1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
21 #define CREATE_TRACE_POINTS
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
35 static inline bool regmap_should_log(struct regmap *map)
37 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
40 static inline bool regmap_should_log(struct regmap *map) { return false; }
44 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
45 unsigned int mask, unsigned int val,
46 bool *change, bool force_write);
48 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 static int _regmap_bus_read(void *context, unsigned int reg,
52 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 static int _regmap_bus_raw_write(void *context, unsigned int reg,
59 bool regmap_reg_in_ranges(unsigned int reg,
60 const struct regmap_range *ranges,
63 const struct regmap_range *r;
66 for (i = 0, r = ranges; i < nranges; i++, r++)
67 if (regmap_reg_in_range(reg, r))
71 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
74 const struct regmap_access_table *table)
76 /* Check "no ranges" first */
77 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
80 /* In case zero "yes ranges" are supplied, any reg is OK */
81 if (!table->n_yes_ranges)
84 return regmap_reg_in_ranges(reg, table->yes_ranges,
87 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 if (map->max_register && reg > map->max_register)
94 if (map->writeable_reg)
95 return map->writeable_reg(map->dev, reg);
98 return regmap_check_range_table(map, reg, map->wr_table);
103 bool regmap_cached(struct regmap *map, unsigned int reg)
108 if (map->cache_type == REGCACHE_NONE)
114 if (map->max_register && reg > map->max_register)
117 map->lock(map->lock_arg);
118 ret = regcache_read(map, reg, &val);
119 map->unlock(map->lock_arg);
126 bool regmap_readable(struct regmap *map, unsigned int reg)
131 if (map->max_register && reg > map->max_register)
134 if (map->format.format_write)
137 if (map->readable_reg)
138 return map->readable_reg(map->dev, reg);
141 return regmap_check_range_table(map, reg, map->rd_table);
146 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 if (!map->format.format_write && !regmap_readable(map, reg))
151 if (map->volatile_reg)
152 return map->volatile_reg(map->dev, reg);
154 if (map->volatile_table)
155 return regmap_check_range_table(map, reg, map->volatile_table);
163 bool regmap_precious(struct regmap *map, unsigned int reg)
165 if (!regmap_readable(map, reg))
168 if (map->precious_reg)
169 return map->precious_reg(map->dev, reg);
171 if (map->precious_table)
172 return regmap_check_range_table(map, reg, map->precious_table);
177 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 if (map->writeable_noinc_reg)
180 return map->writeable_noinc_reg(map->dev, reg);
182 if (map->wr_noinc_table)
183 return regmap_check_range_table(map, reg, map->wr_noinc_table);
188 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 if (map->readable_noinc_reg)
191 return map->readable_noinc_reg(map->dev, reg);
193 if (map->rd_noinc_table)
194 return regmap_check_range_table(map, reg, map->rd_noinc_table);
199 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
204 for (i = 0; i < num; i++)
205 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
211 static void regmap_format_2_6_write(struct regmap *map,
212 unsigned int reg, unsigned int val)
214 u8 *out = map->work_buf;
216 *out = (reg << 6) | val;
219 static void regmap_format_4_12_write(struct regmap *map,
220 unsigned int reg, unsigned int val)
222 __be16 *out = map->work_buf;
223 *out = cpu_to_be16((reg << 12) | val);
226 static void regmap_format_7_9_write(struct regmap *map,
227 unsigned int reg, unsigned int val)
229 __be16 *out = map->work_buf;
230 *out = cpu_to_be16((reg << 9) | val);
233 static void regmap_format_10_14_write(struct regmap *map,
234 unsigned int reg, unsigned int val)
236 u8 *out = map->work_buf;
239 out[1] = (val >> 8) | (reg << 6);
243 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
250 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
254 b[0] = cpu_to_be16(val << shift);
257 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
261 b[0] = cpu_to_le16(val << shift);
264 static void regmap_format_16_native(void *buf, unsigned int val,
267 *(u16 *)buf = val << shift;
270 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
281 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
285 b[0] = cpu_to_be32(val << shift);
288 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
292 b[0] = cpu_to_le32(val << shift);
295 static void regmap_format_32_native(void *buf, unsigned int val,
298 *(u32 *)buf = val << shift;
302 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
306 b[0] = cpu_to_be64((u64)val << shift);
309 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
313 b[0] = cpu_to_le64((u64)val << shift);
316 static void regmap_format_64_native(void *buf, unsigned int val,
319 *(u64 *)buf = (u64)val << shift;
323 static void regmap_parse_inplace_noop(void *buf)
327 static unsigned int regmap_parse_8(const void *buf)
334 static unsigned int regmap_parse_16_be(const void *buf)
336 const __be16 *b = buf;
338 return be16_to_cpu(b[0]);
341 static unsigned int regmap_parse_16_le(const void *buf)
343 const __le16 *b = buf;
345 return le16_to_cpu(b[0]);
348 static void regmap_parse_16_be_inplace(void *buf)
352 b[0] = be16_to_cpu(b[0]);
355 static void regmap_parse_16_le_inplace(void *buf)
359 b[0] = le16_to_cpu(b[0]);
362 static unsigned int regmap_parse_16_native(const void *buf)
367 static unsigned int regmap_parse_24(const void *buf)
370 unsigned int ret = b[2];
371 ret |= ((unsigned int)b[1]) << 8;
372 ret |= ((unsigned int)b[0]) << 16;
377 static unsigned int regmap_parse_32_be(const void *buf)
379 const __be32 *b = buf;
381 return be32_to_cpu(b[0]);
384 static unsigned int regmap_parse_32_le(const void *buf)
386 const __le32 *b = buf;
388 return le32_to_cpu(b[0]);
391 static void regmap_parse_32_be_inplace(void *buf)
395 b[0] = be32_to_cpu(b[0]);
398 static void regmap_parse_32_le_inplace(void *buf)
402 b[0] = le32_to_cpu(b[0]);
405 static unsigned int regmap_parse_32_native(const void *buf)
411 static unsigned int regmap_parse_64_be(const void *buf)
413 const __be64 *b = buf;
415 return be64_to_cpu(b[0]);
418 static unsigned int regmap_parse_64_le(const void *buf)
420 const __le64 *b = buf;
422 return le64_to_cpu(b[0]);
425 static void regmap_parse_64_be_inplace(void *buf)
429 b[0] = be64_to_cpu(b[0]);
432 static void regmap_parse_64_le_inplace(void *buf)
436 b[0] = le64_to_cpu(b[0]);
439 static unsigned int regmap_parse_64_native(const void *buf)
445 static void regmap_lock_hwlock(void *__map)
447 struct regmap *map = __map;
449 hwspin_lock_timeout(map->hwlock, UINT_MAX);
452 static void regmap_lock_hwlock_irq(void *__map)
454 struct regmap *map = __map;
456 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
459 static void regmap_lock_hwlock_irqsave(void *__map)
461 struct regmap *map = __map;
463 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
464 &map->spinlock_flags);
467 static void regmap_unlock_hwlock(void *__map)
469 struct regmap *map = __map;
471 hwspin_unlock(map->hwlock);
474 static void regmap_unlock_hwlock_irq(void *__map)
476 struct regmap *map = __map;
478 hwspin_unlock_irq(map->hwlock);
481 static void regmap_unlock_hwlock_irqrestore(void *__map)
483 struct regmap *map = __map;
485 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
488 static void regmap_lock_unlock_none(void *__map)
493 static void regmap_lock_mutex(void *__map)
495 struct regmap *map = __map;
496 mutex_lock(&map->mutex);
499 static void regmap_unlock_mutex(void *__map)
501 struct regmap *map = __map;
502 mutex_unlock(&map->mutex);
505 static void regmap_lock_spinlock(void *__map)
506 __acquires(&map->spinlock)
508 struct regmap *map = __map;
511 spin_lock_irqsave(&map->spinlock, flags);
512 map->spinlock_flags = flags;
515 static void regmap_unlock_spinlock(void *__map)
516 __releases(&map->spinlock)
518 struct regmap *map = __map;
519 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
522 static void dev_get_regmap_release(struct device *dev, void *res)
525 * We don't actually have anything to do here; the goal here
526 * is not to manage the regmap but to provide a simple way to
527 * get the regmap back given a struct device.
