]> Git Repo - linux.git/blob - drivers/md/bcache/request.c
efi/x86: add headroom to decompressor BSS to account for setup block
[linux.git] / drivers / md / bcache / request.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <[email protected]>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD        95
24 #define CUTOFF_CACHE_READA      90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *cl);
29
30 static unsigned int cache_mode(struct cached_dev *dc)
31 {
32         return BDEV_CACHE_MODE(&dc->sb);
33 }
34
35 static bool verify(struct cached_dev *dc)
36 {
37         return dc->verify;
38 }
39
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42         struct bio_vec bv;
43         struct bvec_iter iter;
44         uint64_t csum = 0;
45
46         bio_for_each_segment(bv, bio, iter) {
47                 void *d = kmap(bv.bv_page) + bv.bv_offset;
48
49                 csum = bch_crc64_update(csum, d, bv.bv_len);
50                 kunmap(bv.bv_page);
51         }
52
53         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54 }
55
56 /* Insert data into cache */
57
58 static void bch_data_insert_keys(struct closure *cl)
59 {
60         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61         atomic_t *journal_ref = NULL;
62         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63         int ret;
64
65         if (!op->replace)
66                 journal_ref = bch_journal(op->c, &op->insert_keys,
67                                           op->flush_journal ? cl : NULL);
68
69         ret = bch_btree_insert(op->c, &op->insert_keys,
70                                journal_ref, replace_key);
71         if (ret == -ESRCH) {
72                 op->replace_collision = true;
73         } else if (ret) {
74                 op->status              = BLK_STS_RESOURCE;
75                 op->insert_data_done    = true;
76         }
77
78         if (journal_ref)
79                 atomic_dec_bug(journal_ref);
80
81         if (!op->insert_data_done) {
82                 continue_at(cl, bch_data_insert_start, op->wq);
83                 return;
84         }
85
86         bch_keylist_free(&op->insert_keys);
87         closure_return(cl);
88 }
89
90 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
91                                struct cache_set *c)
92 {
93         size_t oldsize = bch_keylist_nkeys(l);
94         size_t newsize = oldsize + u64s;
95
96         /*
97          * The journalling code doesn't handle the case where the keys to insert
98          * is bigger than an empty write: If we just return -ENOMEM here,
99          * bch_data_insert_keys() will insert the keys created so far
100          * and finish the rest when the keylist is empty.
101          */
102         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
103                 return -ENOMEM;
104
105         return __bch_keylist_realloc(l, u64s);
106 }
107
108 static void bch_data_invalidate(struct closure *cl)
109 {
110         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
111         struct bio *bio = op->bio;
112
113         pr_debug("invalidating %i sectors from %llu",
114                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
115
116         while (bio_sectors(bio)) {
117                 unsigned int sectors = min(bio_sectors(bio),
118                                        1U << (KEY_SIZE_BITS - 1));
119
120                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
121                         goto out;
122
123                 bio->bi_iter.bi_sector  += sectors;
124                 bio->bi_iter.bi_size    -= sectors << 9;
125
126                 bch_keylist_add(&op->insert_keys,
127                                 &KEY(op->inode,
128                                      bio->bi_iter.bi_sector,
129                                      sectors));
130         }
131
132         op->insert_data_done = true;
133         /* get in bch_data_insert() */
134         bio_put(bio);
135 out:
136         continue_at(cl, bch_data_insert_keys, op->wq);
137 }
138
139 static void bch_data_insert_error(struct closure *cl)
140 {
141         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
142
143         /*
144          * Our data write just errored, which means we've got a bunch of keys to
145          * insert that point to data that wasn't successfully written.
146          *
147          * We don't have to insert those keys but we still have to invalidate
148          * that region of the cache - so, if we just strip off all the pointers
149          * from the keys we'll accomplish just that.
150          */
151
152         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
153
154         while (src != op->insert_keys.top) {
155                 struct bkey *n = bkey_next(src);
156
157                 SET_KEY_PTRS(src, 0);
158                 memmove(dst, src, bkey_bytes(src));
159
160                 dst = bkey_next(dst);
161                 src = n;
162         }
163
164         op->insert_keys.top = dst;
165
166         bch_data_insert_keys(cl);
167 }
168
169 static void bch_data_insert_endio(struct bio *bio)
170 {
171         struct closure *cl = bio->bi_private;
172         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
173
174         if (bio->bi_status) {
175                 /* TODO: We could try to recover from this. */
176                 if (op->writeback)
177                         op->status = bio->bi_status;
178                 else if (!op->replace)
179                         set_closure_fn(cl, bch_data_insert_error, op->wq);
180                 else
181                         set_closure_fn(cl, NULL, NULL);
182         }
183
184         bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
185 }
186
187 static void bch_data_insert_start(struct closure *cl)
188 {
189         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
190         struct bio *bio = op->bio, *n;
191
192         if (op->bypass)
193                 return bch_data_invalidate(cl);
194
195         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
196                 wake_up_gc(op->c);
197
198         /*
199          * Journal writes are marked REQ_PREFLUSH; if the original write was a
200          * flush, it'll wait on the journal write.
