4 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
39 #include <linux/device-mapper.h>
41 #define DM_MSG_PREFIX "crypt"
44 * context holding the current state of a multi-part conversion
46 struct convert_context {
47 struct completion restart;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
62 * per bio private data
65 struct crypt_config *cc;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
71 struct convert_context ctx;
77 struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
80 struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
89 struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
101 struct iv_benbi_private {
105 #define LMK_SEED_SIZE 64 /* hash + 0 */
106 struct iv_lmk_private {
107 struct crypto_shash *hash_tfm;
111 #define TCW_WHITENING_SIZE 16
112 struct iv_tcw_private {
113 struct crypto_shash *crc32_tfm;
118 #define ELEPHANT_MAX_KEY_SIZE 32
119 struct iv_elephant_private {
120 struct crypto_skcipher *tfm;
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
131 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
133 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
137 * The fields in here must be read only after initialization.
139 struct crypt_config {
143 struct percpu_counter n_allocated_pages;
145 struct workqueue_struct *io_queue;
146 struct workqueue_struct *crypt_queue;
148 spinlock_t write_thread_lock;
149 struct task_struct *write_thread;
150 struct rb_root write_tree;
156 const struct crypt_iv_operations *iv_gen_ops;
158 struct iv_benbi_private benbi;
159 struct iv_lmk_private lmk;
160 struct iv_tcw_private tcw;
161 struct iv_elephant_private elephant;
164 unsigned int iv_size;
165 unsigned short int sector_size;
166 unsigned char sector_shift;
169 struct crypto_skcipher **tfms;
170 struct crypto_aead **tfms_aead;
173 unsigned long cipher_flags;
176 * Layout of each crypto request:
178 * struct skcipher_request
181 * struct dm_crypt_request
185 * The padding is added so that dm_crypt_request and the IV are
188 unsigned int dmreq_start;
190 unsigned int per_bio_data_size;
193 unsigned int key_size;
194 unsigned int key_parts; /* independent parts in key buffer */
195 unsigned int key_extra_size; /* additional keys length */
196 unsigned int key_mac_size; /* MAC key size for authenc(...) */
198 unsigned int integrity_tag_size;
199 unsigned int integrity_iv_size;
200 unsigned int on_disk_tag_size;
203 * pool for per bio private data, crypto requests,
204 * encryption requeusts/buffer pages and integrity tags
206 unsigned tag_pool_max_sectors;
212 struct mutex bio_alloc_lock;
214 u8 *authenc_key; /* space for keys in authenc() format (if used) */
219 #define MAX_TAG_SIZE 480
220 #define POOL_ENTRY_SIZE 512
222 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
223 static unsigned dm_crypt_clients_n = 0;
224 static volatile unsigned long dm_crypt_pages_per_client;
225 #define DM_CRYPT_MEMORY_PERCENT 2
226 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
228 static void clone_init(struct dm_crypt_io *, struct bio *);
229 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
230 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
231 struct scatterlist *sg);
234 * Use this to access cipher attributes that are independent of the key.
236 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
238 return cc->cipher_tfm.tfms[0];
241 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
243 return cc->cipher_tfm.tfms_aead[0];
247 * Different IV generation algorithms:
249 * plain: the initial vector is the 32-bit little-endian version of the sector
250 * number, padded with zeros if necessary.
252 * plain64: the initial vector is the 64-bit little-endian version of the sector
253 * number, padded with zeros if necessary.
255 * plain64be: the initial vector is the 64-bit big-endian version of the sector
256 * number, padded with zeros if necessary.
258 * essiv: "encrypted sector|salt initial vector", the sector number is
259 * encrypted with the bulk cipher using a salt as key. The salt
260 * should be derived from the bulk cipher's key via hashing.
262 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
263 * (needed for LRW-32-AES and possible other narrow block modes)
265 * null: the initial vector is always zero. Provides compatibility with
266 * obsolete loop_fish2 devices. Do not use for new devices.
268 * lmk: Compatible implementation of the block chaining mode used
269 * by the Loop-AES block device encryption system
270 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
271 * It operates on full 512 byte sectors and uses CBC
272 * with an IV derived from the sector number, the data and
273 * optionally extra IV seed.
274 * This means that after decryption the first block
275 * of sector must be tweaked according to decrypted data.
276 * Loop-AES can use three encryption schemes:
277 * version 1: is plain aes-cbc mode
278 * version 2: uses 64 multikey scheme with lmk IV generator
279 * version 3: the same as version 2 with additional IV seed
280 * (it uses 65 keys, last key is used as IV seed)
282 * tcw: Compatible implementation of the block chaining mode used
283 * by the TrueCrypt device encryption system (prior to version 4.1).
284 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
285 * It operates on full 512 byte sectors and uses CBC
286 * with an IV derived from initial key and the sector number.
287 * In addition, whitening value is applied on every sector, whitening
288 * is calculated from initial key, sector number and mixed using CRC32.
289 * Note that this encryption scheme is vulnerable to watermarking attacks
290 * and should be used for old compatible containers access only.
292 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
293 * The IV is encrypted little-endian byte-offset (with the same key
294 * and cipher as the volume).
296 * elephant: The extended version of eboiv with additional Elephant diffuser
297 * used with Bitlocker CBC mode.
298 * This mode was used in older Windows systems
299 * http://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
302 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
303 struct dm_crypt_request *dmreq)
305 memset(iv, 0, cc->iv_size);
306 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
311 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
312 struct dm_crypt_request *dmreq)
314 memset(iv, 0, cc->iv_size);
315 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
320 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
321 struct dm_crypt_request *dmreq)
323 memset(iv, 0, cc->iv_size);
324 /* iv_size is at least of size u64; usually it is 16 bytes */
325 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
330 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
331 struct dm_crypt_request *dmreq)
334 * ESSIV encryption of the IV is now handled by the crypto API,
335 * so just pass the plain sector number here.
