1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
107 #include <trace/events/sched.h>
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
113 * Minimum number of threads to boot the kernel
115 #define MIN_THREADS 20
118 * Maximum number of threads
120 #define MAX_THREADS FUTEX_TID_MASK
123 * Protected counters by write_lock_irq(&tasklist_lock)
125 unsigned long total_forks; /* Handle normal Linux uptimes. */
126 int nr_threads; /* The idle threads do not count.. */
128 static int max_threads; /* tunable limit on nr_threads */
130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
132 static const char * const resident_page_types[] = {
133 NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
146 return lockdep_is_held(&tasklist_lock);
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
151 int nr_processes(void)
156 for_each_possible_cpu(cpu)
157 total += per_cpu(process_counts, cpu);
162 void __weak arch_release_task_struct(struct task_struct *tsk)
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
169 static inline struct task_struct *alloc_task_struct_node(int node)
171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 static inline void free_task_struct(struct task_struct *tsk)
176 kmem_cache_free(task_struct_cachep, tsk);
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184 * kmemcache based allocator.
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
188 # ifdef CONFIG_VMAP_STACK
190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191 * flush. Try to minimize the number of calls by caching stacks.
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198 struct vm_struct *stack_vm_area;
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
205 for (i = 0; i < NR_CACHED_STACKS; i++) {
206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
213 static void thread_stack_free_rcu(struct rcu_head *rh)
215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
223 static void thread_stack_delayed_free(struct task_struct *tsk)
225 struct vm_stack *vm_stack = tsk->stack;
227 vm_stack->stack_vm_area = tsk->stack_vm_area;
228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 static int free_vm_stack_cache(unsigned int cpu)
233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 for (i = 0; i < NR_CACHED_STACKS; i++) {
237 struct vm_struct *vm_stack = cached_vm_stacks[i];
242 vfree(vm_stack->addr);
243 cached_vm_stacks[i] = NULL;
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 memcg_kmem_uncharge_page(vm->pages[i], 0);
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
276 struct vm_struct *vm;
280 for (i = 0; i < NR_CACHED_STACKS; i++) {
283 s = this_cpu_xchg(cached_stacks[i], NULL);
288 /* Reset stack metadata. */
289 kasan_unpoison_range(s->addr, THREAD_SIZE);
291 stack = kasan_reset_tag(s->addr);
293 /* Clear stale pointers from reused stack. */
294 memset(stack, 0, THREAD_SIZE);
296 if (memcg_charge_kernel_stack(s)) {
301 tsk->stack_vm_area = s;
307 * Allocated stacks are cached and later reused by new threads,
308 * so memcg accounting is performed manually on assigning/releasing
309 * stacks to tasks. Drop __GFP_ACCOUNT.
311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 VMALLOC_START, VMALLOC_END,
313 THREADINFO_GFP & ~__GFP_ACCOUNT,
315 0, node, __builtin_return_address(0));
319 vm = find_vm_area(stack);
320 if (memcg_charge_kernel_stack(vm)) {
325 * We can't call find_vm_area() in interrupt context, and
326 * free_thread_stack() can be called in interrupt context,
327 * so cache the vm_struct.
329 tsk->stack_vm_area = vm;
330 stack = kasan_reset_tag(stack);
335 static void free_thread_stack(struct task_struct *tsk)
337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 thread_stack_delayed_free(tsk);
341 tsk->stack_vm_area = NULL;
344 # else /* !CONFIG_VMAP_STACK */
346 static void thread_stack_free_rcu(struct rcu_head *rh)
348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
351 static void thread_stack_delayed_free(struct task_struct *tsk)
353 struct rcu_head *rh = tsk->stack;
355 call_rcu(rh, thread_stack_free_rcu);
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
360 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 tsk->stack = kasan_reset_tag(page_address(page));
370 static void free_thread_stack(struct task_struct *tsk)
372 thread_stack_delayed_free(tsk);
376 # endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
379 static struct kmem_cache *thread_stack_cache;
381 static void thread_stack_free_rcu(struct rcu_head *rh)
383 kmem_cache_free(thread_stack_cache, rh);
386 static void thread_stack_delayed_free(struct task_struct *tsk)
388 struct rcu_head *rh = tsk->stack;
390 call_rcu(rh, thread_stack_free_rcu);
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
395 unsigned long *stack;
396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 stack = kasan_reset_tag(stack);
399 return stack ? 0 : -ENOMEM;
402 static void free_thread_stack(struct task_struct *tsk)
404 thread_stack_delayed_free(tsk);
408 void thread_stack_cache_init(void)
410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 THREAD_SIZE, THREAD_SIZE, 0, 0,
413 BUG_ON(thread_stack_cache == NULL);
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
421 unsigned long *stack;
423 stack = arch_alloc_thread_stack_node(tsk, node);
425 return stack ? 0 : -ENOMEM;
428 static void free_thread_stack(struct task_struct *tsk)
430 arch_free_thread_stack(tsk);
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
456 struct vm_area_struct *vma;
458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
472 * orig->shared.rb may be modified concurrently, but the clone
473 * will be reinitialized.
475 data_race(memcpy(new, orig, sizeof(*new)));
476 INIT_LIST_HEAD(&new->anon_vma_chain);
477 dup_anon_vma_name(orig, new);
482 void vm_area_free(struct vm_area_struct *vma)
484 free_anon_vma_name(vma);
485 kmem_cache_free(vm_area_cachep, vma);
488 static void account_kernel_stack(struct task_struct *tsk, int account)
490 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 struct vm_struct *vm = task_stack_vm_area(tsk);
494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 account * (PAGE_SIZE / 1024));
498 void *stack = task_stack_page(tsk);
500 /* All stack pages are in the same node. */
501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502 account * (THREAD_SIZE / 1024));
506 void exit_task_stack_account(struct task_struct *tsk)
508 account_kernel_stack(tsk, -1);
510 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 struct vm_struct *vm;
514 vm = task_stack_vm_area(tsk);
515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 memcg_kmem_uncharge_page(vm->pages[i], 0);
520 static void release_task_stack(struct task_struct *tsk)
522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523 return; /* Better to leak the stack than to free prematurely */
525 free_thread_stack(tsk);
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
531 if (refcount_dec_and_test(&tsk->stack_refcount))
532 release_task_stack(tsk);
536 void free_task(struct task_struct *tsk)
538 #ifdef CONFIG_SECCOMP
539 WARN_ON_ONCE(tsk->seccomp.filter);
541 release_user_cpus_ptr(tsk);
544 #ifndef CONFIG_THREAD_INFO_IN_TASK
546 * The task is finally done with both the stack and thread_info,
549 release_task_stack(tsk);
552 * If the task had a separate stack allocation, it should be gone
555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
557 rt_mutex_debug_task_free(tsk);
558 ftrace_graph_exit_task(tsk);
559 arch_release_task_struct(tsk);
560 if (tsk->flags & PF_KTHREAD)
561 free_kthread_struct(tsk);
562 free_task_struct(tsk);
564 EXPORT_SYMBOL(free_task);
566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
568 struct file *exe_file;
570 exe_file = get_mm_exe_file(oldmm);
571 RCU_INIT_POINTER(mm->exe_file, exe_file);
573 * We depend on the oldmm having properly denied write access to the
576 if (exe_file && deny_write_access(exe_file))
577 pr_warn_once("deny_write_access() failed in %s\n", __func__);
581 static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 struct mm_struct *oldmm)
584 struct vm_area_struct *mpnt, *tmp;
586 unsigned long charge = 0;
588 VMA_ITERATOR(old_vmi, oldmm, 0);
589 VMA_ITERATOR(vmi, mm, 0);
591 uprobe_start_dup_mmap();
592 if (mmap_write_lock_killable(oldmm)) {
594 goto fail_uprobe_end;
596 flush_cache_dup_mm(oldmm);
597 uprobe_dup_mmap(oldmm, mm);
599 * Not linked in yet - no deadlock potential:
601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
603 /* No ordering required: file already has been exposed. */
604 dup_mm_exe_file(mm, oldmm);
606 mm->total_vm = oldmm->total_vm;
607 mm->data_vm = oldmm->data_vm;
608 mm->exec_vm = oldmm->exec_vm;
609 mm->stack_vm = oldmm->stack_vm;
611 retval = ksm_fork(mm, oldmm);
614 khugepaged_fork(mm, oldmm);
616 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
620 mt_clear_in_rcu(vmi.mas.tree);
621 for_each_vma(old_vmi, mpnt) {
624 if (mpnt->vm_flags & VM_DONTCOPY) {
625 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
630 * Don't duplicate many vmas if we've been oom-killed (for
633 if (fatal_signal_pending(current)) {
637 if (mpnt->vm_flags & VM_ACCOUNT) {
638 unsigned long len = vma_pages(mpnt);
640 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
644 tmp = vm_area_dup(mpnt);
647 retval = vma_dup_policy(mpnt, tmp);
649 goto fail_nomem_policy;
651 retval = dup_userfaultfd(tmp, &uf);
653 goto fail_nomem_anon_vma_fork;
654 if (tmp->vm_flags & VM_WIPEONFORK) {
656 * VM_WIPEONFORK gets a clean slate in the child.