201          */
202         bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
203
204         do {
205                 unsigned int i;
206                 struct bkey *k;
207                 struct bio_set *split = &op->c->bio_split;
208
209                 /* 1 for the device pointer and 1 for the chksum */
210                 if (bch_keylist_realloc(&op->insert_keys,
211                                         3 + (op->csum ? 1 : 0),
212                                         op->c)) {
213                         continue_at(cl, bch_data_insert_keys, op->wq);
214                         return;
215                 }
216
217                 k = op->insert_keys.top;
218                 bkey_init(k);
219                 SET_KEY_INODE(k, op->inode);
220                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
221
222                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
223                                        op->write_point, op->write_prio,
224                                        op->writeback))
225                         goto err;
226
227                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
228
229                 n->bi_end_io    = bch_data_insert_endio;
230                 n->bi_private   = cl;
231
232                 if (op->writeback) {
233                         SET_KEY_DIRTY(k, true);
234
235                         for (i = 0; i < KEY_PTRS(k); i++)
236                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
237                                             GC_MARK_DIRTY);
238                 }
239
240                 SET_KEY_CSUM(k, op->csum);
241                 if (KEY_CSUM(k))
242                         bio_csum(n, k);
243
244                 trace_bcache_cache_insert(k);
245                 bch_keylist_push(&op->insert_keys);
246
247                 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
248                 bch_submit_bbio(n, op->c, k, 0);
249         } while (n != bio);
250
251         op->insert_data_done = true;
252         continue_at(cl, bch_data_insert_keys, op->wq);
253         return;
254 err:
255         /* bch_alloc_sectors() blocks if s->writeback = true */
256         BUG_ON(op->writeback);
257
258         /*
259          * But if it's not a writeback write we'd rather just bail out if
260          * there aren't any buckets ready to write to - it might take awhile and
261          * we might be starving btree writes for gc or something.
262          */
263
264         if (!op->replace) {
265                 /*
266                  * Writethrough write: We can't complete the write until we've
267                  * updated the index. But we don't want to delay the write while
268                  * we wait for buckets to be freed up, so just invalidate the
269                  * rest of the write.
270                  */
271                 op->bypass = true;
272                 return bch_data_invalidate(cl);
273         } else {
274                 /*
275                  * From a cache miss, we can just insert the keys for the data
276                  * we have written or bail out if we didn't do anything.
277                  */
278                 op->insert_data_done = true;
279                 bio_put(bio);
280
281                 if (!bch_keylist_empty(&op->insert_keys))
282                         continue_at(cl, bch_data_insert_keys, op->wq);
283                 else
284                         closure_return(cl);
285         }
286 }
287
288 /**
289  * bch_data_insert - stick some data in the cache
290  * @cl: closure pointer.
291  *
292  * This is the starting point for any data to end up in a cache device; it could
293  * be from a normal write, or a writeback write, or a write to a flash only
294  * volume - it's also used by the moving garbage collector to compact data in
295  * mostly empty buckets.
296  *
297  * It first writes the data to the cache, creating a list of keys to be inserted
298  * (if the data had to be fragmented there will be multiple keys); after the
299  * data is written it calls bch_journal, and after the keys have been added to
300  * the next journal write they're inserted into the btree.
301  *
302  * It inserts the data in op->bio; bi_sector is used for the key offset,
303  * and op->inode is used for the key inode.
304  *
305  * If op->bypass is true, instead of inserting the data it invalidates the
306  * region of the cache represented by op->bio and op->inode.
307  */
308 void bch_data_insert(struct closure *cl)
309 {
310         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
311
312         trace_bcache_write(op->c, op->inode, op->bio,
313                            op->writeback, op->bypass);
314
315         bch_keylist_init(&op->insert_keys);
316         bio_get(op->bio);
317         bch_data_insert_start(cl);
318 }
319
320 /*
321  * Congested?  Return 0 (not congested) or the limit (in sectors)
322  * beyond which we should bypass the cache due to congestion.
323  */
324 unsigned int bch_get_congested(const struct cache_set *c)
325 {
326         int i;
327
328         if (!c->congested_read_threshold_us &&
329             !c->congested_write_threshold_us)
330                 return 0;
331
332         i = (local_clock_us() - c->congested_last_us) / 1024;
333         if (i < 0)
334                 return 0;
335
336         i += atomic_read(&c->congested);
337         if (i >= 0)
338                 return 0;
339
340         i += CONGESTED_MAX;
341
342         if (i > 0)
343                 i = fract_exp_two(i, 6);
344
345         i -= hweight32(get_random_u32());
346
347         return i > 0 ? i : 1;
348 }
349
350 static void add_sequential(struct task_struct *t)
351 {
352         ewma_add(t->sequential_io_avg,
353                  t->sequential_io, 8, 0);
354
355         t->sequential_io = 0;
356 }
357
358 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
359 {
360         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
361 }
362
363 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
364 {
365         struct cache_set *c = dc->disk.c;
366         unsigned int mode = cache_mode(dc);
367         unsigned int sectors, congested;
368         struct task_struct *task = current;
369         struct io *i;
370
371         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
372             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
373             (bio_op(bio) == REQ_OP_DISCARD))
374                 goto skip;
375
376         if (mode == CACHE_MODE_NONE ||
377             (mode == CACHE_MODE_WRITEAROUND &&
378              op_is_write(bio_op(bio))))
379                 goto skip;
380
381         /*
382          * If the bio is for read-ahead or background IO, bypass it or
383          * not depends on the following situations,
384          * - If the IO is for meta data, always cache it and no bypass
385          * - If the IO is not meta data, check dc->cache_reada_policy,
386          *      BCH_CACHE_READA_ALL: cache it and not bypass
387          *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
388          * That is, read-ahead request for metadata always get cached
389          * (eg, for gfs2 or xfs).
