1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
21 #include "direct-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
40 /* simple helper to fault in pages and copy. This should go away
41 * and be replaced with calls into generic code.
43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
44 struct page **prepared_pages,
48 size_t total_copied = 0;
50 int offset = offset_in_page(pos);
52 while (write_bytes > 0) {
53 size_t count = min_t(size_t,
54 PAGE_SIZE - offset, write_bytes);
55 struct page *page = prepared_pages[pg];
57 * Copy data from userspace to the current page
59 copied = copy_page_from_iter_atomic(page, offset, count, i);
61 /* Flush processor's dcache for this page */
62 flush_dcache_page(page);
65 * if we get a partial write, we can end up with
66 * partially up to date pages. These add
67 * a lot of complexity, so make sure they don't
68 * happen by forcing this copy to be retried.
70 * The rest of the btrfs_file_write code will fall
71 * back to page at a time copies after we return 0.
73 if (unlikely(copied < count)) {
74 if (!PageUptodate(page)) {
75 iov_iter_revert(i, copied);
82 write_bytes -= copied;
83 total_copied += copied;
85 if (offset == PAGE_SIZE) {
94 * unlocks pages after btrfs_file_write is done with them
96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
97 struct page **pages, size_t num_pages,
101 u64 block_start = round_down(pos, fs_info->sectorsize);
102 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104 ASSERT(block_len <= U32_MAX);
105 for (i = 0; i < num_pages; i++) {
106 /* page checked is some magic around finding pages that
107 * have been modified without going through btrfs_set_page_dirty
108 * clear it here. There should be no need to mark the pages
109 * accessed as prepare_pages should have marked them accessed
110 * in prepare_pages via find_or_create_page()
112 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
113 block_start, block_len);
114 unlock_page(pages[i]);
120 * After btrfs_copy_from_user(), update the following things for delalloc:
121 * - Mark newly dirtied pages as DELALLOC in the io tree.
122 * Used to advise which range is to be written back.
123 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
124 * - Update inode size for past EOF write
126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
127 size_t num_pages, loff_t pos, size_t write_bytes,
128 struct extent_state **cached, bool noreserve)
130 struct btrfs_fs_info *fs_info = inode->root->fs_info;
135 u64 end_of_last_block;
136 u64 end_pos = pos + write_bytes;
137 loff_t isize = i_size_read(&inode->vfs_inode);
138 unsigned int extra_bits = 0;
140 if (write_bytes == 0)
144 extra_bits |= EXTENT_NORESERVE;
146 start_pos = round_down(pos, fs_info->sectorsize);
147 num_bytes = round_up(write_bytes + pos - start_pos,
148 fs_info->sectorsize);
149 ASSERT(num_bytes <= U32_MAX);
151 end_of_last_block = start_pos + num_bytes - 1;
154 * The pages may have already been dirty, clear out old accounting so
155 * we can set things up properly
157 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
158 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
161 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
166 for (i = 0; i < num_pages; i++) {
167 struct page *p = pages[i];
169 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
170 start_pos, num_bytes);
171 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
172 start_pos, num_bytes);
173 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
174 start_pos, num_bytes);
178 * we've only changed i_size in ram, and we haven't updated
179 * the disk i_size. There is no need to log the inode
183 i_size_write(&inode->vfs_inode, end_pos);
188 * this is very complex, but the basic idea is to drop all extents
189 * in the range start - end. hint_block is filled in with a block number
190 * that would be a good hint to the block allocator for this file.
192 * If an extent intersects the range but is not entirely inside the range
193 * it is either truncated or split. Anything entirely inside the range
194 * is deleted from the tree.
196 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
197 * to deal with that. We set the field 'bytes_found' of the arguments structure
198 * with the number of allocated bytes found in the target range, so that the
199 * caller can update the inode's number of bytes in an atomic way when
200 * replacing extents in a range to avoid races with stat(2).
202 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
203 struct btrfs_root *root, struct btrfs_inode *inode,
204 struct btrfs_drop_extents_args *args)
206 struct btrfs_fs_info *fs_info = root->fs_info;
207 struct extent_buffer *leaf;
208 struct btrfs_file_extent_item *fi;
209 struct btrfs_key key;
210 struct btrfs_key new_key;
211 u64 ino = btrfs_ino(inode);
212 u64 search_start = args->start;
215 u64 extent_offset = 0;
217 u64 last_end = args->start;
223 int modify_tree = -1;
226 struct btrfs_path *path = args->path;
228 args->bytes_found = 0;
229 args->extent_inserted = false;
231 /* Must always have a path if ->replace_extent is true */
232 ASSERT(!(args->replace_extent && !args->path));
235 path = btrfs_alloc_path();
242 if (args->drop_cache)
243 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
245 if (args->start >= inode->disk_i_size && !args->replace_extent)
248 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
251 ret = btrfs_lookup_file_extent(trans, root, path, ino,
252 search_start, modify_tree);
255 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
256 leaf = path->nodes[0];
257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
258 if (key.objectid == ino &&
259 key.type == BTRFS_EXTENT_DATA_KEY)
264 leaf = path->nodes[0];
265 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
267 ret = btrfs_next_leaf(root, path);
274 leaf = path->nodes[0];
278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
280 if (key.objectid > ino)
282 if (WARN_ON_ONCE(key.objectid < ino) ||
283 key.type < BTRFS_EXTENT_DATA_KEY) {
288 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
291 fi = btrfs_item_ptr(leaf, path->slots[0],
292 struct btrfs_file_extent_item);
293 extent_type = btrfs_file_extent_type(leaf, fi);
295 if (extent_type == BTRFS_FILE_EXTENT_REG ||
296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
298 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
299 extent_offset = btrfs_file_extent_offset(leaf, fi);
300 extent_end = key.offset +
301 btrfs_file_extent_num_bytes(leaf, fi);
302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
303 extent_end = key.offset +
304 btrfs_file_extent_ram_bytes(leaf, fi);
311 * Don't skip extent items representing 0 byte lengths. They
312 * used to be created (bug) if while punching holes we hit
313 * -ENOSPC condition. So if we find one here, just ensure we
314 * delete it, otherwise we would insert a new file extent item
315 * with the same key (offset) as that 0 bytes length file
316 * extent item in the call to setup_items_for_insert() later
319 if (extent_end == key.offset && extent_end >= search_start) {
320 last_end = extent_end;
321 goto delete_extent_item;
324 if (extent_end <= search_start) {
330 search_start = max(key.offset, args->start);
331 if (recow || !modify_tree) {
333 btrfs_release_path(path);
338 * | - range to drop - |
339 * | -------- extent -------- |
341 if (args->start > key.offset && args->end < extent_end) {
343 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
348 memcpy(&new_key, &key, sizeof(new_key));
349 new_key.offset = args->start;
350 ret = btrfs_duplicate_item(trans, root, path,
352 if (ret == -EAGAIN) {
353 btrfs_release_path(path);
359 leaf = path->nodes[0];
360 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
361 struct btrfs_file_extent_item);
362 btrfs_set_file_extent_num_bytes(leaf, fi,
363 args->start - key.offset);
365 fi = btrfs_item_ptr(leaf, path->slots[0],
366 struct btrfs_file_extent_item);
368 extent_offset += args->start - key.offset;
369 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
370 btrfs_set_file_extent_num_bytes(leaf, fi,
371 extent_end - args->start);
372 btrfs_mark_buffer_dirty(trans, leaf);
374 if (update_refs && disk_bytenr > 0) {
375 struct btrfs_ref ref = {
376 .action = BTRFS_ADD_DELAYED_REF,
377 .bytenr = disk_bytenr,
378 .num_bytes = num_bytes,
380 .owning_root = btrfs_root_id(root),
381 .ref_root = btrfs_root_id(root),
383 btrfs_init_data_ref(&ref, new_key.objectid,
384 args->start - extent_offset,
386 ret = btrfs_inc_extent_ref(trans, &ref);
388 btrfs_abort_transaction(trans, ret);
392 key.offset = args->start;
395 * From here on out we will have actually dropped something, so
396 * last_end can be updated.