657 * Don't prepare anon_vma until fault since we don't
658 * copy page for current vma.
660 tmp->anon_vma = NULL;
661 } else if (anon_vma_fork(tmp, mpnt))
662 goto fail_nomem_anon_vma_fork;
663 vm_flags_clear(tmp, VM_LOCKED_MASK);
666 struct address_space *mapping = file->f_mapping;
669 i_mmap_lock_write(mapping);
670 if (tmp->vm_flags & VM_SHARED)
671 mapping_allow_writable(mapping);
672 flush_dcache_mmap_lock(mapping);
673 /* insert tmp into the share list, just after mpnt */
674 vma_interval_tree_insert_after(tmp, mpnt,
676 flush_dcache_mmap_unlock(mapping);
677 i_mmap_unlock_write(mapping);
681 * Copy/update hugetlb private vma information.
683 if (is_vm_hugetlb_page(tmp))
684 hugetlb_dup_vma_private(tmp);
686 /* Link the vma into the MT */
687 if (vma_iter_bulk_store(&vmi, tmp))
688 goto fail_nomem_vmi_store;
691 if (!(tmp->vm_flags & VM_WIPEONFORK))
692 retval = copy_page_range(tmp, mpnt);
694 if (tmp->vm_ops && tmp->vm_ops->open)
695 tmp->vm_ops->open(tmp);
700 /* a new mm has just been created */
701 retval = arch_dup_mmap(oldmm, mm);
705 mt_set_in_rcu(vmi.mas.tree);
707 mmap_write_unlock(mm);
709 mmap_write_unlock(oldmm);
710 dup_userfaultfd_complete(&uf);
712 uprobe_end_dup_mmap();
715 fail_nomem_vmi_store:
716 unlink_anon_vmas(tmp);
717 fail_nomem_anon_vma_fork:
718 mpol_put(vma_policy(tmp));
723 vm_unacct_memory(charge);
727 static inline int mm_alloc_pgd(struct mm_struct *mm)
729 mm->pgd = pgd_alloc(mm);
730 if (unlikely(!mm->pgd))
735 static inline void mm_free_pgd(struct mm_struct *mm)
737 pgd_free(mm, mm->pgd);
740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
742 mmap_write_lock(oldmm);
743 dup_mm_exe_file(mm, oldmm);
744 mmap_write_unlock(oldmm);
747 #define mm_alloc_pgd(mm) (0)
748 #define mm_free_pgd(mm)
749 #endif /* CONFIG_MMU */
751 static void check_mm(struct mm_struct *mm)
755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
756 "Please make sure 'struct resident_page_types[]' is updated as well");
758 for (i = 0; i < NR_MM_COUNTERS; i++) {
759 long x = percpu_counter_sum(&mm->rss_stat[i]);
762 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
763 mm, resident_page_types[i], x);
766 if (mm_pgtables_bytes(mm))
767 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
768 mm_pgtables_bytes(mm));
770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
771 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
775 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
776 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
779 * Called when the last reference to the mm
780 * is dropped: either by a lazy thread or by
781 * mmput. Free the page directory and the mm.
783 void __mmdrop(struct mm_struct *mm)
787 BUG_ON(mm == &init_mm);
788 WARN_ON_ONCE(mm == current->mm);
789 WARN_ON_ONCE(mm == current->active_mm);
792 mmu_notifier_subscriptions_destroy(mm);
794 put_user_ns(mm->user_ns);
798 for (i = 0; i < NR_MM_COUNTERS; i++)
799 percpu_counter_destroy(&mm->rss_stat[i]);
802 EXPORT_SYMBOL_GPL(__mmdrop);
804 static void mmdrop_async_fn(struct work_struct *work)
806 struct mm_struct *mm;
808 mm = container_of(work, struct mm_struct, async_put_work);
812 static void mmdrop_async(struct mm_struct *mm)
814 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
815 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
816 schedule_work(&mm->async_put_work);
820 static inline void free_signal_struct(struct signal_struct *sig)
822 taskstats_tgid_free(sig);
823 sched_autogroup_exit(sig);
825 * __mmdrop is not safe to call from softirq context on x86 due to
826 * pgd_dtor so postpone it to the async context
829 mmdrop_async(sig->oom_mm);
830 kmem_cache_free(signal_cachep, sig);
833 static inline void put_signal_struct(struct signal_struct *sig)
835 if (refcount_dec_and_test(&sig->sigcnt))
836 free_signal_struct(sig);
839 void __put_task_struct(struct task_struct *tsk)
841 WARN_ON(!tsk->exit_state);
842 WARN_ON(refcount_read(&tsk->usage));
843 WARN_ON(tsk == current);
847 task_numa_free(tsk, true);
848 security_task_free(tsk);
849 bpf_task_storage_free(tsk);
851 delayacct_tsk_free(tsk);
852 put_signal_struct(tsk->signal);
853 sched_core_free(tsk);
856 EXPORT_SYMBOL_GPL(__put_task_struct);
858 void __init __weak arch_task_cache_init(void) { }
863 static void set_max_threads(unsigned int max_threads_suggested)
866 unsigned long nr_pages = totalram_pages();
869 * The number of threads shall be limited such that the thread
870 * structures may only consume a small part of the available memory.
872 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
873 threads = MAX_THREADS;
875 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
876 (u64) THREAD_SIZE * 8UL);
878 if (threads > max_threads_suggested)
879 threads = max_threads_suggested;
881 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
884 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
885 /* Initialized by the architecture: */
886 int arch_task_struct_size __read_mostly;
889 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
890 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
892 /* Fetch thread_struct whitelist for the architecture. */
893 arch_thread_struct_whitelist(offset, size);
896 * Handle zero-sized whitelist or empty thread_struct, otherwise
897 * adjust offset to position of thread_struct in task_struct.
899 if (unlikely(*size == 0))
902 *offset += offsetof(struct task_struct, thread);
904 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
906 void __init fork_init(void)
909 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
910 #ifndef ARCH_MIN_TASKALIGN
911 #define ARCH_MIN_TASKALIGN 0
913 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
914 unsigned long useroffset, usersize;
916 /* create a slab on which task_structs can be allocated */
917 task_struct_whitelist(&useroffset, &usersize);
918 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
919 arch_task_struct_size, align,
920 SLAB_PANIC|SLAB_ACCOUNT,
921 useroffset, usersize, NULL);
924 /* do the arch specific task caches init */
925 arch_task_cache_init();
927 set_max_threads(MAX_THREADS);
929 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
930 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
931 init_task.signal->rlim[RLIMIT_SIGPENDING] =
932 init_task.signal->rlim[RLIMIT_NPROC];
934 for (i = 0; i < UCOUNT_COUNTS; i++)
935 init_user_ns.ucount_max[i] = max_threads/2;
937 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
938 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
939 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
940 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
942 #ifdef CONFIG_VMAP_STACK
943 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
944 NULL, free_vm_stack_cache);
949 lockdep_init_task(&init_task);
953 int __weak arch_dup_task_struct(struct task_struct *dst,
954 struct task_struct *src)
960 void set_task_stack_end_magic(struct task_struct *tsk)
962 unsigned long *stackend;
964 stackend = end_of_stack(tsk);
965 *stackend = STACK_END_MAGIC; /* for overflow detection */
968 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
970 struct task_struct *tsk;
973 if (node == NUMA_NO_NODE)
974 node = tsk_fork_get_node(orig);
975 tsk = alloc_task_struct_node(node);
979 err = arch_dup_task_struct(tsk, orig);
983 err = alloc_thread_stack_node(tsk, node);
987 #ifdef CONFIG_THREAD_INFO_IN_TASK
988 refcount_set(&tsk->stack_refcount, 1);
990 account_kernel_stack(tsk, 1);
992 err = scs_prepare(tsk, node);
996 #ifdef CONFIG_SECCOMP
998 * We must handle setting up seccomp filters once we're under
999 * the sighand lock in case orig has changed between now and
1000 * then. Until then, filter must be NULL to avoid messing up
1001 * the usage counts on the error path calling free_task.
1003 tsk->seccomp.filter = NULL;
1006 setup_thread_stack(tsk, orig);
1007 clear_user_return_notifier(tsk);
1008 clear_tsk_need_resched(tsk);
1009 set_task_stack_end_magic(tsk);
1010 clear_syscall_work_syscall_user_dispatch(tsk);
1012 #ifdef CONFIG_STACKPROTECTOR
1013 tsk->stack_canary = get_random_canary();
1015 if (orig->cpus_ptr == &orig->cpus_mask)
1016 tsk->cpus_ptr = &tsk->cpus_mask;
1017 dup_user_cpus_ptr(tsk, orig, node);
1020 * One for the user space visible state that goes away when reaped.