390          */
391         if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
392                 if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
393                     (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
394                         goto skip;
395         }
396
397         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
398             bio_sectors(bio) & (c->sb.block_size - 1)) {
399                 pr_debug("skipping unaligned io");
400                 goto skip;
401         }
402
403         if (bypass_torture_test(dc)) {
404                 if ((get_random_int() & 3) == 3)
405                         goto skip;
406                 else
407                         goto rescale;
408         }
409
410         congested = bch_get_congested(c);
411         if (!congested && !dc->sequential_cutoff)
412                 goto rescale;
413
414         spin_lock(&dc->io_lock);
415
416         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
417                 if (i->last == bio->bi_iter.bi_sector &&
418                     time_before(jiffies, i->jiffies))
419                         goto found;
420
421         i = list_first_entry(&dc->io_lru, struct io, lru);
422
423         add_sequential(task);
424         i->sequential = 0;
425 found:
426         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
427                 i->sequential   += bio->bi_iter.bi_size;
428
429         i->last                  = bio_end_sector(bio);
430         i->jiffies               = jiffies + msecs_to_jiffies(5000);
431         task->sequential_io      = i->sequential;
432
433         hlist_del(&i->hash);
434         hlist_add_head(&i->hash, iohash(dc, i->last));
435         list_move_tail(&i->lru, &dc->io_lru);
436
437         spin_unlock(&dc->io_lock);
438
439         sectors = max(task->sequential_io,
440                       task->sequential_io_avg) >> 9;
441
442         if (dc->sequential_cutoff &&
443             sectors >= dc->sequential_cutoff >> 9) {
444                 trace_bcache_bypass_sequential(bio);
445                 goto skip;
446         }
447
448         if (congested && sectors >= congested) {
449                 trace_bcache_bypass_congested(bio);
450                 goto skip;
451         }
452
453 rescale:
454         bch_rescale_priorities(c, bio_sectors(bio));
455         return false;
456 skip:
457         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
458         return true;
459 }
460
461 /* Cache lookup */
462
463 struct search {
464         /* Stack frame for bio_complete */
465         struct closure          cl;
466
467         struct bbio             bio;
468         struct bio              *orig_bio;
469         struct bio              *cache_miss;
470         struct bcache_device    *d;
471
472         unsigned int            insert_bio_sectors;
473         unsigned int            recoverable:1;
474         unsigned int            write:1;
475         unsigned int            read_dirty_data:1;
476         unsigned int            cache_missed:1;
477
478         unsigned long           start_time;
479
480         struct btree_op         op;
481         struct data_insert_op   iop;
482 };
483
484 static void bch_cache_read_endio(struct bio *bio)
485 {
486         struct bbio *b = container_of(bio, struct bbio, bio);
487         struct closure *cl = bio->bi_private;
488         struct search *s = container_of(cl, struct search, cl);
489
490         /*
491          * If the bucket was reused while our bio was in flight, we might have
492          * read the wrong data. Set s->error but not error so it doesn't get
493          * counted against the cache device, but we'll still reread the data
494          * from the backing device.
495          */
496
497         if (bio->bi_status)
498                 s->iop.status = bio->bi_status;
499         else if (!KEY_DIRTY(&b->key) &&
500                  ptr_stale(s->iop.c, &b->key, 0)) {
501                 atomic_long_inc(&s->iop.c->cache_read_races);
502                 s->iop.status = BLK_STS_IOERR;
503         }
504
505         bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
506 }
507
508 /*
509  * Read from a single key, handling the initial cache miss if the key starts in
510  * the middle of the bio
511  */
512 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
513 {
514         struct search *s = container_of(op, struct search, op);
515         struct bio *n, *bio = &s->bio.bio;
516         struct bkey *bio_key;
517         unsigned int ptr;
518
519         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
520                 return MAP_CONTINUE;
521
522         if (KEY_INODE(k) != s->iop.inode ||
523             KEY_START(k) > bio->bi_iter.bi_sector) {
524                 unsigned int bio_sectors = bio_sectors(bio);
525                 unsigned int sectors = KEY_INODE(k) == s->iop.inode
526                         ? min_t(uint64_t, INT_MAX,
527                                 KEY_START(k) - bio->bi_iter.bi_sector)
528                         : INT_MAX;
529                 int ret = s->d->cache_miss(b, s, bio, sectors);
530
531                 if (ret != MAP_CONTINUE)
532                         return ret;
533
534                 /* if this was a complete miss we shouldn't get here */
535                 BUG_ON(bio_sectors <= sectors);
536         }
537
538         if (!KEY_SIZE(k))
539                 return MAP_CONTINUE;
540
541         /* XXX: figure out best pointer - for multiple cache devices */
542         ptr = 0;
543
544         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
545
546         if (KEY_DIRTY(k))
547                 s->read_dirty_data = true;
548
549         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
550                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
551                            GFP_NOIO, &s->d->bio_split);
552
553         bio_key = &container_of(n, struct bbio, bio)->key;
554         bch_bkey_copy_single_ptr(bio_key, k, ptr);
555
556         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
557         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
558
559         n->bi_end_io    = bch_cache_read_endio;
560         n->bi_private   = &s->cl;
561
562         /*
563          * The bucket we're reading from might be reused while our bio
564          * is in flight, and we could then end up reading the wrong
565          * data.