398 last_end = extent_end;
401 * | ---- range to drop ----- |
402 * | -------- extent -------- |
404 if (args->start <= key.offset && args->end < extent_end) {
405 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
410 memcpy(&new_key, &key, sizeof(new_key));
411 new_key.offset = args->end;
412 btrfs_set_item_key_safe(trans, path, &new_key);
414 extent_offset += args->end - key.offset;
415 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
416 btrfs_set_file_extent_num_bytes(leaf, fi,
417 extent_end - args->end);
418 btrfs_mark_buffer_dirty(trans, leaf);
419 if (update_refs && disk_bytenr > 0)
420 args->bytes_found += args->end - key.offset;
424 search_start = extent_end;
426 * | ---- range to drop ----- |
427 * | -------- extent -------- |
429 if (args->start > key.offset && args->end >= extent_end) {
431 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
436 btrfs_set_file_extent_num_bytes(leaf, fi,
437 args->start - key.offset);
438 btrfs_mark_buffer_dirty(trans, leaf);
439 if (update_refs && disk_bytenr > 0)
440 args->bytes_found += extent_end - args->start;
441 if (args->end == extent_end)
449 * | ---- range to drop ----- |
450 * | ------ extent ------ |
452 if (args->start <= key.offset && args->end >= extent_end) {
455 del_slot = path->slots[0];
458 BUG_ON(del_slot + del_nr != path->slots[0]);
463 extent_type == BTRFS_FILE_EXTENT_INLINE) {
464 args->bytes_found += extent_end - key.offset;
465 extent_end = ALIGN(extent_end,
466 fs_info->sectorsize);
467 } else if (update_refs && disk_bytenr > 0) {
468 struct btrfs_ref ref = {
469 .action = BTRFS_DROP_DELAYED_REF,
470 .bytenr = disk_bytenr,
471 .num_bytes = num_bytes,
473 .owning_root = btrfs_root_id(root),
474 .ref_root = btrfs_root_id(root),
476 btrfs_init_data_ref(&ref, key.objectid,
477 key.offset - extent_offset,
479 ret = btrfs_free_extent(trans, &ref);
481 btrfs_abort_transaction(trans, ret);
484 args->bytes_found += extent_end - key.offset;
487 if (args->end == extent_end)
490 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
495 ret = btrfs_del_items(trans, root, path, del_slot,
498 btrfs_abort_transaction(trans, ret);
505 btrfs_release_path(path);
512 if (!ret && del_nr > 0) {
514 * Set path->slots[0] to first slot, so that after the delete
515 * if items are move off from our leaf to its immediate left or
516 * right neighbor leafs, we end up with a correct and adjusted
517 * path->slots[0] for our insertion (if args->replace_extent).
519 path->slots[0] = del_slot;
520 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
522 btrfs_abort_transaction(trans, ret);
525 leaf = path->nodes[0];
527 * If btrfs_del_items() was called, it might have deleted a leaf, in
528 * which case it unlocked our path, so check path->locks[0] matches a
531 if (!ret && args->replace_extent &&
532 path->locks[0] == BTRFS_WRITE_LOCK &&
533 btrfs_leaf_free_space(leaf) >=
534 sizeof(struct btrfs_item) + args->extent_item_size) {
537 key.type = BTRFS_EXTENT_DATA_KEY;
538 key.offset = args->start;
539 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
540 struct btrfs_key slot_key;
542 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
543 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
546 btrfs_setup_item_for_insert(trans, root, path, &key,
547 args->extent_item_size);
548 args->extent_inserted = true;
552 btrfs_free_path(path);
553 else if (!args->extent_inserted)
554 btrfs_release_path(path);
556 args->drop_end = found ? min(args->end, last_end) : args->end;
561 static int extent_mergeable(struct extent_buffer *leaf, int slot,
562 u64 objectid, u64 bytenr, u64 orig_offset,
563 u64 *start, u64 *end)
565 struct btrfs_file_extent_item *fi;
566 struct btrfs_key key;
569 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
572 btrfs_item_key_to_cpu(leaf, &key, slot);
573 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
576 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
577 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
578 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
579 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
580 btrfs_file_extent_compression(leaf, fi) ||
581 btrfs_file_extent_encryption(leaf, fi) ||
582 btrfs_file_extent_other_encoding(leaf, fi))
585 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
586 if ((*start && *start != key.offset) || (*end && *end != extent_end))
595 * Mark extent in the range start - end as written.