337 memset(iv, 0, cc->iv_size);
338 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
343 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
349 if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags))
350 bs = crypto_aead_blocksize(any_tfm_aead(cc));
352 bs = crypto_skcipher_blocksize(any_tfm(cc));
355 /* we need to calculate how far we must shift the sector count
356 * to get the cipher block count, we use this shift in _gen */
358 if (1 << log != bs) {
359 ti->error = "cypher blocksize is not a power of 2";
364 ti->error = "cypher blocksize is > 512";
368 cc->iv_gen_private.benbi.shift = 9 - log;
373 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
377 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
378 struct dm_crypt_request *dmreq)
382 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
384 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
385 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
390 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
391 struct dm_crypt_request *dmreq)
393 memset(iv, 0, cc->iv_size);
398 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
400 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
402 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
403 crypto_free_shash(lmk->hash_tfm);
404 lmk->hash_tfm = NULL;
410 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
413 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
415 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
416 ti->error = "Unsupported sector size for LMK";
420 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
421 if (IS_ERR(lmk->hash_tfm)) {
422 ti->error = "Error initializing LMK hash";
423 return PTR_ERR(lmk->hash_tfm);
426 /* No seed in LMK version 2 */
427 if (cc->key_parts == cc->tfms_count) {
432 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
434 crypt_iv_lmk_dtr(cc);
435 ti->error = "Error kmallocing seed storage in LMK";
442 static int crypt_iv_lmk_init(struct crypt_config *cc)
444 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
445 int subkey_size = cc->key_size / cc->key_parts;
447 /* LMK seed is on the position of LMK_KEYS + 1 key */
449 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
450 crypto_shash_digestsize(lmk->hash_tfm));
455 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
457 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
460 memset(lmk->seed, 0, LMK_SEED_SIZE);
465 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
466 struct dm_crypt_request *dmreq,
469 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
470 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
471 struct md5_state md5state;
475 desc->tfm = lmk->hash_tfm;
477 r = crypto_shash_init(desc);
482 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
487 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
488 r = crypto_shash_update(desc, data + 16, 16 * 31);
492 /* Sector is cropped to 56 bits here */
493 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
494 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
495 buf[2] = cpu_to_le32(4024);
497 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
501 /* No MD5 padding here */
502 r = crypto_shash_export(desc, &md5state);
506 for (i = 0; i < MD5_HASH_WORDS; i++)
507 __cpu_to_le32s(&md5state.hash[i]);
508 memcpy(iv, &md5state.hash, cc->iv_size);
513 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
514 struct dm_crypt_request *dmreq)
516 struct scatterlist *sg;
520 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
521 sg = crypt_get_sg_data(cc, dmreq->sg_in);
522 src = kmap_atomic(sg_page(sg));
523 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
526 memset(iv, 0, cc->iv_size);
531 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
532 struct dm_crypt_request *dmreq)
534 struct scatterlist *sg;
538 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
541 sg = crypt_get_sg_data(cc, dmreq->sg_out);
542 dst = kmap_atomic(sg_page(sg));
543 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
545 /* Tweak the first block of plaintext sector */
547 crypto_xor(dst + sg->offset, iv, cc->iv_size);
553 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
555 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
557 kzfree(tcw->iv_seed);
559 kzfree(tcw->whitening);
560 tcw->whitening = NULL;
562 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
563 crypto_free_shash(tcw->crc32_tfm);
564 tcw->crc32_tfm = NULL;
567 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
570 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
572 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
573 ti->error = "Unsupported sector size for TCW";
577 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
578 ti->error = "Wrong key size for TCW";
582 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
583 if (IS_ERR(tcw->crc32_tfm)) {
584 ti->error = "Error initializing CRC32 in TCW";
585 return PTR_ERR(tcw->crc32_tfm);
588 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
589 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
590 if (!tcw->iv_seed || !tcw->whitening) {
591 crypt_iv_tcw_dtr(cc);
592 ti->error = "Error allocating seed storage in TCW";
599 static int crypt_iv_tcw_init(struct crypt_config *cc)
601 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
602 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
604 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
605 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
611 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
613 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
615 memset(tcw->iv_seed, 0, cc->iv_size);
616 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
621 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
622 struct dm_crypt_request *dmreq,
625 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
626 __le64 sector = cpu_to_le64(dmreq->iv_sector);
627 u8 buf[TCW_WHITENING_SIZE];
628 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
631 /* xor whitening with sector number */
632 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
633 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
635 /* calculate crc32 for every 32bit part and xor it */
636 desc->tfm = tcw->crc32_tfm;
637 for (i = 0; i < 4; i++) {
638 r = crypto_shash_init(desc);
641 r = crypto_shash_update(desc, &buf[i * 4], 4);
644 r = crypto_shash_final(desc, &buf[i * 4]);
648 crypto_xor(&buf[0], &buf[12], 4);
649 crypto_xor(&buf[4], &buf[8], 4);
651 /* apply whitening (8 bytes) to whole sector */
652 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
653 crypto_xor(data + i * 8, buf, 8);
655 memzero_explicit(buf, sizeof(buf));
659 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
660 struct dm_crypt_request *dmreq)
662 struct scatterlist *sg;
663 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
664 __le64 sector = cpu_to_le64(dmreq->iv_sector);
668 /* Remove whitening from ciphertext */
669 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
670 sg = crypt_get_sg_data(cc, dmreq->sg_in);
671 src = kmap_atomic(sg_page(sg));
672 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
677 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
679 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
685 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
686 struct dm_crypt_request *dmreq)
688 struct scatterlist *sg;
692 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
695 /* Apply whitening on ciphertext */
696 sg = crypt_get_sg_data(cc, dmreq->sg_out);
697 dst = kmap_atomic(sg_page(sg));
698 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
704 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
705 struct dm_crypt_request *dmreq)
707 /* Used only for writes, there must be an additional space to store IV */
708 get_random_bytes(iv, cc->iv_size);
712 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
715 if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags)) {
716 ti->error = "AEAD transforms not supported for EBOIV";
720 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
721 ti->error = "Block size of EBOIV cipher does "
722 "not match IV size of block cipher";
729 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
730 struct dm_crypt_request *dmreq)
732 u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
733 struct skcipher_request *req;
734 struct scatterlist src, dst;
735 struct crypto_wait wait;
738 req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
742 memset(buf, 0, cc->iv_size);
743 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
745 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
746 sg_init_one(&dst, iv, cc->iv_size);
747 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
748 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
749 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
750 skcipher_request_free(req);
755 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
757 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
759 crypto_free_skcipher(elephant->tfm);
760 elephant->tfm = NULL;
763 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
766 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
769 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
770 if (IS_ERR(elephant->tfm)) {
771 r = PTR_ERR(elephant->tfm);
772 elephant->tfm = NULL;
776 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
778 crypt_iv_elephant_dtr(cc);
782 static void diffuser_disk_to_cpu(u32 *d, size_t n)
784 #ifndef __LITTLE_ENDIAN
787 for (i = 0; i < n; i++)
788 d[i] = le32_to_cpu((__le32)d[i]);
792 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
794 #ifndef __LITTLE_ENDIAN
797 for (i = 0; i < n; i++)
798 d[i] = cpu_to_le32((u32)d[i]);
802 static void diffuser_a_decrypt(u32 *d, size_t n)
806 for (i = 0; i < 5; i++) {
811 while (i1 < (n - 1)) {
812 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
818 d[i1] += d[i2] ^ d[i3];
824 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
827 d[i1] += d[i2] ^ d[i3];
833 static void diffuser_a_encrypt(u32 *d, size_t n)
837 for (i = 0; i < 5; i++) {
843 d[i1] -= d[i2] ^ d[i3];
846 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
852 d[i1] -= d[i2] ^ d[i3];
858 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
864 static void diffuser_b_decrypt(u32 *d, size_t n)
868 for (i = 0; i < 3; i++) {
873 while (i1 < (n - 1)) {
874 d[i1] += d[i2] ^ d[i3];
877 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
883 d[i1] += d[i2] ^ d[i3];
889 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
895 static void diffuser_b_encrypt(u32 *d, size_t n)
899 for (i = 0; i < 3; i++) {
905 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
911 d[i1] -= d[i2] ^ d[i3];
917 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
920 d[i1] -= d[i2] ^ d[i3];
926 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
928 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
929 u8 *es, *ks, *data, *data2, *data_offset;
930 struct skcipher_request *req;
931 struct scatterlist *sg, *sg2, src, dst;
932 struct crypto_wait wait;
935 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
936 es = kzalloc(16, GFP_NOIO); /* Key for AES */
937 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
939 if (!req || !es || !ks) {
944 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
947 sg_init_one(&src, es, 16);
948 sg_init_one(&dst, ks, 16);
949 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
950 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
951 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
957 sg_init_one(&dst, &ks[16], 16);
958 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
962 sg = crypt_get_sg_data(cc, dmreq->sg_out);
963 data = kmap_atomic(sg_page(sg));
964 data_offset = data + sg->offset;
966 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
967 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
968 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
969 data2 = kmap_atomic(sg_page(sg2));
970 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
971 kunmap_atomic(data2);
974 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
975 diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
976 diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
977 diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
978 diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
981 for (i = 0; i < (cc->sector_size / 32); i++)
982 crypto_xor(data_offset + i * 32, ks, 32);
984 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
985 diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
986 diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
987 diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
988 diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