531 static bool _regmap_range_add(struct regmap *map,
532 struct regmap_range_node *data)
534 struct rb_root *root = &map->range_tree;
535 struct rb_node **new = &(root->rb_node), *parent = NULL;
538 struct regmap_range_node *this =
539 rb_entry(*new, struct regmap_range_node, node);
542 if (data->range_max < this->range_min)
543 new = &((*new)->rb_left);
544 else if (data->range_min > this->range_max)
545 new = &((*new)->rb_right);
550 rb_link_node(&data->node, parent, new);
551 rb_insert_color(&data->node, root);
556 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
559 struct rb_node *node = map->range_tree.rb_node;
562 struct regmap_range_node *this =
563 rb_entry(node, struct regmap_range_node, node);
565 if (reg < this->range_min)
566 node = node->rb_left;
567 else if (reg > this->range_max)
568 node = node->rb_right;
576 static void regmap_range_exit(struct regmap *map)
578 struct rb_node *next;
579 struct regmap_range_node *range_node;
581 next = rb_first(&map->range_tree);
583 range_node = rb_entry(next, struct regmap_range_node, node);
584 next = rb_next(&range_node->node);
585 rb_erase(&range_node->node, &map->range_tree);
589 kfree(map->selector_work_buf);
592 int regmap_attach_dev(struct device *dev, struct regmap *map,
593 const struct regmap_config *config)
599 regmap_debugfs_init(map, config->name);
601 /* Add a devres resource for dev_get_regmap() */
602 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
604 regmap_debugfs_exit(map);
612 EXPORT_SYMBOL_GPL(regmap_attach_dev);
614 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615 const struct regmap_config *config)
617 enum regmap_endian endian;
619 /* Retrieve the endianness specification from the regmap config */
620 endian = config->reg_format_endian;
622 /* If the regmap config specified a non-default value, use that */
623 if (endian != REGMAP_ENDIAN_DEFAULT)
626 /* Retrieve the endianness specification from the bus config */
627 if (bus && bus->reg_format_endian_default)
628 endian = bus->reg_format_endian_default;
630 /* If the bus specified a non-default value, use that */
631 if (endian != REGMAP_ENDIAN_DEFAULT)
634 /* Use this if no other value was found */
635 return REGMAP_ENDIAN_BIG;
638 enum regmap_endian regmap_get_val_endian(struct device *dev,
639 const struct regmap_bus *bus,
640 const struct regmap_config *config)
642 struct device_node *np;
643 enum regmap_endian endian;
645 /* Retrieve the endianness specification from the regmap config */
646 endian = config->val_format_endian;
648 /* If the regmap config specified a non-default value, use that */
649 if (endian != REGMAP_ENDIAN_DEFAULT)
652 /* If the dev and dev->of_node exist try to get endianness from DT */
653 if (dev && dev->of_node) {
656 /* Parse the device's DT node for an endianness specification */
657 if (of_property_read_bool(np, "big-endian"))
658 endian = REGMAP_ENDIAN_BIG;
659 else if (of_property_read_bool(np, "little-endian"))
660 endian = REGMAP_ENDIAN_LITTLE;
661 else if (of_property_read_bool(np, "native-endian"))
662 endian = REGMAP_ENDIAN_NATIVE;
664 /* If the endianness was specified in DT, use that */
665 if (endian != REGMAP_ENDIAN_DEFAULT)
669 /* Retrieve the endianness specification from the bus config */
670 if (bus && bus->val_format_endian_default)
671 endian = bus->val_format_endian_default;
673 /* If the bus specified a non-default value, use that */
674 if (endian != REGMAP_ENDIAN_DEFAULT)
677 /* Use this if no other value was found */
678 return REGMAP_ENDIAN_BIG;
680 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
682 struct regmap *__regmap_init(struct device *dev,
683 const struct regmap_bus *bus,
685 const struct regmap_config *config,
686 struct lock_class_key *lock_key,
687 const char *lock_name)
691 enum regmap_endian reg_endian, val_endian;
697 map = kzalloc(sizeof(*map), GFP_KERNEL);
704 map->name = kstrdup_const(config->name, GFP_KERNEL);
711 if (config->disable_locking) {
712 map->lock = map->unlock = regmap_lock_unlock_none;
713 regmap_debugfs_disable(map);
714 } else if (config->lock && config->unlock) {
715 map->lock = config->lock;
716 map->unlock = config->unlock;
717 map->lock_arg = config->lock_arg;
718 } else if (config->use_hwlock) {
719 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
725 switch (config->hwlock_mode) {
726 case HWLOCK_IRQSTATE:
727 map->lock = regmap_lock_hwlock_irqsave;
728 map->unlock = regmap_unlock_hwlock_irqrestore;
731 map->lock = regmap_lock_hwlock_irq;
732 map->unlock = regmap_unlock_hwlock_irq;
735 map->lock = regmap_lock_hwlock;
736 map->unlock = regmap_unlock_hwlock;
742 if ((bus && bus->fast_io) ||
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
750 mutex_init(&map->mutex);
751 map->lock = regmap_lock_mutex;
752 map->unlock = regmap_unlock_mutex;
753 lockdep_set_class_and_name(&map->mutex,
754 lock_key, lock_name);
760 * When we write in fast-paths with regmap_bulk_write() don't allocate
761 * scratch buffers with sleeping allocations.