597 * This changes extent type from 'pre-allocated' to 'regular'. If only
598 * part of extent is marked as written, the extent will be split into
601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
602 struct btrfs_inode *inode, u64 start, u64 end)
604 struct btrfs_root *root = inode->root;
605 struct extent_buffer *leaf;
606 struct btrfs_path *path;
607 struct btrfs_file_extent_item *fi;
608 struct btrfs_ref ref = { 0 };
609 struct btrfs_key key;
610 struct btrfs_key new_key;
622 u64 ino = btrfs_ino(inode);
624 path = btrfs_alloc_path();
631 key.type = BTRFS_EXTENT_DATA_KEY;
634 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
637 if (ret > 0 && path->slots[0] > 0)
640 leaf = path->nodes[0];
641 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
642 if (key.objectid != ino ||
643 key.type != BTRFS_EXTENT_DATA_KEY) {
645 btrfs_abort_transaction(trans, ret);
648 fi = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_file_extent_item);
650 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
652 btrfs_abort_transaction(trans, ret);
655 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
656 if (key.offset > start || extent_end < end) {
658 btrfs_abort_transaction(trans, ret);
662 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
663 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
664 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
665 memcpy(&new_key, &key, sizeof(new_key));
667 if (start == key.offset && end < extent_end) {
670 if (extent_mergeable(leaf, path->slots[0] - 1,
671 ino, bytenr, orig_offset,
672 &other_start, &other_end)) {
673 new_key.offset = end;
674 btrfs_set_item_key_safe(trans, path, &new_key);
675 fi = btrfs_item_ptr(leaf, path->slots[0],
676 struct btrfs_file_extent_item);
677 btrfs_set_file_extent_generation(leaf, fi,
679 btrfs_set_file_extent_num_bytes(leaf, fi,
681 btrfs_set_file_extent_offset(leaf, fi,
683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
684 struct btrfs_file_extent_item);
685 btrfs_set_file_extent_generation(leaf, fi,
687 btrfs_set_file_extent_num_bytes(leaf, fi,
689 btrfs_mark_buffer_dirty(trans, leaf);
694 if (start > key.offset && end == extent_end) {
697 if (extent_mergeable(leaf, path->slots[0] + 1,
698 ino, bytenr, orig_offset,
699 &other_start, &other_end)) {
700 fi = btrfs_item_ptr(leaf, path->slots[0],
701 struct btrfs_file_extent_item);
702 btrfs_set_file_extent_num_bytes(leaf, fi,
704 btrfs_set_file_extent_generation(leaf, fi,
707 new_key.offset = start;
708 btrfs_set_item_key_safe(trans, path, &new_key);
710 fi = btrfs_item_ptr(leaf, path->slots[0],
711 struct btrfs_file_extent_item);
712 btrfs_set_file_extent_generation(leaf, fi,
714 btrfs_set_file_extent_num_bytes(leaf, fi,
716 btrfs_set_file_extent_offset(leaf, fi,
717 start - orig_offset);
718 btrfs_mark_buffer_dirty(trans, leaf);
723 while (start > key.offset || end < extent_end) {
724 if (key.offset == start)
727 new_key.offset = split;
728 ret = btrfs_duplicate_item(trans, root, path, &new_key);
729 if (ret == -EAGAIN) {
730 btrfs_release_path(path);
734 btrfs_abort_transaction(trans, ret);
738 leaf = path->nodes[0];
739 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
740 struct btrfs_file_extent_item);
741 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 btrfs_set_file_extent_num_bytes(leaf, fi,
745 fi = btrfs_item_ptr(leaf, path->slots[0],
746 struct btrfs_file_extent_item);
748 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
749 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
750 btrfs_set_file_extent_num_bytes(leaf, fi,
752 btrfs_mark_buffer_dirty(trans, leaf);
754 ref.action = BTRFS_ADD_DELAYED_REF;
756 ref.num_bytes = num_bytes;
758 ref.owning_root = btrfs_root_id(root);
759 ref.ref_root = btrfs_root_id(root);
760 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
761 ret = btrfs_inc_extent_ref(trans, &ref);
763 btrfs_abort_transaction(trans, ret);
767 if (split == start) {
770 if (start != key.offset) {
772 btrfs_abort_transaction(trans, ret);
784 ref.action = BTRFS_DROP_DELAYED_REF;
786 ref.num_bytes = num_bytes;
788 ref.owning_root = btrfs_root_id(root);
789 ref.ref_root = btrfs_root_id(root);
790 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
791 if (extent_mergeable(leaf, path->slots[0] + 1,
792 ino, bytenr, orig_offset,
793 &other_start, &other_end)) {
795 btrfs_release_path(path);
798 extent_end = other_end;
799 del_slot = path->slots[0] + 1;
801 ret = btrfs_free_extent(trans, &ref);
803 btrfs_abort_transaction(trans, ret);
809 if (extent_mergeable(leaf, path->slots[0] - 1,
810 ino, bytenr, orig_offset,
811 &other_start, &other_end)) {
813 btrfs_release_path(path);
816 key.offset = other_start;
817 del_slot = path->slots[0];
819 ret = btrfs_free_extent(trans, &ref);
821 btrfs_abort_transaction(trans, ret);
826 fi = btrfs_item_ptr(leaf, path->slots[0],
827 struct btrfs_file_extent_item);
828 btrfs_set_file_extent_type(leaf, fi,
829 BTRFS_FILE_EXTENT_REG);
830 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
831 btrfs_mark_buffer_dirty(trans, leaf);
833 fi = btrfs_item_ptr(leaf, del_slot - 1,
834 struct btrfs_file_extent_item);
835 btrfs_set_file_extent_type(leaf, fi,
836 BTRFS_FILE_EXTENT_REG);
837 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
838 btrfs_set_file_extent_num_bytes(leaf, fi,
839 extent_end - key.offset);
840 btrfs_mark_buffer_dirty(trans, leaf);
842 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
844 btrfs_abort_transaction(trans, ret);
849 btrfs_free_path(path);
854 * on error we return an unlocked page and the error value
855 * on success we return a locked page and 0
857 static int prepare_uptodate_page(struct inode *inode,
858 struct page *page, u64 pos,
861 struct folio *folio = page_folio(page);
864 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
865 !PageUptodate(page)) {
866 ret = btrfs_read_folio(NULL, folio);
870 if (!PageUptodate(page)) {
876 * Since btrfs_read_folio() will unlock the folio before it
877 * returns, there is a window where btrfs_release_folio() can be
878 * called to release the page. Here we check both inode
879 * mapping and PagePrivate() to make sure the page was not
882 * The private flag check is essential for subpage as we need
883 * to store extra bitmap using folio private.
885 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
893 static fgf_t get_prepare_fgp_flags(bool nowait)
895 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
898 fgp_flags |= FGP_NOWAIT;
903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
907 gfp = btrfs_alloc_write_mask(inode->i_mapping);
909 gfp &= ~__GFP_DIRECT_RECLAIM;
917 * this just gets pages into the page cache and locks them down.
919 static noinline int prepare_pages(struct inode *inode, struct page **pages,
920 size_t num_pages, loff_t pos,
921 size_t write_bytes, bool force_uptodate,
925 unsigned long index = pos >> PAGE_SHIFT;
926 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
927 fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
931 for (i = 0; i < num_pages; i++) {
933 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
934 fgp_flags, mask | __GFP_WRITE);
944 ret = set_page_extent_mapped(pages[i]);
951 ret = prepare_uptodate_page(inode, pages[i], pos,
953 if (!ret && i == num_pages - 1)
954 ret = prepare_uptodate_page(inode, pages[i],
955 pos + write_bytes, false);
958 if (!nowait && ret == -EAGAIN) {
965 wait_on_page_writeback(pages[i]);
971 unlock_page(pages[faili]);
972 put_page(pages[faili]);
980 * This function locks the extent and properly waits for data=ordered extents
981 * to finish before allowing the pages to be modified if need.
