_PBS);
486 regs_buff[10] = rd32(E1000_FRTIMER);
487 regs_buff[11] = rd32(E1000_TCPTIMER);
490 regs_buff[12] = rd32(E1000_EECD);
493 /* Reading EICS for EICR because they read the
494 * same but EICS does not clear on read
496 regs_buff[13] = rd32(E1000_EICS);
497 regs_buff[14] = rd32(E1000_EICS);
498 regs_buff[15] = rd32(E1000_EIMS);
499 regs_buff[16] = rd32(E1000_EIMC);
500 regs_buff[17] = rd32(E1000_EIAC);
501 regs_buff[18] = rd32(E1000_EIAM);
502 /* Reading ICS for ICR because they read the
503 * same but ICS does not clear on read
505 regs_buff[19] = rd32(E1000_ICS);
506 regs_buff[20] = rd32(E1000_ICS);
507 regs_buff[21] = rd32(E1000_IMS);
508 regs_buff[22] = rd32(E1000_IMC);
509 regs_buff[23] = rd32(E1000_IAC);
510 regs_buff[24] = rd32(E1000_IAM);
511 regs_buff[25] = rd32(E1000_IMIRVP);
514 regs_buff[26] = rd32(E1000_FCAL);
515 regs_buff[27] = rd32(E1000_FCAH);
516 regs_buff[28] = rd32(E1000_FCTTV);
517 regs_buff[29] = rd32(E1000_FCRTL);
518 regs_buff[30] = rd32(E1000_FCRTH);
519 regs_buff[31] = rd32(E1000_FCRTV);
522 regs_buff[32] = rd32(E1000_RCTL);
523 regs_buff[33] = rd32(E1000_RXCSUM);
524 regs_buff[34] = rd32(E1000_RLPML);
525 regs_buff[35] = rd32(E1000_RFCTL);
526 regs_buff[36] = rd32(E1000_MRQC);
527 regs_buff[37] = rd32(E1000_VT_CTL);
530 regs_buff[38] = rd32(E1000_TCTL);
531 regs_buff[39] = rd32(E1000_TCTL_EXT);
532 regs_buff[40] = rd32(E1000_TIPG);
533 regs_buff[41] = rd32(E1000_DTXCTL);
536 regs_buff[42] = rd32(E1000_WUC);
537 regs_buff[43] = rd32(E1000_WUFC);
538 regs_buff[44] = rd32(E1000_WUS);
539 regs_buff[45] = rd32(E1000_IPAV);
540 regs_buff[46] = rd32(E1000_WUPL);
543 regs_buff[47] = rd32(E1000_PCS_CFG0);
544 regs_buff[48] = rd32(E1000_PCS_LCTL);
545 regs_buff[49] = rd32(E1000_PCS_LSTAT);
546 regs_buff[50] = rd32(E1000_PCS_ANADV);
547 regs_buff[51] = rd32(E1000_PCS_LPAB);
548 regs_buff[52] = rd32(E1000_PCS_NPTX);
549 regs_buff[53] = rd32(E1000_PCS_LPABNP);
552 regs_buff[54] = adapter->stats.crcerrs;
553 regs_buff[55] = adapter->stats.algnerrc;
554 regs_buff[56] = adapter->stats.symerrs;
555 regs_buff[57] = adapter->stats.rxerrc;
556 regs_buff[58] = adapter->stats.mpc;
557 regs_buff[59] = adapter->stats.scc;
558 regs_buff[60] = adapter->stats.ecol;
559 regs_buff[61] = adapter->stats.mcc;
560 regs_buff[62] = adapter->stats.latecol;
561 regs_buff[63] = adapter->stats.colc;
562 regs_buff[64] = adapter->stats.dc;
563 regs_buff[65] = adapter->stats.tncrs;
564 regs_buff[66] = adapter->stats.sec;
565 regs_buff[67] = adapter->stats.htdpmc;
566 regs_buff[68] = adapter->stats.rlec;
567 regs_buff[69] = adapter->stats.xonrxc;
568 regs_buff[70] = adapter->stats.xontxc;
569 regs_buff[71] = adapter->stats.xoffrxc;
570 regs_buff[72] = adapter->stats.xofftxc;
571 regs_buff[73] = adapter->stats.fcruc;
572 regs_buff[74] = adapter->stats.prc64;
573 regs_buff[75] = adapter->stats.prc127;
574 regs_buff[76] = adapter->stats.prc255;
575 regs_buff[77] = adapter->stats.prc511;
576 regs_buff[78] = adapter->stats.prc1023;
577 regs_buff[79] = adapter->stats.prc1522;
578 regs_buff[80] = adapter->stats.gprc;
579 regs_buff[81] = adapter->stats.bprc;
580 regs_buff[82] = adapter->stats.mprc;
581 regs_buff[83] = adapter->stats.gptc;
582 regs_buff[84] = adapter->stats.gorc;
583 regs_buff[86] = adapter->stats.gotc;
584 regs_buff[88] = adapter->stats.rnbc;
585 regs_buff[89] = adapter->stats.ruc;
586 regs_buff[90] = adapter->stats.rfc;
587 regs_buff[91] = adapter->stats.roc;
588 regs_buff[92] = adapter->stats.rjc;
589 regs_buff[93] = adapter->stats.mgprc;
590 regs_buff[94] = adapter->stats.mgpdc;
591 regs_buff[95] = adapter->stats.mgptc;
592 regs_buff[96] = adapter->stats.tor;
593 regs_buff[98] = adapter->stats.tot;
594 regs_buff[100] = adapter->stats.tpr;
595 regs_buff[101] = adapter->stats.tpt;
596 regs_buff[102] = adapter->stats.ptc64;
597 regs_buff[103] = adapter->stats.ptc127;
598 regs_buff[104] = adapter->stats.ptc255;
599 regs_buff[105] = adapter->stats.ptc511;
600 regs_buff[106] = adapter->stats.ptc1023;
601 regs_buff[107] = adapter->stats.ptc1522;
602 regs_buff[108] = adapter->stats.mptc;
603 regs_buff[109] = adapter->stats.bptc;
604 regs_buff[110] = adapter->stats.tsctc;
605 regs_buff[111] = adapter->stats.iac;
606 regs_buff[112] = adapter->stats.rpthc;
607 regs_buff[113] = adapter->stats.hgptc;
608 regs_buff[114] = adapter->stats.hgorc;
609 regs_buff[116] = adapter->stats.hgotc;
610 regs_buff[118] = adapter->stats.lenerrs;
611 regs_buff[119] = adapter->stats.scvpc;
612 regs_buff[120] = adapter->stats.hrmpc;
614 for (i = 0; i < 4; i++)
615 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
616 for (i = 0; i < 4; i++)
617 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
618 for (i = 0; i < 4; i++)
619 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
620 for (i = 0; i < 4; i++)
621 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
622 for (i = 0; i < 4; i++)
623 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
624 for (i = 0; i < 4; i++)
625 regs_buff[141 + i] = rd32(E1000_RDH(i));
626 for (i = 0; i < 4; i++)
627 regs_buff[145 + i] = rd32(E1000_RDT(i));
628 for (i = 0; i < 4; i++)
629 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
631 for (i = 0; i < 10; i++)
632 regs_buff[153 + i] = rd32(E1000_EITR(i));
633 for (i = 0; i < 8; i++)
634 regs_buff[163 + i] = rd32(E1000_IMIR(i));
635 for (i = 0; i < 8; i++)
636 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
637 for (i = 0; i < 16; i++)
638 regs_buff[179 + i] = rd32(E1000_RAL(i));
639 for (i = 0; i < 16; i++)
640 regs_buff[195 + i] = rd32(E1000_RAH(i));
642 for (i = 0; i < 4; i++)
643 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
644 for (i = 0; i < 4; i++)
645 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
646 for (i = 0; i < 4; i++)
647 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
648 for (i = 0; i < 4; i++)
649 regs_buff[223 + i] = rd32(E1000_TDH(i));
650 for (i = 0; i < 4; i++)
651 regs_buff[227 + i] = rd32(E1000_TDT(i));
652 for (i = 0; i < 4; i++)
653 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
654 for (i = 0; i < 4; i++)
655 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
656 for (i = 0; i < 4; i++)
657 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
658 for (i = 0; i < 4; i++)
659 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
661 for (i = 0; i < 4; i++)
662 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
663 for (i = 0; i < 4; i++)
664 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
665 for (i = 0; i < 32; i++)
666 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
667 for (i = 0; i < 128; i++)
668 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
669 for (i = 0; i < 128; i++)
670 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
671 for (i = 0; i < 4; i++)
672 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
674 regs_buff[547] = rd32(E1000_TDFH);
675 regs_buff[548] = rd32(E1000_TDFT);
676 regs_buff[549] = rd32(E1000_TDFHS);
677 regs_buff[550] = rd32(E1000_TDFPC);
679 if (hw->mac.type > e1000_82580) {
680 regs_buff[551] = adapter->stats.o2bgptc;
681 regs_buff[552] = adapter->stats.b2ospc;
682 regs_buff[553] = adapter->stats.o2bspc;
683 regs_buff[554] = adapter->stats.b2ogprc;
686 if (hw->mac.type == e1000_82576) {
687 for (i = 0; i < 12; i++)
688 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
689 for (i = 0; i < 4; i++)
690 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
691 for (i = 0; i < 12; i++)
692 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
693 for (i = 0; i < 12; i++)
694 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
695 for (i = 0; i < 12; i++)
696 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
697 for (i = 0; i < 12; i++)
698 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