1021 * One for the scheduler.
1023 refcount_set(&tsk->rcu_users, 2);
1024 /* One for the rcu users */
1025 refcount_set(&tsk->usage, 1);
1026 #ifdef CONFIG_BLK_DEV_IO_TRACE
1027 tsk->btrace_seq = 0;
1029 tsk->splice_pipe = NULL;
1030 tsk->task_frag.page = NULL;
1031 tsk->wake_q.next = NULL;
1032 tsk->worker_private = NULL;
1034 kcov_task_init(tsk);
1035 kmsan_task_create(tsk);
1036 kmap_local_fork(tsk);
1038 #ifdef CONFIG_FAULT_INJECTION
1042 #ifdef CONFIG_BLK_CGROUP
1043 tsk->throttle_disk = NULL;
1044 tsk->use_memdelay = 0;
1047 #ifdef CONFIG_IOMMU_SVA
1048 tsk->pasid_activated = 0;
1052 tsk->active_memcg = NULL;
1055 #ifdef CONFIG_CPU_SUP_INTEL
1056 tsk->reported_split_lock = 0;
1059 #ifdef CONFIG_SCHED_MM_CID
1061 tsk->last_mm_cid = -1;
1062 tsk->mm_cid_active = 0;
1063 tsk->migrate_from_cpu = -1;
1068 exit_task_stack_account(tsk);
1069 free_thread_stack(tsk);
1071 free_task_struct(tsk);
1075 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1077 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1079 static int __init coredump_filter_setup(char *s)
1081 default_dump_filter =
1082 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1083 MMF_DUMP_FILTER_MASK;
1087 __setup("coredump_filter=", coredump_filter_setup);
1089 #include <linux/init_task.h>
1091 static void mm_init_aio(struct mm_struct *mm)
1094 spin_lock_init(&mm->ioctx_lock);
1095 mm->ioctx_table = NULL;
1099 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1100 struct task_struct *p)
1104 WRITE_ONCE(mm->owner, NULL);
1108 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1115 static void mm_init_uprobes_state(struct mm_struct *mm)
1117 #ifdef CONFIG_UPROBES
1118 mm->uprobes_state.xol_area = NULL;
1122 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1123 struct user_namespace *user_ns)
1127 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1128 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1129 atomic_set(&mm->mm_users, 1);
1130 atomic_set(&mm->mm_count, 1);
1131 seqcount_init(&mm->write_protect_seq);
1133 INIT_LIST_HEAD(&mm->mmlist);
1134 mm_pgtables_bytes_init(mm);
1137 atomic64_set(&mm->pinned_vm, 0);
1138 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1139 spin_lock_init(&mm->page_table_lock);
1140 spin_lock_init(&mm->arg_lock);
1141 mm_init_cpumask(mm);
1143 mm_init_owner(mm, p);
1145 RCU_INIT_POINTER(mm->exe_file, NULL);
1146 mmu_notifier_subscriptions_init(mm);
1147 init_tlb_flush_pending(mm);
1148 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1149 mm->pmd_huge_pte = NULL;
1151 mm_init_uprobes_state(mm);
1152 hugetlb_count_init(mm);
1155 mm->flags = current->mm->flags & MMF_INIT_MASK;
1156 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1158 mm->flags = default_dump_filter;
1162 if (mm_alloc_pgd(mm))
1165 if (init_new_context(p, mm))
1166 goto fail_nocontext;
1168 if (mm_alloc_cid(mm))
1171 for (i = 0; i < NR_MM_COUNTERS; i++)
1172 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1175 mm->user_ns = get_user_ns(user_ns);
1176 lru_gen_init_mm(mm);
1181 percpu_counter_destroy(&mm->rss_stat[--i]);
1192 * Allocate and initialize an mm_struct.
1194 struct mm_struct *mm_alloc(void)
1196 struct mm_struct *mm;
1202 memset(mm, 0, sizeof(*mm));
1203 return mm_init(mm, current, current_user_ns());
1206 static inline void __mmput(struct mm_struct *mm)
1208 VM_BUG_ON(atomic_read(&mm->mm_users));
1210 uprobe_clear_state(mm);
1213 khugepaged_exit(mm); /* must run before exit_mmap */
1215 mm_put_huge_zero_page(mm);
1216 set_mm_exe_file(mm, NULL);
1217 if (!list_empty(&mm->mmlist)) {
1218 spin_lock(&mmlist_lock);
1219 list_del(&mm->mmlist);
1220 spin_unlock(&mmlist_lock);
1223 module_put(mm->binfmt->module);
1229 * Decrement the use count and release all resources for an mm.
1231 void mmput(struct mm_struct *mm)
1235 if (atomic_dec_and_test(&mm->mm_users))
1238 EXPORT_SYMBOL_GPL(mmput);
1241 static void mmput_async_fn(struct work_struct *work)
1243 struct mm_struct *mm = container_of(work, struct mm_struct,
1249 void mmput_async(struct mm_struct *mm)
1251 if (atomic_dec_and_test(&mm->mm_users)) {
1252 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1253 schedule_work(&mm->async_put_work);
1256 EXPORT_SYMBOL_GPL(mmput_async);
1260 * set_mm_exe_file - change a reference to the mm's executable file
1262 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1264 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1265 * invocations: in mmput() nobody alive left, in execve task is single
1268 * Can only fail if new_exe_file != NULL.
1270 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1272 struct file *old_exe_file;
1275 * It is safe to dereference the exe_file without RCU as
1276 * this function is only called if nobody else can access
1277 * this mm -- see comment above for justification.
1279 old_exe_file = rcu_dereference_raw(mm->exe_file);
1283 * We expect the caller (i.e., sys_execve) to already denied
1284 * write access, so this is unlikely to fail.
1286 if (unlikely(deny_write_access(new_exe_file)))
1288 get_file(new_exe_file);
1290 rcu_assign_pointer(mm->exe_file, new_exe_file);
1292 allow_write_access(old_exe_file);
1299 * replace_mm_exe_file - replace a reference to the mm's executable file
1301 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1302 * dealing with concurrent invocation and without grabbing the mmap lock in
1305 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1307 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1309 struct vm_area_struct *vma;
1310 struct file *old_exe_file;
1313 /* Forbid mm->exe_file change if old file still mapped. */
1314 old_exe_file = get_mm_exe_file(mm);
1316 VMA_ITERATOR(vmi, mm, 0);
1318 for_each_vma(vmi, vma) {
1321 if (path_equal(&vma->vm_file->f_path,
1322 &old_exe_file->f_path)) {
1327 mmap_read_unlock(mm);
1333 /* set the new file, lockless */
1334 ret = deny_write_access(new_exe_file);
1337 get_file(new_exe_file);
1339 old_exe_file = xchg(&mm->exe_file, new_exe_file);
1342 * Don't race with dup_mmap() getting the file and disallowing
1343 * write access while someone might open the file writable.
1346 allow_write_access(old_exe_file);
1348 mmap_read_unlock(mm);
1354 * get_mm_exe_file - acquire a reference to the mm's executable file
1356 * Returns %NULL if mm has no associated executable file.
1357 * User must release file via fput().
1359 struct file *get_mm_exe_file(struct mm_struct *mm)
1361 struct file *exe_file;
1364 exe_file = rcu_dereference(mm->exe_file);
1365 if (exe_file && !get_file_rcu(exe_file))
1372 * get_task_exe_file - acquire a reference to the task's executable file
1374 * Returns %NULL if task's mm (if any) has no associated executable file or
1375 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1376 * User must release file via fput().
1378 struct file *get_task_exe_file(struct task_struct *task)
1380 struct file *exe_file = NULL;
1381 struct mm_struct *mm;
1386 if (!(task->flags & PF_KTHREAD))
1387 exe_file = get_mm_exe_file(mm);
1394 * get_task_mm - acquire a reference to the task's mm
1396 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1397 * this kernel workthread has transiently adopted a user mm with use_mm,
1398 * to do its AIO) is not set and if so returns a reference to it, after
1399 * bumping up the use count. User must release the mm via mmput()
1400 * after use. Typically used by /proc and ptrace.