984 * 1 - the extent is locked
985 * 0 - the extent is not locked, and everything is OK
986 * -EAGAIN - need re-prepare the pages
987 * the other < 0 number - Something wrong happens
990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
991 size_t num_pages, loff_t pos,
993 u64 *lockstart, u64 *lockend, bool nowait,
994 struct extent_state **cached_state)
996 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1002 start_pos = round_down(pos, fs_info->sectorsize);
1003 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1005 if (start_pos < inode->vfs_inode.i_size) {
1006 struct btrfs_ordered_extent *ordered;
1009 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1011 for (i = 0; i < num_pages; i++) {
1012 unlock_page(pages[i]);
1020 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1023 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1024 last_pos - start_pos + 1);
1026 ordered->file_offset + ordered->num_bytes > start_pos &&
1027 ordered->file_offset <= last_pos) {
1028 unlock_extent(&inode->io_tree, start_pos, last_pos,
1030 for (i = 0; i < num_pages; i++) {
1031 unlock_page(pages[i]);
1034 btrfs_start_ordered_extent(ordered);
1035 btrfs_put_ordered_extent(ordered);
1039 btrfs_put_ordered_extent(ordered);
1041 *lockstart = start_pos;
1042 *lockend = last_pos;
1047 * We should be called after prepare_pages() which should have locked
1048 * all pages in the range.
1050 for (i = 0; i < num_pages; i++)
1051 WARN_ON(!PageLocked(pages[i]));
1057 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1059 * @pos: File offset.
1060 * @write_bytes: The length to write, will be updated to the nocow writeable
1063 * This function will flush ordered extents in the range to ensure proper
1067 * > 0 If we can nocow, and updates @write_bytes.
1068 * 0 If we can't do a nocow write.
1069 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1070 * root is in progress.
1071 * < 0 If an error happened.
1073 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1076 size_t *write_bytes, bool nowait)
1078 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1079 struct btrfs_root *root = inode->root;
1080 struct extent_state *cached_state = NULL;
1081 u64 lockstart, lockend;
1085 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1088 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1091 lockstart = round_down(pos, fs_info->sectorsize);
1092 lockend = round_up(pos + *write_bytes,
1093 fs_info->sectorsize) - 1;
1094 num_bytes = lockend - lockstart + 1;
1097 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1099 btrfs_drew_write_unlock(&root->snapshot_lock);
1103 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1106 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1107 NULL, nowait, false);
1109 btrfs_drew_write_unlock(&root->snapshot_lock);
1111 *write_bytes = min_t(size_t, *write_bytes ,
1112 num_bytes - pos + lockstart);
1113 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1120 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1123 static void update_time_for_write(struct inode *inode)
1125 struct timespec64 now, ts;
1127 if (IS_NOCMTIME(inode))
1130 now = current_time(inode);
1131 ts = inode_get_mtime(inode);
1132 if (!timespec64_equal(&ts, &now))
1133 inode_set_mtime_to_ts(inode, now);
1135 ts = inode_get_ctime(inode);
1136 if (!timespec64_equal(&ts, &now))
1137 inode_set_ctime_to_ts(inode, now);
1139 if (IS_I_VERSION(inode))
1140 inode_inc_iversion(inode);
1143 int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, size_t count)
1145 struct file *file = iocb->ki_filp;
1146 struct inode *inode = file_inode(file);
1147 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1148 loff_t pos = iocb->ki_pos;
1154 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1155 * prealloc flags, as without those flags we always have to COW. We will
1156 * later check if we can really COW into the target range (using
1157 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1159 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1160 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1163 ret = file_remove_privs(file);
1168 * We reserve space for updating the inode when we reserve space for the
1169 * extent we are going to write, so we will enospc out there. We don't
1170 * need to start yet another transaction to update the inode as we will
1171 * update the inode when we finish writing whatever data we write.
1173 update_time_for_write(inode);
1175 start_pos = round_down(pos, fs_info->sectorsize);
1176 oldsize = i_size_read(inode);
1177 if (start_pos > oldsize) {
1178 /* Expand hole size to cover write data, preventing empty gap */
1179 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1181 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1189 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
1191 struct file *file = iocb->ki_filp;
1193 struct inode *inode = file_inode(file);
1194 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1195 struct page **pages = NULL;
1196 struct extent_changeset *data_reserved = NULL;
1197 u64 release_bytes = 0;
1200 size_t num_written = 0;
1203 bool only_release_metadata = false;
1204 bool force_page_uptodate = false;
1205 loff_t old_isize = i_size_read(inode);
1206 unsigned int ilock_flags = 0;
1207 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1208 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1211 ilock_flags |= BTRFS_ILOCK_TRY;
1213 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1217 ret = generic_write_checks(iocb, i);
1221 ret = btrfs_write_check(iocb, i, ret);
1226 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1227 PAGE_SIZE / (sizeof(struct page *)));
1228 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1229 nrptrs = max(nrptrs, 8);
1230 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1236 while (iov_iter_count(i) > 0) {
1237 struct extent_state *cached_state = NULL;
1238 size_t offset = offset_in_page(pos);
1239 size_t sector_offset;
1240 size_t write_bytes = min(iov_iter_count(i),
1241 nrptrs * (size_t)PAGE_SIZE -
1244 size_t reserve_bytes;
1247 size_t dirty_sectors;
1252 * Fault pages before locking them in prepare_pages
1253 * to avoid recursive lock
1255 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1260 only_release_metadata = false;
1261 sector_offset = pos & (fs_info->sectorsize - 1);
1263 extent_changeset_release(data_reserved);
1264 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1265 &data_reserved, pos,
1266 write_bytes, nowait);
1270 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1276 * If we don't have to COW at the offset, reserve
1277 * metadata only. write_bytes may get smaller than
1280 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1281 &write_bytes, nowait);
1288 only_release_metadata = true;
1291 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1292 WARN_ON(num_pages > nrptrs);
1293 reserve_bytes = round_up(write_bytes + sector_offset,
1294 fs_info->sectorsize);
1295 WARN_ON(reserve_bytes == 0);
1296 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1298 reserve_bytes, nowait);
1300 if (!only_release_metadata)
1301 btrfs_free_reserved_data_space(BTRFS_I(inode),
1305 btrfs_check_nocow_unlock(BTRFS_I(inode));
1307 if (nowait && ret == -ENOSPC)
1312 release_bytes = reserve_bytes;
1314 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1316 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1321 * This is going to setup the pages array with the number of
1322 * pages we want, so we don't really need to worry about the
1323 * contents of pages from loop to loop
1325 ret = prepare_pages(inode, pages, num_pages,
1326 pos, write_bytes, force_page_uptodate, false);
1328 btrfs_delalloc_release_extents(BTRFS_I(inode),
1333 extents_locked = lock_and_cleanup_extent_if_need(
1334 BTRFS_I(inode), pages,
1335 num_pages, pos, write_bytes, &lockstart,
1336 &lockend, nowait, &cached_state);
1337 if (extents_locked < 0) {
1338 if (!nowait && extents_locked == -EAGAIN)
1341 btrfs_delalloc_release_extents(BTRFS_I(inode),
1343 ret = extents_locked;
1347 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1349 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1350 dirty_sectors = round_up(copied + sector_offset,
1351 fs_info->sectorsize);
1352 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1355 * if we have trouble faulting in the pages, fall
1356 * back to one page at a time
1358 if (copied < write_bytes)
1362 force_page_uptodate = true;
1366 force_page_uptodate = false;
1367 dirty_pages = DIV_ROUND_UP(copied + offset,
1371 if (num_sectors > dirty_sectors) {
1372 /* release everything except the sectors we dirtied */
1373 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1374 if (only_release_metadata) {
1375 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1376 release_bytes, true);
1380 __pos = round_down(pos,
1381 fs_info->sectorsize) +
1382 (dirty_pages << PAGE_SHIFT);
1383 btrfs_delalloc_release_space(BTRFS_I(inode),
1384 data_reserved, __pos,
1385 release_bytes, true);
1389 release_bytes = round_up(copied + sector_offset,
1390 fs_info->sectorsize);
1392 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1393 dirty_pages, pos, copied,
1394 &cached_state, only_release_metadata);
1397 * If we have not locked the extent range, because the range's
1398 * start offset is >= i_size, we might still have a non-NULL
1399 * cached extent state, acquired while marking the extent range
1400 * as delalloc through btrfs_dirty_pages(). Therefore free any
1401 * possible cached extent state to avoid a memory leak.