763 if ((bus && bus->fast_io) || config->fast_io)
764 map->alloc_flags = GFP_ATOMIC;
766 map->alloc_flags = GFP_KERNEL;
768 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
769 map->format.pad_bytes = config->pad_bits / 8;
770 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
771 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
772 config->val_bits + config->pad_bits, 8);
773 map->reg_shift = config->pad_bits % 8;
774 if (config->reg_stride)
775 map->reg_stride = config->reg_stride;
778 if (is_power_of_2(map->reg_stride))
779 map->reg_stride_order = ilog2(map->reg_stride);
781 map->reg_stride_order = -1;
782 map->use_single_read = config->use_single_read || !bus || !bus->read;
783 map->use_single_write = config->use_single_write || !bus || !bus->write;
784 map->can_multi_write = config->can_multi_write && bus && bus->write;
786 map->max_raw_read = bus->max_raw_read;
787 map->max_raw_write = bus->max_raw_write;
791 map->bus_context = bus_context;
792 map->max_register = config->max_register;
793 map->wr_table = config->wr_table;
794 map->rd_table = config->rd_table;
795 map->volatile_table = config->volatile_table;
796 map->precious_table = config->precious_table;
797 map->wr_noinc_table = config->wr_noinc_table;
798 map->rd_noinc_table = config->rd_noinc_table;
799 map->writeable_reg = config->writeable_reg;
800 map->readable_reg = config->readable_reg;
801 map->volatile_reg = config->volatile_reg;
802 map->precious_reg = config->precious_reg;
803 map->writeable_noinc_reg = config->writeable_noinc_reg;
804 map->readable_noinc_reg = config->readable_noinc_reg;
805 map->cache_type = config->cache_type;
807 spin_lock_init(&map->async_lock);
808 INIT_LIST_HEAD(&map->async_list);
809 INIT_LIST_HEAD(&map->async_free);
810 init_waitqueue_head(&map->async_waitq);
812 if (config->read_flag_mask ||
813 config->write_flag_mask ||
814 config->zero_flag_mask) {
815 map->read_flag_mask = config->read_flag_mask;
816 map->write_flag_mask = config->write_flag_mask;
818 map->read_flag_mask = bus->read_flag_mask;
822 map->reg_read = config->reg_read;
823 map->reg_write = config->reg_write;
825 map->defer_caching = false;
826 goto skip_format_initialization;
827 } else if (!bus->read || !bus->write) {
828 map->reg_read = _regmap_bus_reg_read;
829 map->reg_write = _regmap_bus_reg_write;
831 map->defer_caching = false;
832 goto skip_format_initialization;
834 map->reg_read = _regmap_bus_read;
835 map->reg_update_bits = bus->reg_update_bits;
838 reg_endian = regmap_get_reg_endian(bus, config);
839 val_endian = regmap_get_val_endian(dev, bus, config);
841 switch (config->reg_bits + map->reg_shift) {
843 switch (config->val_bits) {
845 map->format.format_write = regmap_format_2_6_write;
853 switch (config->val_bits) {
855 map->format.format_write = regmap_format_4_12_write;
863 switch (config->val_bits) {
865 map->format.format_write = regmap_format_7_9_write;
873 switch (config->val_bits) {
875 map->format.format_write = regmap_format_10_14_write;
883 map->format.format_reg = regmap_format_8;
887 switch (reg_endian) {
888 case REGMAP_ENDIAN_BIG:
889 map->format.format_reg = regmap_format_16_be;
891 case REGMAP_ENDIAN_LITTLE:
892 map->format.format_reg = regmap_format_16_le;
894 case REGMAP_ENDIAN_NATIVE:
895 map->format.format_reg = regmap_format_16_native;
903 if (reg_endian != REGMAP_ENDIAN_BIG)
905 map->format.format_reg = regmap_format_24;
909 switch (reg_endian) {
910 case REGMAP_ENDIAN_BIG:
911 map->format.format_reg = regmap_format_32_be;
913 case REGMAP_ENDIAN_LITTLE:
914 map->format.format_reg = regmap_format_32_le;
916 case REGMAP_ENDIAN_NATIVE:
917 map->format.format_reg = regmap_format_32_native;
926 switch (reg_endian) {
927 case REGMAP_ENDIAN_BIG:
928 map->format.format_reg = regmap_format_64_be;
930 case REGMAP_ENDIAN_LITTLE:
931 map->format.format_reg = regmap_format_64_le;
933 case REGMAP_ENDIAN_NATIVE:
934 map->format.format_reg = regmap_format_64_native;
946 if (val_endian == REGMAP_ENDIAN_NATIVE)
947 map->format.parse_inplace = regmap_parse_inplace_noop;
949 switch (config->val_bits) {
951 map->format.format_val = regmap_format_8;
952 map->format.parse_val = regmap_parse_8;
953 map->format.parse_inplace = regmap_parse_inplace_noop;
956 switch (val_endian) {
957 case REGMAP_ENDIAN_BIG:
958 map->format.format_val = regmap_format_16_be;
959 map->format.parse_val = regmap_parse_16_be;
960 map->format.parse_inplace = regmap_parse_16_be_inplace;
962 case REGMAP_ENDIAN_LITTLE:
963 map->format.format_val = regmap_format_16_le;
964 map->format.parse_val = regmap_parse_16_le;
965 map->format.parse_inplace = regmap_parse_16_le_inplace;
967 case REGMAP_ENDIAN_NATIVE:
968 map->format.format_val = regmap_format_16_native;
969 map->format.parse_val = regmap_parse_16_native;
976 if (val_endian != REGMAP_ENDIAN_BIG)
978 map->format.format_val = regmap_format_24;
979 map->format.parse_val = regmap_parse_24;
982 switch (val_endian) {
983 case REGMAP_ENDIAN_BIG:
984 map->format.format_val = regmap_format_32_be;
985 map->format.parse_val = regmap_parse_32_be;
986 map->format.parse_inplace = regmap_parse_32_be_inplace;
988 case REGMAP_ENDIAN_LITTLE:
989 map->format.format_val = regmap_format_32_le;
990 map->format.parse_val = regmap_parse_32_le;
991 map->format.parse_inplace = regmap_parse_32_le_inplace;
993 case REGMAP_ENDIAN_NATIVE:
994 map->format.format_val = regmap_format_32_native;
995 map->format.parse_val = regmap_parse_32_native;
1003 switch (val_endian) {
1004 case REGMAP_ENDIAN_BIG:
1005 map->format.format_val = regmap_format_64_be;
1006 map->format.parse_val = regmap_parse_64_be;
1007 map->format.parse_inplace = regmap_parse_64_be_inplace;
1009 case REGMAP_ENDIAN_LITTLE:
1010 map->format.format_val = regmap_format_64_le;
1011 map->format.parse_val = regmap_parse_64_le;
1012 map->format.parse_inplace = regmap_parse_64_le_inplace;
1014 case REGMAP_ENDIAN_NATIVE:
1015 map->format.format_val = regmap_format_64_native;
1016 map->format.parse_val = regmap_parse_64_native;
1025 if (map->format.format_write) {
1026 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027 (val_endian != REGMAP_ENDIAN_BIG))
1029 map->use_single_write = true;
1032 if (!map->format.format_write &&
1033 !(map->format.format_reg && map->format.format_val))
1036 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037 if (map->work_buf == NULL) {
1042 if (map->format.format_write) {
1043 map->defer_caching = false;
1044 map->reg_write = _regmap_bus_formatted_write;
1045 } else if (map->format.format_val) {
1046 map->defer_caching = true;
1047 map->reg_write = _regmap_bus_raw_write;
1050 skip_format_initialization:
1052 map->range_tree = RB_ROOT;
1053 for (i = 0; i < config->num_ranges; i++) {
1054 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055 struct regmap_range_node *new;
1058 if (range_cfg->range_max < range_cfg->range_min) {
1059 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060 range_cfg->range_max, range_cfg->range_min);
1064 if (range_cfg->range_max > map->max_register) {
1065 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066 range_cfg->range_max, map->max_register);
1070 if (range_cfg->selector_reg > map->max_register) {
1072 "Invalid range %d: selector out of map\n", i);
1076 if (range_cfg->window_len == 0) {
1077 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1082 /* Make sure, that this register range has no selector
1083 or data window within its boundary */
1084 for (j = 0; j < config->num_ranges; j++) {
1085 unsigned sel_reg = config->ranges[j].selector_reg;
1086 unsigned win_min = config->ranges[j].window_start;
1087 unsigned win_max = win_min +
1088 config->ranges[j].window_len - 1;
1090 /* Allow data window inside its own virtual range */
1094 if (range_cfg->range_min <= sel_reg &&
1095 sel_reg <= range_cfg->range_max) {
1097 "Range %d: selector for %d in window\n",
1102 if (!(win_max < range_cfg->range_min ||
1103 win_min > range_cfg->range_max)) {
1105 "Range %d: window for %d in window\n",
1111 new = kzalloc(sizeof(*new), GFP_KERNEL);
1118 new->name = range_cfg->name;
1119 new->range_min = range_cfg->range_min;
1120 new->range_max = range_cfg->range_max;
1121 new->selector_reg = range_cfg->selector_reg;
1122 new->selector_mask = range_cfg->selector_mask;
1123 new->selector_shift = range_cfg->selector_shift;
1124 new->window_start = range_cfg->window_start;
1125 new->window_len = range_cfg->window_len;
1127 if (!_regmap_range_add(map, new)) {
1128 dev_err(map->dev, "Failed to add range %d\n", i);
1133 if (map->selector_work_buf == NULL) {
1134 map->selector_work_buf =
1135 kzalloc(map->format.buf_size, GFP_KERNEL);
1136 if (map->selector_work_buf == NULL) {
1143 ret = regcache_init(map, config);
1148 ret = regmap_attach_dev(dev, map, config);
1152 regmap_debugfs_init(map, config->name);
1160 regmap_range_exit(map);
1161 kfree(map->work_buf);
1164 hwspin_lock_free(map->hwlock);
1166 kfree_const(map->name);
1170 return ERR_PTR(ret);
1172 EXPORT_SYMBOL_GPL(__regmap_init);
1174 static void devm_regmap_release(struct device *dev, void *res)
1176 regmap_exit(*(struct regmap **)res);
1179 struct regmap *__devm_regmap_init(struct device *dev,
1180 const struct regmap_bus *bus,
1182 const struct regmap_config *config,
1183 struct lock_class_key *lock_key,
1184 const char *lock_name)
1186 struct regmap **ptr, *regmap;
1188 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1190 return ERR_PTR(-ENOMEM);
1192 regmap = __regmap_init(dev, bus, bus_context, config,
1193 lock_key, lock_name);
1194 if (!IS_ERR(regmap)) {
1196 devres_add(dev, ptr);
1203 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1205 static void regmap_field_init(struct regmap_field *rm_field,
1206 struct regmap *regmap, struct reg_field reg_field)
1208 rm_field->regmap = regmap;
1209 rm_field->reg = reg_field.reg;
1210 rm_field->shift = reg_field.lsb;
1211 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1212 rm_field->id_size = reg_field.id_size;
1213 rm_field->id_offset = reg_field.id_offset;
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1227 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228 struct regmap *regmap, struct reg_field reg_field)
1230 struct regmap_field *rm_field = devm_kzalloc(dev,
1231 sizeof(*rm_field), GFP_KERNEL);
1233 return ERR_PTR(-ENOMEM);
1235 regmap_field_init(rm_field, regmap, reg_field);
1240 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 * devm_regmap_field_alloc.