566          *
567          * We guard against this by checking (in cache_read_endio()) if
568          * the pointer is stale again; if so, we treat it as an error
569          * and reread from the backing device (but we don't pass that
570          * error up anywhere).
571          */
572
573         __bch_submit_bbio(n, b->c);
574         return n == bio ? MAP_DONE : MAP_CONTINUE;
575 }
576
577 static void cache_lookup(struct closure *cl)
578 {
579         struct search *s = container_of(cl, struct search, iop.cl);
580         struct bio *bio = &s->bio.bio;
581         struct cached_dev *dc;
582         int ret;
583
584         bch_btree_op_init(&s->op, -1);
585
586         ret = bch_btree_map_keys(&s->op, s->iop.c,
587                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
588                                  cache_lookup_fn, MAP_END_KEY);
589         if (ret == -EAGAIN) {
590                 continue_at(cl, cache_lookup, bcache_wq);
591                 return;
592         }
593
594         /*
595          * We might meet err when searching the btree, If that happens, we will
596          * get negative ret, in this scenario we should not recover data from
597          * backing device (when cache device is dirty) because we don't know
598          * whether bkeys the read request covered are all clean.
599          *
600          * And after that happened, s->iop.status is still its initial value
601          * before we submit s->bio.bio
602          */
603         if (ret < 0) {
604                 BUG_ON(ret == -EINTR);
605                 if (s->d && s->d->c &&
606                                 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
607                         dc = container_of(s->d, struct cached_dev, disk);
608                         if (dc && atomic_read(&dc->has_dirty))
609                                 s->recoverable = false;
610                 }
611                 if (!s->iop.status)
612                         s->iop.status = BLK_STS_IOERR;
613         }
614
615         closure_return(cl);
616 }
617
618 /* Common code for the make_request functions */
619
620 static void request_endio(struct bio *bio)
621 {
622         struct closure *cl = bio->bi_private;
623
624         if (bio->bi_status) {
625                 struct search *s = container_of(cl, struct search, cl);
626
627                 s->iop.status = bio->bi_status;
628                 /* Only cache read errors are recoverable */
629                 s->recoverable = false;
630         }
631
632         bio_put(bio);
633         closure_put(cl);
634 }
635
636 static void backing_request_endio(struct bio *bio)
637 {
638         struct closure *cl = bio->bi_private;
639
640         if (bio->bi_status) {
641                 struct search *s = container_of(cl, struct search, cl);
642                 struct cached_dev *dc = container_of(s->d,
643                                                      struct cached_dev, disk);
644                 /*
645                  * If a bio has REQ_PREFLUSH for writeback mode, it is
646                  * speically assembled in cached_dev_write() for a non-zero
647                  * write request which has REQ_PREFLUSH. we don't set
648                  * s->iop.status by this failure, the status will be decided
649                  * by result of bch_data_insert() operation.
650                  */
651                 if (unlikely(s->iop.writeback &&
652                              bio->bi_opf & REQ_PREFLUSH)) {
653                         pr_err("Can't flush %s: returned bi_status %i",
654                                 dc->backing_dev_name, bio->bi_status);
655                 } else {
656                         /* set to orig_bio->bi_status in bio_complete() */
657                         s->iop.status = bio->bi_status;
658                 }
659                 s->recoverable = false;
660                 /* should count I/O error for backing device here */
661                 bch_count_backing_io_errors(dc, bio);
662         }
663
664         bio_put(bio);
665         closure_put(cl);
666 }
667
668 static void bio_complete(struct search *s)
669 {
670         if (s->orig_bio) {
671                 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
672                                     &s->d->disk->part0, s->start_time);
673
674                 trace_bcache_request_end(s->d, s->orig_bio);
675                 s->orig_bio->bi_status = s->iop.status;
676                 bio_endio(s->orig_bio);
677                 s->orig_bio = NULL;
678         }
679 }
680
681 static void do_bio_hook(struct search *s,
682                         struct bio *orig_bio,
683                         bio_end_io_t *end_io_fn)
684 {
685         struct bio *bio = &s->bio.bio;
686
687         bio_init(bio, NULL, 0);
688         __bio_clone_fast(bio, orig_bio);
689         /*
690          * bi_end_io can be set separately somewhere else, e.g. the
691          * variants in,
692          * - cache_bio->bi_end_io from cached_dev_cache_miss()
693          * - n->bi_end_io from cache_lookup_fn()
694          */
695         bio->bi_end_io          = end_io_fn;
696         bio->bi_private         = &s->cl;
697
698         bio_cnt_set(bio, 3);
699 }
700
701 static void search_free(struct closure *cl)
702 {
703         struct search *s = container_of(cl, struct search, cl);
704
705         atomic_dec(&s->iop.c->search_inflight);
706
707         if (s->iop.bio)
708                 bio_put(s->iop.bio);
709
710         bio_complete(s);
711         closure_debug_destroy(cl);
712         mempool_free(s, &s->iop.c->search);
713 }
714
715 static inline struct search *search_alloc(struct bio *bio,
716                                           struct bcache_device *d)