1404 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1405 lockend, &cached_state);
1407 free_extent_state(cached_state);
1409 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1411 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1416 if (only_release_metadata)
1417 btrfs_check_nocow_unlock(BTRFS_I(inode));
1419 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1424 num_written += copied;
1429 if (release_bytes) {
1430 if (only_release_metadata) {
1431 btrfs_check_nocow_unlock(BTRFS_I(inode));
1432 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1433 release_bytes, true);
1435 btrfs_delalloc_release_space(BTRFS_I(inode),
1437 round_down(pos, fs_info->sectorsize),
1438 release_bytes, true);
1442 extent_changeset_free(data_reserved);
1443 if (num_written > 0) {
1444 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1445 iocb->ki_pos += num_written;
1448 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1449 return num_written ? num_written : ret;
1452 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1453 const struct btrfs_ioctl_encoded_io_args *encoded)
1455 struct file *file = iocb->ki_filp;
1456 struct inode *inode = file_inode(file);
1460 btrfs_inode_lock(BTRFS_I(inode), 0);
1461 count = encoded->len;
1462 ret = generic_write_checks_count(iocb, &count);
1463 if (ret == 0 && count != encoded->len) {
1465 * The write got truncated by generic_write_checks_count(). We
1466 * can't do a partial encoded write.
1470 if (ret || encoded->len == 0)
1473 ret = btrfs_write_check(iocb, from, encoded->len);
1477 ret = btrfs_do_encoded_write(iocb, from, encoded);
1479 btrfs_inode_unlock(BTRFS_I(inode), 0);
1483 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1484 const struct btrfs_ioctl_encoded_io_args *encoded)
1486 struct file *file = iocb->ki_filp;
1487 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1488 ssize_t num_written, num_sync;
1491 * If the fs flips readonly due to some impossible error, although we
1492 * have opened a file as writable, we have to stop this write operation
1493 * to ensure consistency.
1495 if (BTRFS_FS_ERROR(inode->root->fs_info))
1498 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1502 num_written = btrfs_encoded_write(iocb, from, encoded);
1503 num_sync = encoded->len;
1504 } else if (iocb->ki_flags & IOCB_DIRECT) {
1505 num_written = btrfs_direct_write(iocb, from);
1506 num_sync = num_written;
1508 num_written = btrfs_buffered_write(iocb, from);
1509 num_sync = num_written;
1512 btrfs_set_inode_last_sub_trans(inode);
1515 num_sync = generic_write_sync(iocb, num_sync);
1517 num_written = num_sync;
1523 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1525 return btrfs_do_write_iter(iocb, from, NULL);
1528 int btrfs_release_file(struct inode *inode, struct file *filp)
1530 struct btrfs_file_private *private = filp->private_data;
1533 kfree(private->filldir_buf);
1534 free_extent_state(private->llseek_cached_state);
1536 filp->private_data = NULL;
1540 * Set by setattr when we are about to truncate a file from a non-zero
1541 * size to a zero size. This tries to flush down new bytes that may
1542 * have been written if the application were using truncate to replace
1545 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1546 &BTRFS_I(inode)->runtime_flags))
1547 filemap_flush(inode->i_mapping);
1551 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1554 struct blk_plug plug;
1557 * This is only called in fsync, which would do synchronous writes, so
1558 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1559 * multiple disks using raid profile, a large IO can be split to
1560 * several segments of stripe length (currently 64K).
1562 blk_start_plug(&plug);
1563 ret = btrfs_fdatawrite_range(inode, start, end);
1564 blk_finish_plug(&plug);
1569 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1571 struct btrfs_inode *inode = ctx->inode;
1572 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1574 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1575 list_empty(&ctx->ordered_extents))
1579 * If we are doing a fast fsync we can not bail out if the inode's
1580 * last_trans is <= then the last committed transaction, because we only
1581 * update the last_trans of the inode during ordered extent completion,
1582 * and for a fast fsync we don't wait for that, we only wait for the
1583 * writeback to complete.
1585 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1586 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1587 list_empty(&ctx->ordered_extents)))
1594 * fsync call for both files and directories. This logs the inode into
1595 * the tree log instead of forcing full commits whenever possible.
1597 * It needs to call filemap_fdatawait so that all ordered extent updates are
1598 * in the metadata btree are up to date for copying to the log.
1600 * It drops the inode mutex before doing the tree log commit. This is an
1601 * important optimization for directories because holding the mutex prevents
1602 * new operations on the dir while we write to disk.
1604 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1606 struct dentry *dentry = file_dentry(file);
1607 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1608 struct btrfs_root *root = inode->root;
1609 struct btrfs_fs_info *fs_info = root->fs_info;
1610 struct btrfs_trans_handle *trans;
1611 struct btrfs_log_ctx ctx;
1616 trace_btrfs_sync_file(file, datasync);
1618 btrfs_init_log_ctx(&ctx, inode);
1621 * Always set the range to a full range, otherwise we can get into
1622 * several problems, from missing file extent items to represent holes
1623 * when not using the NO_HOLES feature, to log tree corruption due to
1624 * races between hole detection during logging and completion of ordered
1625 * extents outside the range, to missing checksums due to ordered extents
1626 * for which we flushed only a subset of their pages.
1630 len = (u64)LLONG_MAX + 1;
1633 * We write the dirty pages in the range and wait until they complete
1634 * out of the ->i_mutex. If so, we can flush the dirty pages by
1635 * multi-task, and make the performance up. See
1636 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1638 ret = start_ordered_ops(inode, start, end);
1642 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1644 atomic_inc(&root->log_batch);
1647 * Before we acquired the inode's lock and the mmap lock, someone may
1648 * have dirtied more pages in the target range. We need to make sure
1649 * that writeback for any such pages does not start while we are logging
1650 * the inode, because if it does, any of the following might happen when
1651 * we are not doing a full inode sync:
1653 * 1) We log an extent after its writeback finishes but before its
1654 * checksums are added to the csum tree, leading to -EIO errors
1655 * when attempting to read the extent after a log replay.