699 for (i = 0; i < 12; i++)
700 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
701 for (i = 0; i < 12; i++)
702 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
704 for (i = 0; i < 12; i++)
705 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
706 for (i = 0; i < 12; i++)
707 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
708 for (i = 0; i < 12; i++)
709 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
710 for (i = 0; i < 12; i++)
711 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
712 for (i = 0; i < 12; i++)
713 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
714 for (i = 0; i < 12; i++)
715 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
716 for (i = 0; i < 12; i++)
717 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
718 for (i = 0; i < 12; i++)
719 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
722 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
723 regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
726 static int igb_get_eeprom_len(struct net_device *netdev)
728 struct igb_adapter *adapter = netdev_priv(netdev);
729 return adapter->hw.nvm.word_size * 2;
732 static int igb_get_eeprom(struct net_device *netdev,
733 struct ethtool_eeprom *eeprom, u8 *bytes)
735 struct igb_adapter *adapter = netdev_priv(netdev);
736 struct e1000_hw *hw = &adapter->hw;
738 int first_word, last_word;
742 if (eeprom->len == 0)
745 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
747 first_word = eeprom->offset >> 1;
748 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
750 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
755 if (hw->nvm.type == e1000_nvm_eeprom_spi)
756 ret_val = hw->nvm.ops.read(hw, first_word,
757 last_word - first_word + 1,
760 for (i = 0; i < last_word - first_word + 1; i++) {
761 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
768 /* Device's eeprom is always little-endian, word addressable */
769 for (i = 0; i < last_word - first_word + 1; i++)
770 le16_to_cpus(&eeprom_buff[i]);
772 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
779 static int igb_set_eeprom(struct net_device *netdev,
780 struct ethtool_eeprom *eeprom, u8 *bytes)
782 struct igb_adapter *adapter = netdev_priv(netdev);
783 struct e1000_hw *hw = &adapter->hw;
786 int max_len, first_word, last_word, ret_val = 0;
789 if (eeprom->len == 0)
792 if ((hw->mac.type >= e1000_i210) &&
793 !igb_get_flash_presence_i210(hw)) {
797 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
800 max_len = hw->nvm.word_size * 2;
802 first_word = eeprom->offset >> 1;
803 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
804 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
808 ptr = (void *)eeprom_buff;
810 if (eeprom->offset & 1) {
811 /* need read/modify/write of first changed EEPROM word
812 * only the second byte of the word is being modified
814 ret_val = hw->nvm.ops.read(hw, first_word, 1,
818 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
819 /* need read/modify/write of last changed EEPROM word
820 * only the first byte of the word is being modified
822 ret_val = hw->nvm.ops.read(hw, last_word, 1,
823 &eeprom_buff[last_word - first_word]);
826 /* Device's eeprom is always little-endian, word addressable */
827 for (i = 0; i < last_word - first_word + 1; i++)
828 le16_to_cpus(&eeprom_buff[i]);
830 memcpy(ptr, bytes, eeprom->len);
832 for (i = 0; i < last_word - first_word + 1; i++)
833 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
835 ret_val = hw->nvm.ops.write(hw, first_word,
836 last_word - first_word + 1, eeprom_buff);
838 /* Update the checksum if nvm write succeeded */
840 hw->nvm.ops.update(hw);
842 igb_set_fw_version(adapter);
847 static void igb_get_drvinfo(struct net_device *netdev,
848 struct ethtool_drvinfo *drvinfo)
850 struct igb_adapter *adapter = netdev_priv(netdev);
852 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
853 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
855 /* EEPROM image version # is reported as firmware version # for
858 strlcpy(drvinfo->fw_version, adapter->fw_version,
859 sizeof(drvinfo->fw_version));
860 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
861 sizeof(drvinfo->bus_info));
863 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
866 static void igb_get_ringparam(struct net_device *netdev,
867 struct ethtool_ringparam *ring)
869 struct igb_adapter *adapter = netdev_priv(netdev);
871 ring->rx_max_pending = IGB_MAX_RXD;
872 ring->tx_max_pending = IGB_MAX_TXD;
873 ring->rx_pending = adapter->rx_ring_count;
874 ring->tx_pending = adapter->tx_ring_count;
877 static int igb_set_ringparam(struct net_device *netdev,
878 struct ethtool_ringparam *ring)
880 struct igb_adapter *adapter = netdev_priv(netdev);
881 struct igb_ring *temp_ring;
883 u16 new_rx_count, new_tx_count;
885 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
888 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
889 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
890 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
892 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
893 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
894 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
896 if ((new_tx_count == adapter->tx_ring_count) &&
897 (new_rx_count == adapter->rx_ring_count)) {
902 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
903 usleep_range(1000, 2000);
905 if (!netif_running(adapter->netdev)) {
906 for (i = 0; i < adapter->num_tx_queues; i++)
907 adapter->tx_ring[i]->count = new_tx_count;
908 for (i = 0; i < adapter->num_rx_queues; i++)
909 adapter->rx_ring[i]->count = new_rx_count;
910 adapter->tx_ring_count = new_tx_count;
911 adapter->rx_ring_count = new_rx_count;
915 if (adapter->num_tx_queues > adapter->num_rx_queues)
916 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
917 adapter->num_tx_queues));
919 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
920 adapter->num_rx_queues));
929 /* We can't just free everything and then setup again,
930 * because the ISRs in MSI-X mode get passed pointers
931 * to the Tx and Rx ring structs.
933 if (new_tx_count != adapter->tx_ring_count) {
934 for (i = 0; i < adapter->num_tx_queues; i++) {
935 memcpy(&temp_ring[i], adapter->tx_ring[i],
936 sizeof(struct igb_ring));
938 temp_ring[i].count = new_tx_count;
939 err = igb_setup_tx_resources(&temp_ring[i]);
943 igb_free_tx_resources(&temp_ring[i]);
949 for (i = 0; i < adapter->num_tx_queues; i++) {
950 igb_free_tx_resources(adapter->tx_ring[i]);
952 memcpy(adapter->tx_ring[i], &temp_ring[i],
953 sizeof(struct igb_ring));
956 adapter->tx_ring_count = new_tx_count;
959 if (new_rx_count != adapter->rx_ring_count) {
960 for (i = 0; i < adapter->num_rx_queues; i++) {
961 memcpy(&temp_ring[i], adapter->rx_ring[i],
962 sizeof(struct igb_ring));
964 temp_ring[i].count = new_rx_count;
965 err = igb_setup_rx_resources(&temp_ring[i]);
969 igb_free_rx_resources(&temp_ring[i]);
976 for (i = 0; i < adapter->num_rx_queues; i++) {
977 igb_free_rx_resources(adapter->rx_ring[i]);
979 memcpy(adapter->rx_ring[i], &temp_ring[i],
980 sizeof(struct igb_ring));
983 adapter->rx_ring_count = new_rx_count;
989 clear_bit(__IGB_RESETTING, &adapter->state);
993 /* ethtool register test data */
994 struct igb_reg_test {
1003 /* In the hardware, registers are laid out either singly, in arrays
1004 * spaced 0x100 bytes apart, or in contiguous tables. We assume
1005 * most tests take place on arrays or single registers (handled
1006 * as a single-element array) and special-case the tables.
1007 * Table tests are always pattern tests.
1009 * We also make provision for some required setup steps by specifying
1010 * registers to be written without any read-back testing.