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1253 void devm_regmap_field_free(struct device *dev,
1254 struct regmap_field *field)
1256 devm_kfree(dev, field);
1258 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1261 * regmap_field_alloc() - Allocate and initialise a register field.
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1270 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271 struct reg_field reg_field)
1273 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1276 return ERR_PTR(-ENOMEM);
1278 regmap_field_init(rm_field, regmap, reg_field);
1282 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1285 * regmap_field_free() - Free register field allocated using
1286 * regmap_field_alloc.
1288 * @field: regmap field which should be freed.
1290 void regmap_field_free(struct regmap_field *field)
1294 EXPORT_SYMBOL_GPL(regmap_field_free);
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1299 * @map: Register map to operate on.
1300 * @config: New configuration. Only the cache data will be used.
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache. This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1310 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1313 regmap_debugfs_exit(map);
1315 map->max_register = config->max_register;
1316 map->writeable_reg = config->writeable_reg;
1317 map->readable_reg = config->readable_reg;
1318 map->volatile_reg = config->volatile_reg;
1319 map->precious_reg = config->precious_reg;
1320 map->writeable_noinc_reg = config->writeable_noinc_reg;
1321 map->readable_noinc_reg = config->readable_noinc_reg;
1322 map->cache_type = config->cache_type;
1324 regmap_debugfs_init(map, config->name);
1326 map->cache_bypass = false;
1327 map->cache_only = false;
1329 return regcache_init(map, config);
1331 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1334 * regmap_exit() - Free a previously allocated register map
1336 * @map: Register map to operate on.
1338 void regmap_exit(struct regmap *map)
1340 struct regmap_async *async;
1343 regmap_debugfs_exit(map);
1344 regmap_range_exit(map);
1345 if (map->bus && map->bus->free_context)
1346 map->bus->free_context(map->bus_context);
1347 kfree(map->work_buf);
1348 while (!list_empty(&map->async_free)) {
1349 async = list_first_entry_or_null(&map->async_free,
1350 struct regmap_async,
1352 list_del(&async->list);
1353 kfree(async->work_buf);
1357 hwspin_lock_free(map->hwlock);
1358 kfree_const(map->name);
1361 EXPORT_SYMBOL_GPL(regmap_exit);
1363 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1365 struct regmap **r = res;
1371 /* If the user didn't specify a name match any */
1373 return (*r)->name == data;
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1384 * Returns the regmap for the device if one is present, or NULL. If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used. Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1390 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1392 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393 dev_get_regmap_match, (void *)name);
1399 EXPORT_SYMBOL_GPL(dev_get_regmap);
1402 * regmap_get_device() - Obtain the device from a regmap
1404 * @map: Register map to operate on.
1406 * Returns the underlying device that the regmap has been created for.
1408 struct device *regmap_get_device(struct regmap *map)
1412 EXPORT_SYMBOL_GPL(regmap_get_device);
1414 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415 struct regmap_range_node *range,
1416 unsigned int val_num)
1418 void *orig_work_buf;
1419 unsigned int win_offset;
1420 unsigned int win_page;
1424 win_offset = (*reg - range->range_min) % range->window_len;
1425 win_page = (*reg - range->range_min) / range->window_len;
1428 /* Bulk write shouldn't cross range boundary */
1429 if (*reg + val_num - 1 > range->range_max)
1432 /* ... or single page boundary */
1433 if (val_num > range->window_len - win_offset)
1437 /* It is possible to have selector register inside data window.
1438 In that case, selector register is located on every page and
1439 it needs no page switching, when accessed alone. */
1441 range->window_start + win_offset != range->selector_reg) {
1442 /* Use separate work_buf during page switching */
1443 orig_work_buf = map->work_buf;
1444 map->work_buf = map->selector_work_buf;
1446 ret = _regmap_update_bits(map, range->selector_reg,
1447 range->selector_mask,
1448 win_page << range->selector_shift,
1451 map->work_buf = orig_work_buf;
1457 *reg = range->window_start + win_offset;
1462 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1468 if (!mask || !map->work_buf)
1471 buf = map->work_buf;
1473 for (i = 0; i < max_bytes; i++)
1474 buf[i] |= (mask >> (8 * i)) & 0xff;
1477 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478 const void *val, size_t val_len)
1480 struct regmap_range_node *range;
1481 unsigned long flags;
1482 void *work_val = map->work_buf + map->format.reg_bytes +
1483 map->format.pad_bytes;
1485 int ret = -ENOTSUPP;
1491 /* Check for unwritable or noinc registers in range
1494 if (!regmap_writeable_noinc(map, reg)) {
1495 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1496 unsigned int element =
1497 reg + regmap_get_offset(map, i);
1498 if (!regmap_writeable(map, element) ||
1499 regmap_writeable_noinc(map, element))
1504 if (!map->cache_bypass && map->format.parse_val) {
1506 int val_bytes = map->format.val_bytes;
1507 for (i = 0; i < val_len / val_bytes; i++) {
1508 ival = map->format.parse_val(val + (i * val_bytes));
1509 ret = regcache_write(map,
1510 reg + regmap_get_offset(map, i),
1514 "Error in caching of register: %x ret: %d\n",
1519 if (map->cache_only) {
1520 map->cache_dirty = true;
1525 range = _regmap_range_lookup(map, reg);
1527 int val_num = val_len / map->format.val_bytes;
1528 int win_offset = (reg - range->range_min) % range->window_len;
1529 int win_residue = range->window_len - win_offset;
1531 /* If the write goes beyond the end of the window split it */
1532 while (val_num > win_residue) {
1533 dev_dbg(map->dev, "Writing window %d/%zu\n",
1534 win_residue, val_len / map->format.val_bytes);
1535 ret = _regmap_raw_write_impl(map, reg, val,
1537 map->format.val_bytes);
1542 val_num -= win_residue;
1543 val += win_residue * map->format.val_bytes;
1544 val_len -= win_residue * map->format.val_bytes;
1546 win_offset = (reg - range->range_min) %
1548 win_residue = range->window_len - win_offset;
1551 ret = _regmap_select_page(map, ®, range, val_num);
1556 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1557 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1558 map->write_flag_mask);
1561 * Essentially all I/O mechanisms will be faster with a single
1562 * buffer to write. Since register syncs often generate raw
1563 * writes of single registers optimise that case.