1657 * 2) We can end up logging an extent before its writeback finishes.
1658 * Therefore after the log replay we will have a file extent item
1659 * pointing to an unwritten extent (and no data checksums as well).
1661 * So trigger writeback for any eventual new dirty pages and then we
1662 * wait for all ordered extents to complete below.
1664 ret = start_ordered_ops(inode, start, end);
1666 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1671 * Always check for the full sync flag while holding the inode's lock,
1672 * to avoid races with other tasks. The flag must be either set all the
1673 * time during logging or always off all the time while logging.
1674 * We check the flag here after starting delalloc above, because when
1675 * running delalloc the full sync flag may be set if we need to drop
1676 * extra extent map ranges due to temporary memory allocation failures.
1678 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1681 * We have to do this here to avoid the priority inversion of waiting on
1682 * IO of a lower priority task while holding a transaction open.
1684 * For a full fsync we wait for the ordered extents to complete while
1685 * for a fast fsync we wait just for writeback to complete, and then
1686 * attach the ordered extents to the transaction so that a transaction
1687 * commit waits for their completion, to avoid data loss if we fsync,
1688 * the current transaction commits before the ordered extents complete
1689 * and a power failure happens right after that.
1691 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1692 * logical address recorded in the ordered extent may change. We need
1693 * to wait for the IO to stabilize the logical address.
1695 if (full_sync || btrfs_is_zoned(fs_info)) {
1696 ret = btrfs_wait_ordered_range(inode, start, len);
1697 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1700 * Get our ordered extents as soon as possible to avoid doing
1701 * checksum lookups in the csum tree, and use instead the
1702 * checksums attached to the ordered extents.
1704 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1705 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1707 goto out_release_extents;
1710 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1711 * starting and waiting for writeback, because for buffered IO
1712 * it may have been set during the end IO callback
1713 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1714 * case an error happened and we need to wait for ordered
1715 * extents to complete so that any extent maps that point to
1716 * unwritten locations are dropped and we don't log them.
1718 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1719 ret = btrfs_wait_ordered_range(inode, start, len);
1723 goto out_release_extents;
1725 atomic_inc(&root->log_batch);
1727 if (skip_inode_logging(&ctx)) {
1729 * We've had everything committed since the last time we were
1730 * modified so clear this flag in case it was set for whatever
1731 * reason, it's no longer relevant.
1733 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1735 * An ordered extent might have started before and completed
1736 * already with io errors, in which case the inode was not
1737 * updated and we end up here. So check the inode's mapping
1738 * for any errors that might have happened since we last
1739 * checked called fsync.
1741 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1742 goto out_release_extents;
1745 btrfs_init_log_ctx_scratch_eb(&ctx);
1748 * We use start here because we will need to wait on the IO to complete
1749 * in btrfs_sync_log, which could require joining a transaction (for
1750 * example checking cross references in the nocow path). If we use join
1751 * here we could get into a situation where we're waiting on IO to
1752 * happen that is blocked on a transaction trying to commit. With start
1753 * we inc the extwriter counter, so we wait for all extwriters to exit
1754 * before we start blocking joiners. This comment is to keep somebody
1755 * from thinking they are super smart and changing this to
1756 * btrfs_join_transaction *cough*Josef*cough*.
1758 trans = btrfs_start_transaction(root, 0);
1759 if (IS_ERR(trans)) {
1760 ret = PTR_ERR(trans);
1761 goto out_release_extents;
1763 trans->in_fsync = true;
1765 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1767 * Scratch eb no longer needed, release before syncing log or commit
1768 * transaction, to avoid holding unnecessary memory during such long
1771 if (ctx.scratch_eb) {
1772 free_extent_buffer(ctx.scratch_eb);
1773 ctx.scratch_eb = NULL;
1775 btrfs_release_log_ctx_extents(&ctx);
1777 /* Fallthrough and commit/free transaction. */
1778 ret = BTRFS_LOG_FORCE_COMMIT;
1781 /* we've logged all the items and now have a consistent
1782 * version of the file in the log. It is possible that
1783 * someone will come in and modify the file, but that's
1784 * fine because the log is consistent on disk, and we
1785 * have references to all of the file's extents
1787 * It is possible that someone will come in and log the
1788 * file again, but that will end up using the synchronization
1789 * inside btrfs_sync_log to keep things safe.
1791 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1793 if (ret == BTRFS_NO_LOG_SYNC) {
1794 ret = btrfs_end_transaction(trans);
1798 /* We successfully logged the inode, attempt to sync the log. */
1800 ret = btrfs_sync_log(trans, root, &ctx);
1802 ret = btrfs_end_transaction(trans);
1808 * At this point we need to commit the transaction because we had
1809 * btrfs_need_log_full_commit() or some other error.
1811 * If we didn't do a full sync we have to stop the trans handle, wait on
1812 * the ordered extents, start it again and commit the transaction. If
1813 * we attempt to wait on the ordered extents here we could deadlock with
1814 * something like fallocate() that is holding the extent lock trying to
1815 * start a transaction while some other thread is trying to commit the
1816 * transaction while we (fsync) are currently holding the transaction
1820 ret = btrfs_end_transaction(trans);
1823 ret = btrfs_wait_ordered_range(inode, start, len);
1828 * This is safe to use here because we're only interested in
1829 * making sure the transaction that had the ordered extents is
1830 * committed. We aren't waiting on anything past this point,
1831 * we're purely getting the transaction and committing it.
1833 trans = btrfs_attach_transaction_barrier(root);
1834 if (IS_ERR(trans)) {
1835 ret = PTR_ERR(trans);
1838 * We committed the transaction and there's no currently
1839 * running transaction, this means everything we care
1840 * about made it to disk and we are done.
1848 ret = btrfs_commit_transaction(trans);
1850 free_extent_buffer(ctx.scratch_eb);
1851 ASSERT(list_empty(&ctx.list));
1852 ASSERT(list_empty(&ctx.conflict_inodes));
1853 err = file_check_and_advance_wb_err(file);
1856 return ret > 0 ? -EIO : ret;
1858 out_release_extents:
1859 btrfs_release_log_ctx_extents(&ctx);
1860 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1865 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1866 * called from a page fault handler when a page is first dirtied. Hence we must
1867 * be careful to check for EOF conditions here. We set the page up correctly
1868 * for a written page which means we get ENOSPC checking when writing into
1869 * holes and correct delalloc and unwritten extent mapping on filesystems that
1870 * support these features.