1013 #define PATTERN_TEST 1
1014 #define SET_READ_TEST 2
1015 #define WRITE_NO_TEST 3
1016 #define TABLE32_TEST 4
1017 #define TABLE64_TEST_LO 5
1018 #define TABLE64_TEST_HI 6
1021 static struct igb_reg_test reg_test_i210[] = {
1022 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1023 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1024 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1025 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1026 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1028 /* RDH is read-only for i210, only test RDT. */
1029 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1030 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1031 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1032 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1033 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1034 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1036 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1037 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1038 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1039 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1040 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1041 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1042 0xFFFFFFFF, 0xFFFFFFFF },
1043 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1044 0x900FFFFF, 0xFFFFFFFF },
1045 { E1000_MTA, 0, 128, TABLE32_TEST,
1046 0xFFFFFFFF, 0xFFFFFFFF },
1051 static struct igb_reg_test reg_test_i350[] = {
1052 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1054 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1055 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1056 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1057 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1058 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1059 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062 /* RDH is read-only for i350, only test RDT. */
1063 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1064 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1065 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1066 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1067 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1068 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1069 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1070 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1071 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1072 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1073 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1074 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1075 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1076 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1077 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1078 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1079 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1080 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1081 0xFFFFFFFF, 0xFFFFFFFF },
1082 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1083 0xC3FFFFFF, 0xFFFFFFFF },
1084 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1085 0xFFFFFFFF, 0xFFFFFFFF },
1086 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1087 0xC3FFFFFF, 0xFFFFFFFF },
1088 { E1000_MTA, 0, 128, TABLE32_TEST,
1089 0xFFFFFFFF, 0xFFFFFFFF },
1093 /* 82580 reg test */
1094 static struct igb_reg_test reg_test_82580[] = {
1095 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1096 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1097 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1098 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1099 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1100 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1101 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1102 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1103 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1104 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1105 /* RDH is read-only for 82580, only test RDT. */
1106 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1107 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1108 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1109 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1110 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1111 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1112 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1113 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1114 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1115 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1116 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1117 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1118 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1119 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1120 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1121 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1122 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1123 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1124 0xFFFFFFFF, 0xFFFFFFFF },
1125 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1126 0x83FFFFFF, 0xFFFFFFFF },
1127 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1128 0xFFFFFFFF, 0xFFFFFFFF },
1129 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1130 0x83FFFFFF, 0xFFFFFFFF },
1131 { E1000_MTA, 0, 128, TABLE32_TEST,
1132 0xFFFFFFFF, 0xFFFFFFFF },
1136 /* 82576 reg test */
1137 static struct igb_reg_test reg_test_82576[] = {
1138 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1140 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1141 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1142 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1143 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1144 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1145 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1146 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1147 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1148 /* Enable all RX queues before testing. */
1149 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1150 E1000_RXDCTL_QUEUE_ENABLE },
1151 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1152 E1000_RXDCTL_QUEUE_ENABLE },
1153 /* RDH is read-only for 82576, only test RDT. */
1154 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1155 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1156 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1157 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1158 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1159 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1160 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1161 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1162 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1164 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1165 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1167 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1168 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1169 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1170 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1171 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1172 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1173 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1174 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1175 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1179 /* 82575 register test */
1180 static struct igb_reg_test reg_test_82575[] = {
1181 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1182 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1183 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1184 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1185 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1186 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1187 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1188 /* Enable all four RX queues before testing. */
1189 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1190 E1000_RXDCTL_QUEUE_ENABLE },
1191 /* RDH is read-only for 82575, only test RDT. */
1192 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1193 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1194 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1195 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1196 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1197 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1198 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1199 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1200 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1201 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1202 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1203 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1204 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1205 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1206 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1207 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1211 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1212 int reg, u32 mask, u32 write)
1214 struct e1000_hw *hw = &adapter->hw;
1216 static const u32 _test[] = {
1217 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1218 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1219 wr32(reg, (_test[pat] & write));
1220 val = rd32(reg) & mask;
1221 if (val != (_test[pat] & write & mask)) {
1222 dev_err(&adapter->pdev->dev,
1223 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1224 reg, val, (_test[pat] & write & mask));
1233 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1234 int reg, u32 mask, u32 write)
1236 struct e1000_hw *hw = &adapter->hw;
1239 wr32(reg, write & mask);
1241 if ((write & mask) != (val & mask)) {
1242 dev_err(&adapter->pdev->dev,
1243 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1244 reg, (val & mask), (write & mask));
1252 #define REG_PATTERN_TEST(reg, mask, write) \
1254 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1258 #define REG_SET_AND_CHECK(reg, mask, write) \
1260 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1264 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1266 struct e1000_hw *hw = &adapter->hw;
1267 struct igb_reg_test *test;