995 skcipher_request_free(req);
999 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1000 struct dm_crypt_request *dmreq)
1004 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1005 r = crypt_iv_elephant(cc, dmreq);
1010 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1013 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1014 struct dm_crypt_request *dmreq)
1016 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1017 return crypt_iv_elephant(cc, dmreq);
1022 static int crypt_iv_elephant_init(struct crypt_config *cc)
1024 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1025 int key_offset = cc->key_size - cc->key_extra_size;
1027 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1030 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1032 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1033 u8 key[ELEPHANT_MAX_KEY_SIZE];
1035 memset(key, 0, cc->key_extra_size);
1036 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1039 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1040 .generator = crypt_iv_plain_gen
1043 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1044 .generator = crypt_iv_plain64_gen
1047 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1048 .generator = crypt_iv_plain64be_gen
1051 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1052 .generator = crypt_iv_essiv_gen
1055 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1056 .ctr = crypt_iv_benbi_ctr,
1057 .dtr = crypt_iv_benbi_dtr,
1058 .generator = crypt_iv_benbi_gen
1061 static const struct crypt_iv_operations crypt_iv_null_ops = {
1062 .generator = crypt_iv_null_gen
1065 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1066 .ctr = crypt_iv_lmk_ctr,
1067 .dtr = crypt_iv_lmk_dtr,
1068 .init = crypt_iv_lmk_init,
1069 .wipe = crypt_iv_lmk_wipe,
1070 .generator = crypt_iv_lmk_gen,
1071 .post = crypt_iv_lmk_post
1074 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1075 .ctr = crypt_iv_tcw_ctr,
1076 .dtr = crypt_iv_tcw_dtr,
1077 .init = crypt_iv_tcw_init,
1078 .wipe = crypt_iv_tcw_wipe,
1079 .generator = crypt_iv_tcw_gen,
1080 .post = crypt_iv_tcw_post
1083 static struct crypt_iv_operations crypt_iv_random_ops = {
1084 .generator = crypt_iv_random_gen
1087 static struct crypt_iv_operations crypt_iv_eboiv_ops = {
1088 .ctr = crypt_iv_eboiv_ctr,
1089 .generator = crypt_iv_eboiv_gen
1092 static struct crypt_iv_operations crypt_iv_elephant_ops = {
1093 .ctr = crypt_iv_elephant_ctr,
1094 .dtr = crypt_iv_elephant_dtr,
1095 .init = crypt_iv_elephant_init,
1096 .wipe = crypt_iv_elephant_wipe,
1097 .generator = crypt_iv_elephant_gen,
1098 .post = crypt_iv_elephant_post
1102 * Integrity extensions
1104 static bool crypt_integrity_aead(struct crypt_config *cc)
1106 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1109 static bool crypt_integrity_hmac(struct crypt_config *cc)
1111 return crypt_integrity_aead(cc) && cc->key_mac_size;
1114 /* Get sg containing data */
1115 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1116 struct scatterlist *sg)
1118 if (unlikely(crypt_integrity_aead(cc)))
1124 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1126 struct bio_integrity_payload *bip;
1127 unsigned int tag_len;
1130 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1133 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1135 return PTR_ERR(bip);
1137 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1139 bip->bip_iter.bi_size = tag_len;
1140 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1142 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1143 tag_len, offset_in_page(io->integrity_metadata));
1144 if (unlikely(ret != tag_len))
1150 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1152 #ifdef CONFIG_BLK_DEV_INTEGRITY
1153 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1154 struct mapped_device *md = dm_table_get_md(ti->table);
1156 /* From now we require underlying device with our integrity profile */
1157 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1158 ti->error = "Integrity profile not supported.";
1162 if (bi->tag_size != cc->on_disk_tag_size ||
1163 bi->tuple_size != cc->on_disk_tag_size) {
1164 ti->error = "Integrity profile tag size mismatch.";
1167 if (1 << bi->interval_exp != cc->sector_size) {
1168 ti->error = "Integrity profile sector size mismatch.";
1172 if (crypt_integrity_aead(cc)) {
1173 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1174 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1175 cc->integrity_tag_size, cc->integrity_iv_size);
1177 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1178 ti->error = "Integrity AEAD auth tag size is not supported.";
1181 } else if (cc->integrity_iv_size)
1182 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1183 cc->integrity_iv_size);
1185 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1186 ti->error = "Not enough space for integrity tag in the profile.";
1192 ti->error = "Integrity profile not supported.";
1197 static void crypt_convert_init(struct crypt_config *cc,
1198 struct convert_context *ctx,
1199 struct bio *bio_out, struct bio *bio_in,
1202 ctx->bio_in = bio_in;
1203 ctx->bio_out = bio_out;
1205 ctx->iter_in = bio_in->bi_iter;
1207 ctx->iter_out = bio_out->bi_iter;
1208 ctx->cc_sector = sector + cc->iv_offset;
1209 init_completion(&ctx->restart);
1212 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1215 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1218 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1220 return (void *)((char *)dmreq - cc->dmreq_start);
1223 static u8 *iv_of_dmreq(struct crypt_config *cc,
1224 struct dm_crypt_request *dmreq)
1226 if (crypt_integrity_aead(cc))
1227 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1228 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1230 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1231 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1234 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1235 struct dm_crypt_request *dmreq)
1237 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1240 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1241 struct dm_crypt_request *dmreq)
1243 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1244 return (__le64 *) ptr;
1247 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1248 struct dm_crypt_request *dmreq)
1250 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1251 cc->iv_size + sizeof(uint64_t);
1252 return (unsigned int*)ptr;
1255 static void *tag_from_dmreq(struct crypt_config *cc,
1256 struct dm_crypt_request *dmreq)
1258 struct convert_context *ctx = dmreq->ctx;
1259 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1261 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1262 cc->on_disk_tag_size];
1265 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1266 struct dm_crypt_request *dmreq)
1268 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1271 static int crypt_convert_block_aead(struct crypt_config *cc,
1272 struct convert_context *ctx,
1273 struct aead_request *req,
1274 unsigned int tag_offset)
1276 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1277 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1278 struct dm_crypt_request *dmreq;
1279 u8 *iv, *org_iv, *tag_iv, *tag;
1283 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1285 /* Reject unexpected unaligned bio. */
1286 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1289 dmreq = dmreq_of_req(cc, req);
1290 dmreq->iv_sector = ctx->cc_sector;
1291 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1292 dmreq->iv_sector >>= cc->sector_shift;
1295 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1297 sector = org_sector_of_dmreq(cc, dmreq);
1298 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1300 iv = iv_of_dmreq(cc, dmreq);
1301 org_iv = org_iv_of_dmreq(cc, dmreq);
1302 tag = tag_from_dmreq(cc, dmreq);
1303 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1306 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1307 * | (authenticated) | (auth+encryption) | |
1308 * | sector_LE | IV | sector in/out | tag in/out |
1310 sg_init_table(dmreq->sg_in, 4);
1311 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1312 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1313 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1314 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1316 sg_init_table(dmreq->sg_out, 4);
1317 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1318 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1319 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1320 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1322 if (cc->iv_gen_ops) {
1323 /* For READs use IV stored in integrity metadata */
1324 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1325 memcpy(org_iv, tag_iv, cc->iv_size);
1327 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1330 /* Store generated IV in integrity metadata */
1331 if (cc->integrity_iv_size)
1332 memcpy(tag_iv, org_iv, cc->iv_size);
1334 /* Working copy of IV, to be modified in crypto API */
1335 memcpy(iv, org_iv, cc->iv_size);
1338 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1339 if (bio_data_dir(ctx->bio_in) == WRITE) {
1340 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1341 cc->sector_size, iv);
1342 r = crypto_aead_encrypt(req);
1343 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1344 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1345 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1347 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1348 cc->sector_size + cc->integrity_tag_size, iv);
1349 r = crypto_aead_decrypt(req);
1352 if (r == -EBADMSG) {
1353 char b[BDEVNAME_SIZE];
1354 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1355 (unsigned long long)le64_to_cpu(*sector));
1358 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1359 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1361 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1362 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1367 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1368 struct convert_context *ctx,
1369 struct skcipher_request *req,
1370 unsigned int tag_offset)
1372 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1373 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1374 struct scatterlist *sg_in, *sg_out;
1375 struct dm_crypt_request *dmreq;
1376 u8 *iv, *org_iv, *tag_iv;
1380 /* Reject unexpected unaligned bio. */
1381 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1384 dmreq = dmreq_of_req(cc, req);
1385 dmreq->iv_sector = ctx->cc_sector;
1386 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1387 dmreq->iv_sector >>= cc->sector_shift;
1390 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1392 iv = iv_of_dmreq(cc, dmreq);
1393 org_iv = org_iv_of_dmreq(cc, dmreq);
1394 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1396 sector = org_sector_of_dmreq(cc, dmreq);
1397 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1399 /* For skcipher we use only the first sg item */
1400 sg_in = &dmreq->sg_in[0];
1401 sg_out = &dmreq->sg_out[0];
1403 sg_init_table(sg_in, 1);
1404 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1406 sg_init_table(sg_out, 1);
1407 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1409 if (cc->iv_gen_ops) {
1410 /* For READs use IV stored in integrity metadata */
1411 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1412 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1414 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1417 /* Data can be already preprocessed in generator */
1418 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1420 /* Store generated IV in integrity metadata */
1421 if (cc->integrity_iv_size)
1422 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1424 /* Working copy of IV, to be modified in crypto API */
1425 memcpy(iv, org_iv, cc->iv_size);
1428 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1430 if (bio_data_dir(ctx->bio_in) == WRITE)
1431 r = crypto_skcipher_encrypt(req);
1433 r = crypto_skcipher_decrypt(req);
1435 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1436 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1438 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1439 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1444 static void kcryptd_async_done(struct crypto_async_request *async_req,
1447 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1448 struct convert_context *ctx)
1450 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1453 ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1455 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1458 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1459 * requests if driver request queue is full.