1565 if (val != work_val && val_len == map->format.val_bytes) {
1566 memcpy(work_val, val, map->format.val_bytes);
1570 if (map->async && map->bus->async_write) {
1571 struct regmap_async *async;
1573 trace_regmap_async_write_start(map, reg, val_len);
1575 spin_lock_irqsave(&map->async_lock, flags);
1576 async = list_first_entry_or_null(&map->async_free,
1577 struct regmap_async,
1580 list_del(&async->list);
1581 spin_unlock_irqrestore(&map->async_lock, flags);
1584 async = map->bus->async_alloc();
1588 async->work_buf = kzalloc(map->format.buf_size,
1589 GFP_KERNEL | GFP_DMA);
1590 if (!async->work_buf) {
1598 /* If the caller supplied the value we can use it safely. */
1599 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1600 map->format.reg_bytes + map->format.val_bytes);
1602 spin_lock_irqsave(&map->async_lock, flags);
1603 list_add_tail(&async->list, &map->async_list);
1604 spin_unlock_irqrestore(&map->async_lock, flags);
1606 if (val != work_val)
1607 ret = map->bus->async_write(map->bus_context,
1609 map->format.reg_bytes +
1610 map->format.pad_bytes,
1611 val, val_len, async);
1613 ret = map->bus->async_write(map->bus_context,
1615 map->format.reg_bytes +
1616 map->format.pad_bytes +
1617 val_len, NULL, 0, async);
1620 dev_err(map->dev, "Failed to schedule write: %d\n",
1623 spin_lock_irqsave(&map->async_lock, flags);
1624 list_move(&async->list, &map->async_free);
1625 spin_unlock_irqrestore(&map->async_lock, flags);
1631 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1633 /* If we're doing a single register write we can probably just
1634 * send the work_buf directly, otherwise try to do a gather
1637 if (val == work_val)
1638 ret = map->bus->write(map->bus_context, map->work_buf,
1639 map->format.reg_bytes +
1640 map->format.pad_bytes +
1642 else if (map->bus->gather_write)
1643 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1644 map->format.reg_bytes +
1645 map->format.pad_bytes,
1650 /* If that didn't work fall back on linearising by hand. */
1651 if (ret == -ENOTSUPP) {
1652 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1653 buf = kzalloc(len, GFP_KERNEL);
1657 memcpy(buf, map->work_buf, map->format.reg_bytes);
1658 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1660 ret = map->bus->write(map->bus_context, buf, len);
1663 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1664 /* regcache_drop_region() takes lock that we already have,
1665 * thus call map->cache_ops->drop() directly
1667 if (map->cache_ops && map->cache_ops->drop)
1668 map->cache_ops->drop(map, reg, reg + 1);
1671 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1677 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1679 * @map: Map to check.
1681 bool regmap_can_raw_write(struct regmap *map)
1683 return map->bus && map->bus->write && map->format.format_val &&
1684 map->format.format_reg;
1686 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1689 * regmap_get_raw_read_max - Get the maximum size we can read
1691 * @map: Map to check.
1693 size_t regmap_get_raw_read_max(struct regmap *map)
1695 return map->max_raw_read;
1697 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1700 * regmap_get_raw_write_max - Get the maximum size we can read
1702 * @map: Map to check.
1704 size_t regmap_get_raw_write_max(struct regmap *map)
1706 return map->max_raw_write;
1708 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1710 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1714 struct regmap_range_node *range;
1715 struct regmap *map = context;
1717 WARN_ON(!map->bus || !map->format.format_write);
1719 range = _regmap_range_lookup(map, reg);
1721 ret = _regmap_select_page(map, ®, range, 1);
1726 map->format.format_write(map, reg, val);
1728 trace_regmap_hw_write_start(map, reg, 1);
1730 ret = map->bus->write(map->bus_context, map->work_buf,
1731 map->format.buf_size);
1733 trace_regmap_hw_write_done(map, reg, 1);
1738 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1741 struct regmap *map = context;
1743 return map->bus->reg_write(map->bus_context, reg, val);
1746 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1749 struct regmap *map = context;
1751 WARN_ON(!map->bus || !map->format.format_val);
1753 map->format.format_val(map->work_buf + map->format.reg_bytes
1754 + map->format.pad_bytes, val, 0);
1755 return _regmap_raw_write_impl(map, reg,
1757 map->format.reg_bytes +
1758 map->format.pad_bytes,
1759 map->format.val_bytes);
1762 static inline void *_regmap_map_get_context(struct regmap *map)
1764 return (map->bus) ? map : map->bus_context;
1767 int _regmap_write(struct regmap *map, unsigned int reg,
1771 void *context = _regmap_map_get_context(map);
1773 if (!regmap_writeable(map, reg))
1776 if (!map->cache_bypass && !map->defer_caching) {
1777 ret = regcache_write(map, reg, val);
1780 if (map->cache_only) {
1781 map->cache_dirty = true;
1786 if (regmap_should_log(map))
1787 dev_info(map->dev, "%x <= %x\n", reg, val);
1789 trace_regmap_reg_write(map, reg, val);
1791 return map->reg_write(context, reg, val);
1795 * regmap_write() - Write a value to a single register
1797 * @map: Register map to write to
1798 * @reg: Register to write to
1799 * @val: Value to be written
1801 * A value of zero will be returned on success, a negative errno will
1802 * be returned in error cases.
1804 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1808 if (!IS_ALIGNED(reg, map->reg_stride))
1811 map->lock(map->lock_arg);
1813 ret = _regmap_write(map, reg, val);
1815 map->unlock(map->lock_arg);
1819 EXPORT_SYMBOL_GPL(regmap_write);
1822 * regmap_write_async() - Write a value to a single register asynchronously
1824 * @map: Register map to write to
1825 * @reg: Register to write to
1826 * @val: Value to be written
1828 * A value of zero will be returned on success, a negative errno will
1829 * be returned in error cases.
1831 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1835 if (!IS_ALIGNED(reg, map->reg_stride))
1838 map->lock(map->lock_arg);
1842 ret = _regmap_write(map, reg, val);
1846 map->unlock(map->lock_arg);
1850 EXPORT_SYMBOL_GPL(regmap_write_async);
1852 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1853 const void *val, size_t val_len)
1855 size_t val_bytes = map->format.val_bytes;
1856 size_t val_count = val_len / val_bytes;
1857 size_t chunk_count, chunk_bytes;
1858 size_t chunk_regs = val_count;
1864 if (map->use_single_write)
1866 else if (map->max_raw_write && val_len > map->max_raw_write)
1867 chunk_regs = map->max_raw_write / val_bytes;
1869 chunk_count = val_count / chunk_regs;
1870 chunk_bytes = chunk_regs * val_bytes;
1872 /* Write as many bytes as possible with chunk_size */
1873 for (i = 0; i < chunk_count; i++) {
1874 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1878 reg += regmap_get_offset(map, chunk_regs);
1880 val_len -= chunk_bytes;
1883 /* Write remaining bytes */
1885 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1891 * regmap_raw_write() - Write raw values to one or more registers
1893 * @map: Register map to write to
1894 * @reg: Initial register to write to
1895 * @val: Block of data to be written, laid out for direct transmission to the
1897 * @val_len: Length of data pointed to by val.
1899 * This function is intended to be used for things like firmware
1900 * download where a large block of data needs to be transferred to the
1901 * device. No formatting will be done on the data provided.
1903 * A value of zero will be returned on success, a negative errno will
1904 * be returned in error cases.
