]> Git Repo - linux.git/blob - kernel/fork.c
sched: Fix performance regression introduced by mm_cid
[linux.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106
107 #include <trace/events/sched.h>
108
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;      /* Handle normal Linux uptimes. */
126 int nr_threads;                 /* The idle threads do not count.. */
127
128 static int max_threads;         /* tunable limit on nr_threads */
129
130 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
131
132 static const char * const resident_page_types[] = {
133         NAMED_ARRAY_INDEX(MM_FILEPAGES),
134         NAMED_ARRAY_INDEX(MM_ANONPAGES),
135         NAMED_ARRAY_INDEX(MM_SWAPENTS),
136         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146         return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150
151 int nr_processes(void)
152 {
153         int cpu;
154         int total = 0;
155
156         for_each_possible_cpu(cpu)
157                 total += per_cpu(process_counts, cpu);
158
159         return total;
160 }
161
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176         kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195
196 struct vm_stack {
197         struct rcu_head rcu;
198         struct vm_struct *stack_vm_area;
199 };
200
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203         unsigned int i;
204
205         for (i = 0; i < NR_CACHED_STACKS; i++) {
206                 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207                         continue;
208                 return true;
209         }
210         return false;
211 }
212
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216
217         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218                 return;
219
220         vfree(vm_stack);
221 }
222
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225         struct vm_stack *vm_stack = tsk->stack;
226
227         vm_stack->stack_vm_area = tsk->stack_vm_area;
228         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234         int i;
235
236         for (i = 0; i < NR_CACHED_STACKS; i++) {
237                 struct vm_struct *vm_stack = cached_vm_stacks[i];
238
239                 if (!vm_stack)
240                         continue;
241
242                 vfree(vm_stack->addr);
243                 cached_vm_stacks[i] = NULL;
244         }
245
246         return 0;
247 }
248
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251         int i;
252         int ret;
253
254         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256
257         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259                 if (ret)
260                         goto err;
261         }
262         return 0;
263 err:
264         /*
265          * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266          * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267          * ignore this page.
268          */
269         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270                 memcg_kmem_uncharge_page(vm->pages[i], 0);
271         return ret;
272 }
273
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276         struct vm_struct *vm;
277         void *stack;
278         int i;
279
280         for (i = 0; i < NR_CACHED_STACKS; i++) {
281                 struct vm_struct *s;
282
283                 s = this_cpu_xchg(cached_stacks[i], NULL);
284
285                 if (!s)
286                         continue;
287
288                 /* Reset stack metadata. */
289                 kasan_unpoison_range(s->addr, THREAD_SIZE);
290
291                 stack = kasan_reset_tag(s->addr);
292
293                 /* Clear stale pointers from reused stack. */
294                 memset(stack, 0, THREAD_SIZE);
295
296                 if (memcg_charge_kernel_stack(s)) {
297                         vfree(s->addr);
298                         return -ENOMEM;
299                 }
300
301                 tsk->stack_vm_area = s;
302                 tsk->stack = stack;
303                 return 0;
304         }
305
306         /*
307          * Allocated stacks are cached and later reused by new threads,
308          * so memcg accounting is performed manually on assigning/releasing
309          * stacks to tasks. Drop __GFP_ACCOUNT.
310          */
311         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312                                      VMALLOC_START, VMALLOC_END,
313                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
314                                      PAGE_KERNEL,
315                                      0, node, __builtin_return_address(0));
316         if (!stack)
317                 return -ENOMEM;
318
319         vm = find_vm_area(stack);
320         if (memcg_charge_kernel_stack(vm)) {
321                 vfree(stack);
322                 return -ENOMEM;
323         }
324         /*
325          * We can't call find_vm_area() in interrupt context, and
326          * free_thread_stack() can be called in interrupt context,
327          * so cache the vm_struct.
328          */
329         tsk->stack_vm_area = vm;
330         stack = kasan_reset_tag(stack);
331         tsk->stack = stack;
332         return 0;
333 }
334
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338                 thread_stack_delayed_free(tsk);
339
340         tsk->stack = NULL;
341         tsk->stack_vm_area = NULL;
342 }
343
344 #  else /* !CONFIG_VMAP_STACK */
345
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353         struct rcu_head *rh = tsk->stack;
354
355         call_rcu(rh, thread_stack_free_rcu);
356 }
357
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361                                              THREAD_SIZE_ORDER);
362
363         if (likely(page)) {
364                 tsk->stack = kasan_reset_tag(page_address(page));
365                 return 0;
366         }
367         return -ENOMEM;
368 }
369
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372         thread_stack_delayed_free(tsk);
373         tsk->stack = NULL;
374 }
375
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378
379 static struct kmem_cache *thread_stack_cache;
380
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383         kmem_cache_free(thread_stack_cache, rh);
384 }
385
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388         struct rcu_head *rh = tsk->stack;
389
390         call_rcu(rh, thread_stack_free_rcu);
391 }
392
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395         unsigned long *stack;
396         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397         stack = kasan_reset_tag(stack);
398         tsk->stack = stack;
399         return stack ? 0 : -ENOMEM;
400 }
401
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404         thread_stack_delayed_free(tsk);
405         tsk->stack = NULL;
406 }
407
408 void thread_stack_cache_init(void)
409 {
410         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
412                                         THREAD_SIZE, NULL);
413         BUG_ON(thread_stack_cache == NULL);
414 }
415
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421         unsigned long *stack;
422
423         stack = arch_alloc_thread_stack_node(tsk, node);
424         tsk->stack = stack;
425         return stack ? 0 : -ENOMEM;
426 }
427
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430         arch_free_thread_stack(tsk);
431         tsk->stack = NULL;
432 }
433
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456         struct vm_area_struct *vma;
457
458         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459         if (vma)
460                 vma_init(vma, mm);
461         return vma;
462 }
463
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467
468         if (new) {
469                 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470                 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471                 /*
472                  * orig->shared.rb may be modified concurrently, but the clone
473                  * will be reinitialized.
474                  */
475                 data_race(memcpy(new, orig, sizeof(*new)));
476                 INIT_LIST_HEAD(&new->anon_vma_chain);
477                 dup_anon_vma_name(orig, new);
478         }
479         return new;
480 }
481
482 void vm_area_free(struct vm_area_struct *vma)
483 {
484         free_anon_vma_name(vma);
485         kmem_cache_free(vm_area_cachep, vma);
486 }
487
488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491                 struct vm_struct *vm = task_stack_vm_area(tsk);
492                 int i;
493
494                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496                                               account * (PAGE_SIZE / 1024));
497         } else {
498                 void *stack = task_stack_page(tsk);
499
500                 /* All stack pages are in the same node. */
501                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502                                       account * (THREAD_SIZE / 1024));
503         }
504 }
505
506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508         account_kernel_stack(tsk, -1);
509
510         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511                 struct vm_struct *vm;
512                 int i;
513
514                 vm = task_stack_vm_area(tsk);
515                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516                         memcg_kmem_uncharge_page(vm->pages[i], 0);
517         }
518 }
519
520 static void release_task_stack(struct task_struct *tsk)
521 {
522         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523                 return;  /* Better to leak the stack than to free prematurely */
524
525         free_thread_stack(tsk);
526 }
527
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
530 {
531         if (refcount_dec_and_test(&tsk->stack_refcount))
532                 release_task_stack(tsk);
533 }
534 #endif
535
536 void free_task(struct task_struct *tsk)
537 {
538 #ifdef CONFIG_SECCOMP
539         WARN_ON_ONCE(tsk->seccomp.filter);
540 #endif
541         release_user_cpus_ptr(tsk);
542         scs_release(tsk);
543
544 #ifndef CONFIG_THREAD_INFO_IN_TASK
545         /*
546          * The task is finally done with both the stack and thread_info,
547          * so free both.
548          */
549         release_task_stack(tsk);
550 #else
551         /*
552          * If the task had a separate stack allocation, it should be gone
553          * by now.
554          */
555         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
556 #endif
557         rt_mutex_debug_task_free(tsk);
558         ftrace_graph_exit_task(tsk);
559         arch_release_task_struct(tsk);
560         if (tsk->flags & PF_KTHREAD)
561                 free_kthread_struct(tsk);
562         free_task_struct(tsk);
563 }
564 EXPORT_SYMBOL(free_task);
565
566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567 {
568         struct file *exe_file;
569
570         exe_file = get_mm_exe_file(oldmm);
571         RCU_INIT_POINTER(mm->exe_file, exe_file);
572         /*
573          * We depend on the oldmm having properly denied write access to the
574          * exe_file already.
575          */
576         if (exe_file && deny_write_access(exe_file))
577                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
578 }
579
580 #ifdef CONFIG_MMU
581 static __latent_entropy int dup_mmap(struct mm_struct *mm,
582                                         struct mm_struct *oldmm)
583 {
584         struct vm_area_struct *mpnt, *tmp;
585         int retval;
586         unsigned long charge = 0;
587         LIST_HEAD(uf);
588         VMA_ITERATOR(old_vmi, oldmm, 0);
589         VMA_ITERATOR(vmi, mm, 0);
590
591         uprobe_start_dup_mmap();
592         if (mmap_write_lock_killable(oldmm)) {
593                 retval = -EINTR;
594                 goto fail_uprobe_end;
595         }
596         flush_cache_dup_mm(oldmm);
597         uprobe_dup_mmap(oldmm, mm);
598         /*
599          * Not linked in yet - no deadlock potential:
600          */
601         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
602
603         /* No ordering required: file already has been exposed. */
604         dup_mm_exe_file(mm, oldmm);
605
606         mm->total_vm = oldmm->total_vm;
607         mm->data_vm = oldmm->data_vm;
608         mm->exec_vm = oldmm->exec_vm;
609         mm->stack_vm = oldmm->stack_vm;
610
611         retval = ksm_fork(mm, oldmm);
612         if (retval)
613                 goto out;
614         khugepaged_fork(mm, oldmm);
615
616         retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
617         if (retval)
618                 goto out;
619
620         mt_clear_in_rcu(vmi.mas.tree);
621         for_each_vma(old_vmi, mpnt) {
622                 struct file *file;
623
624                 if (mpnt->vm_flags & VM_DONTCOPY) {
625                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
626                         continue;
627                 }
628                 charge = 0;
629                 /*
630                  * Don't duplicate many vmas if we've been oom-killed (for
631                  * example)
632                  */
633                 if (fatal_signal_pending(current)) {
634                         retval = -EINTR;
635                         goto loop_out;
636                 }
637                 if (mpnt->vm_flags & VM_ACCOUNT) {
638                         unsigned long len = vma_pages(mpnt);
639
640                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
641                                 goto fail_nomem;
642                         charge = len;
643                 }
644                 tmp = vm_area_dup(mpnt);
645                 if (!tmp)
646                         goto fail_nomem;
647                 retval = vma_dup_policy(mpnt, tmp);
648                 if (retval)
649                         goto fail_nomem_policy;
650                 tmp->vm_mm = mm;
651                 retval = dup_userfaultfd(tmp, &uf);
652                 if (retval)
653                         goto fail_nomem_anon_vma_fork;
654                 if (tmp->vm_flags & VM_WIPEONFORK) {
655                         /*
656                          * VM_WIPEONFORK gets a clean slate in the child.
657                          * Don't prepare anon_vma until fault since we don't
658                          * copy page for current vma.
659                          */
660                         tmp->anon_vma = NULL;
661                 } else if (anon_vma_fork(tmp, mpnt))
662                         goto fail_nomem_anon_vma_fork;
663                 vm_flags_clear(tmp, VM_LOCKED_MASK);
664                 file = tmp->vm_file;
665                 if (file) {
666                         struct address_space *mapping = file->f_mapping;
667
668                         get_file(file);
669                         i_mmap_lock_write(mapping);
670                         if (tmp->vm_flags & VM_SHARED)
671                                 mapping_allow_writable(mapping);
672                         flush_dcache_mmap_lock(mapping);
673                         /* insert tmp into the share list, just after mpnt */
674                         vma_interval_tree_insert_after(tmp, mpnt,
675                                         &mapping->i_mmap);
676                         flush_dcache_mmap_unlock(mapping);
677                         i_mmap_unlock_write(mapping);
678                 }
679
680                 /*
681                  * Copy/update hugetlb private vma information.