1402 struct mm_struct *get_task_mm(struct task_struct *task)
1404 struct mm_struct *mm;
1409 if (task->flags & PF_KTHREAD)
1417 EXPORT_SYMBOL_GPL(get_task_mm);
1419 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1421 struct mm_struct *mm;
1424 err = down_read_killable(&task->signal->exec_update_lock);
1426 return ERR_PTR(err);
1428 mm = get_task_mm(task);
1429 if (mm && mm != current->mm &&
1430 !ptrace_may_access(task, mode)) {
1432 mm = ERR_PTR(-EACCES);
1434 up_read(&task->signal->exec_update_lock);
1439 static void complete_vfork_done(struct task_struct *tsk)
1441 struct completion *vfork;
1444 vfork = tsk->vfork_done;
1445 if (likely(vfork)) {
1446 tsk->vfork_done = NULL;
1452 static int wait_for_vfork_done(struct task_struct *child,
1453 struct completion *vfork)
1455 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1458 cgroup_enter_frozen();
1459 killed = wait_for_completion_state(vfork, state);
1460 cgroup_leave_frozen(false);
1464 child->vfork_done = NULL;
1468 put_task_struct(child);
1472 /* Please note the differences between mmput and mm_release.
1473 * mmput is called whenever we stop holding onto a mm_struct,
1474 * error success whatever.
1476 * mm_release is called after a mm_struct has been removed
1477 * from the current process.
1479 * This difference is important for error handling, when we
1480 * only half set up a mm_struct for a new process and need to restore
1481 * the old one. Because we mmput the new mm_struct before
1482 * restoring the old one. . .
1483 * Eric Biederman 10 January 1998
1485 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1487 uprobe_free_utask(tsk);
1489 /* Get rid of any cached register state */
1490 deactivate_mm(tsk, mm);
1493 * Signal userspace if we're not exiting with a core dump
1494 * because we want to leave the value intact for debugging
1497 if (tsk->clear_child_tid) {
1498 if (atomic_read(&mm->mm_users) > 1) {
1500 * We don't check the error code - if userspace has
1501 * not set up a proper pointer then tough luck.
1503 put_user(0, tsk->clear_child_tid);
1504 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1505 1, NULL, NULL, 0, 0);
1507 tsk->clear_child_tid = NULL;
1511 * All done, finally we can wake up parent and return this mm to him.
1512 * Also kthread_stop() uses this completion for synchronization.
1514 if (tsk->vfork_done)
1515 complete_vfork_done(tsk);
1518 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1520 futex_exit_release(tsk);
1521 mm_release(tsk, mm);
1524 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1526 futex_exec_release(tsk);
1527 mm_release(tsk, mm);
1531 * dup_mm() - duplicates an existing mm structure
1532 * @tsk: the task_struct with which the new mm will be associated.
1533 * @oldmm: the mm to duplicate.
1535 * Allocates a new mm structure and duplicates the provided @oldmm structure
1538 * Return: the duplicated mm or NULL on failure.
1540 static struct mm_struct *dup_mm(struct task_struct *tsk,
1541 struct mm_struct *oldmm)
1543 struct mm_struct *mm;
1550 memcpy(mm, oldmm, sizeof(*mm));
1552 if (!mm_init(mm, tsk, mm->user_ns))
1555 err = dup_mmap(mm, oldmm);
1559 mm->hiwater_rss = get_mm_rss(mm);
1560 mm->hiwater_vm = mm->total_vm;
1562 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1568 /* don't put binfmt in mmput, we haven't got module yet */
1570 mm_init_owner(mm, NULL);
1577 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1579 struct mm_struct *mm, *oldmm;
1581 tsk->min_flt = tsk->maj_flt = 0;
1582 tsk->nvcsw = tsk->nivcsw = 0;
1583 #ifdef CONFIG_DETECT_HUNG_TASK
1584 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1585 tsk->last_switch_time = 0;
1589 tsk->active_mm = NULL;
1592 * Are we cloning a kernel thread?
1594 * We need to steal a active VM for that..
1596 oldmm = current->mm;
1600 if (clone_flags & CLONE_VM) {
1604 mm = dup_mm(tsk, current->mm);
1610 tsk->active_mm = mm;
1611 sched_mm_cid_fork(tsk);
1615 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1617 struct fs_struct *fs = current->fs;
1618 if (clone_flags & CLONE_FS) {
1619 /* tsk->fs is already what we want */
1620 spin_lock(&fs->lock);
1622 spin_unlock(&fs->lock);
1626 spin_unlock(&fs->lock);
1629 tsk->fs = copy_fs_struct(fs);
1635 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1637 struct files_struct *oldf, *newf;
1641 * A background process may not have any files ...
1643 oldf = current->files;
1647 if (clone_flags & CLONE_FILES) {
1648 atomic_inc(&oldf->count);
1652 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1662 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1664 struct sighand_struct *sig;
1666 if (clone_flags & CLONE_SIGHAND) {
1667 refcount_inc(¤t->sighand->count);
1670 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1671 RCU_INIT_POINTER(tsk->sighand, sig);
1675 refcount_set(&sig->count, 1);
1676 spin_lock_irq(¤t->sighand->siglock);
1677 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1678 spin_unlock_irq(¤t->sighand->siglock);
1680 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1681 if (clone_flags & CLONE_CLEAR_SIGHAND)
1682 flush_signal_handlers(tsk, 0);
1687 void __cleanup_sighand(struct sighand_struct *sighand)
1689 if (refcount_dec_and_test(&sighand->count)) {
1690 signalfd_cleanup(sighand);
1692 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1693 * without an RCU grace period, see __lock_task_sighand().
1695 kmem_cache_free(sighand_cachep, sighand);
1700 * Initialize POSIX timer handling for a thread group.
1702 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1704 struct posix_cputimers *pct = &sig->posix_cputimers;
1705 unsigned long cpu_limit;
1707 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1708 posix_cputimers_group_init(pct, cpu_limit);
1711 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1713 struct signal_struct *sig;
1715 if (clone_flags & CLONE_THREAD)
1718 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1723 sig->nr_threads = 1;
1724 sig->quick_threads = 1;
1725 atomic_set(&sig->live, 1);
1726 refcount_set(&sig->sigcnt, 1);
1728 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1729 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1730 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1732 init_waitqueue_head(&sig->wait_chldexit);
1733 sig->curr_target = tsk;
1734 init_sigpending(&sig->shared_pending);
1735 INIT_HLIST_HEAD(&sig->multiprocess);
1736 seqlock_init(&sig->stats_lock);
1737 prev_cputime_init(&sig->prev_cputime);
1739 #ifdef CONFIG_POSIX_TIMERS
1740 INIT_LIST_HEAD(&sig->posix_timers);
1741 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1742 sig->real_timer.function = it_real_fn;
1745 task_lock(current->group_leader);
1746 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1747 task_unlock(current->group_leader);
1749 posix_cpu_timers_init_group(sig);
1751 tty_audit_fork(sig);
1752 sched_autogroup_fork(sig);
1754 sig->oom_score_adj = current->signal->oom_score_adj;
1755 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1757 mutex_init(&sig->cred_guard_mutex);
1758 init_rwsem(&sig->exec_update_lock);
1763 static void copy_seccomp(struct task_struct *p)
1765 #ifdef CONFIG_SECCOMP
1767 * Must be called with sighand->lock held, which is common to
1768 * all threads in the group. Holding cred_guard_mutex is not
1769 * needed because this new task is not yet running and cannot
1772 assert_spin_locked(¤t->sighand->siglock);
1774 /* Ref-count the new filter user, and assign it. */
1775 get_seccomp_filter(current);
1776 p->seccomp = current->seccomp;
1779 * Explicitly enable no_new_privs here in case it got set
1780 * between the task_struct being duplicated and holding the
1781 * sighand lock. The seccomp state and nnp must be in sync.
1783 if (task_no_new_privs(current))
1784 task_set_no_new_privs(p);
1787 * If the parent gained a seccomp mode after copying thread
1788 * flags and between before we held the sighand lock, we have
1789 * to manually enable the seccomp thread flag here.