1461 skcipher_request_set_callback(ctx->r.req,
1462 CRYPTO_TFM_REQ_MAY_BACKLOG,
1463 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1466 static void crypt_alloc_req_aead(struct crypt_config *cc,
1467 struct convert_context *ctx)
1469 if (!ctx->r.req_aead)
1470 ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1472 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1475 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1476 * requests if driver request queue is full.
1478 aead_request_set_callback(ctx->r.req_aead,
1479 CRYPTO_TFM_REQ_MAY_BACKLOG,
1480 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1483 static void crypt_alloc_req(struct crypt_config *cc,
1484 struct convert_context *ctx)
1486 if (crypt_integrity_aead(cc))
1487 crypt_alloc_req_aead(cc, ctx);
1489 crypt_alloc_req_skcipher(cc, ctx);
1492 static void crypt_free_req_skcipher(struct crypt_config *cc,
1493 struct skcipher_request *req, struct bio *base_bio)
1495 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1497 if ((struct skcipher_request *)(io + 1) != req)
1498 mempool_free(req, &cc->req_pool);
1501 static void crypt_free_req_aead(struct crypt_config *cc,
1502 struct aead_request *req, struct bio *base_bio)
1504 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1506 if ((struct aead_request *)(io + 1) != req)
1507 mempool_free(req, &cc->req_pool);
1510 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1512 if (crypt_integrity_aead(cc))
1513 crypt_free_req_aead(cc, req, base_bio);
1515 crypt_free_req_skcipher(cc, req, base_bio);
1519 * Encrypt / decrypt data from one bio to another one (can be the same one)
1521 static blk_status_t crypt_convert(struct crypt_config *cc,
1522 struct convert_context *ctx)
1524 unsigned int tag_offset = 0;
1525 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1528 atomic_set(&ctx->cc_pending, 1);
1530 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1532 crypt_alloc_req(cc, ctx);
1533 atomic_inc(&ctx->cc_pending);
1535 if (crypt_integrity_aead(cc))
1536 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1538 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1542 * The request was queued by a crypto driver
1543 * but the driver request queue is full, let's wait.
1546 wait_for_completion(&ctx->restart);
1547 reinit_completion(&ctx->restart);
1550 * The request is queued and processed asynchronously,
1551 * completion function kcryptd_async_done() will be called.
1555 ctx->cc_sector += sector_step;
1559 * The request was already processed (synchronously).
1562 atomic_dec(&ctx->cc_pending);
1563 ctx->cc_sector += sector_step;
1568 * There was a data integrity error.
1571 atomic_dec(&ctx->cc_pending);
1572 return BLK_STS_PROTECTION;
1574 * There was an error while processing the request.
1577 atomic_dec(&ctx->cc_pending);
1578 return BLK_STS_IOERR;
1585 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1588 * Generate a new unfragmented bio with the given size
1589 * This should never violate the device limitations (but only because
1590 * max_segment_size is being constrained to PAGE_SIZE).
1592 * This function may be called concurrently. If we allocate from the mempool
1593 * concurrently, there is a possibility of deadlock. For example, if we have
1594 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1595 * the mempool concurrently, it may deadlock in a situation where both processes
1596 * have allocated 128 pages and the mempool is exhausted.
1598 * In order to avoid this scenario we allocate the pages under a mutex.
1600 * In order to not degrade performance with excessive locking, we try
1601 * non-blocking allocations without a mutex first but on failure we fallback
1602 * to blocking allocations with a mutex.
1604 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1606 struct crypt_config *cc = io->cc;
1608 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1609 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1610 unsigned i, len, remaining_size;
1614 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1615 mutex_lock(&cc->bio_alloc_lock);
1617 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1621 clone_init(io, clone);
1623 remaining_size = size;
1625 for (i = 0; i < nr_iovecs; i++) {
1626 page = mempool_alloc(&cc->page_pool, gfp_mask);
1628 crypt_free_buffer_pages(cc, clone);
1630 gfp_mask |= __GFP_DIRECT_RECLAIM;
1634 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1636 bio_add_page(clone, page, len, 0);
1638 remaining_size -= len;
1641 /* Allocate space for integrity tags */
1642 if (dm_crypt_integrity_io_alloc(io, clone)) {
1643 crypt_free_buffer_pages(cc, clone);
1648 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1649 mutex_unlock(&cc->bio_alloc_lock);
1654 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1657 struct bvec_iter_all iter_all;
1659 bio_for_each_segment_all(bv, clone, iter_all) {
1660 BUG_ON(!bv->bv_page);
1661 mempool_free(bv->bv_page, &cc->page_pool);
1665 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1666 struct bio *bio, sector_t sector)
1670 io->sector = sector;
1672 io->ctx.r.req = NULL;
1673 io->integrity_metadata = NULL;
1674 io->integrity_metadata_from_pool = false;
1675 atomic_set(&io->io_pending, 0);
1678 static void crypt_inc_pending(struct dm_crypt_io *io)
1680 atomic_inc(&io->io_pending);
1684 * One of the bios was finished. Check for completion of
1685 * the whole request and correctly clean up the buffer.
1687 static void crypt_dec_pending(struct dm_crypt_io *io)
1689 struct crypt_config *cc = io->cc;
1690 struct bio *base_bio = io->base_bio;
1691 blk_status_t error = io->error;
1693 if (!atomic_dec_and_test(&io->io_pending))
1697 crypt_free_req(cc, io->ctx.r.req, base_bio);
1699 if (unlikely(io->integrity_metadata_from_pool))
1700 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1702 kfree(io->integrity_metadata);
1704 base_bio->bi_status = error;
1705 bio_endio(base_bio);
1709 * kcryptd/kcryptd_io:
1711 * Needed because it would be very unwise to do decryption in an
1712 * interrupt context.
1714 * kcryptd performs the actual encryption or decryption.
1716 * kcryptd_io performs the IO submission.
1718 * They must be separated as otherwise the final stages could be
1719 * starved by new requests which can block in the first stages due
1720 * to memory allocation.
1722 * The work is done per CPU global for all dm-crypt instances.
1723 * They should not depend on each other and do not block.