717 {
718         struct search *s;
719
720         s = mempool_alloc(&d->c->search, GFP_NOIO);
721
722         closure_init(&s->cl, NULL);
723         do_bio_hook(s, bio, request_endio);
724         atomic_inc(&d->c->search_inflight);
725
726         s->orig_bio             = bio;
727         s->cache_miss           = NULL;
728         s->cache_missed         = 0;
729         s->d                    = d;
730         s->recoverable          = 1;
731         s->write                = op_is_write(bio_op(bio));
732         s->read_dirty_data      = 0;
733         s->start_time           = jiffies;
734
735         s->iop.c                = d->c;
736         s->iop.bio              = NULL;
737         s->iop.inode            = d->id;
738         s->iop.write_point      = hash_long((unsigned long) current, 16);
739         s->iop.write_prio       = 0;
740         s->iop.status           = 0;
741         s->iop.flags            = 0;
742         s->iop.flush_journal    = op_is_flush(bio->bi_opf);
743         s->iop.wq               = bcache_wq;
744
745         return s;
746 }
747
748 /* Cached devices */
749
750 static void cached_dev_bio_complete(struct closure *cl)
751 {
752         struct search *s = container_of(cl, struct search, cl);
753         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
754
755         cached_dev_put(dc);
756         search_free(cl);
757 }
758
759 /* Process reads */
760
761 static void cached_dev_read_error_done(struct closure *cl)
762 {
763         struct search *s = container_of(cl, struct search, cl);
764
765         if (s->iop.replace_collision)
766                 bch_mark_cache_miss_collision(s->iop.c, s->d);
767
768         if (s->iop.bio)
769                 bio_free_pages(s->iop.bio);
770
771         cached_dev_bio_complete(cl);
772 }
773
774 static void cached_dev_read_error(struct closure *cl)
775 {
776         struct search *s = container_of(cl, struct search, cl);
777         struct bio *bio = &s->bio.bio;
778
779         /*
780          * If read request hit dirty data (s->read_dirty_data is true),
781          * then recovery a failed read request from cached device may
782          * get a stale data back. So read failure recovery is only
783          * permitted when read request hit clean data in cache device,
784          * or when cache read race happened.
785          */
786         if (s->recoverable && !s->read_dirty_data) {
787                 /* Retry from the backing device: */
788                 trace_bcache_read_retry(s->orig_bio);
789
790                 s->iop.status = 0;
791                 do_bio_hook(s, s->orig_bio, backing_request_endio);
792
793                 /* XXX: invalidate cache */
794
795                 /* I/O request sent to backing device */
796                 closure_bio_submit(s->iop.c, bio, cl);
797         }
798
799         continue_at(cl, cached_dev_read_error_done, NULL);
800 }
801
802 static void cached_dev_cache_miss_done(struct closure *cl)
803 {
804         struct search *s = container_of(cl, struct search, cl);
805         struct bcache_device *d = s->d;
806
807         if (s->iop.replace_collision)
808                 bch_mark_cache_miss_collision(s->iop.c, s->d);
809
810         if (s->iop.bio)
811                 bio_free_pages(s->iop.bio);
812
813         cached_dev_bio_complete(cl);
814         closure_put(&d->cl);
815 }
816
817 static void cached_dev_read_done(struct closure *cl)
818 {
819         struct search *s = container_of(cl, struct search, cl);
820         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
821
822         /*
823          * We had a cache miss; cache_bio now contains data ready to be inserted
824          * into the cache.
825          *
826          * First, we copy the data we just read from cache_bio's bounce buffers
827          * to the buffers the original bio pointed to:
828          */
829
830         if (s->iop.bio) {
831                 bio_reset(s->iop.bio);
832                 s->iop.bio->bi_iter.bi_sector =
833                         s->cache_miss->bi_iter.bi_sector;
834                 bio_copy_dev(s->iop.bio, s->cache_miss);
835                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
836                 bch_bio_map(s->iop.bio, NULL);
837
838                 bio_copy_data(s->cache_miss, s->iop.bio);
839
840                 bio_put(s->cache_miss);
841                 s->cache_miss = NULL;
842         }
843
844         if (verify(dc) && s->recoverable && !s->read_dirty_data)
845                 bch_data_verify(dc, s->orig_bio);
846
847         closure_get(&dc->disk.cl);
848         bio_complete(s);
849
850         if (s->iop.bio &&
851             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
852                 BUG_ON(!s->iop.replace);
853                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
854         }
855
856         continue_at(cl, cached_dev_cache_miss_done, NULL);
857 }
858
859 static void cached_dev_read_done_bh(struct closure *cl)
860 {
861         struct search *s = container_of(cl, struct search, cl);
862         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
863
864         bch_mark_cache_accounting(s->iop.c, s->d,
865                                   !s->cache_missed, s->iop.bypass);
866         trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
867
868         if (s->iop.status)
869                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
870         else if (s->iop.bio || verify(dc))
871                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
872         else
873                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
874 }
875
876 static int cached_dev_cache_miss(struct btree *b, struct search *s,