1791 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1792 set_task_syscall_work(p, SECCOMP);
1796 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1798 current->clear_child_tid = tidptr;
1800 return task_pid_vnr(current);
1803 static void rt_mutex_init_task(struct task_struct *p)
1805 raw_spin_lock_init(&p->pi_lock);
1806 #ifdef CONFIG_RT_MUTEXES
1807 p->pi_waiters = RB_ROOT_CACHED;
1808 p->pi_top_task = NULL;
1809 p->pi_blocked_on = NULL;
1813 static inline void init_task_pid_links(struct task_struct *task)
1817 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1818 INIT_HLIST_NODE(&task->pid_links[type]);
1822 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1824 if (type == PIDTYPE_PID)
1825 task->thread_pid = pid;
1827 task->signal->pids[type] = pid;
1830 static inline void rcu_copy_process(struct task_struct *p)
1832 #ifdef CONFIG_PREEMPT_RCU
1833 p->rcu_read_lock_nesting = 0;
1834 p->rcu_read_unlock_special.s = 0;
1835 p->rcu_blocked_node = NULL;
1836 INIT_LIST_HEAD(&p->rcu_node_entry);
1837 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1838 #ifdef CONFIG_TASKS_RCU
1839 p->rcu_tasks_holdout = false;
1840 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1841 p->rcu_tasks_idle_cpu = -1;
1842 #endif /* #ifdef CONFIG_TASKS_RCU */
1843 #ifdef CONFIG_TASKS_TRACE_RCU
1844 p->trc_reader_nesting = 0;
1845 p->trc_reader_special.s = 0;
1846 INIT_LIST_HEAD(&p->trc_holdout_list);
1847 INIT_LIST_HEAD(&p->trc_blkd_node);
1848 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1851 struct pid *pidfd_pid(const struct file *file)
1853 if (file->f_op == &pidfd_fops)
1854 return file->private_data;
1856 return ERR_PTR(-EBADF);
1859 static int pidfd_release(struct inode *inode, struct file *file)
1861 struct pid *pid = file->private_data;
1863 file->private_data = NULL;
1868 #ifdef CONFIG_PROC_FS
1870 * pidfd_show_fdinfo - print information about a pidfd
1871 * @m: proc fdinfo file
1872 * @f: file referencing a pidfd
1875 * This function will print the pid that a given pidfd refers to in the
1876 * pid namespace of the procfs instance.
1877 * If the pid namespace of the process is not a descendant of the pid
1878 * namespace of the procfs instance 0 will be shown as its pid. This is
1879 * similar to calling getppid() on a process whose parent is outside of
1880 * its pid namespace.
1883 * If pid namespaces are supported then this function will also print
1884 * the pid of a given pidfd refers to for all descendant pid namespaces
1885 * starting from the current pid namespace of the instance, i.e. the
1886 * Pid field and the first entry in the NSpid field will be identical.
1887 * If the pid namespace of the process is not a descendant of the pid
1888 * namespace of the procfs instance 0 will be shown as its first NSpid
1889 * entry and no others will be shown.
1890 * Note that this differs from the Pid and NSpid fields in
1891 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1892 * the pid namespace of the procfs instance. The difference becomes
1893 * obvious when sending around a pidfd between pid namespaces from a
1894 * different branch of the tree, i.e. where no ancestral relation is
1895 * present between the pid namespaces:
1896 * - create two new pid namespaces ns1 and ns2 in the initial pid
1897 * namespace (also take care to create new mount namespaces in the
1898 * new pid namespace and mount procfs)
1899 * - create a process with a pidfd in ns1
1900 * - send pidfd from ns1 to ns2
1901 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1902 * have exactly one entry, which is 0
1904 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1906 struct pid *pid = f->private_data;
1907 struct pid_namespace *ns;
1910 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1911 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1912 nr = pid_nr_ns(pid, ns);
1915 seq_put_decimal_ll(m, "Pid:\t", nr);
1917 #ifdef CONFIG_PID_NS
1918 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1922 /* If nr is non-zero it means that 'pid' is valid and that
1923 * ns, i.e. the pid namespace associated with the procfs
1924 * instance, is in the pid namespace hierarchy of pid.
1925 * Start at one below the already printed level.
1927 for (i = ns->level + 1; i <= pid->level; i++)
1928 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1936 * Poll support for process exit notification.
1938 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1940 struct pid *pid = file->private_data;
1941 __poll_t poll_flags = 0;
1943 poll_wait(file, &pid->wait_pidfd, pts);
1946 * Inform pollers only when the whole thread group exits.
1947 * If the thread group leader exits before all other threads in the
1948 * group, then poll(2) should block, similar to the wait(2) family.
1950 if (thread_group_exited(pid))
1951 poll_flags = EPOLLIN | EPOLLRDNORM;
1956 const struct file_operations pidfd_fops = {
1957 .release = pidfd_release,
1959 #ifdef CONFIG_PROC_FS
1960 .show_fdinfo = pidfd_show_fdinfo,
1964 static void __delayed_free_task(struct rcu_head *rhp)
1966 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1971 static __always_inline void delayed_free_task(struct task_struct *tsk)
1973 if (IS_ENABLED(CONFIG_MEMCG))
1974 call_rcu(&tsk->rcu, __delayed_free_task);
1979 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1981 /* Skip if kernel thread */
1985 /* Skip if spawning a thread or using vfork */
1986 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1989 /* We need to synchronize with __set_oom_adj */
1990 mutex_lock(&oom_adj_mutex);
1991 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1992 /* Update the values in case they were changed after copy_signal */
1993 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1994 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1995 mutex_unlock(&oom_adj_mutex);
1999 static void rv_task_fork(struct task_struct *p)
2003 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2004 p->rv[i].da_mon.monitoring = false;
2007 #define rv_task_fork(p) do {} while (0)
2011 * This creates a new process as a copy of the old one,
2012 * but does not actually start it yet.
2014 * It copies the registers, and all the appropriate
2015 * parts of the process environment (as per the clone
2016 * flags). The actual kick-off is left to the caller.
2018 static __latent_entropy struct task_struct *copy_process(
2022 struct kernel_clone_args *args)
2024 int pidfd = -1, retval;
2025 struct task_struct *p;
2026 struct multiprocess_signals delayed;
2027 struct file *pidfile = NULL;
2028 const u64 clone_flags = args->flags;
2029 struct nsproxy *nsp = current->nsproxy;
2032 * Don't allow sharing the root directory with processes in a different
2035 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2036 return ERR_PTR(-EINVAL);
2038 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2039 return ERR_PTR(-EINVAL);
2042 * Thread groups must share signals as well, and detached threads
2043 * can only be started up within the thread group.
2045 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2046 return ERR_PTR(-EINVAL);
2049 * Shared signal handlers imply shared VM. By way of the above,
2050 * thread groups also imply shared VM. Blocking this case allows
2051 * for various simplifications in other code.
2053 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2054 return ERR_PTR(-EINVAL);
2057 * Siblings of global init remain as zombies on exit since they are
2058 * not reaped by their parent (swapper). To solve this and to avoid
2059 * multi-rooted process trees, prevent global and container-inits
2060 * from creating siblings.
2062 if ((clone_flags & CLONE_PARENT) &&
2063 current->signal->flags & SIGNAL_UNKILLABLE)
2064 return ERR_PTR(-EINVAL);
2067 * If the new process will be in a different pid or user namespace
2068 * do not allow it to share a thread group with the forking task.
2070 if (clone_flags & CLONE_THREAD) {
2071 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2072 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2073 return ERR_PTR(-EINVAL);
2076 if (clone_flags & CLONE_PIDFD) {
2078 * - CLONE_DETACHED is blocked so that we can potentially
2079 * reuse it later for CLONE_PIDFD.
2080 * - CLONE_THREAD is blocked until someone really needs it.
2082 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2083 return ERR_PTR(-EINVAL);
2087 * Force any signals received before this point to be delivered
2088 * before the fork happens. Collect up signals sent to multiple
2089 * processes that happen during the fork and delay them so that
2090 * they appear to happen after the fork.
2092 sigemptyset(&delayed.signal);
2093 INIT_HLIST_NODE(&delayed.node);
2095 spin_lock_irq(¤t->sighand->siglock);
2096 if (!(clone_flags & CLONE_THREAD))
2097 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2098 recalc_sigpending();
2099 spin_unlock_irq(¤t->sighand->siglock);
2100 retval = -ERESTARTNOINTR;
2101 if (task_sigpending(current))
2105 p = dup_task_struct(current, node);
2108 p->flags &= ~PF_KTHREAD;
2110 p->flags |= PF_KTHREAD;
2111 if (args->io_thread) {
2113 * Mark us an IO worker, and block any signal that isn't
2116 p->flags |= PF_IO_WORKER;
2117 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2120 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2122 * Clear TID on mm_release()?
2124 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2126 ftrace_graph_init_task(p);
2128 rt_mutex_init_task(p);
2130 lockdep_assert_irqs_enabled();
2131 #ifdef CONFIG_PROVE_LOCKING
2132 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2134 retval = copy_creds(p, clone_flags);
2139 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2140 if (p->real_cred->user != INIT_USER &&
2141 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2142 goto bad_fork_cleanup_count;
2144 current->flags &= ~PF_NPROC_EXCEEDED;
2147 * If multiple threads are within copy_process(), then this check
2148 * triggers too late. This doesn't hurt, the check is only there
2149 * to stop root fork bombs.