1725 static void crypt_endio(struct bio *clone)
1727 struct dm_crypt_io *io = clone->bi_private;
1728 struct crypt_config *cc = io->cc;
1729 unsigned rw = bio_data_dir(clone);
1733 * free the processed pages
1736 crypt_free_buffer_pages(cc, clone);
1738 error = clone->bi_status;
1741 if (rw == READ && !error) {
1742 kcryptd_queue_crypt(io);
1746 if (unlikely(error))
1749 crypt_dec_pending(io);
1752 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1754 struct crypt_config *cc = io->cc;
1756 clone->bi_private = io;
1757 clone->bi_end_io = crypt_endio;
1758 bio_set_dev(clone, cc->dev->bdev);
1759 clone->bi_opf = io->base_bio->bi_opf;
1762 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1764 struct crypt_config *cc = io->cc;
1768 * We need the original biovec array in order to decrypt
1769 * the whole bio data *afterwards* -- thanks to immutable
1770 * biovecs we don't need to worry about the block layer
1771 * modifying the biovec array; so leverage bio_clone_fast().
1773 clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1777 crypt_inc_pending(io);
1779 clone_init(io, clone);
1780 clone->bi_iter.bi_sector = cc->start + io->sector;
1782 if (dm_crypt_integrity_io_alloc(io, clone)) {
1783 crypt_dec_pending(io);
1788 generic_make_request(clone);
1792 static void kcryptd_io_read_work(struct work_struct *work)
1794 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1796 crypt_inc_pending(io);
1797 if (kcryptd_io_read(io, GFP_NOIO))
1798 io->error = BLK_STS_RESOURCE;
1799 crypt_dec_pending(io);
1802 static void kcryptd_queue_read(struct dm_crypt_io *io)
1804 struct crypt_config *cc = io->cc;
1806 INIT_WORK(&io->work, kcryptd_io_read_work);
1807 queue_work(cc->io_queue, &io->work);
1810 static void kcryptd_io_write(struct dm_crypt_io *io)
1812 struct bio *clone = io->ctx.bio_out;
1814 generic_make_request(clone);
1817 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1819 static int dmcrypt_write(void *data)
1821 struct crypt_config *cc = data;
1822 struct dm_crypt_io *io;
1825 struct rb_root write_tree;
1826 struct blk_plug plug;
1828 spin_lock_irq(&cc->write_thread_lock);
1831 if (!RB_EMPTY_ROOT(&cc->write_tree))
1834 set_current_state(TASK_INTERRUPTIBLE);
1836 spin_unlock_irq(&cc->write_thread_lock);
1838 if (unlikely(kthread_should_stop())) {
1839 set_current_state(TASK_RUNNING);
1845 set_current_state(TASK_RUNNING);
1846 spin_lock_irq(&cc->write_thread_lock);
1847 goto continue_locked;
1850 write_tree = cc->write_tree;
1851 cc->write_tree = RB_ROOT;
1852 spin_unlock_irq(&cc->write_thread_lock);
1854 BUG_ON(rb_parent(write_tree.rb_node));
1857 * Note: we cannot walk the tree here with rb_next because
1858 * the structures may be freed when kcryptd_io_write is called.
1860 blk_start_plug(&plug);
1862 io = crypt_io_from_node(rb_first(&write_tree));
1863 rb_erase(&io->rb_node, &write_tree);
1864 kcryptd_io_write(io);
1865 } while (!RB_EMPTY_ROOT(&write_tree));
1866 blk_finish_plug(&plug);
1871 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1873 struct bio *clone = io->ctx.bio_out;
1874 struct crypt_config *cc = io->cc;
1875 unsigned long flags;
1877 struct rb_node **rbp, *parent;
1879 if (unlikely(io->error)) {
1880 crypt_free_buffer_pages(cc, clone);
1882 crypt_dec_pending(io);
1886 /* crypt_convert should have filled the clone bio */
1887 BUG_ON(io->ctx.iter_out.bi_size);
1889 clone->bi_iter.bi_sector = cc->start + io->sector;
1891 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1892 generic_make_request(clone);
1896 spin_lock_irqsave(&cc->write_thread_lock, flags);
1897 if (RB_EMPTY_ROOT(&cc->write_tree))
1898 wake_up_process(cc->write_thread);
1899 rbp = &cc->write_tree.rb_node;
1901 sector = io->sector;
1904 if (sector < crypt_io_from_node(parent)->sector)
1905 rbp = &(*rbp)->rb_left;
1907 rbp = &(*rbp)->rb_right;
1909 rb_link_node(&io->rb_node, parent, rbp);
1910 rb_insert_color(&io->rb_node, &cc->write_tree);
1911 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1914 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1916 struct crypt_config *cc = io->cc;
1919 sector_t sector = io->sector;
1923 * Prevent io from disappearing until this function completes.
1925 crypt_inc_pending(io);
1926 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1928 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1929 if (unlikely(!clone)) {
1930 io->error = BLK_STS_IOERR;
1934 io->ctx.bio_out = clone;
1935 io->ctx.iter_out = clone->bi_iter;
1937 sector += bio_sectors(clone);
1939 crypt_inc_pending(io);
1940 r = crypt_convert(cc, &io->ctx);
1943 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1945 /* Encryption was already finished, submit io now */
1946 if (crypt_finished) {
1947 kcryptd_crypt_write_io_submit(io, 0);
1948 io->sector = sector;
1952 crypt_dec_pending(io);
1955 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1957 crypt_dec_pending(io);
1960 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1962 struct crypt_config *cc = io->cc;
1965 crypt_inc_pending(io);
1967 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1970 r = crypt_convert(cc, &io->ctx);
1974 if (atomic_dec_and_test(&io->ctx.cc_pending))
1975 kcryptd_crypt_read_done(io);
1977 crypt_dec_pending(io);
1980 static void kcryptd_async_done(struct crypto_async_request *async_req,
1983 struct dm_crypt_request *dmreq = async_req->data;
1984 struct convert_context *ctx = dmreq->ctx;
1985 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1986 struct crypt_config *cc = io->cc;
1989 * A request from crypto driver backlog is going to be processed now,
1990 * finish the completion and continue in crypt_convert().
1991 * (Callback will be called for the second time for this request.)
1993 if (error == -EINPROGRESS) {
1994 complete(&ctx->restart);
1998 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1999 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2001 if (error == -EBADMSG) {
2002 char b[BDEVNAME_SIZE];
2003 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
2004 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
2005 io->error = BLK_STS_PROTECTION;
2006 } else if (error < 0)
2007 io->error = BLK_STS_IOERR;
2009 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2011 if (!atomic_dec_and_test(&ctx->cc_pending))
2014 if (bio_data_dir(io->base_bio) == READ)
2015 kcryptd_crypt_read_done(io);
2017 kcryptd_crypt_write_io_submit(io, 1);
2020 static void kcryptd_crypt(struct work_struct *work)
2022 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2024 if (bio_data_dir(io->base_bio) == READ)
2025 kcryptd_crypt_read_convert(io);
2027 kcryptd_crypt_write_convert(io);
2030 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2032 struct crypt_config *cc = io->cc;
2034 INIT_WORK(&io->work, kcryptd_crypt);
2035 queue_work(cc->crypt_queue, &io->work);
2038 static void crypt_free_tfms_aead(struct crypt_config *cc)
2040 if (!cc->cipher_tfm.tfms_aead)
2043 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2044 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2045 cc->cipher_tfm.tfms_aead[0] = NULL;
2048 kfree(cc->cipher_tfm.tfms_aead);
2049 cc->cipher_tfm.tfms_aead = NULL;
2052 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2056 if (!cc->cipher_tfm.tfms)
2059 for (i = 0; i < cc->tfms_count; i++)
2060 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2061 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2062 cc->cipher_tfm.tfms[i] = NULL;
2065 kfree(cc->cipher_tfm.tfms);
2066 cc->cipher_tfm.tfms = NULL;
2069 static void crypt_free_tfms(struct crypt_config *cc)
2071 if (crypt_integrity_aead(cc))
2072 crypt_free_tfms_aead(cc);
2074 crypt_free_tfms_skcipher(cc);
2077 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2082 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2083 sizeof(struct crypto_skcipher *),
2085 if (!cc->cipher_tfm.tfms)
2088 for (i = 0; i < cc->tfms_count; i++) {
2089 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
2090 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2091 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2092 crypt_free_tfms(cc);
2098 * dm-crypt performance can vary greatly depending on which crypto
2099 * algorithm implementation is used. Help people debug performance
2100 * problems by logging the ->cra_driver_name.