1268 u32 value, before, after;
1271 switch (adapter->hw.mac.type) {
1274 test = reg_test_i350;
1275 toggle = 0x7FEFF3FF;
1279 test = reg_test_i210;
1280 toggle = 0x7FEFF3FF;
1283 test = reg_test_82580;
1284 toggle = 0x7FEFF3FF;
1287 test = reg_test_82576;
1288 toggle = 0x7FFFF3FF;
1291 test = reg_test_82575;
1292 toggle = 0x7FFFF3FF;
1296 /* Because the status register is such a special case,
1297 * we handle it separately from the rest of the register
1298 * tests. Some bits are read-only, some toggle, and some
1299 * are writable on newer MACs.
1301 before = rd32(E1000_STATUS);
1302 value = (rd32(E1000_STATUS) & toggle);
1303 wr32(E1000_STATUS, toggle);
1304 after = rd32(E1000_STATUS) & toggle;
1305 if (value != after) {
1306 dev_err(&adapter->pdev->dev,
1307 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1312 /* restore previous status */
1313 wr32(E1000_STATUS, before);
1315 /* Perform the remainder of the register test, looping through
1316 * the test table until we either fail or reach the null entry.
1319 for (i = 0; i < test->array_len; i++) {
1320 switch (test->test_type) {
1322 REG_PATTERN_TEST(test->reg +
1323 (i * test->reg_offset),
1328 REG_SET_AND_CHECK(test->reg +
1329 (i * test->reg_offset),
1335 (adapter->hw.hw_addr + test->reg)
1336 + (i * test->reg_offset));
1339 REG_PATTERN_TEST(test->reg + (i * 4),
1343 case TABLE64_TEST_LO:
1344 REG_PATTERN_TEST(test->reg + (i * 8),
1348 case TABLE64_TEST_HI:
1349 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1362 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1364 struct e1000_hw *hw = &adapter->hw;
1368 /* Validate eeprom on all parts but flashless */
1369 switch (hw->mac.type) {
1372 if (igb_get_flash_presence_i210(hw)) {
1373 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1378 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1386 static irqreturn_t igb_test_intr(int irq, void *data)
1388 struct igb_adapter *adapter = (struct igb_adapter *) data;
1389 struct e1000_hw *hw = &adapter->hw;
1391 adapter->test_icr |= rd32(E1000_ICR);
1396 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1398 struct e1000_hw *hw = &adapter->hw;
1399 struct net_device *netdev = adapter->netdev;
1400 u32 mask, ics_mask, i = 0, shared_int = true;
1401 u32 irq = adapter->pdev->irq;
1405 /* Hook up test interrupt handler just for this test */
1406 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1407 if (request_irq(adapter->msix_entries[0].vector,
1408 igb_test_intr, 0, netdev->name, adapter)) {
1412 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1414 if (request_irq(irq,
1415 igb_test_intr, 0, netdev->name, adapter)) {
1419 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1420 netdev->name, adapter)) {
1422 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1423 netdev->name, adapter)) {
1427 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1428 (shared_int ? "shared" : "unshared"));
1430 /* Disable all the interrupts */
1431 wr32(E1000_IMC, ~0);
1433 usleep_range(10000, 11000);
1435 /* Define all writable bits for ICS */
1436 switch (hw->mac.type) {
1438 ics_mask = 0x37F47EDD;
1441 ics_mask = 0x77D4FBFD;
1444 ics_mask = 0x77DCFED5;
1450 ics_mask = 0x77DCFED5;
1453 ics_mask = 0x7FFFFFFF;
1457 /* Test each interrupt */
1458 for (; i < 31; i++) {
1459 /* Interrupt to test */
1462 if (!(mask & ics_mask))
1466 /* Disable the interrupt to be reported in
1467 * the cause register and then force the same
1468 * interrupt and see if one gets posted. If
1469 * an interrupt was posted to the bus, the
1472 adapter->test_icr = 0;
1474 /* Flush any pending interrupts */
1475 wr32(E1000_ICR, ~0);
1477 wr32(E1000_IMC, mask);
1478 wr32(E1000_ICS, mask);
1480 usleep_range(10000, 11000);
1482 if (adapter->test_icr & mask) {
1488 /* Enable the interrupt to be reported in
1489 * the cause register and then force the same
1490 * interrupt and see if one gets posted. If
1491 * an interrupt was not posted to the bus, the
1494 adapter->test_icr = 0;
1496 /* Flush any pending interrupts */
1497 wr32(E1000_ICR, ~0);
1499 wr32(E1000_IMS, mask);
1500 wr32(E1000_ICS, mask);
1502 usleep_range(10000, 11000);
1504 if (!(adapter->test_icr & mask)) {
1510 /* Disable the other interrupts to be reported in
1511 * the cause register and then force the other
1512 * interrupts and see if any get posted. If
1513 * an interrupt was posted to the bus, the
1516 adapter->test_icr = 0;
1518 /* Flush any pending interrupts */
1519 wr32(E1000_ICR, ~0);
1521 wr32(E1000_IMC, ~mask);
1522 wr32(E1000_ICS, ~mask);
1524 usleep_range(10000, 11000);
1526 if (adapter->test_icr & mask) {
1533 /* Disable all the interrupts */
1534 wr32(E1000_IMC, ~0);
1536 usleep_range(10000, 11000);
1538 /* Unhook test interrupt handler */
1539 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1540 free_irq(adapter->msix_entries[0].vector, adapter);
1542 free_irq(irq, adapter);
1547 static void igb_free_desc_rings(struct igb_adapter *adapter)
1549 igb_free_tx_resources(&adapter->test_tx_ring);
1550 igb_free_rx_resources(&adapter->test_rx_ring);
1553 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1555 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1556 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1557 struct e1000_hw *hw = &adapter->hw;
1560 /* Setup Tx descriptor ring and Tx buffers */
1561 tx_ring->count = IGB_DEFAULT_TXD;
1562 tx_ring->dev = &adapter->pdev->dev;
1563 tx_ring->netdev = adapter->netdev;
1564 tx_ring->reg_idx = adapter->vfs_allocated_count;
1566 if (igb_setup_tx_resources(tx_ring)) {
1571 igb_setup_tctl(adapter);
1572 igb_configure_tx_ring(adapter, tx_ring);
1574 /* Setup Rx descriptor ring and Rx buffers */
1575 rx_ring->count = IGB_DEFAULT_RXD;
1576 rx_ring->dev = &adapter->pdev->dev;
1577 rx_ring->netdev = adapter->netdev;
1578 rx_ring->reg_idx = adapter->vfs_allocated_count;
1580 if (igb_setup_rx_resources(rx_ring)) {
1585 /* set the default queue to queue 0 of PF */
1586 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1588 /* enable receive ring */
1589 igb_setup_rctl(adapter);
1590 igb_configure_rx_ring(adapter, rx_ring);
1592 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1597 igb_free_desc_rings(adapter);
1601 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1603 struct e1000_hw *hw = &adapter->hw;
1605 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1606 igb_write_phy_reg(hw, 29, 0x001F);
1607 igb_write_phy_reg(hw, 30, 0x8FFC);
1608 igb_write_phy_reg(hw, 29, 0x001A);
1609 igb_write_phy_reg(hw, 30, 0x8FF0);
1612 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1614 struct e1000_hw *hw = &adapter->hw;
1617 hw->mac.autoneg = false;
1619 if (hw->phy.type == e1000_phy_m88) {
1620 if (hw->phy.id != I210_I_PHY_ID) {
1621 /* Auto-MDI/MDIX Off */
1622 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1623 /* reset to update Auto-MDI/MDIX */
1624 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1626 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1628 /* force 1000, set loopback */
1629 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1630 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1632 } else if (hw->phy.type == e1000_phy_82580) {
1633 /* enable MII loopback */
1634 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1637 /* add small delay to avoid loopback test failure */
1640 /* force 1000, set loopback */
1641 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1643 /* Now set up the MAC to the same speed/duplex as the PHY. */
1644 ctrl_reg = rd32(E1000_CTRL);
1645 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1646 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1647 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1648 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1649 E1000_CTRL_FD | /* Force Duplex to FULL */
1650 E1000_CTRL_SLU); /* Set link up enable bit */
1652 if (hw->phy.type == e1000_phy_m88)
1653 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1655 wr32(E1000_CTRL, ctrl_reg);
1657 /* Disable the receiver on the PHY so when a cable is plugged in, the
1658 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1660 if (hw->phy.type == e1000_phy_m88)
1661 igb_phy_disable_receiver(adapter);
1667 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1669 return igb_integrated_phy_loopback(adapter);
1672 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1674 struct e1000_hw *hw = &adapter->hw;
1677 reg = rd32(E1000_CTRL_EXT);
1679 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1680 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1681 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1682 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1683 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1684 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1685 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1686 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1687 /* Enable DH89xxCC MPHY for near end loopback */
1688 reg = rd32(E1000_MPHY_ADDR_CTL);
1689 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1690 E1000_MPHY_PCS_CLK_REG_OFFSET;
1691 wr32(E1000_MPHY_ADDR_CTL, reg);
1693 reg = rd32(E1000_MPHY_DATA);
1694 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1695 wr32(E1000_MPHY_DATA, reg);
1698 reg = rd32(E1000_RCTL);
1699 reg |= E1000_RCTL_LBM_TCVR;
1700 wr32(E1000_RCTL, reg);
1702 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1704 reg = rd32(E1000_CTRL);
1705 reg &= ~(E1000_CTRL_RFCE |
1708 reg |= E1000_CTRL_SLU |
1710 wr32(E1000_CTRL, reg);
1712 /* Unset switch control to serdes energy detect */
1713 reg = rd32(E1000_CONNSW);
1714 reg &= ~E1000_CONNSW_ENRGSRC;
1715 wr32(E1000_CONNSW, reg);
1717 /* Unset sigdetect for SERDES loopback on
1718 * 82580 and newer devices.
1720 if (hw->mac.type >= e1000_82580) {
1721 reg = rd32(E1000_PCS_CFG0);
1722 reg |= E1000_PCS_CFG_IGN_SD;
1723 wr32(E1000_PCS_CFG0, reg);
1726 /* Set PCS register for forced speed */
1727 reg = rd32(E1000_PCS_LCTL);
1728 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1729 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1730 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1731 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1732 E1000_PCS_LCTL_FSD | /* Force Speed */
1733 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1734 wr32(E1000_PCS_LCTL, reg);
1739 return igb_set_phy_loopback(adapter);