877                                  struct bio *bio, unsigned int sectors)
878 {
879         int ret = MAP_CONTINUE;
880         unsigned int reada = 0;
881         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
882         struct bio *miss, *cache_bio;
883
884         s->cache_missed = 1;
885
886         if (s->cache_miss || s->iop.bypass) {
887                 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
888                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
889                 goto out_submit;
890         }
891
892         if (!(bio->bi_opf & REQ_RAHEAD) &&
893             !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
894             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
895                 reada = min_t(sector_t, dc->readahead >> 9,
896                               get_capacity(bio->bi_disk) - bio_end_sector(bio));
897
898         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
899
900         s->iop.replace_key = KEY(s->iop.inode,
901                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
902                                  s->insert_bio_sectors);
903
904         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
905         if (ret)
906                 return ret;
907
908         s->iop.replace = true;
909
910         miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
911
912         /* btree_search_recurse()'s btree iterator is no good anymore */
913         ret = miss == bio ? MAP_DONE : -EINTR;
914
915         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
916                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
917                         &dc->disk.bio_split);
918         if (!cache_bio)
919                 goto out_submit;
920
921         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
922         bio_copy_dev(cache_bio, miss);
923         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
924
925         cache_bio->bi_end_io    = backing_request_endio;
926         cache_bio->bi_private   = &s->cl;
927
928         bch_bio_map(cache_bio, NULL);
929         if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
930                 goto out_put;
931
932         if (reada)
933                 bch_mark_cache_readahead(s->iop.c, s->d);
934
935         s->cache_miss   = miss;
936         s->iop.bio      = cache_bio;
937         bio_get(cache_bio);
938         /* I/O request sent to backing device */
939         closure_bio_submit(s->iop.c, cache_bio, &s->cl);
940
941         return ret;
942 out_put:
943         bio_put(cache_bio);
944 out_submit:
945         miss->bi_end_io         = backing_request_endio;
946         miss->bi_private        = &s->cl;
947         /* I/O request sent to backing device */
948         closure_bio_submit(s->iop.c, miss, &s->cl);
949         return ret;
950 }
951
952 static void cached_dev_read(struct cached_dev *dc, struct search *s)
953 {
954         struct closure *cl = &s->cl;
955
956         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
957         continue_at(cl, cached_dev_read_done_bh, NULL);
958 }
959
960 /* Process writes */
961
962 static void cached_dev_write_complete(struct closure *cl)
963 {
964         struct search *s = container_of(cl, struct search, cl);
965         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
966
967         up_read_non_owner(&dc->writeback_lock);
968         cached_dev_bio_complete(cl);
969 }
970
971 static void cached_dev_write(struct cached_dev *dc, struct search *s)
972 {
973         struct closure *cl = &s->cl;
974         struct bio *bio = &s->bio.bio;
975         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
976         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
977
978         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
979
980         down_read_non_owner(&dc->writeback_lock);
981         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
982                 /*
983                  * We overlap with some dirty data undergoing background
984                  * writeback, force this write to writeback
985                  */
986                 s->iop.bypass = false;
987                 s->iop.writeback = true;
988         }
989
990         /*
991          * Discards aren't _required_ to do anything, so skipping if
992          * check_overlapping returned true is ok
993          *
994          * But check_overlapping drops dirty keys for which io hasn't started,
995          * so we still want to call it.
996          */
997         if (bio_op(bio) == REQ_OP_DISCARD)
998                 s->iop.bypass = true;
999
1000         if (should_writeback(dc, s->orig_bio,
1001                              cache_mode(dc),
1002                              s->iop.bypass)) {
1003                 s->iop.bypass = false;
1004                 s->iop.writeback = true;
1005         }
1006
1007         if (s->iop.bypass) {
1008                 s->iop.bio = s->orig_bio;
1009                 bio_get(s->iop.bio);
1010
1011                 if (bio_op(bio) == REQ_OP_DISCARD &&
1012                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
1013                         goto insert_data;
1014
1015                 /* I/O request sent to backing device */
1016                 bio->bi_end_io = backing_request_endio;
1017                 closure_bio_submit(s->iop.c, bio, cl);
1018
1019         } else if (s->iop.writeback) {
1020                 bch_writeback_add(dc);
1021                 s->iop.bio = bio;
1022
1023                 if (bio->bi_opf & REQ_PREFLUSH) {
1024                         /*
1025                          * Also need to send a flush to the backing
1026                          * device.