2152 if (data_race(nr_threads >= max_threads))
2153 goto bad_fork_cleanup_count;
2155 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2156 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2157 p->flags |= PF_FORKNOEXEC;
2158 INIT_LIST_HEAD(&p->children);
2159 INIT_LIST_HEAD(&p->sibling);
2160 rcu_copy_process(p);
2161 p->vfork_done = NULL;
2162 spin_lock_init(&p->alloc_lock);
2164 init_sigpending(&p->pending);
2166 p->utime = p->stime = p->gtime = 0;
2167 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2168 p->utimescaled = p->stimescaled = 0;
2170 prev_cputime_init(&p->prev_cputime);
2172 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2173 seqcount_init(&p->vtime.seqcount);
2174 p->vtime.starttime = 0;
2175 p->vtime.state = VTIME_INACTIVE;
2178 #ifdef CONFIG_IO_URING
2182 #if defined(SPLIT_RSS_COUNTING)
2183 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2186 p->default_timer_slack_ns = current->timer_slack_ns;
2192 task_io_accounting_init(&p->ioac);
2193 acct_clear_integrals(p);
2195 posix_cputimers_init(&p->posix_cputimers);
2197 p->io_context = NULL;
2198 audit_set_context(p, NULL);
2200 if (args->kthread) {
2201 if (!set_kthread_struct(p))
2202 goto bad_fork_cleanup_delayacct;
2205 p->mempolicy = mpol_dup(p->mempolicy);
2206 if (IS_ERR(p->mempolicy)) {
2207 retval = PTR_ERR(p->mempolicy);
2208 p->mempolicy = NULL;
2209 goto bad_fork_cleanup_delayacct;
2212 #ifdef CONFIG_CPUSETS
2213 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2214 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2215 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2217 #ifdef CONFIG_TRACE_IRQFLAGS
2218 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2219 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2220 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2221 p->softirqs_enabled = 1;
2222 p->softirq_context = 0;
2225 p->pagefault_disabled = 0;
2227 #ifdef CONFIG_LOCKDEP
2228 lockdep_init_task(p);
2231 #ifdef CONFIG_DEBUG_MUTEXES
2232 p->blocked_on = NULL; /* not blocked yet */
2234 #ifdef CONFIG_BCACHE
2235 p->sequential_io = 0;
2236 p->sequential_io_avg = 0;
2238 #ifdef CONFIG_BPF_SYSCALL
2239 RCU_INIT_POINTER(p->bpf_storage, NULL);
2243 /* Perform scheduler related setup. Assign this task to a CPU. */
2244 retval = sched_fork(clone_flags, p);
2246 goto bad_fork_cleanup_policy;
2248 retval = perf_event_init_task(p, clone_flags);
2250 goto bad_fork_cleanup_policy;
2251 retval = audit_alloc(p);
2253 goto bad_fork_cleanup_perf;
2254 /* copy all the process information */
2256 retval = security_task_alloc(p, clone_flags);
2258 goto bad_fork_cleanup_audit;
2259 retval = copy_semundo(clone_flags, p);
2261 goto bad_fork_cleanup_security;
2262 retval = copy_files(clone_flags, p);
2264 goto bad_fork_cleanup_semundo;
2265 retval = copy_fs(clone_flags, p);
2267 goto bad_fork_cleanup_files;
2268 retval = copy_sighand(clone_flags, p);
2270 goto bad_fork_cleanup_fs;
2271 retval = copy_signal(clone_flags, p);
2273 goto bad_fork_cleanup_sighand;
2274 retval = copy_mm(clone_flags, p);
2276 goto bad_fork_cleanup_signal;
2277 retval = copy_namespaces(clone_flags, p);
2279 goto bad_fork_cleanup_mm;
2280 retval = copy_io(clone_flags, p);
2282 goto bad_fork_cleanup_namespaces;
2283 retval = copy_thread(p, args);
2285 goto bad_fork_cleanup_io;
2287 stackleak_task_init(p);
2289 if (pid != &init_struct_pid) {
2290 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2291 args->set_tid_size);
2293 retval = PTR_ERR(pid);
2294 goto bad_fork_cleanup_thread;
2299 * This has to happen after we've potentially unshared the file
2300 * descriptor table (so that the pidfd doesn't leak into the child
2301 * if the fd table isn't shared).
2303 if (clone_flags & CLONE_PIDFD) {
2304 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2306 goto bad_fork_free_pid;
2310 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2311 O_RDWR | O_CLOEXEC);
2312 if (IS_ERR(pidfile)) {
2313 put_unused_fd(pidfd);
2314 retval = PTR_ERR(pidfile);
2315 goto bad_fork_free_pid;
2317 get_pid(pid); /* held by pidfile now */
2319 retval = put_user(pidfd, args->pidfd);
2321 goto bad_fork_put_pidfd;
2330 * sigaltstack should be cleared when sharing the same VM
2332 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2336 * Syscall tracing and stepping should be turned off in the
2337 * child regardless of CLONE_PTRACE.
2339 user_disable_single_step(p);
2340 clear_task_syscall_work(p, SYSCALL_TRACE);
2341 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2342 clear_task_syscall_work(p, SYSCALL_EMU);
2344 clear_tsk_latency_tracing(p);
2346 /* ok, now we should be set up.. */
2347 p->pid = pid_nr(pid);
2348 if (clone_flags & CLONE_THREAD) {
2349 p->group_leader = current->group_leader;
2350 p->tgid = current->tgid;
2352 p->group_leader = p;
2357 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2358 p->dirty_paused_when = 0;
2360 p->pdeath_signal = 0;
2361 INIT_LIST_HEAD(&p->thread_group);
2362 p->task_works = NULL;
2363 clear_posix_cputimers_work(p);
2365 #ifdef CONFIG_KRETPROBES
2366 p->kretprobe_instances.first = NULL;
2368 #ifdef CONFIG_RETHOOK
2369 p->rethooks.first = NULL;
2373 * Ensure that the cgroup subsystem policies allow the new process to be
2374 * forked. It should be noted that the new process's css_set can be changed
2375 * between here and cgroup_post_fork() if an organisation operation is in
2378 retval = cgroup_can_fork(p, args);
2380 goto bad_fork_put_pidfd;
2383 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2384 * the new task on the correct runqueue. All this *before* the task
2387 * This isn't part of ->can_fork() because while the re-cloning is
2388 * cgroup specific, it unconditionally needs to place the task on a
2391 sched_cgroup_fork(p, args);
2394 * From this point on we must avoid any synchronous user-space
2395 * communication until we take the tasklist-lock. In particular, we do
2396 * not want user-space to be able to predict the process start-time by
2397 * stalling fork(2) after we recorded the start_time but before it is
2398 * visible to the system.
2401 p->start_time = ktime_get_ns();
2402 p->start_boottime = ktime_get_boottime_ns();
2405 * Make it visible to the rest of the system, but dont wake it up yet.
2406 * Need tasklist lock for parent etc handling!
2408 write_lock_irq(&tasklist_lock);
2410 /* CLONE_PARENT re-uses the old parent */
2411 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2412 p->real_parent = current->real_parent;
2413 p->parent_exec_id = current->parent_exec_id;
2414 if (clone_flags & CLONE_THREAD)
2415 p->exit_signal = -1;
2417 p->exit_signal = current->group_leader->exit_signal;
2419 p->real_parent = current;
2420 p->parent_exec_id = current->self_exec_id;
2421 p->exit_signal = args->exit_signal;
2424 klp_copy_process(p);
2428 spin_lock(¤t->sighand->siglock);
2432 rseq_fork(p, clone_flags);
2434 /* Don't start children in a dying pid namespace */
2435 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2437 goto bad_fork_cancel_cgroup;
2440 /* Let kill terminate clone/fork in the middle */
2441 if (fatal_signal_pending(current)) {
2443 goto bad_fork_cancel_cgroup;
2446 /* No more failure paths after this point. */
2449 * Copy seccomp details explicitly here, in case they were changed
2450 * before holding sighand lock.
2454 init_task_pid_links(p);
2455 if (likely(p->pid)) {
2456 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2458 init_task_pid(p, PIDTYPE_PID, pid);
2459 if (thread_group_leader(p)) {
2460 init_task_pid(p, PIDTYPE_TGID, pid);
2461 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2462 init_task_pid(p, PIDTYPE_SID, task_session(current));
2464 if (is_child_reaper(pid)) {
2465 ns_of_pid(pid)->child_reaper = p;
2466 p->signal->flags |= SIGNAL_UNKILLABLE;
2468 p->signal->shared_pending.signal = delayed.signal;
2469 p->signal->tty = tty_kref_get(current->signal->tty);
2471 * Inherit has_child_subreaper flag under the same
2472 * tasklist_lock with adding child to the process tree
2473 * for propagate_has_child_subreaper optimization.