1872 * We are not allowed to take the i_mutex here so we have to play games to
1873 * protect against truncate races as the page could now be beyond EOF. Because
1874 * truncate_setsize() writes the inode size before removing pages, once we have
1875 * the page lock we can determine safely if the page is beyond EOF. If it is not
1876 * beyond EOF, then the page is guaranteed safe against truncation until we
1879 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1881 struct page *page = vmf->page;
1882 struct folio *folio = page_folio(page);
1883 struct inode *inode = file_inode(vmf->vma->vm_file);
1884 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1886 struct btrfs_ordered_extent *ordered;
1887 struct extent_state *cached_state = NULL;
1888 struct extent_changeset *data_reserved = NULL;
1889 unsigned long zero_start;
1899 ASSERT(folio_order(folio) == 0);
1901 reserved_space = PAGE_SIZE;
1903 sb_start_pagefault(inode->i_sb);
1904 page_start = page_offset(page);
1905 page_end = page_start + PAGE_SIZE - 1;
1909 * Reserving delalloc space after obtaining the page lock can lead to
1910 * deadlock. For example, if a dirty page is locked by this function
1911 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1912 * dirty page write out, then the btrfs_writepages() function could
1913 * end up waiting indefinitely to get a lock on the page currently
1914 * being processed by btrfs_page_mkwrite() function.
1916 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1917 page_start, reserved_space);
1919 ret2 = file_update_time(vmf->vma->vm_file);
1923 ret = vmf_error(ret2);
1929 /* Make the VM retry the fault. */
1930 ret = VM_FAULT_NOPAGE;
1932 down_read(&BTRFS_I(inode)->i_mmap_lock);
1934 size = i_size_read(inode);
1936 if ((page->mapping != inode->i_mapping) ||
1937 (page_start >= size)) {
1938 /* Page got truncated out from underneath us. */
1941 wait_on_page_writeback(page);
1943 lock_extent(io_tree, page_start, page_end, &cached_state);
1944 ret2 = set_page_extent_mapped(page);
1946 ret = vmf_error(ret2);
1947 unlock_extent(io_tree, page_start, page_end, &cached_state);
1952 * We can't set the delalloc bits if there are pending ordered
1953 * extents. Drop our locks and wait for them to finish.
1955 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
1957 unlock_extent(io_tree, page_start, page_end, &cached_state);
1959 up_read(&BTRFS_I(inode)->i_mmap_lock);
1960 btrfs_start_ordered_extent(ordered);
1961 btrfs_put_ordered_extent(ordered);
1965 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
1966 reserved_space = round_up(size - page_start, fs_info->sectorsize);
1967 if (reserved_space < PAGE_SIZE) {
1968 end = page_start + reserved_space - 1;
1969 btrfs_delalloc_release_space(BTRFS_I(inode),
1970 data_reserved, page_start,
1971 PAGE_SIZE - reserved_space, true);
1976 * page_mkwrite gets called when the page is firstly dirtied after it's
1977 * faulted in, but write(2) could also dirty a page and set delalloc
1978 * bits, thus in this case for space account reason, we still need to
1979 * clear any delalloc bits within this page range since we have to
1980 * reserve data&meta space before lock_page() (see above comments).
1982 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1983 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1984 EXTENT_DEFRAG, &cached_state);
1986 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1989 unlock_extent(io_tree, page_start, page_end, &cached_state);
1990 ret = VM_FAULT_SIGBUS;
1994 /* Page is wholly or partially inside EOF. */
1995 if (page_start + PAGE_SIZE > size)
1996 zero_start = offset_in_page(size);
1998 zero_start = PAGE_SIZE;
2000 if (zero_start != PAGE_SIZE)
2001 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
2003 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2004 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
2005 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
2007 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
2009 unlock_extent(io_tree, page_start, page_end, &cached_state);
2010 up_read(&BTRFS_I(inode)->i_mmap_lock);
2012 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2013 sb_end_pagefault(inode->i_sb);
2014 extent_changeset_free(data_reserved);
2015 return VM_FAULT_LOCKED;
2019 up_read(&BTRFS_I(inode)->i_mmap_lock);
2021 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2022 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
2023 reserved_space, (ret != 0));
2025 sb_end_pagefault(inode->i_sb);
2026 extent_changeset_free(data_reserved);
2030 static const struct vm_operations_struct btrfs_file_vm_ops = {
2031 .fault = filemap_fault,
2032 .map_pages = filemap_map_pages,
2033 .page_mkwrite = btrfs_page_mkwrite,
2036 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2038 struct address_space *mapping = filp->f_mapping;
2040 if (!mapping->a_ops->read_folio)
2043 file_accessed(filp);
2044 vma->vm_ops = &btrfs_file_vm_ops;
2049 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2050 int slot, u64 start, u64 end)
2052 struct btrfs_file_extent_item *fi;
2053 struct btrfs_key key;
2055 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2058 btrfs_item_key_to_cpu(leaf, &key, slot);
2059 if (key.objectid != btrfs_ino(inode) ||
2060 key.type != BTRFS_EXTENT_DATA_KEY)
2063 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2065 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2068 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2071 if (key.offset == end)
2073 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2078 static int fill_holes(struct btrfs_trans_handle *trans,
2079 struct btrfs_inode *inode,
2080 struct btrfs_path *path, u64 offset, u64 end)
2082 struct btrfs_fs_info *fs_info = trans->fs_info;
2083 struct btrfs_root *root = inode->root;
2084 struct extent_buffer *leaf;
2085 struct btrfs_file_extent_item *fi;
2086 struct extent_map *hole_em;
2087 struct btrfs_key key;
2090 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2093 key.objectid = btrfs_ino(inode);
2094 key.type = BTRFS_EXTENT_DATA_KEY;
2095 key.offset = offset;
2097 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2100 * We should have dropped this offset, so if we find it then
2101 * something has gone horribly wrong.
2108 leaf = path->nodes[0];
2109 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2113 fi = btrfs_item_ptr(leaf, path->slots[0],
2114 struct btrfs_file_extent_item);
2115 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2117 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2118 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2119 btrfs_set_file_extent_offset(leaf, fi, 0);
2120 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2121 btrfs_mark_buffer_dirty(trans, leaf);
2125 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2128 key.offset = offset;
2129 btrfs_set_item_key_safe(trans, path, &key);
2130 fi = btrfs_item_ptr(leaf, path->slots[0],
2131 struct btrfs_file_extent_item);
2132 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2134 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2135 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2136 btrfs_set_file_extent_offset(leaf, fi, 0);
2137 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2138 btrfs_mark_buffer_dirty(trans, leaf);
2141 btrfs_release_path(path);
2143 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2149 btrfs_release_path(path);
2151 hole_em = alloc_extent_map();
2153 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2154 btrfs_set_inode_full_sync(inode);
2156 hole_em->start = offset;
2157 hole_em->len = end - offset;
2158 hole_em->ram_bytes = hole_em->len;
2160 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2161 hole_em->disk_num_bytes = 0;
2162 hole_em->generation = trans->transid;
2164 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2165 free_extent_map(hole_em);
2167 btrfs_set_inode_full_sync(inode);
2174 * Find a hole extent on given inode and change start/len to the end of hole
2175 * extent.(hole/vacuum extent whose em->start <= start &&
2176 * em->start + em->len > start)
2177 * When a hole extent is found, return 1 and modify start/len.