1027                          */
1028                         struct bio *flush;
1029
1030                         flush = bio_alloc_bioset(GFP_NOIO, 0,
1031                                                  &dc->disk.bio_split);
1032                         if (!flush) {
1033                                 s->iop.status = BLK_STS_RESOURCE;
1034                                 goto insert_data;
1035                         }
1036                         bio_copy_dev(flush, bio);
1037                         flush->bi_end_io = backing_request_endio;
1038                         flush->bi_private = cl;
1039                         flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1040                         /* I/O request sent to backing device */
1041                         closure_bio_submit(s->iop.c, flush, cl);
1042                 }
1043         } else {
1044                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1045                 /* I/O request sent to backing device */
1046                 bio->bi_end_io = backing_request_endio;
1047                 closure_bio_submit(s->iop.c, bio, cl);
1048         }
1049
1050 insert_data:
1051         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1052         continue_at(cl, cached_dev_write_complete, NULL);
1053 }
1054
1055 static void cached_dev_nodata(struct closure *cl)
1056 {
1057         struct search *s = container_of(cl, struct search, cl);
1058         struct bio *bio = &s->bio.bio;
1059
1060         if (s->iop.flush_journal)
1061                 bch_journal_meta(s->iop.c, cl);
1062
1063         /* If it's a flush, we send the flush to the backing device too */
1064         bio->bi_end_io = backing_request_endio;
1065         closure_bio_submit(s->iop.c, bio, cl);
1066
1067         continue_at(cl, cached_dev_bio_complete, NULL);
1068 }
1069
1070 struct detached_dev_io_private {
1071         struct bcache_device    *d;
1072         unsigned long           start_time;
1073         bio_end_io_t            *bi_end_io;
1074         void                    *bi_private;
1075 };
1076
1077 static void detached_dev_end_io(struct bio *bio)
1078 {
1079         struct detached_dev_io_private *ddip;
1080
1081         ddip = bio->bi_private;
1082         bio->bi_end_io = ddip->bi_end_io;
1083         bio->bi_private = ddip->bi_private;
1084
1085         generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1086                             &ddip->d->disk->part0, ddip->start_time);
1087
1088         if (bio->bi_status) {
1089                 struct cached_dev *dc = container_of(ddip->d,
1090                                                      struct cached_dev, disk);
1091                 /* should count I/O error for backing device here */
1092                 bch_count_backing_io_errors(dc, bio);
1093         }
1094
1095         kfree(ddip);
1096         bio->bi_end_io(bio);
1097 }
1098
1099 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1100 {
1101         struct detached_dev_io_private *ddip;
1102         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1103
1104         /*
1105          * no need to call closure_get(&dc->disk.cl),
1106          * because upper layer had already opened bcache device,
1107          * which would call closure_get(&dc->disk.cl)
1108          */
1109         ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1110         ddip->d = d;
1111         ddip->start_time = jiffies;
1112         ddip->bi_end_io = bio->bi_end_io;
1113         ddip->bi_private = bio->bi_private;
1114         bio->bi_end_io = detached_dev_end_io;
1115         bio->bi_private = ddip;
1116
1117         if ((bio_op(bio) == REQ_OP_DISCARD) &&
1118             !blk_queue_discard(bdev_get_queue(dc->bdev)))
1119                 bio->bi_end_io(bio);
1120         else
1121                 generic_make_request(bio);
1122 }
1123
1124 static void quit_max_writeback_rate(struct cache_set *c,
1125                                     struct cached_dev *this_dc)
1126 {
1127         int i;
1128         struct bcache_device *d;
1129         struct cached_dev *dc;
1130
1131         /*
1132          * mutex bch_register_lock may compete with other parallel requesters,
1133          * or attach/detach operations on other backing device. Waiting to
1134          * the mutex lock may increase I/O request latency for seconds or more.
1135          * To avoid such situation, if mutext_trylock() failed, only writeback
1136          * rate of current cached device is set to 1, and __update_write_back()
1137          * will decide writeback rate of other cached devices (remember now
1138          * c->idle_counter is 0 already).
1139          */
1140         if (mutex_trylock(&bch_register_lock)) {
1141                 for (i = 0; i < c->devices_max_used; i++) {
1142                         if (!c->devices[i])
1143                                 continue;
1144
1145                         if (UUID_FLASH_ONLY(&c->uuids[i]))
1146                                 continue;
1147
1148                         d = c->devices[i];
1149                         dc = container_of(d, struct cached_dev, disk);
1150                         /*
1151                          * set writeback rate to default minimum value,
1152                          * then let update_writeback_rate() to decide the
1153                          * upcoming rate.
1154                          */
1155                         atomic_long_set(&dc->writeback_rate.rate, 1);
1156                 }
1157                 mutex_unlock(&bch_register_lock);
1158         } else
1159                 atomic_long_set(&this_dc->writeback_rate.rate, 1);
1160 }
1161
1162 /* Cached devices - read & write stuff */
1163
1164 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1165                                         struct bio *bio)
1166 {
1167         struct search *s;
1168         struct bcache_device *d = bio->bi_disk->private_data;
1169         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1170         int rw = bio_data_dir(bio);
1171
1172         if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1173                      dc->io_disable)) {
1174                 bio->bi_status = BLK_STS_IOERR;
1175                 bio_endio(bio);
1176                 return BLK_QC_T_NONE;
1177         }
1178
1179         if (likely(d->c)) {
1180                 if (atomic_read(&d->c->idle_counter))
1181                         atomic_set(&d->c->idle_counter, 0);
1182                 /*
1183                  * If at_max_writeback_rate of cache set is true and new I/O
1184                  * comes, quit max writeback rate of all cached devices
1185                  * attached to this cache set, and set at_max_writeback_rate
1186                  * to false.