682                  */
683                 if (is_vm_hugetlb_page(tmp))
684                         hugetlb_dup_vma_private(tmp);
685
686                 /* Link the vma into the MT */
687                 if (vma_iter_bulk_store(&vmi, tmp))
688                         goto fail_nomem_vmi_store;
689
690                 mm->map_count++;
691                 if (!(tmp->vm_flags & VM_WIPEONFORK))
692                         retval = copy_page_range(tmp, mpnt);
693
694                 if (tmp->vm_ops && tmp->vm_ops->open)
695                         tmp->vm_ops->open(tmp);
696
697                 if (retval)
698                         goto loop_out;
699         }
700         /* a new mm has just been created */
701         retval = arch_dup_mmap(oldmm, mm);
702 loop_out:
703         vma_iter_free(&vmi);
704         if (!retval)
705                 mt_set_in_rcu(vmi.mas.tree);
706 out:
707         mmap_write_unlock(mm);
708         flush_tlb_mm(oldmm);
709         mmap_write_unlock(oldmm);
710         dup_userfaultfd_complete(&uf);
711 fail_uprobe_end:
712         uprobe_end_dup_mmap();
713         return retval;
714
715 fail_nomem_vmi_store:
716         unlink_anon_vmas(tmp);
717 fail_nomem_anon_vma_fork:
718         mpol_put(vma_policy(tmp));
719 fail_nomem_policy:
720         vm_area_free(tmp);
721 fail_nomem:
722         retval = -ENOMEM;
723         vm_unacct_memory(charge);
724         goto loop_out;
725 }
726
727 static inline int mm_alloc_pgd(struct mm_struct *mm)
728 {
729         mm->pgd = pgd_alloc(mm);
730         if (unlikely(!mm->pgd))
731                 return -ENOMEM;
732         return 0;
733 }
734
735 static inline void mm_free_pgd(struct mm_struct *mm)
736 {
737         pgd_free(mm, mm->pgd);
738 }
739 #else
740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
741 {
742         mmap_write_lock(oldmm);
743         dup_mm_exe_file(mm, oldmm);
744         mmap_write_unlock(oldmm);
745         return 0;
746 }
747 #define mm_alloc_pgd(mm)        (0)
748 #define mm_free_pgd(mm)
749 #endif /* CONFIG_MMU */
750
751 static void check_mm(struct mm_struct *mm)
752 {
753         int i;
754
755         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
756                          "Please make sure 'struct resident_page_types[]' is updated as well");
757
758         for (i = 0; i < NR_MM_COUNTERS; i++) {
759                 long x = percpu_counter_sum(&mm->rss_stat[i]);
760
761                 if (unlikely(x))
762                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
763                                  mm, resident_page_types[i], x);
764         }
765
766         if (mm_pgtables_bytes(mm))
767                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
768                                 mm_pgtables_bytes(mm));
769
770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
771         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
772 #endif
773 }
774
775 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
776 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
777
778 /*
779  * Called when the last reference to the mm
780  * is dropped: either by a lazy thread or by
781  * mmput. Free the page directory and the mm.
782  */
783 void __mmdrop(struct mm_struct *mm)
784 {
785         int i;
786
787         BUG_ON(mm == &init_mm);
788         WARN_ON_ONCE(mm == current->mm);
789         WARN_ON_ONCE(mm == current->active_mm);
790         mm_free_pgd(mm);
791         destroy_context(mm);
792         mmu_notifier_subscriptions_destroy(mm);
793         check_mm(mm);
794         put_user_ns(mm->user_ns);
795         mm_pasid_drop(mm);
796         mm_destroy_cid(mm);
797
798         for (i = 0; i < NR_MM_COUNTERS; i++)
799                 percpu_counter_destroy(&mm->rss_stat[i]);
800         free_mm(mm);
801 }
802 EXPORT_SYMBOL_GPL(__mmdrop);
803
804 static void mmdrop_async_fn(struct work_struct *work)
805 {
806         struct mm_struct *mm;
807
808         mm = container_of(work, struct mm_struct, async_put_work);
809         __mmdrop(mm);
810 }
811
812 static void mmdrop_async(struct mm_struct *mm)
813 {
814         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
815                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
816                 schedule_work(&mm->async_put_work);
817         }
818 }
819
820 static inline void free_signal_struct(struct signal_struct *sig)
821 {
822         taskstats_tgid_free(sig);
823         sched_autogroup_exit(sig);
824         /*
825          * __mmdrop is not safe to call from softirq context on x86 due to
826          * pgd_dtor so postpone it to the async context
827          */
828         if (sig->oom_mm)
829                 mmdrop_async(sig->oom_mm);
830         kmem_cache_free(signal_cachep, sig);
831 }
832
833 static inline void put_signal_struct(struct signal_struct *sig)
834 {
835         if (refcount_dec_and_test(&sig->sigcnt))
836                 free_signal_struct(sig);
837 }
838
839 void __put_task_struct(struct task_struct *tsk)
840 {
841         WARN_ON(!tsk->exit_state);
842         WARN_ON(refcount_read(&tsk->usage));
843         WARN_ON(tsk == current);
844
845         io_uring_free(tsk);
846         cgroup_free(tsk);
847         task_numa_free(tsk, true);
848         security_task_free(tsk);
849         bpf_task_storage_free(tsk);
850         exit_creds(tsk);
851         delayacct_tsk_free(tsk);
852         put_signal_struct(tsk->signal);
853         sched_core_free(tsk);
854         free_task(tsk);
855 }
856 EXPORT_SYMBOL_GPL(__put_task_struct);
857
858 void __init __weak arch_task_cache_init(void) { }
859
860 /*
861  * set_max_threads
862  */
863 static void set_max_threads(unsigned int max_threads_suggested)
864 {
865         u64 threads;
866         unsigned long nr_pages = totalram_pages();
867
868         /*
869          * The number of threads shall be limited such that the thread
870          * structures may only consume a small part of the available memory.
871          */
872         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
873                 threads = MAX_THREADS;
874         else
875                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
876                                     (u64) THREAD_SIZE * 8UL);
877
878         if (threads > max_threads_suggested)
879                 threads = max_threads_suggested;
880
881         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
882 }
883
884 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
885 /* Initialized by the architecture: */
886 int arch_task_struct_size __read_mostly;
887 #endif
888
889 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
890 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
891 {
892         /* Fetch thread_struct whitelist for the architecture. */
893         arch_thread_struct_whitelist(offset, size);
894
895         /*
896          * Handle zero-sized whitelist or empty thread_struct, otherwise
897          * adjust offset to position of thread_struct in task_struct.
898          */
899         if (unlikely(*size == 0))
900                 *offset = 0;
901         else
902                 *offset += offsetof(struct task_struct, thread);
903 }
904 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
905
906 void __init fork_init(void)
907 {
908         int i;
909 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
910 #ifndef ARCH_MIN_TASKALIGN
911 #define ARCH_MIN_TASKALIGN      0
912 #endif
913         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
914         unsigned long useroffset, usersize;
915
916         /* create a slab on which task_structs can be allocated */
917         task_struct_whitelist(&useroffset, &usersize);
918         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
919                         arch_task_struct_size, align,
920                         SLAB_PANIC|SLAB_ACCOUNT,
921                         useroffset, usersize, NULL);
922 #endif
923
924         /* do the arch specific task caches init */
925         arch_task_cache_init();
926
927         set_max_threads(MAX_THREADS);
928
929         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
930         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
931         init_task.signal->rlim[RLIMIT_SIGPENDING] =
932                 init_task.signal->rlim[RLIMIT_NPROC];
933
934         for (i = 0; i < UCOUNT_COUNTS; i++)
935                 init_user_ns.ucount_max[i] = max_threads/2;
936
937         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
938         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
939         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
940         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
941
942 #ifdef CONFIG_VMAP_STACK
943         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
944                           NULL, free_vm_stack_cache);
945 #endif
946
947         scs_init();
948
949         lockdep_init_task(&init_task);
950         uprobes_init();
951 }
952
953 int __weak arch_dup_task_struct(struct task_struct *dst,
954                                                struct task_struct *src)
955 {
956         *dst = *src;
957         return 0;
958 }
959
960 void set_task_stack_end_magic(struct task_struct *tsk)
961 {
962         unsigned long *stackend;
963
964         stackend = end_of_stack(tsk);
965         *stackend = STACK_END_MAGIC;    /* for overflow detection */
966 }
967
968 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
969 {
970         struct task_struct *tsk;
971         int err;
972
973         if (node == NUMA_NO_NODE)
974                 node = tsk_fork_get_node(orig);
975         tsk = alloc_task_struct_node(node);
976         if (!tsk)
977                 return NULL;
978
979         err = arch_dup_task_struct(tsk, orig);
980         if (err)
981                 goto free_tsk;
982
983         err = alloc_thread_stack_node(tsk, node);
984         if (err)
985                 goto free_tsk;
986
987 #ifdef CONFIG_THREAD_INFO_IN_TASK
988         refcount_set(&tsk->stack_refcount, 1);
989 #endif
990         account_kernel_stack(tsk, 1);
991
992         err = scs_prepare(tsk, node);
993         if (err)
994                 goto free_stack;
995
996 #ifdef CONFIG_SECCOMP
997         /*
998          * We must handle setting up seccomp filters once we're under
999          * the sighand lock in case orig has changed between now and
1000          * then. Until then, filter must be NULL to avoid messing up
1001          * the usage counts on the error path calling free_task.
1002          */
1003         tsk->seccomp.filter = NULL;
1004 #endif
1005
1006         setup_thread_stack(tsk, orig);
1007         clear_user_return_notifier(tsk);
1008         clear_tsk_need_resched(tsk);
1009         set_task_stack_end_magic(tsk);
1010         clear_syscall_work_syscall_user_dispatch(tsk);
1011
1012 #ifdef CONFIG_STACKPROTECTOR
1013         tsk->stack_canary = get_random_canary();
1014 #endif
1015         if (orig->cpus_ptr == &orig->cpus_mask)
1016                 tsk->cpus_ptr = &tsk->cpus_mask;
1017         dup_user_cpus_ptr(tsk, orig, node);
1018
1019         /*
1020          * One for the user space visible state that goes away when reaped.
1021          * One for the scheduler.