2102 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2103 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2107 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2111 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2112 if (!cc->cipher_tfm.tfms)
2115 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
2116 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2117 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2118 crypt_free_tfms(cc);
2122 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2123 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2127 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2129 if (crypt_integrity_aead(cc))
2130 return crypt_alloc_tfms_aead(cc, ciphermode);
2132 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2135 static unsigned crypt_subkey_size(struct crypt_config *cc)
2137 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2140 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2142 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2146 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2147 * the key must be for some reason in special format.
2148 * This funcion converts cc->key to this special format.
2150 static void crypt_copy_authenckey(char *p, const void *key,
2151 unsigned enckeylen, unsigned authkeylen)
2153 struct crypto_authenc_key_param *param;
2156 rta = (struct rtattr *)p;
2157 param = RTA_DATA(rta);
2158 param->enckeylen = cpu_to_be32(enckeylen);
2159 rta->rta_len = RTA_LENGTH(sizeof(*param));
2160 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2161 p += RTA_SPACE(sizeof(*param));
2162 memcpy(p, key + enckeylen, authkeylen);
2164 memcpy(p, key, enckeylen);
2167 static int crypt_setkey(struct crypt_config *cc)
2169 unsigned subkey_size;
2172 /* Ignore extra keys (which are used for IV etc) */
2173 subkey_size = crypt_subkey_size(cc);
2175 if (crypt_integrity_hmac(cc)) {
2176 if (subkey_size < cc->key_mac_size)
2179 crypt_copy_authenckey(cc->authenc_key, cc->key,
2180 subkey_size - cc->key_mac_size,
2184 for (i = 0; i < cc->tfms_count; i++) {
2185 if (crypt_integrity_hmac(cc))
2186 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2187 cc->authenc_key, crypt_authenckey_size(cc));
2188 else if (crypt_integrity_aead(cc))
2189 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2190 cc->key + (i * subkey_size),
2193 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2194 cc->key + (i * subkey_size),
2200 if (crypt_integrity_hmac(cc))
2201 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2208 static bool contains_whitespace(const char *str)
2211 if (isspace(*str++))
2216 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2218 char *new_key_string, *key_desc;
2221 const struct user_key_payload *ukp;
2224 * Reject key_string with whitespace. dm core currently lacks code for
2225 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2227 if (contains_whitespace(key_string)) {
2228 DMERR("whitespace chars not allowed in key string");
2232 /* look for next ':' separating key_type from key_description */
2233 key_desc = strpbrk(key_string, ":");
2234 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2237 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2238 strncmp(key_string, "user:", key_desc - key_string + 1))
2241 new_key_string = kstrdup(key_string, GFP_KERNEL);
2242 if (!new_key_string)
2245 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2246 key_desc + 1, NULL);
2248 kzfree(new_key_string);
2249 return PTR_ERR(key);
2252 down_read(&key->sem);
2254 ukp = user_key_payload_locked(key);
2258 kzfree(new_key_string);
2259 return -EKEYREVOKED;
2262 if (cc->key_size != ukp->datalen) {
2265 kzfree(new_key_string);
2269 memcpy(cc->key, ukp->data, cc->key_size);
2274 /* clear the flag since following operations may invalidate previously valid key */
2275 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2277 ret = crypt_setkey(cc);
2280 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2281 kzfree(cc->key_string);
2282 cc->key_string = new_key_string;
2284 kzfree(new_key_string);
2289 static int get_key_size(char **key_string)
2294 if (*key_string[0] != ':')
2295 return strlen(*key_string) >> 1;
2297 /* look for next ':' in key string */
2298 colon = strpbrk(*key_string + 1, ":");
2302 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2305 *key_string = colon;
2307 /* remaining key string should be :<logon|user>:<key_desc> */
2314 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2319 static int get_key_size(char **key_string)
2321 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2326 static int crypt_set_key(struct crypt_config *cc, char *key)
2329 int key_string_len = strlen(key);
2331 /* Hyphen (which gives a key_size of zero) means there is no key. */
2332 if (!cc->key_size && strcmp(key, "-"))
2335 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2336 if (key[0] == ':') {
2337 r = crypt_set_keyring_key(cc, key + 1);
2341 /* clear the flag since following operations may invalidate previously valid key */
2342 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2344 /* wipe references to any kernel keyring key */
2345 kzfree(cc->key_string);
2346 cc->key_string = NULL;
2348 /* Decode key from its hex representation. */
2349 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2352 r = crypt_setkey(cc);
2354 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2357 /* Hex key string not needed after here, so wipe it. */
2358 memset(key, '0', key_string_len);
2363 static int crypt_wipe_key(struct crypt_config *cc)
2367 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2368 get_random_bytes(&cc->key, cc->key_size);
2370 /* Wipe IV private keys */
2371 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2372 r = cc->iv_gen_ops->wipe(cc);
2377 kzfree(cc->key_string);
2378 cc->key_string = NULL;
2379 r = crypt_setkey(cc);
2380 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2385 static void crypt_calculate_pages_per_client(void)
2387 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2389 if (!dm_crypt_clients_n)
2392 pages /= dm_crypt_clients_n;
2393 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2394 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2395 dm_crypt_pages_per_client = pages;
2398 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2400 struct crypt_config *cc = pool_data;
2403 if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2404 likely(gfp_mask & __GFP_NORETRY))
2407 page = alloc_page(gfp_mask);
2408 if (likely(page != NULL))
2409 percpu_counter_add(&cc->n_allocated_pages, 1);
2414 static void crypt_page_free(void *page, void *pool_data)
2416 struct crypt_config *cc = pool_data;
2419 percpu_counter_sub(&cc->n_allocated_pages, 1);
2422 static void crypt_dtr(struct dm_target *ti)
2424 struct crypt_config *cc = ti->private;
2431 if (cc->write_thread)
2432 kthread_stop(cc->write_thread);
2435 destroy_workqueue(cc->io_queue);
2436 if (cc->crypt_queue)
2437 destroy_workqueue(cc->crypt_queue);
2439 crypt_free_tfms(cc);
2441 bioset_exit(&cc->bs);
2443 mempool_exit(&cc->page_pool);
2444 mempool_exit(&cc->req_pool);
2445 mempool_exit(&cc->tag_pool);
2447 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2448 percpu_counter_destroy(&cc->n_allocated_pages);
2450 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2451 cc->iv_gen_ops->dtr(cc);
2454 dm_put_device(ti, cc->dev);
2456 kzfree(cc->cipher_string);
2457 kzfree(cc->key_string);
2458 kzfree(cc->cipher_auth);
2459 kzfree(cc->authenc_key);
2461 mutex_destroy(&cc->bio_alloc_lock);
2463 /* Must zero key material before freeing */
2466 spin_lock(&dm_crypt_clients_lock);
2467 WARN_ON(!dm_crypt_clients_n);
2468 dm_crypt_clients_n--;
2469 crypt_calculate_pages_per_client();
2470 spin_unlock(&dm_crypt_clients_lock);
2473 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2475 struct crypt_config *cc = ti->private;
2477 if (crypt_integrity_aead(cc))
2478 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2480 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2483 /* at least a 64 bit sector number should fit in our buffer */
2484 cc->iv_size = max(cc->iv_size,
2485 (unsigned int)(sizeof(u64) / sizeof(u8)));
2487 DMWARN("Selected cipher does not support IVs");
2491 /* Choose ivmode, see comments at iv code. */
2493 cc->iv_gen_ops = NULL;
2494 else if (strcmp(ivmode, "plain") == 0)
2495 cc->iv_gen_ops = &crypt_iv_plain_ops;
2496 else if (strcmp(ivmode, "plain64") == 0)
2497 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2498 else if (strcmp(ivmode, "plain64be") == 0)
2499 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2500 else if (strcmp(ivmode, "essiv") == 0)
2501 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2502 else if (strcmp(ivmode, "benbi") == 0)
2503 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2504 else if (strcmp(ivmode, "null") == 0)
2505 cc->iv_gen_ops = &crypt_iv_null_ops;
2506 else if (strcmp(ivmode, "eboiv") == 0)
2507 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2508 else if (strcmp(ivmode, "elephant") == 0) {
2509 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2511 cc->key_extra_size = cc->key_size / 2;
2512 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2514 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2515 } else if (strcmp(ivmode, "lmk") == 0) {
2516 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2518 * Version 2 and 3 is recognised according
2519 * to length of provided multi-key string.