2475 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2476 p->real_parent->signal->is_child_subreaper;
2477 list_add_tail(&p->sibling, &p->real_parent->children);
2478 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2479 attach_pid(p, PIDTYPE_TGID);
2480 attach_pid(p, PIDTYPE_PGID);
2481 attach_pid(p, PIDTYPE_SID);
2482 __this_cpu_inc(process_counts);
2484 current->signal->nr_threads++;
2485 current->signal->quick_threads++;
2486 atomic_inc(¤t->signal->live);
2487 refcount_inc(¤t->signal->sigcnt);
2488 task_join_group_stop(p);
2489 list_add_tail_rcu(&p->thread_group,
2490 &p->group_leader->thread_group);
2491 list_add_tail_rcu(&p->thread_node,
2492 &p->signal->thread_head);
2494 attach_pid(p, PIDTYPE_PID);
2498 hlist_del_init(&delayed.node);
2499 spin_unlock(¤t->sighand->siglock);
2500 syscall_tracepoint_update(p);
2501 write_unlock_irq(&tasklist_lock);
2504 fd_install(pidfd, pidfile);
2506 proc_fork_connector(p);
2508 cgroup_post_fork(p, args);
2511 trace_task_newtask(p, clone_flags);
2512 uprobe_copy_process(p, clone_flags);
2514 copy_oom_score_adj(clone_flags, p);
2518 bad_fork_cancel_cgroup:
2520 spin_unlock(¤t->sighand->siglock);
2521 write_unlock_irq(&tasklist_lock);
2522 cgroup_cancel_fork(p, args);
2524 if (clone_flags & CLONE_PIDFD) {
2526 put_unused_fd(pidfd);
2529 if (pid != &init_struct_pid)
2531 bad_fork_cleanup_thread:
2533 bad_fork_cleanup_io:
2536 bad_fork_cleanup_namespaces:
2537 exit_task_namespaces(p);
2538 bad_fork_cleanup_mm:
2540 mm_clear_owner(p->mm, p);
2543 bad_fork_cleanup_signal:
2544 if (!(clone_flags & CLONE_THREAD))
2545 free_signal_struct(p->signal);
2546 bad_fork_cleanup_sighand:
2547 __cleanup_sighand(p->sighand);
2548 bad_fork_cleanup_fs:
2549 exit_fs(p); /* blocking */
2550 bad_fork_cleanup_files:
2551 exit_files(p); /* blocking */
2552 bad_fork_cleanup_semundo:
2554 bad_fork_cleanup_security:
2555 security_task_free(p);
2556 bad_fork_cleanup_audit:
2558 bad_fork_cleanup_perf:
2559 perf_event_free_task(p);
2560 bad_fork_cleanup_policy:
2561 lockdep_free_task(p);
2563 mpol_put(p->mempolicy);
2565 bad_fork_cleanup_delayacct:
2566 delayacct_tsk_free(p);
2567 bad_fork_cleanup_count:
2568 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2571 WRITE_ONCE(p->__state, TASK_DEAD);
2572 exit_task_stack_account(p);
2574 delayed_free_task(p);
2576 spin_lock_irq(¤t->sighand->siglock);
2577 hlist_del_init(&delayed.node);
2578 spin_unlock_irq(¤t->sighand->siglock);
2579 return ERR_PTR(retval);
2582 static inline void init_idle_pids(struct task_struct *idle)
2586 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2587 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2588 init_task_pid(idle, type, &init_struct_pid);
2592 static int idle_dummy(void *dummy)
2594 /* This function is never called */
2598 struct task_struct * __init fork_idle(int cpu)
2600 struct task_struct *task;
2601 struct kernel_clone_args args = {
2609 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2610 if (!IS_ERR(task)) {
2611 init_idle_pids(task);
2612 init_idle(task, cpu);
2619 * This is like kernel_clone(), but shaved down and tailored to just
2620 * creating io_uring workers. It returns a created task, or an error pointer.
2621 * The returned task is inactive, and the caller must fire it up through
2622 * wake_up_new_task(p). All signals are blocked in the created task.
2624 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2626 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2628 struct kernel_clone_args args = {
2629 .flags = ((lower_32_bits(flags) | CLONE_VM |
2630 CLONE_UNTRACED) & ~CSIGNAL),
2631 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2637 return copy_process(NULL, 0, node, &args);
2641 * Ok, this is the main fork-routine.
2643 * It copies the process, and if successful kick-starts
2644 * it and waits for it to finish using the VM if required.
2646 * args->exit_signal is expected to be checked for sanity by the caller.
2648 pid_t kernel_clone(struct kernel_clone_args *args)
2650 u64 clone_flags = args->flags;
2651 struct completion vfork;
2653 struct task_struct *p;
2658 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2659 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2660 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2661 * field in struct clone_args and it still doesn't make sense to have
2662 * them both point at the same memory location. Performing this check
2663 * here has the advantage that we don't need to have a separate helper
2664 * to check for legacy clone().
2666 if ((args->flags & CLONE_PIDFD) &&
2667 (args->flags & CLONE_PARENT_SETTID) &&
2668 (args->pidfd == args->parent_tid))
2672 * Determine whether and which event to report to ptracer. When
2673 * called from kernel_thread or CLONE_UNTRACED is explicitly
2674 * requested, no event is reported; otherwise, report if the event
2675 * for the type of forking is enabled.
2677 if (!(clone_flags & CLONE_UNTRACED)) {
2678 if (clone_flags & CLONE_VFORK)
2679 trace = PTRACE_EVENT_VFORK;
2680 else if (args->exit_signal != SIGCHLD)
2681 trace = PTRACE_EVENT_CLONE;
2683 trace = PTRACE_EVENT_FORK;
2685 if (likely(!ptrace_event_enabled(current, trace)))
2689 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2690 add_latent_entropy();
2696 * Do this prior waking up the new thread - the thread pointer
2697 * might get invalid after that point, if the thread exits quickly.
2699 trace_sched_process_fork(current, p);
2701 pid = get_task_pid(p, PIDTYPE_PID);
2704 if (clone_flags & CLONE_PARENT_SETTID)
2705 put_user(nr, args->parent_tid);
2707 if (clone_flags & CLONE_VFORK) {
2708 p->vfork_done = &vfork;
2709 init_completion(&vfork);
2713 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2714 /* lock the task to synchronize with memcg migration */
2716 lru_gen_add_mm(p->mm);
2720 wake_up_new_task(p);
2722 /* forking complete and child started to run, tell ptracer */
2723 if (unlikely(trace))
2724 ptrace_event_pid(trace, pid);
2726 if (clone_flags & CLONE_VFORK) {
2727 if (!wait_for_vfork_done(p, &vfork))
2728 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2736 * Create a kernel thread.
2738 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2740 struct kernel_clone_args args = {
2741 .flags = ((lower_32_bits(flags) | CLONE_VM |
2742 CLONE_UNTRACED) & ~CSIGNAL),
2743 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2749 return kernel_clone(&args);
2753 * Create a user mode thread.
2755 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2757 struct kernel_clone_args args = {
2758 .flags = ((lower_32_bits(flags) | CLONE_VM |
2759 CLONE_UNTRACED) & ~CSIGNAL),
2760 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2765 return kernel_clone(&args);
2768 #ifdef __ARCH_WANT_SYS_FORK
2769 SYSCALL_DEFINE0(fork)
2772 struct kernel_clone_args args = {
2773 .exit_signal = SIGCHLD,
2776 return kernel_clone(&args);
2778 /* can not support in nommu mode */
2784 #ifdef __ARCH_WANT_SYS_VFORK
2785 SYSCALL_DEFINE0(vfork)
2787 struct kernel_clone_args args = {
2788 .flags = CLONE_VFORK | CLONE_VM,
2789 .exit_signal = SIGCHLD,
2792 return kernel_clone(&args);
2796 #ifdef __ARCH_WANT_SYS_CLONE
2797 #ifdef CONFIG_CLONE_BACKWARDS
2798 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2799 int __user *, parent_tidptr,
2801 int __user *, child_tidptr)
2802 #elif defined(CONFIG_CLONE_BACKWARDS2)
2803 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2804 int __user *, parent_tidptr,
2805 int __user *, child_tidptr,
2807 #elif defined(CONFIG_CLONE_BACKWARDS3)
2808 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2810 int __user *, parent_tidptr,
2811 int __user *, child_tidptr,
2814 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2815 int __user *, parent_tidptr,
2816 int __user *, child_tidptr,
2820 struct kernel_clone_args args = {
2821 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2822 .pidfd = parent_tidptr,
2823 .child_tid = child_tidptr,
2824 .parent_tid = parent_tidptr,
2825 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2830 return kernel_clone(&args);
2834 #ifdef __ARCH_WANT_SYS_CLONE3
2836 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2837 struct clone_args __user *uargs,
2841 struct clone_args args;
2842 pid_t *kset_tid = kargs->set_tid;
2844 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2845 CLONE_ARGS_SIZE_VER0);
2846 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2847 CLONE_ARGS_SIZE_VER1);
2848 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2849 CLONE_ARGS_SIZE_VER2);
2850 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2852 if (unlikely(usize > PAGE_SIZE))
2854 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2857 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2861 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2864 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2867 if (unlikely(args.set_tid && args.set_tid_size == 0))
2871 * Verify that higher 32bits of exit_signal are unset and that
2872 * it is a valid signal
2874 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2875 !valid_signal(args.exit_signal)))
2878 if ((args.flags & CLONE_INTO_CGROUP) &&
2879 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2882 *kargs = (struct kernel_clone_args){
2883 .flags = args.flags,
2884 .pidfd = u64_to_user_ptr(args.pidfd),
2885 .child_tid = u64_to_user_ptr(args.child_tid),
2886 .parent_tid = u64_to_user_ptr(args.parent_tid),
2887 .exit_signal = args.exit_signal,
2888 .stack = args.stack,
2889 .stack_size = args.stack_size,
2891 .set_tid_size = args.set_tid_size,
2892 .cgroup = args.cgroup,
2896 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2897 (kargs->set_tid_size * sizeof(pid_t))))
2900 kargs->set_tid = kset_tid;
2906 * clone3_stack_valid - check and prepare stack
2907 * @kargs: kernel clone args
2909 * Verify that the stack arguments userspace gave us are sane.