1022          */
1023         refcount_set(&tsk->rcu_users, 2);
1024         /* One for the rcu users */
1025         refcount_set(&tsk->usage, 1);
1026 #ifdef CONFIG_BLK_DEV_IO_TRACE
1027         tsk->btrace_seq = 0;
1028 #endif
1029         tsk->splice_pipe = NULL;
1030         tsk->task_frag.page = NULL;
1031         tsk->wake_q.next = NULL;
1032         tsk->worker_private = NULL;
1033
1034         kcov_task_init(tsk);
1035         kmsan_task_create(tsk);
1036         kmap_local_fork(tsk);
1037
1038 #ifdef CONFIG_FAULT_INJECTION
1039         tsk->fail_nth = 0;
1040 #endif
1041
1042 #ifdef CONFIG_BLK_CGROUP
1043         tsk->throttle_disk = NULL;
1044         tsk->use_memdelay = 0;
1045 #endif
1046
1047 #ifdef CONFIG_IOMMU_SVA
1048         tsk->pasid_activated = 0;
1049 #endif
1050
1051 #ifdef CONFIG_MEMCG
1052         tsk->active_memcg = NULL;
1053 #endif
1054
1055 #ifdef CONFIG_CPU_SUP_INTEL
1056         tsk->reported_split_lock = 0;
1057 #endif
1058
1059 #ifdef CONFIG_SCHED_MM_CID
1060         tsk->mm_cid = -1;
1061         tsk->last_mm_cid = -1;
1062         tsk->mm_cid_active = 0;
1063         tsk->migrate_from_cpu = -1;
1064 #endif
1065         return tsk;
1066
1067 free_stack:
1068         exit_task_stack_account(tsk);
1069         free_thread_stack(tsk);
1070 free_tsk:
1071         free_task_struct(tsk);
1072         return NULL;
1073 }
1074
1075 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1076
1077 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1078
1079 static int __init coredump_filter_setup(char *s)
1080 {
1081         default_dump_filter =
1082                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1083                 MMF_DUMP_FILTER_MASK;
1084         return 1;
1085 }
1086
1087 __setup("coredump_filter=", coredump_filter_setup);
1088
1089 #include <linux/init_task.h>
1090
1091 static void mm_init_aio(struct mm_struct *mm)
1092 {
1093 #ifdef CONFIG_AIO
1094         spin_lock_init(&mm->ioctx_lock);
1095         mm->ioctx_table = NULL;
1096 #endif
1097 }
1098
1099 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1100                                            struct task_struct *p)
1101 {
1102 #ifdef CONFIG_MEMCG
1103         if (mm->owner == p)
1104                 WRITE_ONCE(mm->owner, NULL);
1105 #endif
1106 }
1107
1108 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1109 {
1110 #ifdef CONFIG_MEMCG
1111         mm->owner = p;
1112 #endif
1113 }
1114
1115 static void mm_init_uprobes_state(struct mm_struct *mm)
1116 {
1117 #ifdef CONFIG_UPROBES
1118         mm->uprobes_state.xol_area = NULL;
1119 #endif
1120 }
1121
1122 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1123         struct user_namespace *user_ns)
1124 {
1125         int i;
1126
1127         mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1128         mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1129         atomic_set(&mm->mm_users, 1);
1130         atomic_set(&mm->mm_count, 1);
1131         seqcount_init(&mm->write_protect_seq);
1132         mmap_init_lock(mm);
1133         INIT_LIST_HEAD(&mm->mmlist);
1134         mm_pgtables_bytes_init(mm);
1135         mm->map_count = 0;
1136         mm->locked_vm = 0;
1137         atomic64_set(&mm->pinned_vm, 0);
1138         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1139         spin_lock_init(&mm->page_table_lock);
1140         spin_lock_init(&mm->arg_lock);
1141         mm_init_cpumask(mm);
1142         mm_init_aio(mm);
1143         mm_init_owner(mm, p);
1144         mm_pasid_init(mm);
1145         RCU_INIT_POINTER(mm->exe_file, NULL);
1146         mmu_notifier_subscriptions_init(mm);
1147         init_tlb_flush_pending(mm);
1148 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1149         mm->pmd_huge_pte = NULL;
1150 #endif
1151         mm_init_uprobes_state(mm);
1152         hugetlb_count_init(mm);
1153
1154         if (current->mm) {
1155                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1156                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1157         } else {
1158                 mm->flags = default_dump_filter;
1159                 mm->def_flags = 0;
1160         }
1161
1162         if (mm_alloc_pgd(mm))
1163                 goto fail_nopgd;
1164
1165         if (init_new_context(p, mm))
1166                 goto fail_nocontext;
1167
1168         if (mm_alloc_cid(mm))
1169                 goto fail_cid;
1170
1171         for (i = 0; i < NR_MM_COUNTERS; i++)
1172                 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1173                         goto fail_pcpu;
1174
1175         mm->user_ns = get_user_ns(user_ns);
1176         lru_gen_init_mm(mm);
1177         return mm;
1178
1179 fail_pcpu:
1180         while (i > 0)
1181                 percpu_counter_destroy(&mm->rss_stat[--i]);
1182         mm_destroy_cid(mm);
1183 fail_cid:
1184 fail_nocontext:
1185         mm_free_pgd(mm);
1186 fail_nopgd:
1187         free_mm(mm);
1188         return NULL;
1189 }
1190
1191 /*
1192  * Allocate and initialize an mm_struct.
1193  */
1194 struct mm_struct *mm_alloc(void)
1195 {
1196         struct mm_struct *mm;
1197
1198         mm = allocate_mm();
1199         if (!mm)
1200                 return NULL;
1201
1202         memset(mm, 0, sizeof(*mm));
1203         return mm_init(mm, current, current_user_ns());
1204 }
1205
1206 static inline void __mmput(struct mm_struct *mm)
1207 {
1208         VM_BUG_ON(atomic_read(&mm->mm_users));
1209
1210         uprobe_clear_state(mm);
1211         exit_aio(mm);
1212         ksm_exit(mm);
1213         khugepaged_exit(mm); /* must run before exit_mmap */
1214         exit_mmap(mm);
1215         mm_put_huge_zero_page(mm);
1216         set_mm_exe_file(mm, NULL);
1217         if (!list_empty(&mm->mmlist)) {
1218                 spin_lock(&mmlist_lock);
1219                 list_del(&mm->mmlist);
1220                 spin_unlock(&mmlist_lock);
1221         }
1222         if (mm->binfmt)
1223                 module_put(mm->binfmt->module);
1224         lru_gen_del_mm(mm);
1225         mmdrop(mm);
1226 }
1227
1228 /*
1229  * Decrement the use count and release all resources for an mm.
1230  */
1231 void mmput(struct mm_struct *mm)
1232 {
1233         might_sleep();
1234
1235         if (atomic_dec_and_test(&mm->mm_users))
1236                 __mmput(mm);
1237 }
1238 EXPORT_SYMBOL_GPL(mmput);
1239
1240 #ifdef CONFIG_MMU
1241 static void mmput_async_fn(struct work_struct *work)
1242 {
1243         struct mm_struct *mm = container_of(work, struct mm_struct,
1244                                             async_put_work);
1245
1246         __mmput(mm);
1247 }
1248
1249 void mmput_async(struct mm_struct *mm)
1250 {
1251         if (atomic_dec_and_test(&mm->mm_users)) {
1252                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1253                 schedule_work(&mm->async_put_work);
1254         }
1255 }
1256 EXPORT_SYMBOL_GPL(mmput_async);
1257 #endif
1258
1259 /**
1260  * set_mm_exe_file - change a reference to the mm's executable file
1261  *
1262  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1263  *
1264  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1265  * invocations: in mmput() nobody alive left, in execve task is single
1266  * threaded.
1267  *
1268  * Can only fail if new_exe_file != NULL.
1269  */
1270 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1271 {
1272         struct file *old_exe_file;
1273
1274         /*
1275          * It is safe to dereference the exe_file without RCU as
1276          * this function is only called if nobody else can access
1277          * this mm -- see comment above for justification.
1278          */
1279         old_exe_file = rcu_dereference_raw(mm->exe_file);
1280
1281         if (new_exe_file) {
1282                 /*
1283                  * We expect the caller (i.e., sys_execve) to already denied
1284                  * write access, so this is unlikely to fail.
1285                  */
1286                 if (unlikely(deny_write_access(new_exe_file)))
1287                         return -EACCES;
1288                 get_file(new_exe_file);
1289         }
1290         rcu_assign_pointer(mm->exe_file, new_exe_file);
1291         if (old_exe_file) {
1292                 allow_write_access(old_exe_file);
1293                 fput(old_exe_file);
1294         }
1295         return 0;
1296 }
1297
1298 /**
1299  * replace_mm_exe_file - replace a reference to the mm's executable file
1300  *
1301  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1302  * dealing with concurrent invocation and without grabbing the mmap lock in
1303  * write mode.
1304  *
1305  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1306  */
1307 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1308 {
1309         struct vm_area_struct *vma;
1310         struct file *old_exe_file;
1311         int ret = 0;
1312
1313         /* Forbid mm->exe_file change if old file still mapped. */
1314         old_exe_file = get_mm_exe_file(mm);
1315         if (old_exe_file) {
1316                 VMA_ITERATOR(vmi, mm, 0);
1317                 mmap_read_lock(mm);
1318                 for_each_vma(vmi, vma) {
1319                         if (!vma->vm_file)
1320                                 continue;
1321                         if (path_equal(&vma->vm_file->f_path,
1322                                        &old_exe_file->f_path)) {
1323                                 ret = -EBUSY;
1324                                 break;
1325                         }
1326                 }
1327                 mmap_read_unlock(mm);
1328                 fput(old_exe_file);
1329                 if (ret)
1330                         return ret;
1331         }
1332
1333         /* set the new file, lockless */
1334         ret = deny_write_access(new_exe_file);
1335         if (ret)
1336                 return -EACCES;
1337         get_file(new_exe_file);
1338
1339         old_exe_file = xchg(&mm->exe_file, new_exe_file);
1340         if (old_exe_file) {
1341                 /*
1342                  * Don't race with dup_mmap() getting the file and disallowing
1343                  * write access while someone might open the file writable.
1344                  */
1345                 mmap_read_lock(mm);
1346                 allow_write_access(old_exe_file);
1347                 fput(old_exe_file);
1348                 mmap_read_unlock(mm);
1349         }
1350         return 0;
1351 }
1352
1353 /**
1354  * get_mm_exe_file - acquire a reference to the mm's executable file
1355  *
1356  * Returns %NULL if mm has no associated executable file.
1357  * User must release file via fput().
1358  */
1359 struct file *get_mm_exe_file(struct mm_struct *mm)
1360 {
1361         struct file *exe_file;
1362
1363         rcu_read_lock();
1364         exe_file = rcu_dereference(mm->exe_file);
1365         if (exe_file && !get_file_rcu(exe_file))
1366                 exe_file = NULL;
1367         rcu_read_unlock();
1368         return exe_file;
1369 }
1370
1371 /**
1372  * get_task_exe_file - acquire a reference to the task's executable file
1373  *
1374  * Returns %NULL if task's mm (if any) has no associated executable file or
1375  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1376  * User must release file via fput().
1377  */
1378 struct file *get_task_exe_file(struct task_struct *task)
1379 {
1380         struct file *exe_file = NULL;
1381         struct mm_struct *mm;
1382
1383         task_lock(task);
1384         mm = task->mm;
1385         if (mm) {
1386                 if (!(task->flags & PF_KTHREAD))
1387                         exe_file = get_mm_exe_file(mm);
1388         }
1389         task_unlock(task);
1390         return exe_file;
1391 }
1392
1393 /**
1394  * get_task_mm - acquire a reference to the task's mm
1395  *
1396  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1397  * this kernel workthread has transiently adopted a user mm with use_mm,
1398  * to do its AIO) is not set and if so returns a reference to it, after
1399  * bumping up the use count.  User must release the mm via mmput()
1400  * after use.  Typically used by /proc and ptrace.
1401  */
1402 struct mm_struct *get_task_mm(struct task_struct *task)
1403 {
1404         struct mm_struct *mm;
1405
1406         task_lock(task);
1407         mm = task->mm;
1408         if (mm) {
1409                 if (task->flags & PF_KTHREAD)
1410                         mm = NULL;
1411                 else
1412                         mmget(mm);
1413         }
1414         task_unlock(task);
1415         return mm;
1416 }
1417 EXPORT_SYMBOL_GPL(get_task_mm);
1418
1419 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1420 {
1421         struct mm_struct *mm;
1422         int err;
1423
1424         err =  down_read_killable(&task->signal->exec_update_lock);
1425         if (err)
1426                 return ERR_PTR(err);
1427
1428         mm = get_task_mm(task);
1429         if (mm && mm != current->mm &&
1430                         !ptrace_may_access(task, mode)) {
1431                 mmput(mm);
1432                 mm = ERR_PTR(-EACCES);
1433         }
1434         up_read(&task->signal->exec_update_lock);
1435
1436         return mm;
1437 }
1438
1439 static void complete_vfork_done(struct task_struct *tsk)
1440 {
1441         struct completion *vfork;
1442
1443         task_lock(tsk);
1444         vfork = tsk->vfork_done;
1445         if (likely(vfork)) {
1446                 tsk->vfork_done = NULL;
1447                 complete(vfork);
1448         }
1449         task_unlock(tsk);
1450 }
1451
1452 static int wait_for_vfork_done(struct task_struct *child,
1453                                 struct completion *vfork)
1454 {
1455         unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1456         int killed;
1457
1458         cgroup_enter_frozen();
1459         killed = wait_for_completion_state(vfork, state);
1460         cgroup_leave_frozen(false);
1461
1462         if (killed) {
1463                 task_lock(child);
1464                 child->vfork_done = NULL;
1465                 task_unlock(child);
1466         }
1467
1468         put_task_struct(child);
1469         return killed;
1470 }
1471
1472 /* Please note the differences between mmput and mm_release.