1742 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1744 struct e1000_hw *hw = &adapter->hw;
1748 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1749 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1750 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1751 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1752 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1755 /* Disable near end loopback on DH89xxCC */
1756 reg = rd32(E1000_MPHY_ADDR_CTL);
1757 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1758 E1000_MPHY_PCS_CLK_REG_OFFSET;
1759 wr32(E1000_MPHY_ADDR_CTL, reg);
1761 reg = rd32(E1000_MPHY_DATA);
1762 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1763 wr32(E1000_MPHY_DATA, reg);
1766 rctl = rd32(E1000_RCTL);
1767 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1768 wr32(E1000_RCTL, rctl);
1770 hw->mac.autoneg = true;
1771 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1772 if (phy_reg & MII_CR_LOOPBACK) {
1773 phy_reg &= ~MII_CR_LOOPBACK;
1774 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1775 igb_phy_sw_reset(hw);
1779 static void igb_create_lbtest_frame(struct sk_buff *skb,
1780 unsigned int frame_size)
1782 memset(skb->data, 0xFF, frame_size);
1784 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1785 memset(&skb->data[frame_size + 10], 0xBE, 1);
1786 memset(&skb->data[frame_size + 12], 0xAF, 1);
1789 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1790 unsigned int frame_size)
1792 unsigned char *data;
1797 data = kmap(rx_buffer->page);
1799 if (data[3] != 0xFF ||
1800 data[frame_size + 10] != 0xBE ||
1801 data[frame_size + 12] != 0xAF)
1804 kunmap(rx_buffer->page);
1809 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1810 struct igb_ring *tx_ring,
1813 union e1000_adv_rx_desc *rx_desc;
1814 struct igb_rx_buffer *rx_buffer_info;
1815 struct igb_tx_buffer *tx_buffer_info;
1816 u16 rx_ntc, tx_ntc, count = 0;
1818 /* initialize next to clean and descriptor values */
1819 rx_ntc = rx_ring->next_to_clean;
1820 tx_ntc = tx_ring->next_to_clean;
1821 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1823 while (rx_desc->wb.upper.length) {
1824 /* check Rx buffer */
1825 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1827 /* sync Rx buffer for CPU read */
1828 dma_sync_single_for_cpu(rx_ring->dev,
1829 rx_buffer_info->dma,
1833 /* verify contents of skb */
1834 if (igb_check_lbtest_frame(rx_buffer_info, size))
1837 /* sync Rx buffer for device write */
1838 dma_sync_single_for_device(rx_ring->dev,
1839 rx_buffer_info->dma,
1843 /* unmap buffer on Tx side */
1844 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1846 /* Free all the Tx ring sk_buffs */
1847 dev_kfree_skb_any(tx_buffer_info->skb);
1849 /* unmap skb header data */
1850 dma_unmap_single(tx_ring->dev,
1851 dma_unmap_addr(tx_buffer_info, dma),
1852 dma_unmap_len(tx_buffer_info, len),
1854 dma_unmap_len_set(tx_buffer_info, len, 0);
1856 /* increment Rx/Tx next to clean counters */
1858 if (rx_ntc == rx_ring->count)
1861 if (tx_ntc == tx_ring->count)
1864 /* fetch next descriptor */
1865 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1868 netdev_tx_reset_queue(txring_txq(tx_ring));
1870 /* re-map buffers to ring, store next to clean values */
1871 igb_alloc_rx_buffers(rx_ring, count);
1872 rx_ring->next_to_clean = rx_ntc;
1873 tx_ring->next_to_clean = tx_ntc;
1878 static int igb_run_loopback_test(struct igb_adapter *adapter)
1880 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1881 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1882 u16 i, j, lc, good_cnt;
1884 unsigned int size = IGB_RX_HDR_LEN;
1885 netdev_tx_t tx_ret_val;
1886 struct sk_buff *skb;
1888 /* allocate test skb */
1889 skb = alloc_skb(size, GFP_KERNEL);
1893 /* place data into test skb */
1894 igb_create_lbtest_frame(skb, size);
1897 /* Calculate the loop count based on the largest descriptor ring
1898 * The idea is to wrap the largest ring a number of times using 64
1899 * send/receive pairs during each loop
1902 if (rx_ring->count <= tx_ring->count)
1903 lc = ((tx_ring->count / 64) * 2) + 1;
1905 lc = ((rx_ring->count / 64) * 2) + 1;
1907 for (j = 0; j <= lc; j++) { /* loop count loop */
1908 /* reset count of good packets */
1911 /* place 64 packets on the transmit queue*/
1912 for (i = 0; i < 64; i++) {
1914 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1915 if (tx_ret_val == NETDEV_TX_OK)
1919 if (good_cnt != 64) {
1924 /* allow 200 milliseconds for packets to go from Tx to Rx */
1927 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1928 if (good_cnt != 64) {
1932 } /* end loop count loop */
1934 /* free the original skb */
1940 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1942 /* PHY loopback cannot be performed if SoL/IDER
1943 * sessions are active
1945 if (igb_check_reset_block(&adapter->hw)) {
1946 dev_err(&adapter->pdev->dev,
1947 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1952 if (adapter->hw.mac.type == e1000_i354) {
1953 dev_info(&adapter->pdev->dev,
1954 "Loopback test not supported on i354.\n");
1958 *data = igb_setup_desc_rings(adapter);
1961 *data = igb_setup_loopback_test(adapter);
1964 *data = igb_run_loopback_test(adapter);
1965 igb_loopback_cleanup(adapter);
1968 igb_free_desc_rings(adapter);
1973 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1975 struct e1000_hw *hw = &adapter->hw;
1977 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1980 hw->mac.serdes_has_link = false;
1982 /* On some blade server designs, link establishment
1983 * could take as long as 2-3 minutes
1986 hw->mac.ops.check_for_link(&adapter->hw);
1987 if (hw->mac.serdes_has_link)
1990 } while (i++ < 3750);
1994 hw->mac.ops.check_for_link(&adapter->hw);
1995 if (hw->mac.autoneg)
1998 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2004 static void igb_diag_test(struct net_device *netdev,
2005 struct ethtool_test *eth_test, u64 *data)
2007 struct igb_adapter *adapter = netdev_priv(netdev);
2008 u16 autoneg_advertised;
2009 u8 forced_speed_duplex, autoneg;
2010 bool if_running = netif_running(netdev);
2012 set_bit(__IGB_TESTING, &adapter->state);
2014 /* can't do offline tests on media switching devices */
2015 if (adapter->hw.dev_spec._82575.mas_capable)
2016 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2017 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2020 /* save speed, duplex, autoneg settings */
2021 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2022 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2023 autoneg = adapter->hw.mac.autoneg;
2025 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2027 /* power up link for link test */
2028 igb_power_up_link(adapter);
2030 /* Link test performed before hardware reset so autoneg doesn't
2031 * interfere with test result
2033 if (igb_link_test(adapter, &data[TEST_LINK]))
2034 eth_test->flags |= ETH_TEST_FL_FAILED;
2037 /* indicate we're in test mode */
2042 if (igb_reg_test(adapter, &data[TEST_REG]))
2043 eth_test->flags |= ETH_TEST_FL_FAILED;
2046 if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2047 eth_test->flags |= ETH_TEST_FL_FAILED;
2050 if (igb_intr_test(adapter, &data[TEST_IRQ]))
2051 eth_test->flags |= ETH_TEST_FL_FAILED;
2054 /* power up link for loopback test */
2055 igb_power_up_link(adapter);
2056 if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2057 eth_test->flags |= ETH_TEST_FL_FAILED;
2059 /* restore speed, duplex, autoneg settings */
2060 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2061 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2062 adapter->hw.mac.autoneg = autoneg;
2064 /* force this routine to wait until autoneg complete/timeout */
2065 adapter->hw.phy.autoneg_wait_to_complete = true;
2067 adapter->hw.phy.autoneg_wait_to_complete = false;
2069 clear_bit(__IGB_TESTING, &adapter->state);
2073 dev_info(&adapter->pdev->dev, "online testing starting\n");
2075 /* PHY is powered down when interface is down */
2076 if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2077 eth_test->flags |= ETH_TEST_FL_FAILED;
2079 data[TEST_LINK] = 0;
2081 /* Online tests aren't run; pass by default */
2085 data[TEST_LOOP] = 0;
2087 clear_bit(__IGB_TESTING, &adapter->state);
2089 msleep_interruptible(4 * 1000);
2092 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2094 struct igb_adapter *adapter = netdev_priv(netdev);
2098 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2101 wol->supported = WAKE_UCAST | WAKE_MCAST |
2102 WAKE_BCAST | WAKE_MAGIC |
2105 /* apply any specific unsupported masks here */
2106 switch (adapter->hw.device_id) {
2111 if (adapter->wol & E1000_WUFC_EX)
2112 wol->wolopts |= WAKE_UCAST;
2113 if (adapter->wol & E1000_WUFC_MC)
2114 wol->wolopts |= WAKE_MCAST;
2115 if (adapter->wol & E1000_WUFC_BC)
2116 wol->wolopts |= WAKE_BCAST;
2117 if (adapter->wol & E1000_WUFC_MAG)
2118 wol->wolopts |= WAKE_MAGIC;
2119 if (adapter->wol & E1000_WUFC_LNKC)
2120 wol->wolopts |= WAKE_PHY;
2123 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2125 struct igb_adapter *adapter = netdev_priv(netdev);
2127 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2130 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2131 return wol->wolopts ? -EOPNOTSUPP : 0;
2133 /* these settings will always override what we currently have */
2136 if (wol->wolopts & WAKE_UCAST)
2137 adapter->wol |= E1000_WUFC_EX;
2138 if (wol->wolopts & WAKE_MCAST)
2139 adapter->wol |= E1000_WUFC_MC;
2140 if (wol->wolopts & WAKE_BCAST)
2141 adapter->wol |= E1000_WUFC_BC;
2142 if (wol->wolopts & WAKE_MAGIC)
2143 adapter->wol |= E1000_WUFC_MAG;
2144 if (wol->wolopts & WAKE_PHY)
2145 adapter->wol |= E1000_WUFC_LNKC;
2146 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2151 /* bit defines for adapter->led_status */
2152 #define IGB_LED_ON 0
2154 static int igb_set_phys_id(struct net_device *netdev,
2155 enum ethtool_phys_id_state state)
2157 struct igb_adapter *adapter = netdev_priv(netdev);
2158 struct e1000_hw *hw = &adapter->hw;
2161 case ETHTOOL_ID_ACTIVE:
2167 case ETHTOOL_ID_OFF:
2170 case ETHTOOL_ID_INACTIVE:
2172 clear_bit(IGB_LED_ON, &adapter->led_status);
2173 igb_cleanup_led(hw);
2180 static int igb_set_coalesce(struct net_device *netdev,
2181 struct ethtool_coalesce *ec)
2183 struct igb_adapter *adapter = netdev_priv(netdev);
2186 if (ec->rx_max_coalesced_frames ||
2187 ec->rx_coalesce_usecs_irq ||
2188 ec->rx_max_coalesced_frames_irq ||
2189 ec->tx_max_coalesced_frames ||