1906 int regmap_raw_write(struct regmap *map, unsigned int reg,
1907 const void *val, size_t val_len)
1911 if (!regmap_can_raw_write(map))
1913 if (val_len % map->format.val_bytes)
1916 map->lock(map->lock_arg);
1918 ret = _regmap_raw_write(map, reg, val, val_len);
1920 map->unlock(map->lock_arg);
1924 EXPORT_SYMBOL_GPL(regmap_raw_write);
1927 * regmap_noinc_write(): Write data from a register without incrementing the
1930 * @map: Register map to write to
1931 * @reg: Register to write to
1932 * @val: Pointer to data buffer
1933 * @val_len: Length of output buffer in bytes.
1935 * The regmap API usually assumes that bulk bus write operations will write a
1936 * range of registers. Some devices have certain registers for which a write
1937 * operation can write to an internal FIFO.
1939 * The target register must be volatile but registers after it can be
1940 * completely unrelated cacheable registers.
1942 * This will attempt multiple writes as required to write val_len bytes.
1944 * A value of zero will be returned on success, a negative errno will be
1945 * returned in error cases.
1947 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1948 const void *val, size_t val_len)
1955 if (!map->bus->write)
1957 if (val_len % map->format.val_bytes)
1959 if (!IS_ALIGNED(reg, map->reg_stride))
1964 map->lock(map->lock_arg);
1966 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1972 if (map->max_raw_write && map->max_raw_write < val_len)
1973 write_len = map->max_raw_write;
1975 write_len = val_len;
1976 ret = _regmap_raw_write(map, reg, val, write_len);
1979 val = ((u8 *)val) + write_len;
1980 val_len -= write_len;
1984 map->unlock(map->lock_arg);
1987 EXPORT_SYMBOL_GPL(regmap_noinc_write);
1990 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1993 * @field: Register field to write to
1994 * @mask: Bitmask to change
1995 * @val: Value to be written
1996 * @change: Boolean indicating if a write was done
1997 * @async: Boolean indicating asynchronously
1998 * @force: Boolean indicating use force update
2000 * Perform a read/modify/write cycle on the register field with change,
2001 * async, force option.
2003 * A value of zero will be returned on success, a negative errno will
2004 * be returned in error cases.
2006 int regmap_field_update_bits_base(struct regmap_field *field,
2007 unsigned int mask, unsigned int val,
2008 bool *change, bool async, bool force)
2010 mask = (mask << field->shift) & field->mask;
2012 return regmap_update_bits_base(field->regmap, field->reg,
2013 mask, val << field->shift,
2014 change, async, force);
2016 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2019 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2020 * register field with port ID
2022 * @field: Register field to write to
2024 * @mask: Bitmask to change
2025 * @val: Value to be written
2026 * @change: Boolean indicating if a write was done
2027 * @async: Boolean indicating asynchronously
2028 * @force: Boolean indicating use force update
2030 * A value of zero will be returned on success, a negative errno will
2031 * be returned in error cases.
2033 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2034 unsigned int mask, unsigned int val,
2035 bool *change, bool async, bool force)
2037 if (id >= field->id_size)
2040 mask = (mask << field->shift) & field->mask;
2042 return regmap_update_bits_base(field->regmap,
2043 field->reg + (field->id_offset * id),
2044 mask, val << field->shift,
2045 change, async, force);
2047 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2050 * regmap_bulk_write() - Write multiple registers to the device
2052 * @map: Register map to write to
2053 * @reg: First register to be write from
2054 * @val: Block of data to be written, in native register size for device
2055 * @val_count: Number of registers to write
2057 * This function is intended to be used for writing a large block of
2058 * data to the device either in single transfer or multiple transfer.
2060 * A value of zero will be returned on success, a negative errno will
2061 * be returned in error cases.
2063 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2067 size_t val_bytes = map->format.val_bytes;
2069 if (!IS_ALIGNED(reg, map->reg_stride))
2073 * Some devices don't support bulk write, for them we have a series of
2074 * single write operations.
2076 if (!map->bus || !map->format.parse_inplace) {
2077 map->lock(map->lock_arg);
2078 for (i = 0; i < val_count; i++) {
2081 switch (val_bytes) {
2083 ival = *(u8 *)(val + (i * val_bytes));
2086 ival = *(u16 *)(val + (i * val_bytes));
2089 ival = *(u32 *)(val + (i * val_bytes));
2093 ival = *(u64 *)(val + (i * val_bytes));
2101 ret = _regmap_write(map,
2102 reg + regmap_get_offset(map, i),
2108 map->unlock(map->lock_arg);
2112 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2116 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2117 map->format.parse_inplace(wval + i);
2119 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2125 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2128 * _regmap_raw_multi_reg_write()
2130 * the (register,newvalue) pairs in regs have not been formatted, but
2131 * they are all in the same page and have been changed to being page
2132 * relative. The page register has been written if that was necessary.
2134 static int _regmap_raw_multi_reg_write(struct regmap *map,
2135 const struct reg_sequence *regs,
2142 size_t val_bytes = map->format.val_bytes;
2143 size_t reg_bytes = map->format.reg_bytes;
2144 size_t pad_bytes = map->format.pad_bytes;
2145 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2146 size_t len = pair_size * num_regs;
2151 buf = kzalloc(len, GFP_KERNEL);
2155 /* We have to linearise by hand. */
2159 for (i = 0; i < num_regs; i++) {
2160 unsigned int reg = regs[i].reg;
2161 unsigned int val = regs[i].def;
2162 trace_regmap_hw_write_start(map, reg, 1);
2163 map->format.format_reg(u8, reg, map->reg_shift);
2164 u8 += reg_bytes + pad_bytes;
2165 map->format.format_val(u8, val, 0);
2169 *u8 |= map->write_flag_mask;
2171 ret = map->bus->write(map->bus_context, buf, len);
2175 for (i = 0; i < num_regs; i++) {
2176 int reg = regs[i].reg;
2177 trace_regmap_hw_write_done(map, reg, 1);
2182 static unsigned int _regmap_register_page(struct regmap *map,
2184 struct regmap_range_node *range)
2186 unsigned int win_page = (reg - range->range_min) / range->window_len;
2191 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2192 struct reg_sequence *regs,
2197 struct reg_sequence *base;
2198 unsigned int this_page = 0;
2199 unsigned int page_change = 0;
2201 * the set of registers are not neccessarily in order, but
2202 * since the order of write must be preserved this algorithm
2203 * chops the set each time the page changes. This also applies
2204 * if there is a delay required at any point in the sequence.
2207 for (i = 0, n = 0; i < num_regs; i++, n++) {
2208 unsigned int reg = regs[i].reg;
2209 struct regmap_range_node *range;
2211 range = _regmap_range_lookup(map, reg);
2213 unsigned int win_page = _regmap_register_page(map, reg,
2217 this_page = win_page;
2218 if (win_page != this_page) {
2219 this_page = win_page;
2224 /* If we have both a page change and a delay make sure to
2225 * write the regs and apply the delay before we change the
2229 if (page_change || regs[i].delay_us) {
2231 /* For situations where the first write requires
2232 * a delay we need to make sure we don't call
2233 * raw_multi_reg_write with n=0
2234 * This can't occur with page breaks as we
2235 * never write on the first iteration
2237 if (regs[i].delay_us && i == 0)
2240 ret = _regmap_raw_multi_reg_write(map, base, n);
2244 if (regs[i].delay_us)
2245 udelay(regs[i].delay_us);
2251 ret = _regmap_select_page(map,
2264 return _regmap_raw_multi_reg_write(map, base, n);
2268 static int _regmap_multi_reg_write(struct regmap *map,
2269 const struct reg_sequence *regs,
2275 if (!map->can_multi_write) {
2276 for (i = 0; i < num_regs; i++) {
2277 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2281 if (regs[i].delay_us)
2282 udelay(regs[i].delay_us);
2287 if (!map->format.parse_inplace)
2290 if (map->writeable_reg)
2291 for (i = 0; i < num_regs; i++) {
2292 int reg = regs[i].reg;
2293 if (!map->writeable_reg(map->dev, reg))
2295 if (!IS_ALIGNED(reg, map->reg_stride))
2299 if (!map->cache_bypass) {
2300 for (i = 0; i < num_regs; i++) {
2301 unsigned int val = regs[i].def;
2302 unsigned int reg = regs[i].reg;
2303 ret = regcache_write(map, reg, val);
2306 "Error in caching of register: %x ret: %d\n",
2311 if (map->cache_only) {
2312 map->cache_dirty = true;
2319 for (i = 0; i < num_regs; i++) {
2320 unsigned int reg = regs[i].reg;
2321 struct regmap_range_node *range;
2323 /* Coalesce all the writes between a page break or a delay
2326 range = _regmap_range_lookup(map, reg);
2327 if (range || regs[i].delay_us) {
2328 size_t len = sizeof(struct reg_sequence)*num_regs;
2329 struct reg_sequence *base = kmemdup(regs, len,
2333 ret = _regmap_range_multi_paged_reg_write(map, base,
2340 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2344 * regmap_multi_reg_write() - Write multiple registers to the device
2346 * @map: Register map to write to
2347 * @regs: Array of structures containing register,value to be written
2348 * @num_regs: Number of registers to write
2350 * Write multiple registers to the device where the set of register, value
2351 * pairs are supplied in any order, possibly not all in a single range.