1473  * mmput is called whenever we stop holding onto a mm_struct,
1474  * error success whatever.
1475  *
1476  * mm_release is called after a mm_struct has been removed
1477  * from the current process.
1478  *
1479  * This difference is important for error handling, when we
1480  * only half set up a mm_struct for a new process and need to restore
1481  * the old one.  Because we mmput the new mm_struct before
1482  * restoring the old one. . .
1483  * Eric Biederman 10 January 1998
1484  */
1485 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1486 {
1487         uprobe_free_utask(tsk);
1488
1489         /* Get rid of any cached register state */
1490         deactivate_mm(tsk, mm);
1491
1492         /*
1493          * Signal userspace if we're not exiting with a core dump
1494          * because we want to leave the value intact for debugging
1495          * purposes.
1496          */
1497         if (tsk->clear_child_tid) {
1498                 if (atomic_read(&mm->mm_users) > 1) {
1499                         /*
1500                          * We don't check the error code - if userspace has
1501                          * not set up a proper pointer then tough luck.
1502                          */
1503                         put_user(0, tsk->clear_child_tid);
1504                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1505                                         1, NULL, NULL, 0, 0);
1506                 }
1507                 tsk->clear_child_tid = NULL;
1508         }
1509
1510         /*
1511          * All done, finally we can wake up parent and return this mm to him.
1512          * Also kthread_stop() uses this completion for synchronization.
1513          */
1514         if (tsk->vfork_done)
1515                 complete_vfork_done(tsk);
1516 }
1517
1518 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1519 {
1520         futex_exit_release(tsk);
1521         mm_release(tsk, mm);
1522 }
1523
1524 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1525 {
1526         futex_exec_release(tsk);
1527         mm_release(tsk, mm);
1528 }
1529
1530 /**
1531  * dup_mm() - duplicates an existing mm structure
1532  * @tsk: the task_struct with which the new mm will be associated.
1533  * @oldmm: the mm to duplicate.
1534  *
1535  * Allocates a new mm structure and duplicates the provided @oldmm structure
1536  * content into it.
1537  *
1538  * Return: the duplicated mm or NULL on failure.
1539  */
1540 static struct mm_struct *dup_mm(struct task_struct *tsk,
1541                                 struct mm_struct *oldmm)
1542 {
1543         struct mm_struct *mm;
1544         int err;
1545
1546         mm = allocate_mm();
1547         if (!mm)
1548                 goto fail_nomem;
1549
1550         memcpy(mm, oldmm, sizeof(*mm));
1551
1552         if (!mm_init(mm, tsk, mm->user_ns))
1553                 goto fail_nomem;
1554
1555         err = dup_mmap(mm, oldmm);
1556         if (err)
1557                 goto free_pt;
1558
1559         mm->hiwater_rss = get_mm_rss(mm);
1560         mm->hiwater_vm = mm->total_vm;
1561
1562         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1563                 goto free_pt;
1564
1565         return mm;
1566
1567 free_pt:
1568         /* don't put binfmt in mmput, we haven't got module yet */
1569         mm->binfmt = NULL;
1570         mm_init_owner(mm, NULL);
1571         mmput(mm);
1572
1573 fail_nomem:
1574         return NULL;
1575 }
1576
1577 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1578 {
1579         struct mm_struct *mm, *oldmm;
1580
1581         tsk->min_flt = tsk->maj_flt = 0;
1582         tsk->nvcsw = tsk->nivcsw = 0;
1583 #ifdef CONFIG_DETECT_HUNG_TASK
1584         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1585         tsk->last_switch_time = 0;
1586 #endif
1587
1588         tsk->mm = NULL;
1589         tsk->active_mm = NULL;
1590
1591         /*
1592          * Are we cloning a kernel thread?
1593          *
1594          * We need to steal a active VM for that..
1595          */
1596         oldmm = current->mm;
1597         if (!oldmm)
1598                 return 0;
1599
1600         if (clone_flags & CLONE_VM) {
1601                 mmget(oldmm);
1602                 mm = oldmm;
1603         } else {
1604                 mm = dup_mm(tsk, current->mm);
1605                 if (!mm)
1606                         return -ENOMEM;
1607         }
1608
1609         tsk->mm = mm;
1610         tsk->active_mm = mm;
1611         sched_mm_cid_fork(tsk);
1612         return 0;
1613 }
1614
1615 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1616 {
1617         struct fs_struct *fs = current->fs;
1618         if (clone_flags & CLONE_FS) {
1619                 /* tsk->fs is already what we want */
1620                 spin_lock(&fs->lock);
1621                 if (fs->in_exec) {
1622                         spin_unlock(&fs->lock);
1623                         return -EAGAIN;
1624                 }
1625                 fs->users++;
1626                 spin_unlock(&fs->lock);
1627                 return 0;
1628         }
1629         tsk->fs = copy_fs_struct(fs);
1630         if (!tsk->fs)
1631                 return -ENOMEM;
1632         return 0;
1633 }
1634
1635 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1636 {
1637         struct files_struct *oldf, *newf;
1638         int error = 0;
1639
1640         /*
1641          * A background process may not have any files ...
1642          */
1643         oldf = current->files;
1644         if (!oldf)
1645                 goto out;
1646
1647         if (clone_flags & CLONE_FILES) {
1648                 atomic_inc(&oldf->count);
1649                 goto out;
1650         }
1651
1652         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1653         if (!newf)
1654                 goto out;
1655
1656         tsk->files = newf;
1657         error = 0;
1658 out:
1659         return error;
1660 }
1661
1662 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1663 {
1664         struct sighand_struct *sig;
1665
1666         if (clone_flags & CLONE_SIGHAND) {
1667                 refcount_inc(&current->sighand->count);
1668                 return 0;
1669         }
1670         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1671         RCU_INIT_POINTER(tsk->sighand, sig);
1672         if (!sig)
1673                 return -ENOMEM;
1674
1675         refcount_set(&sig->count, 1);
1676         spin_lock_irq(&current->sighand->siglock);
1677         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1678         spin_unlock_irq(&current->sighand->siglock);
1679
1680         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1681         if (clone_flags & CLONE_CLEAR_SIGHAND)
1682                 flush_signal_handlers(tsk, 0);
1683
1684         return 0;
1685 }
1686
1687 void __cleanup_sighand(struct sighand_struct *sighand)
1688 {
1689         if (refcount_dec_and_test(&sighand->count)) {
1690                 signalfd_cleanup(sighand);
1691                 /*
1692                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1693                  * without an RCU grace period, see __lock_task_sighand().
1694                  */
1695                 kmem_cache_free(sighand_cachep, sighand);
1696         }
1697 }
1698
1699 /*
1700  * Initialize POSIX timer handling for a thread group.
1701  */
1702 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1703 {
1704         struct posix_cputimers *pct = &sig->posix_cputimers;
1705         unsigned long cpu_limit;
1706
1707         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1708         posix_cputimers_group_init(pct, cpu_limit);
1709 }
1710
1711 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1712 {
1713         struct signal_struct *sig;
1714
1715         if (clone_flags & CLONE_THREAD)
1716                 return 0;
1717
1718         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1719         tsk->signal = sig;
1720         if (!sig)
1721                 return -ENOMEM;
1722
1723         sig->nr_threads = 1;
1724         sig->quick_threads = 1;
1725         atomic_set(&sig->live, 1);
1726         refcount_set(&sig->sigcnt, 1);
1727
1728         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1729         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1730         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1731
1732         init_waitqueue_head(&sig->wait_chldexit);
1733         sig->curr_target = tsk;
1734         init_sigpending(&sig->shared_pending);
1735         INIT_HLIST_HEAD(&sig->multiprocess);
1736         seqlock_init(&sig->stats_lock);
1737         prev_cputime_init(&sig->prev_cputime);
1738
1739 #ifdef CONFIG_POSIX_TIMERS
1740         INIT_LIST_HEAD(&sig->posix_timers);
1741         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1742         sig->real_timer.function = it_real_fn;
1743 #endif
1744
1745         task_lock(current->group_leader);
1746         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1747         task_unlock(current->group_leader);
1748
1749         posix_cpu_timers_init_group(sig);
1750
1751         tty_audit_fork(sig);
1752         sched_autogroup_fork(sig);
1753
1754         sig->oom_score_adj = current->signal->oom_score_adj;
1755         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1756
1757         mutex_init(&sig->cred_guard_mutex);
1758         init_rwsem(&sig->exec_update_lock);
1759
1760         return 0;
1761 }
1762
1763 static void copy_seccomp(struct task_struct *p)
1764 {
1765 #ifdef CONFIG_SECCOMP
1766         /*
1767          * Must be called with sighand->lock held, which is common to
1768          * all threads in the group. Holding cred_guard_mutex is not
1769          * needed because this new task is not yet running and cannot
1770          * be racing exec.
1771          */
1772         assert_spin_locked(&current->sighand->siglock);
1773
1774         /* Ref-count the new filter user, and assign it. */
1775         get_seccomp_filter(current);
1776         p->seccomp = current->seccomp;
1777
1778         /*
1779          * Explicitly enable no_new_privs here in case it got set
1780          * between the task_struct being duplicated and holding the
1781          * sighand lock. The seccomp state and nnp must be in sync.
1782          */
1783         if (task_no_new_privs(current))
1784                 task_set_no_new_privs(p);
1785
1786         /*
1787          * If the parent gained a seccomp mode after copying thread
1788          * flags and between before we held the sighand lock, we have
1789          * to manually enable the seccomp thread flag here.
1790          */
1791         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1792                 set_task_syscall_work(p, SECCOMP);
1793 #endif
1794 }
1795
1796 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1797 {
1798         current->clear_child_tid = tidptr;
1799
1800         return task_pid_vnr(current);
1801 }
1802
1803 static void rt_mutex_init_task(struct task_struct *p)
1804 {
1805         raw_spin_lock_init(&p->pi_lock);
1806 #ifdef CONFIG_RT_MUTEXES
1807         p->pi_waiters = RB_ROOT_CACHED;
1808         p->pi_top_task = NULL;
1809         p->pi_blocked_on = NULL;
1810 #endif
1811 }
1812
1813 static inline void init_task_pid_links(struct task_struct *task)
1814 {
1815         enum pid_type type;
1816
1817         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1818                 INIT_HLIST_NODE(&task->pid_links[type]);
1819 }
1820
1821 static inline void
1822 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1823 {
1824         if (type == PIDTYPE_PID)
1825                 task->thread_pid = pid;
1826         else
1827                 task->signal->pids[type] = pid;
1828 }
1829
1830 static inline void rcu_copy_process(struct task_struct *p)
1831 {
1832 #ifdef CONFIG_PREEMPT_RCU
1833         p->rcu_read_lock_nesting = 0;
1834         p->rcu_read_unlock_special.s = 0;
1835         p->rcu_blocked_node = NULL;
1836         INIT_LIST_HEAD(&p->rcu_node_entry);
1837 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1838 #ifdef CONFIG_TASKS_RCU
1839         p->rcu_tasks_holdout = false;
1840         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1841         p->rcu_tasks_idle_cpu = -1;
1842 #endif /* #ifdef CONFIG_TASKS_RCU */
1843 #ifdef CONFIG_TASKS_TRACE_RCU
1844         p->trc_reader_nesting = 0;
1845         p->trc_reader_special.s = 0;
1846         INIT_LIST_HEAD(&p->trc_holdout_list);
1847         INIT_LIST_HEAD(&p->trc_blkd_node);
1848 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1849 }
1850
1851 struct pid *pidfd_pid(const struct file *file)
1852 {
1853         if (file->f_op == &pidfd_fops)
1854                 return file->private_data;
1855
1856         return ERR_PTR(-EBADF);
1857 }
1858
1859 static int pidfd_release(struct inode *inode, struct file *file)
1860 {
1861         struct pid *pid = file->private_data;
1862
1863         file->private_data = NULL;
1864         put_pid(pid);
1865         return 0;
1866 }
1867
1868 #ifdef CONFIG_PROC_FS
1869 /**
1870  * pidfd_show_fdinfo - print information about a pidfd
1871  * @m: proc fdinfo file
1872  * @f: file referencing a pidfd
1873  *
1874  * Pid:
1875  * This function will print the pid that a given pidfd refers to in the
1876  * pid namespace of the procfs instance.