2190 ec->tx_coalesce_usecs_irq ||
2191 ec->stats_block_coalesce_usecs ||
2192 ec->use_adaptive_rx_coalesce ||
2193 ec->use_adaptive_tx_coalesce ||
2195 ec->rx_coalesce_usecs_low ||
2196 ec->rx_max_coalesced_frames_low ||
2197 ec->tx_coalesce_usecs_low ||
2198 ec->tx_max_coalesced_frames_low ||
2199 ec->pkt_rate_high ||
2200 ec->rx_coalesce_usecs_high ||
2201 ec->rx_max_coalesced_frames_high ||
2202 ec->tx_coalesce_usecs_high ||
2203 ec->tx_max_coalesced_frames_high ||
2204 ec->rate_sample_interval)
2207 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2208 ((ec->rx_coalesce_usecs > 3) &&
2209 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2210 (ec->rx_coalesce_usecs == 2))
2213 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2214 ((ec->tx_coalesce_usecs > 3) &&
2215 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2216 (ec->tx_coalesce_usecs == 2))
2219 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2222 /* If ITR is disabled, disable DMAC */
2223 if (ec->rx_coalesce_usecs == 0) {
2224 if (adapter->flags & IGB_FLAG_DMAC)
2225 adapter->flags &= ~IGB_FLAG_DMAC;
2228 /* convert to rate of irq's per second */
2229 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2230 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2232 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2234 /* convert to rate of irq's per second */
2235 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2236 adapter->tx_itr_setting = adapter->rx_itr_setting;
2237 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2238 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2240 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2242 for (i = 0; i < adapter->num_q_vectors; i++) {
2243 struct igb_q_vector *q_vector = adapter->q_vector[i];
2244 q_vector->tx.work_limit = adapter->tx_work_limit;
2245 if (q_vector->rx.ring)
2246 q_vector->itr_val = adapter->rx_itr_setting;
2248 q_vector->itr_val = adapter->tx_itr_setting;
2249 if (q_vector->itr_val && q_vector->itr_val <= 3)
2250 q_vector->itr_val = IGB_START_ITR;
2251 q_vector->set_itr = 1;
2257 static int igb_get_coalesce(struct net_device *netdev,
2258 struct ethtool_coalesce *ec)
2260 struct igb_adapter *adapter = netdev_priv(netdev);
2262 if (adapter->rx_itr_setting <= 3)
2263 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2265 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2267 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2268 if (adapter->tx_itr_setting <= 3)
2269 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2271 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2277 static int igb_nway_reset(struct net_device *netdev)
2279 struct igb_adapter *adapter = netdev_priv(netdev);
2280 if (netif_running(netdev))
2281 igb_reinit_locked(adapter);
2285 static int igb_get_sset_count(struct net_device *netdev, int sset)
2289 return IGB_STATS_LEN;
2291 return IGB_TEST_LEN;
2292 case ETH_SS_PRIV_FLAGS:
2293 return IGB_PRIV_FLAGS_STR_LEN;
2299 static void igb_get_ethtool_stats(struct net_device *netdev,
2300 struct ethtool_stats *stats, u64 *data)
2302 struct igb_adapter *adapter = netdev_priv(netdev);
2303 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2305 struct igb_ring *ring;
2309 spin_lock(&adapter->stats64_lock);
2310 igb_update_stats(adapter);
2312 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2313 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2314 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2315 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2317 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2318 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2319 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2320 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2322 for (j = 0; j < adapter->num_tx_queues; j++) {
2325 ring = adapter->tx_ring[j];
2327 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2328 data[i] = ring->tx_stats.packets;
2329 data[i+1] = ring->tx_stats.bytes;
2330 data[i+2] = ring->tx_stats.restart_queue;
2331 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2333 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2334 restart2 = ring->tx_stats.restart_queue2;
2335 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2336 data[i+2] += restart2;
2338 i += IGB_TX_QUEUE_STATS_LEN;
2340 for (j = 0; j < adapter->num_rx_queues; j++) {
2341 ring = adapter->rx_ring[j];
2343 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2344 data[i] = ring->rx_stats.packets;
2345 data[i+1] = ring->rx_stats.bytes;
2346 data[i+2] = ring->rx_stats.drops;
2347 data[i+3] = ring->rx_stats.csum_err;
2348 data[i+4] = ring->rx_stats.alloc_failed;
2349 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2350 i += IGB_RX_QUEUE_STATS_LEN;
2352 spin_unlock(&adapter->stats64_lock);
2355 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2357 struct igb_adapter *adapter = netdev_priv(netdev);
2361 switch (stringset) {
2363 memcpy(data, *igb_gstrings_test,
2364 IGB_TEST_LEN*ETH_GSTRING_LEN);
2367 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2368 memcpy(p, igb_gstrings_stats[i].stat_string,
2370 p += ETH_GSTRING_LEN;
2372 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2373 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2375 p += ETH_GSTRING_LEN;
2377 for (i = 0; i < adapter->num_tx_queues; i++) {
2378 sprintf(p, "tx_queue_%u_packets", i);
2379 p += ETH_GSTRING_LEN;
2380 sprintf(p, "tx_queue_%u_bytes", i);
2381 p += ETH_GSTRING_LEN;
2382 sprintf(p, "tx_queue_%u_restart", i);
2383 p += ETH_GSTRING_LEN;
2385 for (i = 0; i < adapter->num_rx_queues; i++) {
2386 sprintf(p, "rx_queue_%u_packets", i);
2387 p += ETH_GSTRING_LEN;
2388 sprintf(p, "rx_queue_%u_bytes", i);
2389 p += ETH_GSTRING_LEN;
2390 sprintf(p, "rx_queue_%u_drops", i);
2391 p += ETH_GSTRING_LEN;
2392 sprintf(p, "rx_queue_%u_csum_err", i);
2393 p += ETH_GSTRING_LEN;
2394 sprintf(p, "rx_queue_%u_alloc_failed", i);
2395 p += ETH_GSTRING_LEN;
2397 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2399 case ETH_SS_PRIV_FLAGS:
2400 memcpy(data, igb_priv_flags_strings,
2401 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2406 static int igb_get_ts_info(struct net_device *dev,
2407 struct ethtool_ts_info *info)
2409 struct igb_adapter *adapter = netdev_priv(dev);
2411 if (adapter->ptp_clock)
2412 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2414 info->phc_index = -1;
2416 switch (adapter->hw.mac.type) {
2418 info->so_timestamping =
2419 SOF_TIMESTAMPING_TX_SOFTWARE |
2420 SOF_TIMESTAMPING_RX_SOFTWARE |
2421 SOF_TIMESTAMPING_SOFTWARE;
2429 info->so_timestamping =
2430 SOF_TIMESTAMPING_TX_SOFTWARE |
2431 SOF_TIMESTAMPING_RX_SOFTWARE |
2432 SOF_TIMESTAMPING_SOFTWARE |
2433 SOF_TIMESTAMPING_TX_HARDWARE |
2434 SOF_TIMESTAMPING_RX_HARDWARE |
2435 SOF_TIMESTAMPING_RAW_HARDWARE;
2438 BIT(HWTSTAMP_TX_OFF) |
2439 BIT(HWTSTAMP_TX_ON);
2441 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2443 /* 82576 does not support timestamping all packets. */
2444 if (adapter->hw.mac.type >= e1000_82580)
2445 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2448 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2449 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2450 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2458 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2459 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2460 struct ethtool_rxnfc *cmd)
2462 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2463 struct igb_nfc_filter *rule = NULL;
2465 /* report total rule count */
2466 cmd->data = IGB_MAX_RXNFC_FILTERS;
2468 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2469 if (fsp->location <= rule->sw_idx)
2473 if (!rule || fsp->location != rule->sw_idx)
2476 if (rule->filter.match_flags) {
2477 fsp->flow_type = ETHER_FLOW;
2478 fsp->ring_cookie = rule->action;
2479 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2480 fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2481 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2483 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2484 fsp->flow_type |= FLOW_EXT;
2485 fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2486 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2488 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2489 ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2490 rule->filter.dst_addr);
2491 /* As we only support matching by the full
2492 * mask, return the mask to userspace
2494 eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2496 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2497 ether_addr_copy(fsp->h_u.ether_spec.h_source,
2498 rule->filter.src_addr);
2499 /* As we only support matching by the full
2500 * mask, return the mask to userspace
2502 eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2510 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2511 struct ethtool_rxnfc *cmd,
2514 struct igb_nfc_filter *rule;
2517 /* report total rule count */
2518 cmd->data = IGB_MAX_RXNFC_FILTERS;
2520 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2521 if (cnt == cmd->rule_cnt)
2523 rule_locs[cnt] = rule->sw_idx;
2527 cmd->rule_cnt = cnt;
2532 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2533 struct ethtool_rxnfc *cmd)
2537 /* Report default options for RSS on igb */
2538 switch (cmd->flow_type) {
2540 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2543 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2544 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2547 case AH_ESP_V4_FLOW:
2551 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2554 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2557 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2558 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2561 case AH_ESP_V6_FLOW:
2565 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2574 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2577 struct igb_adapter *adapter = netdev_priv(dev);
2578 int ret = -EOPNOTSUPP;
2581 case ETHTOOL_GRXRINGS:
2582 cmd->data = adapter->num_rx_queues;
2585 case ETHTOOL_GRXCLSRLCNT:
2586 cmd->rule_cnt = adapter->nfc_filter_count;
2589 case ETHTOOL_GRXCLSRULE:
2590 ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2592 case ETHTOOL_GRXCLSRLALL:
2593 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2596 ret = igb_get_rss_hash_opts(adapter, cmd);