2353 * The 'normal' block write mode will send ultimately send data on the
2354 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2355 * addressed. However, this alternative block multi write mode will send
2356 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2357 * must of course support the mode.
2359 * A value of zero will be returned on success, a negative errno will be
2360 * returned in error cases.
2362 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2367 map->lock(map->lock_arg);
2369 ret = _regmap_multi_reg_write(map, regs, num_regs);
2371 map->unlock(map->lock_arg);
2375 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2378 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2379 * device but not the cache
2381 * @map: Register map to write to
2382 * @regs: Array of structures containing register,value to be written
2383 * @num_regs: Number of registers to write
2385 * Write multiple registers to the device but not the cache where the set
2386 * of register are supplied in any order.
2388 * This function is intended to be used for writing a large block of data
2389 * atomically to the device in single transfer for those I2C client devices
2390 * that implement this alternative block write mode.
2392 * A value of zero will be returned on success, a negative errno will
2393 * be returned in error cases.
2395 int regmap_multi_reg_write_bypassed(struct regmap *map,
2396 const struct reg_sequence *regs,
2402 map->lock(map->lock_arg);
2404 bypass = map->cache_bypass;
2405 map->cache_bypass = true;
2407 ret = _regmap_multi_reg_write(map, regs, num_regs);
2409 map->cache_bypass = bypass;
2411 map->unlock(map->lock_arg);
2415 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2418 * regmap_raw_write_async() - Write raw values to one or more registers
2421 * @map: Register map to write to
2422 * @reg: Initial register to write to
2423 * @val: Block of data to be written, laid out for direct transmission to the
2424 * device. Must be valid until regmap_async_complete() is called.
2425 * @val_len: Length of data pointed to by val.
2427 * This function is intended to be used for things like firmware
2428 * download where a large block of data needs to be transferred to the
2429 * device. No formatting will be done on the data provided.
2431 * If supported by the underlying bus the write will be scheduled
2432 * asynchronously, helping maximise I/O speed on higher speed buses
2433 * like SPI. regmap_async_complete() can be called to ensure that all
2434 * asynchrnous writes have been completed.
2436 * A value of zero will be returned on success, a negative errno will
2437 * be returned in error cases.
2439 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2440 const void *val, size_t val_len)
2444 if (val_len % map->format.val_bytes)
2446 if (!IS_ALIGNED(reg, map->reg_stride))
2449 map->lock(map->lock_arg);
2453 ret = _regmap_raw_write(map, reg, val, val_len);
2457 map->unlock(map->lock_arg);
2461 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2463 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2464 unsigned int val_len)
2466 struct regmap_range_node *range;
2471 if (!map->bus || !map->bus->read)
2474 range = _regmap_range_lookup(map, reg);
2476 ret = _regmap_select_page(map, ®, range,
2477 val_len / map->format.val_bytes);
2482 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2483 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2484 map->read_flag_mask);
2485 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2487 ret = map->bus->read(map->bus_context, map->work_buf,
2488 map->format.reg_bytes + map->format.pad_bytes,
2491 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2496 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2499 struct regmap *map = context;
2501 return map->bus->reg_read(map->bus_context, reg, val);
2504 static int _regmap_bus_read(void *context, unsigned int reg,
2508 struct regmap *map = context;
2509 void *work_val = map->work_buf + map->format.reg_bytes +
2510 map->format.pad_bytes;
2512 if (!map->format.parse_val)
2515 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2517 *val = map->format.parse_val(work_val);
2522 static int _regmap_read(struct regmap *map, unsigned int reg,
2526 void *context = _regmap_map_get_context(map);
2528 if (!map->cache_bypass) {
2529 ret = regcache_read(map, reg, val);
2534 if (map->cache_only)
2537 if (!regmap_readable(map, reg))
2540 ret = map->reg_read(context, reg, val);
2542 if (regmap_should_log(map))
2543 dev_info(map->dev, "%x => %x\n", reg, *val);
2545 trace_regmap_reg_read(map, reg, *val);
2547 if (!map->cache_bypass)
2548 regcache_write(map, reg, *val);
2555 * regmap_read() - Read a value from a single register
2557 * @map: Register map to read from
2558 * @reg: Register to be read from
2559 * @val: Pointer to store read value
2561 * A value of zero will be returned on success, a negative errno will
2562 * be returned in error cases.
2564 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2568 if (!IS_ALIGNED(reg, map->reg_stride))
2571 map->lock(map->lock_arg);
2573 ret = _regmap_read(map, reg, val);
2575 map->unlock(map->lock_arg);
2579 EXPORT_SYMBOL_GPL(regmap_read);
2582 * regmap_raw_read() - Read raw data from the device
2584 * @map: Register map to read from
2585 * @reg: First register to be read from
2586 * @val: Pointer to store read value
2587 * @val_len: Size of data to read
2589 * A value of zero will be returned on success, a negative errno will
2590 * be returned in error cases.
2592 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2595 size_t val_bytes = map->format.val_bytes;
2596 size_t val_count = val_len / val_bytes;
2602 if (val_len % map->format.val_bytes)
2604 if (!IS_ALIGNED(reg, map->reg_stride))
2609 map->lock(map->lock_arg);
2611 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2612 map->cache_type == REGCACHE_NONE) {
2613 size_t chunk_count, chunk_bytes;
2614 size_t chunk_regs = val_count;
2616 if (!map->bus->read) {
2621 if (map->use_single_read)
2623 else if (map->max_raw_read && val_len > map->max_raw_read)
2624 chunk_regs = map->max_raw_read / val_bytes;
2626 chunk_count = val_count / chunk_regs;
2627 chunk_bytes = chunk_regs * val_bytes;
2629 /* Read bytes that fit into whole chunks */
2630 for (i = 0; i < chunk_count; i++) {
2631 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2635 reg += regmap_get_offset(map, chunk_regs);
2637 val_len -= chunk_bytes;
2640 /* Read remaining bytes */
2642 ret = _regmap_raw_read(map, reg, val, val_len);
2647 /* Otherwise go word by word for the cache; should be low
2648 * cost as we expect to hit the cache.
2650 for (i = 0; i < val_count; i++) {
2651 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2656 map->format.format_val(val + (i * val_bytes), v, 0);
2661 map->unlock(map->lock_arg);
2665 EXPORT_SYMBOL_GPL(regmap_raw_read);
2668 * regmap_noinc_read(): Read data from a register without incrementing the
2671 * @map: Register map to read from
2672 * @reg: Register to read from
2673 * @val: Pointer to data buffer
2674 * @val_len: Length of output buffer in bytes.