1877  * If the pid namespace of the process is not a descendant of the pid
1878  * namespace of the procfs instance 0 will be shown as its pid. This is
1879  * similar to calling getppid() on a process whose parent is outside of
1880  * its pid namespace.
1881  *
1882  * NSpid:
1883  * If pid namespaces are supported then this function will also print
1884  * the pid of a given pidfd refers to for all descendant pid namespaces
1885  * starting from the current pid namespace of the instance, i.e. the
1886  * Pid field and the first entry in the NSpid field will be identical.
1887  * If the pid namespace of the process is not a descendant of the pid
1888  * namespace of the procfs instance 0 will be shown as its first NSpid
1889  * entry and no others will be shown.
1890  * Note that this differs from the Pid and NSpid fields in
1891  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1892  * the  pid namespace of the procfs instance. The difference becomes
1893  * obvious when sending around a pidfd between pid namespaces from a
1894  * different branch of the tree, i.e. where no ancestral relation is
1895  * present between the pid namespaces:
1896  * - create two new pid namespaces ns1 and ns2 in the initial pid
1897  *   namespace (also take care to create new mount namespaces in the
1898  *   new pid namespace and mount procfs)
1899  * - create a process with a pidfd in ns1
1900  * - send pidfd from ns1 to ns2
1901  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1902  *   have exactly one entry, which is 0
1903  */
1904 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1905 {
1906         struct pid *pid = f->private_data;
1907         struct pid_namespace *ns;
1908         pid_t nr = -1;
1909
1910         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1911                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1912                 nr = pid_nr_ns(pid, ns);
1913         }
1914
1915         seq_put_decimal_ll(m, "Pid:\t", nr);
1916
1917 #ifdef CONFIG_PID_NS
1918         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1919         if (nr > 0) {
1920                 int i;
1921
1922                 /* If nr is non-zero it means that 'pid' is valid and that
1923                  * ns, i.e. the pid namespace associated with the procfs
1924                  * instance, is in the pid namespace hierarchy of pid.
1925                  * Start at one below the already printed level.
1926                  */
1927                 for (i = ns->level + 1; i <= pid->level; i++)
1928                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1929         }
1930 #endif
1931         seq_putc(m, '\n');
1932 }
1933 #endif
1934
1935 /*
1936  * Poll support for process exit notification.
1937  */
1938 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1939 {
1940         struct pid *pid = file->private_data;
1941         __poll_t poll_flags = 0;
1942
1943         poll_wait(file, &pid->wait_pidfd, pts);
1944
1945         /*
1946          * Inform pollers only when the whole thread group exits.
1947          * If the thread group leader exits before all other threads in the
1948          * group, then poll(2) should block, similar to the wait(2) family.
1949          */
1950         if (thread_group_exited(pid))
1951                 poll_flags = EPOLLIN | EPOLLRDNORM;
1952
1953         return poll_flags;
1954 }
1955
1956 const struct file_operations pidfd_fops = {
1957         .release = pidfd_release,
1958         .poll = pidfd_poll,
1959 #ifdef CONFIG_PROC_FS
1960         .show_fdinfo = pidfd_show_fdinfo,
1961 #endif
1962 };
1963
1964 static void __delayed_free_task(struct rcu_head *rhp)
1965 {
1966         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1967
1968         free_task(tsk);
1969 }
1970
1971 static __always_inline void delayed_free_task(struct task_struct *tsk)
1972 {
1973         if (IS_ENABLED(CONFIG_MEMCG))
1974                 call_rcu(&tsk->rcu, __delayed_free_task);
1975         else
1976                 free_task(tsk);
1977 }
1978
1979 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1980 {
1981         /* Skip if kernel thread */
1982         if (!tsk->mm)
1983                 return;
1984
1985         /* Skip if spawning a thread or using vfork */
1986         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1987                 return;
1988
1989         /* We need to synchronize with __set_oom_adj */
1990         mutex_lock(&oom_adj_mutex);
1991         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1992         /* Update the values in case they were changed after copy_signal */
1993         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1994         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1995         mutex_unlock(&oom_adj_mutex);
1996 }
1997
1998 #ifdef CONFIG_RV
1999 static void rv_task_fork(struct task_struct *p)
2000 {
2001         int i;
2002
2003         for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2004                 p->rv[i].da_mon.monitoring = false;
2005 }
2006 #else
2007 #define rv_task_fork(p) do {} while (0)
2008 #endif
2009
2010 /*
2011  * This creates a new process as a copy of the old one,
2012  * but does not actually start it yet.
2013  *
2014  * It copies the registers, and all the appropriate
2015  * parts of the process environment (as per the clone
2016  * flags). The actual kick-off is left to the caller.
2017  */
2018 static __latent_entropy struct task_struct *copy_process(
2019                                         struct pid *pid,
2020                                         int trace,
2021                                         int node,
2022                                         struct kernel_clone_args *args)
2023 {
2024         int pidfd = -1, retval;
2025         struct task_struct *p;
2026         struct multiprocess_signals delayed;
2027         struct file *pidfile = NULL;
2028         const u64 clone_flags = args->flags;
2029         struct nsproxy *nsp = current->nsproxy;
2030
2031         /*
2032          * Don't allow sharing the root directory with processes in a different
2033          * namespace
2034          */
2035         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2036                 return ERR_PTR(-EINVAL);
2037
2038         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2039                 return ERR_PTR(-EINVAL);
2040
2041         /*
2042          * Thread groups must share signals as well, and detached threads
2043          * can only be started up within the thread group.
2044          */
2045         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2046                 return ERR_PTR(-EINVAL);
2047
2048         /*
2049          * Shared signal handlers imply shared VM. By way of the above,
2050          * thread groups also imply shared VM. Blocking this case allows
2051          * for various simplifications in other code.
2052          */
2053         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2054                 return ERR_PTR(-EINVAL);
2055
2056         /*
2057          * Siblings of global init remain as zombies on exit since they are
2058          * not reaped by their parent (swapper). To solve this and to avoid
2059          * multi-rooted process trees, prevent global and container-inits
2060          * from creating siblings.
2061          */
2062         if ((clone_flags & CLONE_PARENT) &&
2063                                 current->signal->flags & SIGNAL_UNKILLABLE)
2064                 return ERR_PTR(-EINVAL);
2065
2066         /*
2067          * If the new process will be in a different pid or user namespace
2068          * do not allow it to share a thread group with the forking task.
2069          */
2070         if (clone_flags & CLONE_THREAD) {
2071                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2072                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2073                         return ERR_PTR(-EINVAL);
2074         }
2075
2076         if (clone_flags & CLONE_PIDFD) {
2077                 /*
2078                  * - CLONE_DETACHED is blocked so that we can potentially
2079                  *   reuse it later for CLONE_PIDFD.
2080                  * - CLONE_THREAD is blocked until someone really needs it.
2081                  */
2082                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2083                         return ERR_PTR(-EINVAL);
2084         }
2085
2086         /*
2087          * Force any signals received before this point to be delivered
2088          * before the fork happens.  Collect up signals sent to multiple
2089          * processes that happen during the fork and delay them so that
2090          * they appear to happen after the fork.
2091          */
2092         sigemptyset(&delayed.signal);
2093         INIT_HLIST_NODE(&delayed.node);
2094
2095         spin_lock_irq(&current->sighand->siglock);
2096         if (!(clone_flags & CLONE_THREAD))
2097                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2098         recalc_sigpending();
2099         spin_unlock_irq(&current->sighand->siglock);
2100         retval = -ERESTARTNOINTR;
2101         if (task_sigpending(current))
2102                 goto fork_out;
2103
2104         retval = -ENOMEM;
2105         p = dup_task_struct(current, node);
2106         if (!p)
2107                 goto fork_out;
2108         p->flags &= ~PF_KTHREAD;
2109         if (args->kthread)
2110                 p->flags |= PF_KTHREAD;
2111         if (args->io_thread) {
2112                 /*
2113                  * Mark us an IO worker, and block any signal that isn't
2114                  * fatal or STOP
2115                  */
2116                 p->flags |= PF_IO_WORKER;
2117                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2118         }
2119
2120         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2121         /*
2122          * Clear TID on mm_release()?
2123          */
2124         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2125
2126         ftrace_graph_init_task(p);
2127
2128         rt_mutex_init_task(p);
2129
2130         lockdep_assert_irqs_enabled();
2131 #ifdef CONFIG_PROVE_LOCKING
2132         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2133 #endif
2134         retval = copy_creds(p, clone_flags);
2135         if (retval < 0)
2136                 goto bad_fork_free;
2137
2138         retval = -EAGAIN;
2139         if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2140                 if (p->real_cred->user != INIT_USER &&
2141                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2142                         goto bad_fork_cleanup_count;
2143         }
2144         current->flags &= ~PF_NPROC_EXCEEDED;
2145
2146         /*
2147          * If multiple threads are within copy_process(), then this check
2148          * triggers too late. This doesn't hurt, the check is only there
2149          * to stop root fork bombs.