2520 * If present (version 3), last key is used as IV seed.
2521 * All keys (including IV seed) are always the same size.
2523 if (cc->key_size % cc->key_parts) {
2525 cc->key_extra_size = cc->key_size / cc->key_parts;
2527 } else if (strcmp(ivmode, "tcw") == 0) {
2528 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2529 cc->key_parts += 2; /* IV + whitening */
2530 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2531 } else if (strcmp(ivmode, "random") == 0) {
2532 cc->iv_gen_ops = &crypt_iv_random_ops;
2533 /* Need storage space in integrity fields. */
2534 cc->integrity_iv_size = cc->iv_size;
2536 ti->error = "Invalid IV mode";
2544 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2545 * The HMAC is needed to calculate tag size (HMAC digest size).
2546 * This should be probably done by crypto-api calls (once available...)
2548 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2550 char *start, *end, *mac_alg = NULL;
2551 struct crypto_ahash *mac;
2553 if (!strstarts(cipher_api, "authenc("))
2556 start = strchr(cipher_api, '(');
2557 end = strchr(cipher_api, ',');
2558 if (!start || !end || ++start > end)
2561 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2564 strncpy(mac_alg, start, end - start);
2566 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2570 return PTR_ERR(mac);
2572 cc->key_mac_size = crypto_ahash_digestsize(mac);
2573 crypto_free_ahash(mac);
2575 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2576 if (!cc->authenc_key)
2582 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2583 char **ivmode, char **ivopts)
2585 struct crypt_config *cc = ti->private;
2586 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2592 * New format (capi: prefix)
2593 * capi:cipher_api_spec-iv:ivopts
2595 tmp = &cipher_in[strlen("capi:")];
2597 /* Separate IV options if present, it can contain another '-' in hash name */
2598 *ivopts = strrchr(tmp, ':');
2604 *ivmode = strrchr(tmp, '-');
2609 /* The rest is crypto API spec */
2612 /* Alloc AEAD, can be used only in new format. */
2613 if (crypt_integrity_aead(cc)) {
2614 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2616 ti->error = "Invalid AEAD cipher spec";
2621 if (*ivmode && !strcmp(*ivmode, "lmk"))
2622 cc->tfms_count = 64;
2624 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2626 ti->error = "Digest algorithm missing for ESSIV mode";
2629 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2630 cipher_api, *ivopts);
2631 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2632 ti->error = "Cannot allocate cipher string";
2638 cc->key_parts = cc->tfms_count;
2640 /* Allocate cipher */
2641 ret = crypt_alloc_tfms(cc, cipher_api);
2643 ti->error = "Error allocating crypto tfm";
2647 if (crypt_integrity_aead(cc))
2648 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2650 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2655 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2656 char **ivmode, char **ivopts)
2658 struct crypt_config *cc = ti->private;
2659 char *tmp, *cipher, *chainmode, *keycount;
2660 char *cipher_api = NULL;
2664 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2665 ti->error = "Bad cipher specification";
2670 * Legacy dm-crypt cipher specification
2671 * cipher[:keycount]-mode-iv:ivopts
2674 keycount = strsep(&tmp, "-");
2675 cipher = strsep(&keycount, ":");
2679 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2680 !is_power_of_2(cc->tfms_count)) {
2681 ti->error = "Bad cipher key count specification";
2684 cc->key_parts = cc->tfms_count;
2686 chainmode = strsep(&tmp, "-");
2687 *ivmode = strsep(&tmp, ":");
2691 * For compatibility with the original dm-crypt mapping format, if
2692 * only the cipher name is supplied, use cbc-plain.
2694 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2699 if (strcmp(chainmode, "ecb") && !*ivmode) {
2700 ti->error = "IV mechanism required";
2704 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2708 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2710 ti->error = "Digest algorithm missing for ESSIV mode";
2714 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2715 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2717 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2718 "%s(%s)", chainmode, cipher);
2720 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2725 /* Allocate cipher */
2726 ret = crypt_alloc_tfms(cc, cipher_api);
2728 ti->error = "Error allocating crypto tfm";
2736 ti->error = "Cannot allocate cipher strings";
2740 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2742 struct crypt_config *cc = ti->private;
2743 char *ivmode = NULL, *ivopts = NULL;
2746 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2747 if (!cc->cipher_string) {
2748 ti->error = "Cannot allocate cipher strings";
2752 if (strstarts(cipher_in, "capi:"))
2753 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2755 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2760 ret = crypt_ctr_ivmode(ti, ivmode);
2764 /* Initialize and set key */
2765 ret = crypt_set_key(cc, key);
2767 ti->error = "Error decoding and setting key";
2772 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2773 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2775 ti->error = "Error creating IV";
2780 /* Initialize IV (set keys for ESSIV etc) */
2781 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2782 ret = cc->iv_gen_ops->init(cc);
2784 ti->error = "Error initialising IV";
2789 /* wipe the kernel key payload copy */
2791 memset(cc->key, 0, cc->key_size * sizeof(u8));
2796 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2798 struct crypt_config *cc = ti->private;
2799 struct dm_arg_set as;
2800 static const struct dm_arg _args[] = {
2801 {0, 6, "Invalid number of feature args"},
2803 unsigned int opt_params, val;
2804 const char *opt_string, *sval;
2808 /* Optional parameters */
2812 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2816 while (opt_params--) {
2817 opt_string = dm_shift_arg(&as);
2819 ti->error = "Not enough feature arguments";
2823 if (!strcasecmp(opt_string, "allow_discards"))
2824 ti->num_discard_bios = 1;
2826 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2827 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2829 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2830 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2831 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2832 if (val == 0 || val > MAX_TAG_SIZE) {
2833 ti->error = "Invalid integrity arguments";
2836 cc->on_disk_tag_size = val;
2837 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2838 if (!strcasecmp(sval, "aead")) {
2839 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2840 } else if (strcasecmp(sval, "none")) {
2841 ti->error = "Unknown integrity profile";
2845 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2846 if (!cc->cipher_auth)
2848 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2849 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2850 cc->sector_size > 4096 ||
2851 (cc->sector_size & (cc->sector_size - 1))) {
2852 ti->error = "Invalid feature value for sector_size";
2855 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2856 ti->error = "Device size is not multiple of sector_size feature";
2859 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2860 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2861 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2863 ti->error = "Invalid feature arguments";
2872 * Construct an encryption mapping:
2873 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2875 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2877 struct crypt_config *cc;
2878 const char *devname = dm_table_device_name(ti->table);
2880 unsigned int align_mask;
2881 unsigned long long tmpll;
2883 size_t iv_size_padding, additional_req_size;
2887 ti->error = "Not enough arguments";
2891 key_size = get_key_size(&argv[1]);
2893 ti->error = "Cannot parse key size";
2897 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
2899 ti->error = "Cannot allocate encryption context";
2902 cc->key_size = key_size;
2903 cc->sector_size = (1 << SECTOR_SHIFT);
2904 cc->sector_shift = 0;
2908 spin_lock(&dm_crypt_clients_lock);
2909 dm_crypt_clients_n++;
2910 crypt_calculate_pages_per_client();
2911 spin_unlock(&dm_crypt_clients_lock);
2913 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2917 /* Optional parameters need to be read before cipher constructor */
2919 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2924 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2928 if (crypt_integrity_aead(cc)) {
2929 cc->dmreq_start = sizeof(struct aead_request);
2930 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2931 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2933 cc->dmreq_start = sizeof(struct skcipher_request);
2934 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2935 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2937 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2939 if (align_mask < CRYPTO_MINALIGN) {
2940 /* Allocate the padding exactly */
2941 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2945 * If the cipher requires greater alignment than kmalloc
2946 * alignment, we don't know the exact position of the
2947 * initialization vector. We must assume worst case.