2605 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2606 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2607 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2608 struct ethtool_rxnfc *nfc)
2610 u32 flags = adapter->flags;
2612 /* RSS does not support anything other than hashing
2613 * to queues on src and dst IPs and ports
2615 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2616 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2619 switch (nfc->flow_type) {
2622 if (!(nfc->data & RXH_IP_SRC) ||
2623 !(nfc->data & RXH_IP_DST) ||
2624 !(nfc->data & RXH_L4_B_0_1) ||
2625 !(nfc->data & RXH_L4_B_2_3))
2629 if (!(nfc->data & RXH_IP_SRC) ||
2630 !(nfc->data & RXH_IP_DST))
2632 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2634 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2636 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2637 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2644 if (!(nfc->data & RXH_IP_SRC) ||
2645 !(nfc->data & RXH_IP_DST))
2647 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2649 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2651 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2652 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2658 case AH_ESP_V4_FLOW:
2662 case AH_ESP_V6_FLOW:
2666 if (!(nfc->data & RXH_IP_SRC) ||
2667 !(nfc->data & RXH_IP_DST) ||
2668 (nfc->data & RXH_L4_B_0_1) ||
2669 (nfc->data & RXH_L4_B_2_3))
2676 /* if we changed something we need to update flags */
2677 if (flags != adapter->flags) {
2678 struct e1000_hw *hw = &adapter->hw;
2679 u32 mrqc = rd32(E1000_MRQC);
2681 if ((flags & UDP_RSS_FLAGS) &&
2682 !(adapter->flags & UDP_RSS_FLAGS))
2683 dev_err(&adapter->pdev->dev,
2684 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2686 adapter->flags = flags;
2688 /* Perform hash on these packet types */
2689 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2690 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2691 E1000_MRQC_RSS_FIELD_IPV6 |
2692 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2694 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2695 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2697 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2698 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2700 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2701 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2703 wr32(E1000_MRQC, mrqc);
2709 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2710 struct igb_nfc_filter *input)
2712 struct e1000_hw *hw = &adapter->hw;
2717 /* find an empty etype filter register */
2718 for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2719 if (!adapter->etype_bitmap[i])
2722 if (i == MAX_ETYPE_FILTER) {
2723 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2727 adapter->etype_bitmap[i] = true;
2729 etqf = rd32(E1000_ETQF(i));
2730 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2732 etqf |= E1000_ETQF_FILTER_ENABLE;
2733 etqf &= ~E1000_ETQF_ETYPE_MASK;
2734 etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2736 etqf &= ~E1000_ETQF_QUEUE_MASK;
2737 etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2738 & E1000_ETQF_QUEUE_MASK);
2739 etqf |= E1000_ETQF_QUEUE_ENABLE;
2741 wr32(E1000_ETQF(i), etqf);
2743 input->etype_reg_index = i;
2748 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2749 struct igb_nfc_filter *input)
2751 struct e1000_hw *hw = &adapter->hw;
2756 vlapqf = rd32(E1000_VLAPQF);
2757 vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2759 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2761 /* check whether this vlan prio is already set */
2762 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2763 (queue_index != input->action)) {
2764 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2768 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2769 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2771 wr32(E1000_VLAPQF, vlapqf);
2776 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2778 struct e1000_hw *hw = &adapter->hw;
2781 if (hw->mac.type == e1000_i210 &&
2782 !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2783 dev_err(&adapter->pdev->dev,
2784 "i210 doesn't support flow classification rules specifying only source addresses.\n");
2788 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2789 err = igb_rxnfc_write_etype_filter(adapter, input);
2794 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2795 err = igb_add_mac_steering_filter(adapter,
2796 input->filter.dst_addr,
2798 err = min_t(int, err, 0);
2803 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2804 err = igb_add_mac_steering_filter(adapter,
2805 input->filter.src_addr,
2807 IGB_MAC_STATE_SRC_ADDR);
2808 err = min_t(int, err, 0);
2813 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2814 err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2819 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2822 struct e1000_hw *hw = &adapter->hw;
2823 u32 etqf = rd32(E1000_ETQF(reg_index));
2825 etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2826 etqf &= ~E1000_ETQF_QUEUE_MASK;
2827 etqf &= ~E1000_ETQF_FILTER_ENABLE;
2829 wr32(E1000_ETQF(reg_index), etqf);
2831 adapter->etype_bitmap[reg_index] = false;
2834 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2837 struct e1000_hw *hw = &adapter->hw;
2841 vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2843 vlapqf = rd32(E1000_VLAPQF);
2844 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2845 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2846 E1000_VLAPQF_QUEUE_MASK);
2848 wr32(E1000_VLAPQF, vlapqf);
2851 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2853 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2854 igb_clear_etype_filter_regs(adapter,
2855 input->etype_reg_index);
2857 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2858 igb_clear_vlan_prio_filter(adapter,
2859 ntohs(input->filter.vlan_tci));
2861 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2862 igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2864 IGB_MAC_STATE_SRC_ADDR);
2866 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2867 igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2873 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2874 struct igb_nfc_filter *input,
2877 struct igb_nfc_filter *rule, *parent;
2883 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2884 /* hash found, or no matching entry */
2885 if (rule->sw_idx >= sw_idx)
2890 /* if there is an old rule occupying our place remove it */
2891 if (rule && (rule->sw_idx == sw_idx)) {
2893 err = igb_erase_filter(adapter, rule);
2895 hlist_del(&rule->nfc_node);
2897 adapter->nfc_filter_count--;
2900 /* If no input this was a delete, err should be 0 if a rule was
2901 * successfully found and removed from the list else -EINVAL
2906 /* initialize node */
2907 INIT_HLIST_NODE(&input->nfc_node);
2909 /* add filter to the list */
2911 hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2913 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2916 adapter->nfc_filter_count++;
2921 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2922 struct ethtool_rxnfc *cmd)
2924 struct net_device *netdev = adapter->netdev;
2925 struct ethtool_rx_flow_spec *fsp =
2926 (struct ethtool_rx_flow_spec *)&cmd->fs;
2927 struct igb_nfc_filter *input, *rule;
2930 if (!(netdev->hw_features & NETIF_F_NTUPLE))
2933 /* Don't allow programming if the action is a queue greater than
2934 * the number of online Rx queues.
2936 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2937 (fsp->ring_cookie >= adapter->num_rx_queues)) {
2938 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2942 /* Don't allow indexes to exist outside of available space */
2943 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2944 dev_err(&adapter->pdev->dev, "Location out of range\n");
2948 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2951 input = kzalloc(sizeof(*input), GFP_KERNEL);
2955 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2956 input->filter.etype = fsp->h_u.ether_spec.h_proto;
2957 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2960 /* Only support matching addresses by the full mask */
2961 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2962 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2963 ether_addr_copy(input->filter.src_addr,
2964 fsp->h_u.ether_spec.h_source);
2967 /* Only support matching addresses by the full mask */
2968 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2969 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2970 ether_addr_copy(input->filter.dst_addr,
2971 fsp->h_u.ether_spec.h_dest);
2974 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2975 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2979 input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2980 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2983 input->action = fsp->ring_cookie;
2984 input->sw_idx = fsp->location;
2986 spin_lock(&adapter->nfc_lock);
2988 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2989 if (!memcmp(&input->filter, &rule->filter,
2990 sizeof(input->filter))) {
2992 dev_err(&adapter->pdev->dev,
2993 "ethtool: this filter is already set\n");
2994 goto err_out_w_lock;
2998 err = igb_add_filter(adapter, input);
3000 goto err_out_w_lock;
3002 igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
3004 spin_unlock(&adapter->nfc_lock);
3008 spin_unlock(&adapter->nfc_lock);
3014 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
3015 struct ethtool_rxnfc *cmd)
3017 struct ethtool_rx_flow_spec *fsp =
3018 (struct ethtool_rx_flow_spec *)&cmd->fs;
3021 spin_lock(&adapter->nfc_lock);
3022 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3023 spin_unlock(&adapter->nfc_lock);
3028 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3030 struct igb_adapter *adapter = netdev_priv(dev);
3031 int ret = -EOPNOTSUPP;
3035 ret = igb_set_rss_hash_opt(adapter, cmd);
3037 case ETHTOOL_SRXCLSRLINS:
3038 ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3040 case ETHTOOL_SRXCLSRLDEL:
3041 ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3049 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3051 struct igb_adapter *adapter = netdev_priv(netdev);
3052 struct e1000_hw *hw = &adapter->hw;
3056 if ((hw->mac.type < e1000_i350) ||
3057 (hw->phy.media_type != e1000_media_type_copper))
3060 edata->supported = (SUPPORTED_1000baseT_Full |
3061 SUPPORTED_100baseT_Full);
3062 if (!hw->dev_spec._82575.eee_disable)