2150          */
2151         retval = -EAGAIN;
2152         if (data_race(nr_threads >= max_threads))
2153                 goto bad_fork_cleanup_count;
2154
2155         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2156         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2157         p->flags |= PF_FORKNOEXEC;
2158         INIT_LIST_HEAD(&p->children);
2159         INIT_LIST_HEAD(&p->sibling);
2160         rcu_copy_process(p);
2161         p->vfork_done = NULL;
2162         spin_lock_init(&p->alloc_lock);
2163
2164         init_sigpending(&p->pending);
2165
2166         p->utime = p->stime = p->gtime = 0;
2167 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2168         p->utimescaled = p->stimescaled = 0;
2169 #endif
2170         prev_cputime_init(&p->prev_cputime);
2171
2172 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2173         seqcount_init(&p->vtime.seqcount);
2174         p->vtime.starttime = 0;
2175         p->vtime.state = VTIME_INACTIVE;
2176 #endif
2177
2178 #ifdef CONFIG_IO_URING
2179         p->io_uring = NULL;
2180 #endif
2181
2182 #if defined(SPLIT_RSS_COUNTING)
2183         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2184 #endif
2185
2186         p->default_timer_slack_ns = current->timer_slack_ns;
2187
2188 #ifdef CONFIG_PSI
2189         p->psi_flags = 0;
2190 #endif
2191
2192         task_io_accounting_init(&p->ioac);
2193         acct_clear_integrals(p);
2194
2195         posix_cputimers_init(&p->posix_cputimers);
2196
2197         p->io_context = NULL;
2198         audit_set_context(p, NULL);
2199         cgroup_fork(p);
2200         if (args->kthread) {
2201                 if (!set_kthread_struct(p))
2202                         goto bad_fork_cleanup_delayacct;
2203         }
2204 #ifdef CONFIG_NUMA
2205         p->mempolicy = mpol_dup(p->mempolicy);
2206         if (IS_ERR(p->mempolicy)) {
2207                 retval = PTR_ERR(p->mempolicy);
2208                 p->mempolicy = NULL;
2209                 goto bad_fork_cleanup_delayacct;
2210         }
2211 #endif
2212 #ifdef CONFIG_CPUSETS
2213         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2214         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2215         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2216 #endif
2217 #ifdef CONFIG_TRACE_IRQFLAGS
2218         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2219         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2220         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2221         p->softirqs_enabled             = 1;
2222         p->softirq_context              = 0;
2223 #endif
2224
2225         p->pagefault_disabled = 0;
2226
2227 #ifdef CONFIG_LOCKDEP
2228         lockdep_init_task(p);
2229 #endif
2230
2231 #ifdef CONFIG_DEBUG_MUTEXES
2232         p->blocked_on = NULL; /* not blocked yet */
2233 #endif
2234 #ifdef CONFIG_BCACHE
2235         p->sequential_io        = 0;
2236         p->sequential_io_avg    = 0;
2237 #endif
2238 #ifdef CONFIG_BPF_SYSCALL
2239         RCU_INIT_POINTER(p->bpf_storage, NULL);
2240         p->bpf_ctx = NULL;
2241 #endif
2242
2243         /* Perform scheduler related setup. Assign this task to a CPU. */
2244         retval = sched_fork(clone_flags, p);
2245         if (retval)
2246                 goto bad_fork_cleanup_policy;
2247
2248         retval = perf_event_init_task(p, clone_flags);
2249         if (retval)
2250                 goto bad_fork_cleanup_policy;
2251         retval = audit_alloc(p);
2252         if (retval)
2253                 goto bad_fork_cleanup_perf;
2254         /* copy all the process information */
2255         shm_init_task(p);
2256         retval = security_task_alloc(p, clone_flags);
2257         if (retval)
2258                 goto bad_fork_cleanup_audit;
2259         retval = copy_semundo(clone_flags, p);
2260         if (retval)
2261                 goto bad_fork_cleanup_security;
2262         retval = copy_files(clone_flags, p);
2263         if (retval)
2264                 goto bad_fork_cleanup_semundo;
2265         retval = copy_fs(clone_flags, p);
2266         if (retval)
2267                 goto bad_fork_cleanup_files;
2268         retval = copy_sighand(clone_flags, p);
2269         if (retval)
2270                 goto bad_fork_cleanup_fs;
2271         retval = copy_signal(clone_flags, p);
2272         if (retval)
2273                 goto bad_fork_cleanup_sighand;
2274         retval = copy_mm(clone_flags, p);
2275         if (retval)
2276                 goto bad_fork_cleanup_signal;
2277         retval = copy_namespaces(clone_flags, p);
2278         if (retval)
2279                 goto bad_fork_cleanup_mm;
2280         retval = copy_io(clone_flags, p);
2281         if (retval)
2282                 goto bad_fork_cleanup_namespaces;
2283         retval = copy_thread(p, args);
2284         if (retval)
2285                 goto bad_fork_cleanup_io;
2286
2287         stackleak_task_init(p);
2288
2289         if (pid != &init_struct_pid) {
2290                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2291                                 args->set_tid_size);
2292                 if (IS_ERR(pid)) {
2293                         retval = PTR_ERR(pid);
2294                         goto bad_fork_cleanup_thread;
2295                 }
2296         }
2297
2298         /*
2299          * This has to happen after we've potentially unshared the file
2300          * descriptor table (so that the pidfd doesn't leak into the child
2301          * if the fd table isn't shared).
2302          */
2303         if (clone_flags & CLONE_PIDFD) {
2304                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2305                 if (retval < 0)
2306                         goto bad_fork_free_pid;
2307
2308                 pidfd = retval;
2309
2310                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2311                                               O_RDWR | O_CLOEXEC);
2312                 if (IS_ERR(pidfile)) {
2313                         put_unused_fd(pidfd);
2314                         retval = PTR_ERR(pidfile);
2315                         goto bad_fork_free_pid;
2316                 }
2317                 get_pid(pid);   /* held by pidfile now */
2318
2319                 retval = put_user(pidfd, args->pidfd);
2320                 if (retval)
2321                         goto bad_fork_put_pidfd;
2322         }
2323
2324 #ifdef CONFIG_BLOCK
2325         p->plug = NULL;
2326 #endif
2327         futex_init_task(p);
2328
2329         /*
2330          * sigaltstack should be cleared when sharing the same VM
2331          */
2332         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2333                 sas_ss_reset(p);
2334
2335         /*
2336          * Syscall tracing and stepping should be turned off in the
2337          * child regardless of CLONE_PTRACE.
2338          */
2339         user_disable_single_step(p);
2340         clear_task_syscall_work(p, SYSCALL_TRACE);
2341 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2342         clear_task_syscall_work(p, SYSCALL_EMU);
2343 #endif
2344         clear_tsk_latency_tracing(p);
2345
2346         /* ok, now we should be set up.. */
2347         p->pid = pid_nr(pid);
2348         if (clone_flags & CLONE_THREAD) {
2349                 p->group_leader = current->group_leader;
2350                 p->tgid = current->tgid;
2351         } else {
2352                 p->group_leader = p;
2353                 p->tgid = p->pid;
2354         }
2355
2356         p->nr_dirtied = 0;
2357         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2358         p->dirty_paused_when = 0;
2359
2360         p->pdeath_signal = 0;
2361         INIT_LIST_HEAD(&p->thread_group);
2362         p->task_works = NULL;
2363         clear_posix_cputimers_work(p);
2364
2365 #ifdef CONFIG_KRETPROBES
2366         p->kretprobe_instances.first = NULL;
2367 #endif
2368 #ifdef CONFIG_RETHOOK
2369         p->rethooks.first = NULL;
2370 #endif
2371
2372         /*
2373          * Ensure that the cgroup subsystem policies allow the new process to be
2374          * forked. It should be noted that the new process's css_set can be changed
2375          * between here and cgroup_post_fork() if an organisation operation is in
2376          * progress.
2377          */
2378         retval = cgroup_can_fork(p, args);
2379         if (retval)
2380                 goto bad_fork_put_pidfd;
2381
2382         /*
2383          * Now that the cgroups are pinned, re-clone the parent cgroup and put
2384          * the new task on the correct runqueue. All this *before* the task
2385          * becomes visible.
2386          *
2387          * This isn't part of ->can_fork() because while the re-cloning is
2388          * cgroup specific, it unconditionally needs to place the task on a
2389          * runqueue.
2390          */
2391         sched_cgroup_fork(p, args);
2392
2393         /*
2394          * From this point on we must avoid any synchronous user-space
2395          * communication until we take the tasklist-lock. In particular, we do
2396          * not want user-space to be able to predict the process start-time by
2397          * stalling fork(2) after we recorded the start_time but before it is
2398          * visible to the system.
2399          */
2400
2401         p->start_time = ktime_get_ns();
2402         p->start_boottime = ktime_get_boottime_ns();
2403
2404         /*
2405          * Make it visible to the rest of the system, but dont wake it up yet.
2406          * Need tasklist lock for parent etc handling!
2407          */
2408         write_lock_irq(&tasklist_lock);
2409
2410         /* CLONE_PARENT re-uses the old parent */
2411         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2412                 p->real_parent = current->real_parent;
2413                 p->parent_exec_id = current->parent_exec_id;
2414                 if (clone_flags & CLONE_THREAD)
2415                         p->exit_signal = -1;
2416                 else
2417                         p->exit_signal = current->group_leader->exit_signal;
2418         } else {
2419                 p->real_parent = current;
2420                 p->parent_exec_id = current->self_exec_id;
2421                 p->exit_signal = args->exit_signal;
2422         }
2423
2424         klp_copy_process(p);
2425
2426         sched_core_fork(p);
2427
2428         spin_lock(&current->sighand->siglock);
2429
2430         rv_task_fork(p);
2431
2432         rseq_fork(p, clone_flags);
2433
2434         /* Don't start children in a dying pid namespace */
2435         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2436                 retval = -ENOMEM;
2437                 goto bad_fork_cancel_cgroup;
2438         }
2439
2440         /* Let kill terminate clone/fork in the middle */
2441         if (fatal_signal_pending(current)) {
2442                 retval = -EINTR;
2443                 goto bad_fork_cancel_cgroup;
2444         }
2445
2446         /* No more failure paths after this point. */
2447
2448         /*
2449          * Copy seccomp details explicitly here, in case they were changed
2450          * before holding sighand lock.
2451          */
2452         copy_seccomp(p);
2453
2454         init_task_pid_links(p);
2455         if (likely(p->pid)) {
2456                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2457
2458                 init_task_pid(p, PIDTYPE_PID, pid);
2459                 if (thread_group_leader(p)) {
2460                         init_task_pid(p, PIDTYPE_TGID, pid);
2461                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2462                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2463
2464                         if (is_child_reaper(pid)) {
2465                                 ns_of_pid(pid)->child_reaper = p;
2466                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2467                         }
2468                         p->signal->shared_pending.signal = delayed.signal;
2469                         p->signal->tty = tty_kref_get(current->signal->tty);
2470                         /*
2471                          * Inherit has_child_subreaper flag under the same
2472                          * tasklist_lock with adding child to the process tree
2473                          * for propagate_has_child_subreaper optimization.