2949 iv_size_padding = align_mask;
2952 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2953 additional_req_size = sizeof(struct dm_crypt_request) +
2954 iv_size_padding + cc->iv_size +
2957 sizeof(unsigned int);
2959 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2961 ti->error = "Cannot allocate crypt request mempool";
2965 cc->per_bio_data_size = ti->per_io_data_size =
2966 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2967 ARCH_KMALLOC_MINALIGN);
2969 ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2971 ti->error = "Cannot allocate page mempool";
2975 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2977 ti->error = "Cannot allocate crypt bioset";
2981 mutex_init(&cc->bio_alloc_lock);
2984 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2985 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2986 ti->error = "Invalid iv_offset sector";
2989 cc->iv_offset = tmpll;
2991 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2993 ti->error = "Device lookup failed";
2998 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
2999 ti->error = "Invalid device sector";
3004 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3005 ret = crypt_integrity_ctr(cc, ti);
3009 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3010 if (!cc->tag_pool_max_sectors)
3011 cc->tag_pool_max_sectors = 1;
3013 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3014 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3016 ti->error = "Cannot allocate integrity tags mempool";
3020 cc->tag_pool_max_sectors <<= cc->sector_shift;
3024 cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3025 if (!cc->io_queue) {
3026 ti->error = "Couldn't create kcryptd io queue";
3030 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3031 cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3034 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3035 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3036 num_online_cpus(), devname);
3037 if (!cc->crypt_queue) {
3038 ti->error = "Couldn't create kcryptd queue";
3042 spin_lock_init(&cc->write_thread_lock);
3043 cc->write_tree = RB_ROOT;
3045 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3046 if (IS_ERR(cc->write_thread)) {
3047 ret = PTR_ERR(cc->write_thread);
3048 cc->write_thread = NULL;
3049 ti->error = "Couldn't spawn write thread";
3052 wake_up_process(cc->write_thread);
3054 ti->num_flush_bios = 1;
3063 static int crypt_map(struct dm_target *ti, struct bio *bio)
3065 struct dm_crypt_io *io;
3066 struct crypt_config *cc = ti->private;
3069 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3070 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3071 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3073 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3074 bio_op(bio) == REQ_OP_DISCARD)) {
3075 bio_set_dev(bio, cc->dev->bdev);
3076 if (bio_sectors(bio))
3077 bio->bi_iter.bi_sector = cc->start +
3078 dm_target_offset(ti, bio->bi_iter.bi_sector);
3079 return DM_MAPIO_REMAPPED;
3083 * Check if bio is too large, split as needed.
3085 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
3086 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3087 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
3090 * Ensure that bio is a multiple of internal sector encryption size
3091 * and is aligned to this size as defined in IO hints.
3093 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3094 return DM_MAPIO_KILL;
3096 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3097 return DM_MAPIO_KILL;
3099 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3100 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3102 if (cc->on_disk_tag_size) {
3103 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3105 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3106 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3107 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3108 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3109 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3110 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3111 io->integrity_metadata_from_pool = true;
3115 if (crypt_integrity_aead(cc))
3116 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3118 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3120 if (bio_data_dir(io->base_bio) == READ) {
3121 if (kcryptd_io_read(io, GFP_NOWAIT))
3122 kcryptd_queue_read(io);
3124 kcryptd_queue_crypt(io);
3126 return DM_MAPIO_SUBMITTED;
3129 static void crypt_status(struct dm_target *ti, status_type_t type,
3130 unsigned status_flags, char *result, unsigned maxlen)
3132 struct crypt_config *cc = ti->private;
3134 int num_feature_args = 0;
3137 case STATUSTYPE_INFO:
3141 case STATUSTYPE_TABLE:
3142 DMEMIT("%s ", cc->cipher_string);
3144 if (cc->key_size > 0) {
3146 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3148 for (i = 0; i < cc->key_size; i++)
3149 DMEMIT("%02x", cc->key[i]);
3153 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3154 cc->dev->name, (unsigned long long)cc->start);
3156 num_feature_args += !!ti->num_discard_bios;
3157 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3158 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3159 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3160 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3161 if (cc->on_disk_tag_size)
3163 if (num_feature_args) {
3164 DMEMIT(" %d", num_feature_args);
3165 if (ti->num_discard_bios)
3166 DMEMIT(" allow_discards");
3167 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3168 DMEMIT(" same_cpu_crypt");
3169 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3170 DMEMIT(" submit_from_crypt_cpus");
3171 if (cc->on_disk_tag_size)
3172 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3173 if (cc->sector_size != (1 << SECTOR_SHIFT))
3174 DMEMIT(" sector_size:%d", cc->sector_size);
3175 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3176 DMEMIT(" iv_large_sectors");
3183 static void crypt_postsuspend(struct dm_target *ti)
3185 struct crypt_config *cc = ti->private;
3187 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3190 static int crypt_preresume(struct dm_target *ti)
3192 struct crypt_config *cc = ti->private;
3194 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3195 DMERR("aborting resume - crypt key is not set.");
3202 static void crypt_resume(struct dm_target *ti)
3204 struct crypt_config *cc = ti->private;
3206 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3209 /* Message interface
3213 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3214 char *result, unsigned maxlen)
3216 struct crypt_config *cc = ti->private;
3217 int key_size, ret = -EINVAL;
3222 if (!strcasecmp(argv[0], "key")) {
3223 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3224 DMWARN("not suspended during key manipulation.");
3227 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3228 /* The key size may not be changed. */
3229 key_size = get_key_size(&argv[2]);
3230 if (key_size < 0 || cc->key_size != key_size) {
3231 memset(argv[2], '0', strlen(argv[2]));
3235 ret = crypt_set_key(cc, argv[2]);
3238 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3239 ret = cc->iv_gen_ops->init(cc);
3240 /* wipe the kernel key payload copy */
3242 memset(cc->key, 0, cc->key_size * sizeof(u8));
3245 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3246 return crypt_wipe_key(cc);
3250 DMWARN("unrecognised message received.");
3254 static int crypt_iterate_devices(struct dm_target *ti,
3255 iterate_devices_callout_fn fn, void *data)
3257 struct crypt_config *cc = ti->private;
3259 return fn(ti, cc->dev, cc->start, ti->len, data);
3262 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3264 struct crypt_config *cc = ti->private;
3267 * Unfortunate constraint that is required to avoid the potential
3268 * for exceeding underlying device's max_segments limits -- due to
3269 * crypt_alloc_buffer() possibly allocating pages for the encryption
3270 * bio that are not as physically contiguous as the original bio.
3272 limits->max_segment_size = PAGE_SIZE;
3274 limits->logical_block_size =
3275 max_t(unsigned short, limits->logical_block_size, cc->sector_size);
3276 limits->physical_block_size =
3277 max_t(unsigned, limits->physical_block_size, cc->sector_size);
3278 limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3281 static struct target_type crypt_target = {
3283 .version = {1, 20, 0},
3284 .module = THIS_MODULE,
3288 .status = crypt_status,
3289 .postsuspend = crypt_postsuspend,
3290 .preresume = crypt_preresume,
3291 .resume = crypt_resume,
3292 .message = crypt_message,
3293 .iterate_devices = crypt_iterate_devices,
3294 .io_hints = crypt_io_hints,
3297 static int __init dm_crypt_init(void)
3301 r = dm_register_target(&crypt_target);
3303 DMERR("register failed %d", r);
3308 static void __exit dm_crypt_exit(void)
3310 dm_unregister_target(&crypt_target);
3313 module_init(dm_crypt_init);
3314 module_exit(dm_crypt_exit);
3317 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3318 MODULE_LICENSE("GPL");