3064 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3066 /* The IPCNFG and EEER registers are not supported on I354. */
3067 if (hw->mac.type == e1000_i354) {
3068 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3072 eeer = rd32(E1000_EEER);
3074 /* EEE status on negotiated link */
3075 if (eeer & E1000_EEER_EEE_NEG)
3076 edata->eee_active = true;
3078 if (eeer & E1000_EEER_TX_LPI_EN)
3079 edata->tx_lpi_enabled = true;
3082 /* EEE Link Partner Advertised */
3083 switch (hw->mac.type) {
3085 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3090 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3095 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3096 E1000_EEE_LP_ADV_DEV_I210,
3101 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3108 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3110 if ((hw->mac.type == e1000_i354) &&
3111 (edata->eee_enabled))
3112 edata->tx_lpi_enabled = true;
3114 /* Report correct negotiated EEE status for devices that
3115 * wrongly report EEE at half-duplex
3117 if (adapter->link_duplex == HALF_DUPLEX) {
3118 edata->eee_enabled = false;
3119 edata->eee_active = false;
3120 edata->tx_lpi_enabled = false;
3121 edata->advertised &= ~edata->advertised;
3127 static int igb_set_eee(struct net_device *netdev,
3128 struct ethtool_eee *edata)
3130 struct igb_adapter *adapter = netdev_priv(netdev);
3131 struct e1000_hw *hw = &adapter->hw;
3132 struct ethtool_eee eee_curr;
3133 bool adv1g_eee = true, adv100m_eee = true;
3136 if ((hw->mac.type < e1000_i350) ||
3137 (hw->phy.media_type != e1000_media_type_copper))
3140 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3142 ret_val = igb_get_eee(netdev, &eee_curr);
3146 if (eee_curr.eee_enabled) {
3147 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3148 dev_err(&adapter->pdev->dev,
3149 "Setting EEE tx-lpi is not supported\n");
3153 /* Tx LPI timer is not implemented currently */
3154 if (edata->tx_lpi_timer) {
3155 dev_err(&adapter->pdev->dev,
3156 "Setting EEE Tx LPI timer is not supported\n");
3160 if (!edata->advertised || (edata->advertised &
3161 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3162 dev_err(&adapter->pdev->dev,
3163 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3166 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3167 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3169 } else if (!edata->eee_enabled) {
3170 dev_err(&adapter->pdev->dev,
3171 "Setting EEE options are not supported with EEE disabled\n");
3175 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3176 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3177 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3178 adapter->flags |= IGB_FLAG_EEE;
3181 if (netif_running(netdev))
3182 igb_reinit_locked(adapter);
3187 if (hw->mac.type == e1000_i354)
3188 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3190 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3193 dev_err(&adapter->pdev->dev,
3194 "Problem setting EEE advertisement options\n");
3201 static int igb_get_module_info(struct net_device *netdev,
3202 struct ethtool_modinfo *modinfo)
3204 struct igb_adapter *adapter = netdev_priv(netdev);
3205 struct e1000_hw *hw = &adapter->hw;
3207 u16 sff8472_rev, addr_mode;
3208 bool page_swap = false;
3210 if ((hw->phy.media_type == e1000_media_type_copper) ||
3211 (hw->phy.media_type == e1000_media_type_unknown))
3214 /* Check whether we support SFF-8472 or not */
3215 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3219 /* addressing mode is not supported */
3220 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3224 /* addressing mode is not supported */
3225 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3226 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3230 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3231 /* We have an SFP, but it does not support SFF-8472 */
3232 modinfo->type = ETH_MODULE_SFF_8079;
3233 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3235 /* We have an SFP which supports a revision of SFF-8472 */
3236 modinfo->type = ETH_MODULE_SFF_8472;
3237 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3243 static int igb_get_module_eeprom(struct net_device *netdev,
3244 struct ethtool_eeprom *ee, u8 *data)
3246 struct igb_adapter *adapter = netdev_priv(netdev);
3247 struct e1000_hw *hw = &adapter->hw;
3250 u16 first_word, last_word;
3256 first_word = ee->offset >> 1;
3257 last_word = (ee->offset + ee->len - 1) >> 1;
3259 dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3264 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3265 for (i = 0; i < last_word - first_word + 1; i++) {
3266 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3269 /* Error occurred while reading module */
3274 be16_to_cpus(&dataword[i]);
3277 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3283 static int igb_ethtool_begin(struct net_device *netdev)
3285 struct igb_adapter *adapter = netdev_priv(netdev);
3286 pm_runtime_get_sync(&adapter->pdev->dev);
3290 static void igb_ethtool_complete(struct net_device *netdev)
3292 struct igb_adapter *adapter = netdev_priv(netdev);
3293 pm_runtime_put(&adapter->pdev->dev);
3296 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3298 return IGB_RETA_SIZE;
3301 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3304 struct igb_adapter *adapter = netdev_priv(netdev);
3308 *hfunc = ETH_RSS_HASH_TOP;
3311 for (i = 0; i < IGB_RETA_SIZE; i++)
3312 indir[i] = adapter->rss_indir_tbl[i];
3317 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3319 struct e1000_hw *hw = &adapter->hw;
3320 u32 reg = E1000_RETA(0);
3324 switch (hw->mac.type) {
3329 /* 82576 supports 2 RSS queues for SR-IOV */
3330 if (adapter->vfs_allocated_count)
3337 while (i < IGB_RETA_SIZE) {
3341 for (j = 3; j >= 0; j--) {
3343 val |= adapter->rss_indir_tbl[i + j];
3346 wr32(reg, val << shift);
3352 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3353 const u8 *key, const u8 hfunc)
3355 struct igb_adapter *adapter = netdev_priv(netdev);
3356 struct e1000_hw *hw = &adapter->hw;
3360 /* We do not allow change in unsupported parameters */
3362 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3367 num_queues = adapter->rss_queues;
3369 switch (hw->mac.type) {
3371 /* 82576 supports 2 RSS queues for SR-IOV */
3372 if (adapter->vfs_allocated_count)
3379 /* Verify user input. */
3380 for (i = 0; i < IGB_RETA_SIZE; i++)
3381 if (indir[i] >= num_queues)
3385 for (i = 0; i < IGB_RETA_SIZE; i++)
3386 adapter->rss_indir_tbl[i] = indir[i];
3388 igb_write_rss_indir_tbl(adapter);
3393 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3395 return igb_get_max_rss_queues(adapter);
3398 static void igb_get_channels(struct net_device *netdev,
3399 struct ethtool_channels *ch)
3401 struct igb_adapter *adapter = netdev_priv(netdev);
3403 /* Report maximum channels */
3404 ch->max_combined = igb_max_channels(adapter);
3406 /* Report info for other vector */
3407 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3408 ch->max_other = NON_Q_VECTORS;
3409 ch->other_count = NON_Q_VECTORS;
3412 ch->combined_count = adapter->rss_queues;
3415 static int igb_set_channels(struct net_device *netdev,
3416 struct ethtool_channels *ch)
3418 struct igb_adapter *adapter = netdev_priv(netdev);
3419 unsigned int count = ch->combined_count;
3420 unsigned int max_combined = 0;
3422 /* Verify they are not requesting separate vectors */
3423 if (!count || ch->rx_count || ch->tx_count)
3426 /* Verify other_count is valid and has not been changed */
3427 if (ch->other_count != NON_Q_VECTORS)
3430 /* Verify the number of channels doesn't exceed hw limits */
3431 max_combined = igb_max_channels(adapter);
3432 if (count > max_combined)
3435 if (count != adapter->rss_queues) {
3436 adapter->rss_queues = count;
3437 igb_set_flag_queue_pairs(adapter, max_combined);
3439 /* Hardware has to reinitialize queues and interrupts to
3440 * match the new configuration.
3442 return igb_reinit_queues(adapter);
3448 static u32 igb_get_priv_flags(struct net_device *netdev)
3450 struct igb_adapter *adapter = netdev_priv(netdev);
3453 if (adapter->flags & IGB_FLAG_RX_LEGACY)
3454 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3459 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3461 struct igb_adapter *adapter = netdev_priv(netdev);
3462 unsigned int flags = adapter->flags;
3464 flags &= ~IGB_FLAG_RX_LEGACY;
3465 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3466 flags |= IGB_FLAG_RX_LEGACY;
3468 if (flags != adapter->flags) {
3469 adapter->flags = flags;
3471 /* reset interface to repopulate queues */
3472 if (netif_running(netdev))
3473 igb_reinit_locked(adapter);
3479 static const struct ethtool_ops igb_ethtool_ops = {
3480 .get_drvinfo = igb_get_drvinfo,
3481 .get_regs_len = igb_get_regs_len,
3482 .get_regs = igb_get_regs,
3483 .get_wol = igb_get_wol,
3484 .set_wol = igb_set_wol,
3485 .get_msglevel = igb_get_msglevel,
3486 .set_msglevel = igb_set_msglevel,
3487 .nway_reset = igb_nway_reset,
3488 .get_link = igb_get_link,
3489 .get_eeprom_len = igb_get_eeprom_len,
3490 .get_eeprom = igb_get_eeprom,
3491 .set_eeprom = igb_set_eeprom,
3492 .get_ringparam = igb_get_ringparam,
3493 .set_ringparam = igb_set_ringparam,
3494 .get_pauseparam = igb_get_pauseparam,
3495 .set_pauseparam = igb_set_pauseparam,
3496 .self_test = igb_diag_test,
3497 .get_strings = igb_get_strings,
3498 .set_phys_id = igb_set_phys_id,
3499 .get_sset_count = igb_get_sset_count,
3500 .get_ethtool_stats = igb_get_ethtool_stats,
3501 .get_coalesce = igb_get_coalesce,
3502 .set_coalesce = igb_set_coalesce,
3503 .get_ts_info = igb_get_ts_info,
3504 .get_rxnfc = igb_get_rxnfc,
3505 .set_rxnfc = igb_set_rxnfc,
3506 .get_eee = igb_get_eee,
3507 .set_eee = igb_set_eee,
3508 .get_module_info = igb_get_module_info,
3509 .get_module_eeprom = igb_get_module_eeprom,
3510 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3511 .get_rxfh = igb_get_rxfh,
3512 .set_rxfh = igb_set_rxfh,
3513 .get_channels = igb_get_channels,
3514 .set_channels = igb_set_channels,
3515 .get_priv_flags = igb_get_priv_flags,
3516 .set_priv_flags = igb_set_priv_flags,
3517 .begin = igb_ethtool_begin,
3518 .complete = igb_ethtool_complete,
3519 .get_link_ksettings = igb_get_link_ksettings,
3520 .set_link_ksettings = igb_set_link_ksettings,
3523 void igb_set_ethtool_ops(struct net_device *netdev)
3525 netdev->ethtool_ops = &igb_ethtool_ops;