2474                          */
2475                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2476                                                          p->real_parent->signal->is_child_subreaper;
2477                         list_add_tail(&p->sibling, &p->real_parent->children);
2478                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2479                         attach_pid(p, PIDTYPE_TGID);
2480                         attach_pid(p, PIDTYPE_PGID);
2481                         attach_pid(p, PIDTYPE_SID);
2482                         __this_cpu_inc(process_counts);
2483                 } else {
2484                         current->signal->nr_threads++;
2485                         current->signal->quick_threads++;
2486                         atomic_inc(&current->signal->live);
2487                         refcount_inc(&current->signal->sigcnt);
2488                         task_join_group_stop(p);
2489                         list_add_tail_rcu(&p->thread_group,
2490                                           &p->group_leader->thread_group);
2491                         list_add_tail_rcu(&p->thread_node,
2492                                           &p->signal->thread_head);
2493                 }
2494                 attach_pid(p, PIDTYPE_PID);
2495                 nr_threads++;
2496         }
2497         total_forks++;
2498         hlist_del_init(&delayed.node);
2499         spin_unlock(&current->sighand->siglock);
2500         syscall_tracepoint_update(p);
2501         write_unlock_irq(&tasklist_lock);
2502
2503         if (pidfile)
2504                 fd_install(pidfd, pidfile);
2505
2506         proc_fork_connector(p);
2507         sched_post_fork(p);
2508         cgroup_post_fork(p, args);
2509         perf_event_fork(p);
2510
2511         trace_task_newtask(p, clone_flags);
2512         uprobe_copy_process(p, clone_flags);
2513
2514         copy_oom_score_adj(clone_flags, p);
2515
2516         return p;
2517
2518 bad_fork_cancel_cgroup:
2519         sched_core_free(p);
2520         spin_unlock(&current->sighand->siglock);
2521         write_unlock_irq(&tasklist_lock);
2522         cgroup_cancel_fork(p, args);
2523 bad_fork_put_pidfd:
2524         if (clone_flags & CLONE_PIDFD) {
2525                 fput(pidfile);
2526                 put_unused_fd(pidfd);
2527         }
2528 bad_fork_free_pid:
2529         if (pid != &init_struct_pid)
2530                 free_pid(pid);
2531 bad_fork_cleanup_thread:
2532         exit_thread(p);
2533 bad_fork_cleanup_io:
2534         if (p->io_context)
2535                 exit_io_context(p);
2536 bad_fork_cleanup_namespaces:
2537         exit_task_namespaces(p);
2538 bad_fork_cleanup_mm:
2539         if (p->mm) {
2540                 mm_clear_owner(p->mm, p);
2541                 mmput(p->mm);
2542         }
2543 bad_fork_cleanup_signal:
2544         if (!(clone_flags & CLONE_THREAD))
2545                 free_signal_struct(p->signal);
2546 bad_fork_cleanup_sighand:
2547         __cleanup_sighand(p->sighand);
2548 bad_fork_cleanup_fs:
2549         exit_fs(p); /* blocking */
2550 bad_fork_cleanup_files:
2551         exit_files(p); /* blocking */
2552 bad_fork_cleanup_semundo:
2553         exit_sem(p);
2554 bad_fork_cleanup_security:
2555         security_task_free(p);
2556 bad_fork_cleanup_audit:
2557         audit_free(p);
2558 bad_fork_cleanup_perf:
2559         perf_event_free_task(p);
2560 bad_fork_cleanup_policy:
2561         lockdep_free_task(p);
2562 #ifdef CONFIG_NUMA
2563         mpol_put(p->mempolicy);
2564 #endif
2565 bad_fork_cleanup_delayacct:
2566         delayacct_tsk_free(p);
2567 bad_fork_cleanup_count:
2568         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2569         exit_creds(p);
2570 bad_fork_free:
2571         WRITE_ONCE(p->__state, TASK_DEAD);
2572         exit_task_stack_account(p);
2573         put_task_stack(p);
2574         delayed_free_task(p);
2575 fork_out:
2576         spin_lock_irq(&current->sighand->siglock);
2577         hlist_del_init(&delayed.node);
2578         spin_unlock_irq(&current->sighand->siglock);
2579         return ERR_PTR(retval);
2580 }
2581
2582 static inline void init_idle_pids(struct task_struct *idle)
2583 {
2584         enum pid_type type;
2585
2586         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2587                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2588                 init_task_pid(idle, type, &init_struct_pid);
2589         }
2590 }
2591
2592 static int idle_dummy(void *dummy)
2593 {
2594         /* This function is never called */
2595         return 0;
2596 }
2597
2598 struct task_struct * __init fork_idle(int cpu)
2599 {
2600         struct task_struct *task;
2601         struct kernel_clone_args args = {
2602                 .flags          = CLONE_VM,
2603                 .fn             = &idle_dummy,
2604                 .fn_arg         = NULL,
2605                 .kthread        = 1,
2606                 .idle           = 1,
2607         };
2608
2609         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2610         if (!IS_ERR(task)) {
2611                 init_idle_pids(task);
2612                 init_idle(task, cpu);
2613         }
2614
2615         return task;
2616 }
2617
2618 /*
2619  * This is like kernel_clone(), but shaved down and tailored to just
2620  * creating io_uring workers. It returns a created task, or an error pointer.
2621  * The returned task is inactive, and the caller must fire it up through
2622  * wake_up_new_task(p). All signals are blocked in the created task.
2623  */
2624 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2625 {
2626         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2627                                 CLONE_IO;
2628         struct kernel_clone_args args = {
2629                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2630                                     CLONE_UNTRACED) & ~CSIGNAL),
2631                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2632                 .fn             = fn,
2633                 .fn_arg         = arg,
2634                 .io_thread      = 1,
2635         };
2636
2637         return copy_process(NULL, 0, node, &args);
2638 }
2639
2640 /*
2641  *  Ok, this is the main fork-routine.
2642  *
2643  * It copies the process, and if successful kick-starts
2644  * it and waits for it to finish using the VM if required.
2645  *
2646  * args->exit_signal is expected to be checked for sanity by the caller.
2647  */
2648 pid_t kernel_clone(struct kernel_clone_args *args)
2649 {
2650         u64 clone_flags = args->flags;
2651         struct completion vfork;
2652         struct pid *pid;
2653         struct task_struct *p;
2654         int trace = 0;
2655         pid_t nr;
2656
2657         /*
2658          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2659          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2660          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2661          * field in struct clone_args and it still doesn't make sense to have
2662          * them both point at the same memory location. Performing this check
2663          * here has the advantage that we don't need to have a separate helper
2664          * to check for legacy clone().
2665          */
2666         if ((args->flags & CLONE_PIDFD) &&
2667             (args->flags & CLONE_PARENT_SETTID) &&
2668             (args->pidfd == args->parent_tid))
2669                 return -EINVAL;
2670
2671         /*
2672          * Determine whether and which event to report to ptracer.  When
2673          * called from kernel_thread or CLONE_UNTRACED is explicitly
2674          * requested, no event is reported; otherwise, report if the event
2675          * for the type of forking is enabled.
2676          */
2677         if (!(clone_flags & CLONE_UNTRACED)) {
2678                 if (clone_flags & CLONE_VFORK)
2679                         trace = PTRACE_EVENT_VFORK;
2680                 else if (args->exit_signal != SIGCHLD)
2681                         trace = PTRACE_EVENT_CLONE;
2682                 else
2683                         trace = PTRACE_EVENT_FORK;
2684
2685                 if (likely(!ptrace_event_enabled(current, trace)))
2686                         trace = 0;
2687         }
2688
2689         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2690         add_latent_entropy();
2691
2692         if (IS_ERR(p))
2693                 return PTR_ERR(p);
2694
2695         /*
2696          * Do this prior waking up the new thread - the thread pointer
2697          * might get invalid after that point, if the thread exits quickly.
2698          */
2699         trace_sched_process_fork(current, p);
2700
2701         pid = get_task_pid(p, PIDTYPE_PID);
2702         nr = pid_vnr(pid);
2703
2704         if (clone_flags & CLONE_PARENT_SETTID)
2705                 put_user(nr, args->parent_tid);
2706
2707         if (clone_flags & CLONE_VFORK) {
2708                 p->vfork_done = &vfork;
2709                 init_completion(&vfork);
2710                 get_task_struct(p);
2711         }
2712
2713         if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2714                 /* lock the task to synchronize with memcg migration */
2715                 task_lock(p);
2716                 lru_gen_add_mm(p->mm);
2717                 task_unlock(p);
2718         }
2719
2720         wake_up_new_task(p);
2721
2722         /* forking complete and child started to run, tell ptracer */
2723         if (unlikely(trace))
2724                 ptrace_event_pid(trace, pid);
2725
2726         if (clone_flags & CLONE_VFORK) {
2727                 if (!wait_for_vfork_done(p, &vfork))
2728                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2729         }
2730
2731         put_pid(pid);
2732         return nr;
2733 }
2734
2735 /*
2736  * Create a kernel thread.
2737  */
2738 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2739 {
2740         struct kernel_clone_args args = {
2741                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2742                                     CLONE_UNTRACED) & ~CSIGNAL),
2743                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2744                 .fn             = fn,
2745                 .fn_arg         = arg,
2746                 .kthread        = 1,
2747         };
2748
2749         return kernel_clone(&args);
2750 }
2751
2752 /*
2753  * Create a user mode thread.
2754  */
2755 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2756 {
2757         struct kernel_clone_args args = {
2758                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2759                                     CLONE_UNTRACED) & ~CSIGNAL),
2760                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2761                 .fn             = fn,
2762                 .fn_arg         = arg,
2763         };
2764
2765         return kernel_clone(&args);
2766 }
2767
2768 #ifdef __ARCH_WANT_SYS_FORK
2769 SYSCALL_DEFINE0(fork)
2770 {
2771 #ifdef CONFIG_MMU
2772         struct kernel_clone_args args = {
2773                 .exit_signal = SIGCHLD,
2774         };
2775
2776         return kernel_clone(&args);
2777 #else
2778         /* can not support in nommu mode */
2779         return -EINVAL;
2780 #endif
2781 }
2782 #endif
2783
2784 #ifdef __ARCH_WANT_SYS_VFORK
2785 SYSCALL_DEFINE0(vfork)
2786 {
2787         struct kernel_clone_args args = {
2788                 .flags          = CLONE_VFORK | CLONE_VM,
2789                 .exit_signal    = SIGCHLD,
2790         };
2791
2792         return kernel_clone(&args);
2793 }
2794 #endif
2795
2796 #ifdef __ARCH_WANT_SYS_CLONE
2797 #ifdef CONFIG_CLONE_BACKWARDS
2798 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2799                  int __user *, parent_tidptr,
2800                  unsigned long, tls,
2801                  int __user *, child_tidptr)
2802 #elif defined(CONFIG_CLONE_BACKWARDS2)
2803 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2804                  int __user *, parent_tidptr,
2805                  int __user *, child_tidptr,
2806                  unsigned long, tls)
2807 #elif defined(CONFIG_CLONE_BACKWARDS3)
2808 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2809                 int, stack_size,
2810                 int __user *, parent_tidptr,
2811                 int __user *, child_tidptr,
2812                 unsigned long, tls)
2813 #else
2814 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2815                  int __user *, parent_tidptr,
2816                  int __user *, child_tidptr,
2817                  unsigned long, tls)
2818 #endif
2819 {
2820         struct kernel_clone_args args = {
2821                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2822                 .pidfd          = parent_tidptr,
2823                 .child_tid      = child_tidptr,
2824                 .parent_tid     = parent_tidptr,
2825                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2826                 .stack          = newsp,
2827                 .tls            = tls,
2828         };
2829
2830         return kernel_clone(&args);
2831 }
2832 #endif
2833
2834 #ifdef __ARCH_WANT_SYS_CLONE3
2835
2836 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2837                                               struct clone_args __user *uargs,
2838                                               size_t usize)
2839 {
2840         int err;
2841         struct clone_args args;
2842         pid_t *kset_tid = kargs->set_tid;
2843
2844         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2845                      CLONE_ARGS_SIZE_VER0);
2846         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2847                      CLONE_ARGS_SIZE_VER1);
2848         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2849                      CLONE_ARGS_SIZE_VER2);
2850         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2851
2852         if (unlikely(usize > PAGE_SIZE))
2853                 return -E2BIG;
2854         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2855                 return -EINVAL;
2856
2857         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2858         if (err)
2859                 return err;
2860
2861         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2862                 return -EINVAL;
2863
2864         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2865                 return -EINVAL;
2866
2867         if (unlikely(args.set_tid && args.set_tid_size == 0))
2868                 return -EINVAL;
2869
2870         /*
2871          * Verify that higher 32bits of exit_signal are unset and that
2872          * it is a valid signal
2873          */
2874         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2875                      !valid_signal(args.exit_signal)))
2876                 return -EINVAL;
2877
2878         if ((args.flags & CLONE_INTO_CGROUP) &&
2879             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2880                 return -EINVAL;
2881
2882         *kargs = (struct kernel_clone_args){
2883                 .flags          = args.flags,
2884                 .pidfd          = u64_to_user_ptr(args.pidfd),
2885                 .child_tid      = u64_to_user_ptr(args.child_tid),
2886                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2887                 .exit_signal    = args.exit_signal,
2888                 .stack          = args.stack,
2889                 .stack_size     = args.stack_size,
2890                 .tls            = args.tls,
2891                 .set_tid_size   = args.set_tid_size,
2892                 .cgroup         = args.cgroup,
2893         };
2894
2895         if (args.set_tid &&
2896                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2897                         (kargs->set_tid_size * sizeof(pid_t))))
2898                 return -EFAULT;
2899
2900         kargs->set_tid = kset_tid;
2901
2902         return 0;
2903 }
2904
2905 /**
2906  * clone3_stack_valid - check and prepare stack
2907  * @kargs: kernel clone args
2908  *
2909  * Verify that the stack arguments userspace gave us are sane.
2910  * In addition, set the stack direction for userspace since it's easy for us to
2911  * determine.