2910 * In addition, set the stack direction for userspace since it's easy for us to
2913 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2915 if (kargs->stack == 0) {
2916 if (kargs->stack_size > 0)
2919 if (kargs->stack_size == 0)
2922 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2925 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2926 kargs->stack += kargs->stack_size;
2933 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2935 /* Verify that no unknown flags are passed along. */
2937 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2941 * - make the CLONE_DETACHED bit reusable for clone3
2942 * - make the CSIGNAL bits reusable for clone3
2944 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2947 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2948 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2951 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2955 if (!clone3_stack_valid(kargs))
2962 * clone3 - create a new process with specific properties
2963 * @uargs: argument structure
2964 * @size: size of @uargs
2966 * clone3() is the extensible successor to clone()/clone2().
2967 * It takes a struct as argument that is versioned by its size.
2969 * Return: On success, a positive PID for the child process.
2970 * On error, a negative errno number.
2972 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2976 struct kernel_clone_args kargs;
2977 pid_t set_tid[MAX_PID_NS_LEVEL];
2979 kargs.set_tid = set_tid;
2981 err = copy_clone_args_from_user(&kargs, uargs, size);
2985 if (!clone3_args_valid(&kargs))
2988 return kernel_clone(&kargs);
2992 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2994 struct task_struct *leader, *parent, *child;
2997 read_lock(&tasklist_lock);
2998 leader = top = top->group_leader;
3000 for_each_thread(leader, parent) {
3001 list_for_each_entry(child, &parent->children, sibling) {
3002 res = visitor(child, data);
3014 if (leader != top) {
3016 parent = child->real_parent;
3017 leader = parent->group_leader;
3021 read_unlock(&tasklist_lock);
3024 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3025 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3028 static void sighand_ctor(void *data)
3030 struct sighand_struct *sighand = data;
3032 spin_lock_init(&sighand->siglock);
3033 init_waitqueue_head(&sighand->signalfd_wqh);
3036 void __init mm_cache_init(void)
3038 unsigned int mm_size;
3041 * The mm_cpumask is located at the end of mm_struct, and is
3042 * dynamically sized based on the maximum CPU number this system
3043 * can have, taking hotplug into account (nr_cpu_ids).
3045 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3047 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3048 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3049 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3050 offsetof(struct mm_struct, saved_auxv),
3051 sizeof_field(struct mm_struct, saved_auxv),
3055 void __init proc_caches_init(void)
3057 sighand_cachep = kmem_cache_create("sighand_cache",
3058 sizeof(struct sighand_struct), 0,
3059 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3060 SLAB_ACCOUNT, sighand_ctor);
3061 signal_cachep = kmem_cache_create("signal_cache",
3062 sizeof(struct signal_struct), 0,
3063 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3065 files_cachep = kmem_cache_create("files_cache",
3066 sizeof(struct files_struct), 0,
3067 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3069 fs_cachep = kmem_cache_create("fs_cache",
3070 sizeof(struct fs_struct), 0,
3071 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3074 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3076 nsproxy_cache_init();
3080 * Check constraints on flags passed to the unshare system call.
3082 static int check_unshare_flags(unsigned long unshare_flags)
3084 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3085 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3086 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3087 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3091 * Not implemented, but pretend it works if there is nothing
3092 * to unshare. Note that unsharing the address space or the
3093 * signal handlers also need to unshare the signal queues (aka
3096 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3097 if (!thread_group_empty(current))
3100 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3101 if (refcount_read(¤t->sighand->count) > 1)
3104 if (unshare_flags & CLONE_VM) {
3105 if (!current_is_single_threaded())
3113 * Unshare the filesystem structure if it is being shared
3115 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3117 struct fs_struct *fs = current->fs;
3119 if (!(unshare_flags & CLONE_FS) || !fs)
3122 /* don't need lock here; in the worst case we'll do useless copy */
3126 *new_fsp = copy_fs_struct(fs);
3134 * Unshare file descriptor table if it is being shared
3136 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3137 struct files_struct **new_fdp)
3139 struct files_struct *fd = current->files;
3142 if ((unshare_flags & CLONE_FILES) &&
3143 (fd && atomic_read(&fd->count) > 1)) {
3144 *new_fdp = dup_fd(fd, max_fds, &error);
3153 * unshare allows a process to 'unshare' part of the process
3154 * context which was originally shared using clone. copy_*
3155 * functions used by kernel_clone() cannot be used here directly
3156 * because they modify an inactive task_struct that is being
3157 * constructed. Here we are modifying the current, active,
3160 int ksys_unshare(unsigned long unshare_flags)
3162 struct fs_struct *fs, *new_fs = NULL;
3163 struct files_struct *new_fd = NULL;
3164 struct cred *new_cred = NULL;
3165 struct nsproxy *new_nsproxy = NULL;
3170 * If unsharing a user namespace must also unshare the thread group
3171 * and unshare the filesystem root and working directories.
3173 if (unshare_flags & CLONE_NEWUSER)
3174 unshare_flags |= CLONE_THREAD | CLONE_FS;
3176 * If unsharing vm, must also unshare signal handlers.
3178 if (unshare_flags & CLONE_VM)
3179 unshare_flags |= CLONE_SIGHAND;
3181 * If unsharing a signal handlers, must also unshare the signal queues.
3183 if (unshare_flags & CLONE_SIGHAND)
3184 unshare_flags |= CLONE_THREAD;
3186 * If unsharing namespace, must also unshare filesystem information.
3188 if (unshare_flags & CLONE_NEWNS)
3189 unshare_flags |= CLONE_FS;
3191 err = check_unshare_flags(unshare_flags);
3193 goto bad_unshare_out;
3195 * CLONE_NEWIPC must also detach from the undolist: after switching
3196 * to a new ipc namespace, the semaphore arrays from the old
3197 * namespace are unreachable.
3199 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3201 err = unshare_fs(unshare_flags, &new_fs);
3203 goto bad_unshare_out;
3204 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3206 goto bad_unshare_cleanup_fs;
3207 err = unshare_userns(unshare_flags, &new_cred);
3209 goto bad_unshare_cleanup_fd;
3210 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3213 goto bad_unshare_cleanup_cred;
3216 err = set_cred_ucounts(new_cred);
3218 goto bad_unshare_cleanup_cred;
3221 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3224 * CLONE_SYSVSEM is equivalent to sys_exit().
3228 if (unshare_flags & CLONE_NEWIPC) {
3229 /* Orphan segments in old ns (see sem above). */
3231 shm_init_task(current);
3235 switch_task_namespaces(current, new_nsproxy);
3241 spin_lock(&fs->lock);
3242 current->fs = new_fs;
3247 spin_unlock(&fs->lock);
3251 swap(current->files, new_fd);
3253 task_unlock(current);
3256 /* Install the new user namespace */
3257 commit_creds(new_cred);
3262 perf_event_namespaces(current);
3264 bad_unshare_cleanup_cred:
3267 bad_unshare_cleanup_fd:
3269 put_files_struct(new_fd);
3271 bad_unshare_cleanup_fs:
3273 free_fs_struct(new_fs);
3279 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3281 return ksys_unshare(unshare_flags);
3285 * Helper to unshare the files of the current task.
3286 * We don't want to expose copy_files internals to
3287 * the exec layer of the kernel.
3290 int unshare_files(void)
3292 struct task_struct *task = current;
3293 struct files_struct *old, *copy = NULL;
3296 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3304 put_files_struct(old);
3308 int sysctl_max_threads(struct ctl_table *table, int write,
3309 void *buffer, size_t *lenp, loff_t *ppos)
3313 int threads = max_threads;
3315 int max = MAX_THREADS;
3322 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3326 max_threads = threads;