2676 * The regmap API usually assumes that bulk bus read operations will read a
2677 * range of registers. Some devices have certain registers for which a read
2678 * operation read will read from an internal FIFO.
2680 * The target register must be volatile but registers after it can be
2681 * completely unrelated cacheable registers.
2683 * This will attempt multiple reads as required to read val_len bytes.
2685 * A value of zero will be returned on success, a negative errno will be
2686 * returned in error cases.
2688 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2689 void *val, size_t val_len)
2696 if (!map->bus->read)
2698 if (val_len % map->format.val_bytes)
2700 if (!IS_ALIGNED(reg, map->reg_stride))
2705 map->lock(map->lock_arg);
2707 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2713 if (map->max_raw_read && map->max_raw_read < val_len)
2714 read_len = map->max_raw_read;
2717 ret = _regmap_raw_read(map, reg, val, read_len);
2720 val = ((u8 *)val) + read_len;
2721 val_len -= read_len;
2725 map->unlock(map->lock_arg);
2728 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2731 * regmap_field_read(): Read a value to a single register field
2733 * @field: Register field to read from
2734 * @val: Pointer to store read value
2736 * A value of zero will be returned on success, a negative errno will
2737 * be returned in error cases.
2739 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2742 unsigned int reg_val;
2743 ret = regmap_read(field->regmap, field->reg, ®_val);
2747 reg_val &= field->mask;
2748 reg_val >>= field->shift;
2753 EXPORT_SYMBOL_GPL(regmap_field_read);
2756 * regmap_fields_read() - Read a value to a single register field with port ID
2758 * @field: Register field to read from
2760 * @val: Pointer to store read value
2762 * A value of zero will be returned on success, a negative errno will
2763 * be returned in error cases.
2765 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2769 unsigned int reg_val;
2771 if (id >= field->id_size)
2774 ret = regmap_read(field->regmap,
2775 field->reg + (field->id_offset * id),
2780 reg_val &= field->mask;
2781 reg_val >>= field->shift;
2786 EXPORT_SYMBOL_GPL(regmap_fields_read);
2789 * regmap_bulk_read() - Read multiple registers from the device
2791 * @map: Register map to read from
2792 * @reg: First register to be read from
2793 * @val: Pointer to store read value, in native register size for device
2794 * @val_count: Number of registers to read
2796 * A value of zero will be returned on success, a negative errno will
2797 * be returned in error cases.
2799 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2803 size_t val_bytes = map->format.val_bytes;
2804 bool vol = regmap_volatile_range(map, reg, val_count);
2806 if (!IS_ALIGNED(reg, map->reg_stride))
2811 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2812 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2816 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2817 map->format.parse_inplace(val + i);
2826 map->lock(map->lock_arg);
2828 for (i = 0; i < val_count; i++) {
2831 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2836 switch (map->format.val_bytes) {
2858 map->unlock(map->lock_arg);
2863 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2865 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2866 unsigned int mask, unsigned int val,
2867 bool *change, bool force_write)
2870 unsigned int tmp, orig;
2875 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2876 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2877 if (ret == 0 && change)
2880 ret = _regmap_read(map, reg, &orig);
2887 if (force_write || (tmp != orig)) {
2888 ret = _regmap_write(map, reg, tmp);
2889 if (ret == 0 && change)
2898 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2900 * @map: Register map to update
2901 * @reg: Register to update
2902 * @mask: Bitmask to change
2903 * @val: New value for bitmask
2904 * @change: Boolean indicating if a write was done
2905 * @async: Boolean indicating asynchronously
2906 * @force: Boolean indicating use force update
2908 * Perform a read/modify/write cycle on a register map with change, async, force
2913 * With most buses the read must be done synchronously so this is most useful
2914 * for devices with a cache which do not need to interact with the hardware to
2915 * determine the current register value.
2917 * Returns zero for success, a negative number on error.
2919 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2920 unsigned int mask, unsigned int val,
2921 bool *change, bool async, bool force)
2925 map->lock(map->lock_arg);
2929 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2933 map->unlock(map->lock_arg);
2937 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2939 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2941 struct regmap *map = async->map;
2944 trace_regmap_async_io_complete(map);
2946 spin_lock(&map->async_lock);
2947 list_move(&async->list, &map->async_free);
2948 wake = list_empty(&map->async_list);
2951 map->async_ret = ret;
2953 spin_unlock(&map->async_lock);
2956 wake_up(&map->async_waitq);
2958 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2960 static int regmap_async_is_done(struct regmap *map)
2962 unsigned long flags;
2965 spin_lock_irqsave(&map->async_lock, flags);
2966 ret = list_empty(&map->async_list);
2967 spin_unlock_irqrestore(&map->async_lock, flags);
2973 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2975 * @map: Map to operate on.
2977 * Blocks until any pending asynchronous I/O has completed. Returns
2978 * an error code for any failed I/O operations.
2980 int regmap_async_complete(struct regmap *map)
2982 unsigned long flags;
2985 /* Nothing to do with no async support */
2986 if (!map->bus || !map->bus->async_write)
2989 trace_regmap_async_complete_start(map);
2991 wait_event(map->async_waitq, regmap_async_is_done(map));
2993 spin_lock_irqsave(&map->async_lock, flags);
2994 ret = map->async_ret;
2996 spin_unlock_irqrestore(&map->async_lock, flags);
2998 trace_regmap_async_complete_done(map);
3002 EXPORT_SYMBOL_GPL(regmap_async_complete);
3005 * regmap_register_patch - Register and apply register updates to be applied
3006 * on device initialistion
3008 * @map: Register map to apply updates to.
3009 * @regs: Values to update.
3010 * @num_regs: Number of entries in regs.
3012 * Register a set of register updates to be applied to the device
3013 * whenever the device registers are synchronised with the cache and
3014 * apply them immediately. Typically this is used to apply
3015 * corrections to be applied to the device defaults on startup, such
3016 * as the updates some vendors provide to undocumented registers.
3018 * The caller must ensure that this function cannot be called
3019 * concurrently with either itself or regcache_sync().
3021 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3024 struct reg_sequence *p;
3028 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3032 p = krealloc(map->patch,
3033 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3036 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3038 map->patch_regs += num_regs;
3043 map->lock(map->lock_arg);
3045 bypass = map->cache_bypass;
3047 map->cache_bypass = true;
3050 ret = _regmap_multi_reg_write(map, regs, num_regs);
3053 map->cache_bypass = bypass;
3055 map->unlock(map->lock_arg);
3057 regmap_async_complete(map);
3061 EXPORT_SYMBOL_GPL(regmap_register_patch);
3064 * regmap_get_val_bytes() - Report the size of a register value
3066 * @map: Register map to operate on.
3068 * Report the size of a register value, mainly intended to for use by
3069 * generic infrastructure built on top of regmap.
3071 int regmap_get_val_bytes(struct regmap *map)
3073 if (map->format.format_write)
3076 return map->format.val_bytes;
3078 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3081 * regmap_get_max_register() - Report the max register value
3083 * @map: Register map to operate on.
3085 * Report the max register value, mainly intended to for use by
3086 * generic infrastructure built on top of regmap.
3088 int regmap_get_max_register(struct regmap *map)
3090 return map->max_register ? map->max_register : -EINVAL;
3092 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3095 * regmap_get_reg_stride() - Report the register address stride
3097 * @map: Register map to operate on.
3099 * Report the register address stride, mainly intended to for use by
3100 * generic infrastructure built on top of regmap.
3102 int regmap_get_reg_stride(struct regmap *map)
3104 return map->reg_stride;
3106 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3108 int regmap_parse_val(struct regmap *map, const void *buf,
3111 if (!map->format.parse_val)
3114 *val = map->format.parse_val(buf);
3118 EXPORT_SYMBOL_GPL(regmap_parse_val);
3120 static int __init regmap_initcall(void)
3122 regmap_debugfs_initcall();
3126 postcore_initcall(regmap_initcall);