2912  */
2913 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2914 {
2915         if (kargs->stack == 0) {
2916                 if (kargs->stack_size > 0)
2917                         return false;
2918         } else {
2919                 if (kargs->stack_size == 0)
2920                         return false;
2921
2922                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2923                         return false;
2924
2925 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2926                 kargs->stack += kargs->stack_size;
2927 #endif
2928         }
2929
2930         return true;
2931 }
2932
2933 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2934 {
2935         /* Verify that no unknown flags are passed along. */
2936         if (kargs->flags &
2937             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2938                 return false;
2939
2940         /*
2941          * - make the CLONE_DETACHED bit reusable for clone3
2942          * - make the CSIGNAL bits reusable for clone3
2943          */
2944         if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2945                 return false;
2946
2947         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2948             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2949                 return false;
2950
2951         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2952             kargs->exit_signal)
2953                 return false;
2954
2955         if (!clone3_stack_valid(kargs))
2956                 return false;
2957
2958         return true;
2959 }
2960
2961 /**
2962  * clone3 - create a new process with specific properties
2963  * @uargs: argument structure
2964  * @size:  size of @uargs
2965  *
2966  * clone3() is the extensible successor to clone()/clone2().
2967  * It takes a struct as argument that is versioned by its size.
2968  *
2969  * Return: On success, a positive PID for the child process.
2970  *         On error, a negative errno number.
2971  */
2972 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2973 {
2974         int err;
2975
2976         struct kernel_clone_args kargs;
2977         pid_t set_tid[MAX_PID_NS_LEVEL];
2978
2979         kargs.set_tid = set_tid;
2980
2981         err = copy_clone_args_from_user(&kargs, uargs, size);
2982         if (err)
2983                 return err;
2984
2985         if (!clone3_args_valid(&kargs))
2986                 return -EINVAL;
2987
2988         return kernel_clone(&kargs);
2989 }
2990 #endif
2991
2992 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2993 {
2994         struct task_struct *leader, *parent, *child;
2995         int res;
2996
2997         read_lock(&tasklist_lock);
2998         leader = top = top->group_leader;
2999 down:
3000         for_each_thread(leader, parent) {
3001                 list_for_each_entry(child, &parent->children, sibling) {
3002                         res = visitor(child, data);
3003                         if (res) {
3004                                 if (res < 0)
3005                                         goto out;
3006                                 leader = child;
3007                                 goto down;
3008                         }
3009 up:
3010                         ;
3011                 }
3012         }
3013
3014         if (leader != top) {
3015                 child = leader;
3016                 parent = child->real_parent;
3017                 leader = parent->group_leader;
3018                 goto up;
3019         }
3020 out:
3021         read_unlock(&tasklist_lock);
3022 }
3023
3024 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3025 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3026 #endif
3027
3028 static void sighand_ctor(void *data)
3029 {
3030         struct sighand_struct *sighand = data;
3031
3032         spin_lock_init(&sighand->siglock);
3033         init_waitqueue_head(&sighand->signalfd_wqh);
3034 }
3035
3036 void __init mm_cache_init(void)
3037 {
3038         unsigned int mm_size;
3039
3040         /*
3041          * The mm_cpumask is located at the end of mm_struct, and is
3042          * dynamically sized based on the maximum CPU number this system
3043          * can have, taking hotplug into account (nr_cpu_ids).
3044          */
3045         mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3046
3047         mm_cachep = kmem_cache_create_usercopy("mm_struct",
3048                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3049                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3050                         offsetof(struct mm_struct, saved_auxv),
3051                         sizeof_field(struct mm_struct, saved_auxv),
3052                         NULL);
3053 }
3054
3055 void __init proc_caches_init(void)
3056 {
3057         sighand_cachep = kmem_cache_create("sighand_cache",
3058                         sizeof(struct sighand_struct), 0,
3059                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3060                         SLAB_ACCOUNT, sighand_ctor);
3061         signal_cachep = kmem_cache_create("signal_cache",
3062                         sizeof(struct signal_struct), 0,
3063                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3064                         NULL);
3065         files_cachep = kmem_cache_create("files_cache",
3066                         sizeof(struct files_struct), 0,
3067                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3068                         NULL);
3069         fs_cachep = kmem_cache_create("fs_cache",
3070                         sizeof(struct fs_struct), 0,
3071                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3072                         NULL);
3073
3074         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3075         mmap_init();
3076         nsproxy_cache_init();
3077 }
3078
3079 /*
3080  * Check constraints on flags passed to the unshare system call.
3081  */
3082 static int check_unshare_flags(unsigned long unshare_flags)
3083 {
3084         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3085                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3086                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3087                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3088                                 CLONE_NEWTIME))
3089                 return -EINVAL;
3090         /*
3091          * Not implemented, but pretend it works if there is nothing
3092          * to unshare.  Note that unsharing the address space or the
3093          * signal handlers also need to unshare the signal queues (aka
3094          * CLONE_THREAD).
3095          */
3096         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3097                 if (!thread_group_empty(current))
3098                         return -EINVAL;
3099         }
3100         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3101                 if (refcount_read(&current->sighand->count) > 1)
3102                         return -EINVAL;
3103         }
3104         if (unshare_flags & CLONE_VM) {
3105                 if (!current_is_single_threaded())
3106                         return -EINVAL;
3107         }
3108
3109         return 0;
3110 }
3111
3112 /*
3113  * Unshare the filesystem structure if it is being shared
3114  */
3115 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3116 {
3117         struct fs_struct *fs = current->fs;
3118
3119         if (!(unshare_flags & CLONE_FS) || !fs)
3120                 return 0;
3121
3122         /* don't need lock here; in the worst case we'll do useless copy */
3123         if (fs->users == 1)
3124                 return 0;
3125
3126         *new_fsp = copy_fs_struct(fs);
3127         if (!*new_fsp)
3128                 return -ENOMEM;
3129
3130         return 0;
3131 }
3132
3133 /*
3134  * Unshare file descriptor table if it is being shared
3135  */
3136 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3137                struct files_struct **new_fdp)
3138 {
3139         struct files_struct *fd = current->files;
3140         int error = 0;
3141
3142         if ((unshare_flags & CLONE_FILES) &&
3143             (fd && atomic_read(&fd->count) > 1)) {
3144                 *new_fdp = dup_fd(fd, max_fds, &error);
3145                 if (!*new_fdp)
3146                         return error;
3147         }
3148
3149         return 0;
3150 }
3151
3152 /*
3153  * unshare allows a process to 'unshare' part of the process
3154  * context which was originally shared using clone.  copy_*
3155  * functions used by kernel_clone() cannot be used here directly
3156  * because they modify an inactive task_struct that is being
3157  * constructed. Here we are modifying the current, active,
3158  * task_struct.
3159  */
3160 int ksys_unshare(unsigned long unshare_flags)
3161 {
3162         struct fs_struct *fs, *new_fs = NULL;
3163         struct files_struct *new_fd = NULL;
3164         struct cred *new_cred = NULL;
3165         struct nsproxy *new_nsproxy = NULL;
3166         int do_sysvsem = 0;
3167         int err;
3168
3169         /*
3170          * If unsharing a user namespace must also unshare the thread group
3171          * and unshare the filesystem root and working directories.
3172          */
3173         if (unshare_flags & CLONE_NEWUSER)
3174                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3175         /*
3176          * If unsharing vm, must also unshare signal handlers.
3177          */
3178         if (unshare_flags & CLONE_VM)
3179                 unshare_flags |= CLONE_SIGHAND;
3180         /*
3181          * If unsharing a signal handlers, must also unshare the signal queues.
3182          */
3183         if (unshare_flags & CLONE_SIGHAND)
3184                 unshare_flags |= CLONE_THREAD;
3185         /*
3186          * If unsharing namespace, must also unshare filesystem information.
3187          */
3188         if (unshare_flags & CLONE_NEWNS)
3189                 unshare_flags |= CLONE_FS;
3190
3191         err = check_unshare_flags(unshare_flags);
3192         if (err)
3193                 goto bad_unshare_out;
3194         /*
3195          * CLONE_NEWIPC must also detach from the undolist: after switching
3196          * to a new ipc namespace, the semaphore arrays from the old
3197          * namespace are unreachable.
3198          */
3199         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3200                 do_sysvsem = 1;
3201         err = unshare_fs(unshare_flags, &new_fs);
3202         if (err)
3203                 goto bad_unshare_out;
3204         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3205         if (err)
3206                 goto bad_unshare_cleanup_fs;
3207         err = unshare_userns(unshare_flags, &new_cred);
3208         if (err)
3209                 goto bad_unshare_cleanup_fd;
3210         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3211                                          new_cred, new_fs);
3212         if (err)
3213                 goto bad_unshare_cleanup_cred;
3214
3215         if (new_cred) {
3216                 err = set_cred_ucounts(new_cred);
3217                 if (err)
3218                         goto bad_unshare_cleanup_cred;
3219         }
3220
3221         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3222                 if (do_sysvsem) {
3223                         /*
3224                          * CLONE_SYSVSEM is equivalent to sys_exit().
3225                          */
3226                         exit_sem(current);
3227                 }
3228                 if (unshare_flags & CLONE_NEWIPC) {
3229                         /* Orphan segments in old ns (see sem above). */
3230                         exit_shm(current);
3231                         shm_init_task(current);
3232                 }
3233
3234                 if (new_nsproxy)
3235                         switch_task_namespaces(current, new_nsproxy);
3236
3237                 task_lock(current);
3238
3239                 if (new_fs) {
3240                         fs = current->fs;
3241                         spin_lock(&fs->lock);
3242                         current->fs = new_fs;
3243                         if (--fs->users)
3244                                 new_fs = NULL;
3245                         else
3246                                 new_fs = fs;
3247                         spin_unlock(&fs->lock);
3248                 }
3249
3250                 if (new_fd)
3251                         swap(current->files, new_fd);
3252
3253                 task_unlock(current);
3254
3255                 if (new_cred) {
3256                         /* Install the new user namespace */
3257                         commit_creds(new_cred);
3258                         new_cred = NULL;
3259                 }
3260         }
3261
3262         perf_event_namespaces(current);
3263
3264 bad_unshare_cleanup_cred:
3265         if (new_cred)
3266                 put_cred(new_cred);
3267 bad_unshare_cleanup_fd:
3268         if (new_fd)
3269                 put_files_struct(new_fd);
3270
3271 bad_unshare_cleanup_fs:
3272         if (new_fs)
3273                 free_fs_struct(new_fs);
3274
3275 bad_unshare_out:
3276         return err;
3277 }
3278
3279 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3280 {
3281         return ksys_unshare(unshare_flags);
3282 }
3283
3284 /*
3285  *      Helper to unshare the files of the current task.
3286  *      We don't want to expose copy_files internals to
3287  *      the exec layer of the kernel.
3288  */
3289
3290 int unshare_files(void)
3291 {
3292         struct task_struct *task = current;
3293         struct files_struct *old, *copy = NULL;
3294         int error;
3295
3296         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3297         if (error || !copy)
3298                 return error;
3299
3300         old = task->files;
3301         task_lock(task);
3302         task->files = copy;
3303         task_unlock(task);
3304         put_files_struct(old);
3305         return 0;
3306 }
3307
3308 int sysctl_max_threads(struct ctl_table *table, int write,
3309                        void *buffer, size_t *lenp, loff_t *ppos)
3310 {
3311         struct ctl_table t;
3312         int ret;
3313         int threads = max_threads;
3314         int min = 1;
3315         int max = MAX_THREADS;
3316
3317         t = *table;
3318         t.data = &threads;
3319         t.extra1 = &min;
3320         t.extra2 = &max;
3321
3322         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3323         if (ret || !write)
3324                 return ret;
3325
3326         max_threads = threads;
3327
3328         return 0;
3329 }
This page took 0.22055 seconds and 4 git commands to generate.