1187                  */
1188                 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1189                         atomic_set(&d->c->at_max_writeback_rate, 0);
1190                         quit_max_writeback_rate(d->c, dc);
1191                 }
1192         }
1193
1194         generic_start_io_acct(q,
1195                               bio_op(bio),
1196                               bio_sectors(bio),
1197                               &d->disk->part0);
1198
1199         bio_set_dev(bio, dc->bdev);
1200         bio->bi_iter.bi_sector += dc->sb.data_offset;
1201
1202         if (cached_dev_get(dc)) {
1203                 s = search_alloc(bio, d);
1204                 trace_bcache_request_start(s->d, bio);
1205
1206                 if (!bio->bi_iter.bi_size) {
1207                         /*
1208                          * can't call bch_journal_meta from under
1209                          * generic_make_request
1210                          */
1211                         continue_at_nobarrier(&s->cl,
1212                                               cached_dev_nodata,
1213                                               bcache_wq);
1214                 } else {
1215                         s->iop.bypass = check_should_bypass(dc, bio);
1216
1217                         if (rw)
1218                                 cached_dev_write(dc, s);
1219                         else
1220                                 cached_dev_read(dc, s);
1221                 }
1222         } else
1223                 /* I/O request sent to backing device */
1224                 detached_dev_do_request(d, bio);
1225
1226         return BLK_QC_T_NONE;
1227 }
1228
1229 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1230                             unsigned int cmd, unsigned long arg)
1231 {
1232         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1233
1234         if (dc->io_disable)
1235                 return -EIO;
1236
1237         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1238 }
1239
1240 static int cached_dev_congested(void *data, int bits)
1241 {
1242         struct bcache_device *d = data;
1243         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1244         struct request_queue *q = bdev_get_queue(dc->bdev);
1245         int ret = 0;
1246
1247         if (bdi_congested(q->backing_dev_info, bits))
1248                 return 1;
1249
1250         if (cached_dev_get(dc)) {
1251                 unsigned int i;
1252                 struct cache *ca;
1253
1254                 for_each_cache(ca, d->c, i) {
1255                         q = bdev_get_queue(ca->bdev);
1256                         ret |= bdi_congested(q->backing_dev_info, bits);
1257                 }
1258
1259                 cached_dev_put(dc);
1260         }
1261
1262         return ret;
1263 }
1264
1265 void bch_cached_dev_request_init(struct cached_dev *dc)
1266 {
1267         struct gendisk *g = dc->disk.disk;
1268
1269         g->queue->make_request_fn               = cached_dev_make_request;
1270         g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1271         dc->disk.cache_miss                     = cached_dev_cache_miss;
1272         dc->disk.ioctl                          = cached_dev_ioctl;
1273 }
1274
1275 /* Flash backed devices */
1276
1277 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1278                                 struct bio *bio, unsigned int sectors)
1279 {
1280         unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1281
1282         swap(bio->bi_iter.bi_size, bytes);
1283         zero_fill_bio(bio);
1284         swap(bio->bi_iter.bi_size, bytes);
1285
1286         bio_advance(bio, bytes);
1287
1288         if (!bio->bi_iter.bi_size)
1289                 return MAP_DONE;
1290
1291         return MAP_CONTINUE;
1292 }
1293
1294 static void flash_dev_nodata(struct closure *cl)
1295 {
1296         struct search *s = container_of(cl, struct search, cl);
1297
1298         if (s->iop.flush_journal)
1299                 bch_journal_meta(s->iop.c, cl);
1300
1301         continue_at(cl, search_free, NULL);
1302 }
1303
1304 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1305                                              struct bio *bio)
1306 {
1307         struct search *s;
1308         struct closure *cl;
1309         struct bcache_device *d = bio->bi_disk->private_data;
1310
1311         if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1312                 bio->bi_status = BLK_STS_IOERR;
1313                 bio_endio(bio);
1314                 return BLK_QC_T_NONE;
1315         }
1316
1317         generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1318
1319         s = search_alloc(bio, d);
1320         cl = &s->cl;
1321         bio = &s->bio.bio;
1322
1323         trace_bcache_request_start(s->d, bio);
1324
1325         if (!bio->bi_iter.bi_size) {
1326                 /*
1327                  * can't call bch_journal_meta from under
1328                  * generic_make_request
1329                  */
1330                 continue_at_nobarrier(&s->cl,
1331                                       flash_dev_nodata,
1332                                       bcache_wq);
1333                 return BLK_QC_T_NONE;
1334         } else if (bio_data_dir(bio)) {
1335                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1336                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1337                                         &KEY(d->id, bio_end_sector(bio), 0));
1338
1339                 s->iop.bypass           = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1340                 s->iop.writeback        = true;
1341                 s->iop.bio              = bio;
1342
1343                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1344         } else {
1345                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1346         }
1347
1348         continue_at(cl, search_free, NULL);
1349         return BLK_QC_T_NONE;
1350 }
1351
1352 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1353                            unsigned int cmd, unsigned long arg)
1354 {
1355         return -ENOTTY;
1356 }
1357
1358 static int flash_dev_congested(void *data, int bits)
1359 {
1360         struct bcache_device *d = data;
1361         struct request_queue *q;
1362         struct cache *ca;
1363         unsigned int i;
1364         int ret = 0;
1365
1366         for_each_cache(ca, d->c, i) {
1367                 q = bdev_get_queue(ca->bdev);
1368                 ret |= bdi_congested(q->backing_dev_info, bits);
1369         }
1370
1371         return ret;
1372 }
1373
1374 void bch_flash_dev_request_init(struct bcache_device *d)
1375 {
1376         struct gendisk *g = d->disk;
1377
1378         g->queue->make_request_fn               = flash_dev_make_request;
1379         g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1380         d->cache_miss                           = flash_dev_cache_miss;
1381         d->ioctl                                = flash_dev_ioctl;
1382 }
1383
1384 void bch_request_exit(void)
1385 {
1386         kmem_cache_destroy(bch_search_cache);
1387 }
1388
1389 int __init bch_request_init(void)
1390 {
1391         bch_search_cache = KMEM_CACHE(search, 0);
1392         if (!bch_search_cache)
1393                 return -ENOMEM;
1394
1395         return 0;
1396 }
This page took 0.120836 seconds and 4 git commands to generate.