2179 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2181 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2182 struct extent_map *em;
2185 em = btrfs_get_extent(inode, NULL,
2186 round_down(*start, fs_info->sectorsize),
2187 round_up(*len, fs_info->sectorsize));
2191 /* Hole or vacuum extent(only exists in no-hole mode) */
2192 if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2194 *len = em->start + em->len > *start + *len ?
2195 0 : *start + *len - em->start - em->len;
2196 *start = em->start + em->len;
2198 free_extent_map(em);
2202 static void btrfs_punch_hole_lock_range(struct inode *inode,
2203 const u64 lockstart,
2205 struct extent_state **cached_state)
2208 * For subpage case, if the range is not at page boundary, we could
2209 * have pages at the leading/tailing part of the range.
2210 * This could lead to dead loop since filemap_range_has_page()
2211 * will always return true.
2212 * So here we need to do extra page alignment for
2213 * filemap_range_has_page().
2215 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2216 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2219 truncate_pagecache_range(inode, lockstart, lockend);
2221 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2224 * We can't have ordered extents in the range, nor dirty/writeback
2225 * pages, because we have locked the inode's VFS lock in exclusive
2226 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2227 * we have flushed all delalloc in the range and we have waited
2228 * for any ordered extents in the range to complete.
2229 * We can race with anyone reading pages from this range, so after
2230 * locking the range check if we have pages in the range, and if
2231 * we do, unlock the range and retry.
2233 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2237 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2241 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2244 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2245 struct btrfs_inode *inode,
2246 struct btrfs_path *path,
2247 struct btrfs_replace_extent_info *extent_info,
2248 const u64 replace_len,
2249 const u64 bytes_to_drop)
2251 struct btrfs_fs_info *fs_info = trans->fs_info;
2252 struct btrfs_root *root = inode->root;
2253 struct btrfs_file_extent_item *extent;
2254 struct extent_buffer *leaf;
2255 struct btrfs_key key;
2259 if (replace_len == 0)
2262 if (extent_info->disk_offset == 0 &&
2263 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2264 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2268 key.objectid = btrfs_ino(inode);
2269 key.type = BTRFS_EXTENT_DATA_KEY;
2270 key.offset = extent_info->file_offset;
2271 ret = btrfs_insert_empty_item(trans, root, path, &key,
2272 sizeof(struct btrfs_file_extent_item));
2275 leaf = path->nodes[0];
2276 slot = path->slots[0];
2277 write_extent_buffer(leaf, extent_info->extent_buf,
2278 btrfs_item_ptr_offset(leaf, slot),
2279 sizeof(struct btrfs_file_extent_item));
2280 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2281 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2282 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2283 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2284 if (extent_info->is_new_extent)
2285 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2286 btrfs_mark_buffer_dirty(trans, leaf);
2287 btrfs_release_path(path);
2289 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2294 /* If it's a hole, nothing more needs to be done. */
2295 if (extent_info->disk_offset == 0) {
2296 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2300 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2302 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2303 key.objectid = extent_info->disk_offset;
2304 key.type = BTRFS_EXTENT_ITEM_KEY;
2305 key.offset = extent_info->disk_len;
2306 ret = btrfs_alloc_reserved_file_extent(trans, root,
2308 extent_info->file_offset,
2309 extent_info->qgroup_reserved,
2312 struct btrfs_ref ref = {
2313 .action = BTRFS_ADD_DELAYED_REF,
2314 .bytenr = extent_info->disk_offset,
2315 .num_bytes = extent_info->disk_len,
2316 .owning_root = btrfs_root_id(root),
2317 .ref_root = btrfs_root_id(root),
2321 ref_offset = extent_info->file_offset - extent_info->data_offset;
2322 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2323 ret = btrfs_inc_extent_ref(trans, &ref);
2326 extent_info->insertions++;
2332 * The respective range must have been previously locked, as well as the inode.
2333 * The end offset is inclusive (last byte of the range).
2334 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2335 * the file range with an extent.
2336 * When not punching a hole, we don't want to end up in a state where we dropped
2337 * extents without inserting a new one, so we must abort the transaction to avoid
2340 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2341 struct btrfs_path *path, const u64 start,
2343 struct btrfs_replace_extent_info *extent_info,
2344 struct btrfs_trans_handle **trans_out)
2346 struct btrfs_drop_extents_args drop_args = { 0 };
2347 struct btrfs_root *root = inode->root;
2348 struct btrfs_fs_info *fs_info = root->fs_info;
2349 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2350 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2351 struct btrfs_trans_handle *trans = NULL;
2352 struct btrfs_block_rsv *rsv;
2353 unsigned int rsv_count;
2355 u64 len = end - start;
2361 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2366 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2367 rsv->failfast = true;
2370 * 1 - update the inode
2371 * 1 - removing the extents in the range
2372 * 1 - adding the hole extent if no_holes isn't set or if we are
2373 * replacing the range with a new extent
2375 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2380 trans = btrfs_start_transaction(root, rsv_count);
2381 if (IS_ERR(trans)) {
2382 ret = PTR_ERR(trans);
2387 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2391 trans->block_rsv = rsv;
2394 drop_args.path = path;
2395 drop_args.end = end + 1;
2396 drop_args.drop_cache = true;
2397 while (cur_offset < end) {
2398 drop_args.start = cur_offset;
2399 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2400 /* If we are punching a hole decrement the inode's byte count */
2402 btrfs_update_inode_bytes(inode, 0,
2403 drop_args.bytes_found);
2404 if (ret != -ENOSPC) {
2406 * The only time we don't want to abort is if we are
2407 * attempting to clone a partial inline extent, in which
2408 * case we'll get EOPNOTSUPP. However if we aren't
2409 * clone we need to abort no matter what, because if we
2410 * got EOPNOTSUPP via prealloc then we messed up and
2414 (ret != -EOPNOTSUPP ||
2415 (extent_info && extent_info->is_new_extent)))
2416 btrfs_abort_transaction(trans, ret);
2420 trans->block_rsv = &fs_info->trans_block_rsv;
2422 if (!extent_info && cur_offset < drop_args.drop_end &&
2423 cur_offset < ino_size) {
2424 ret = fill_holes(trans, inode, path, cur_offset,
2425 drop_args.drop_end);
2428 * If we failed then we didn't insert our hole
2429 * entries for the area we dropped, so now the
2430 * fs is corrupted, so we must abort the
2433 btrfs_abort_transaction(trans, ret);
2436 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2438 * We are past the i_size here, but since we didn't
2439 * insert holes we need to clear the mapped area so we
2440 * know to not set disk_i_size in this area until a new
2441 * file extent is inserted here.
2443 ret = btrfs_inode_clear_file_extent_range(inode,
2445 drop_args.drop_end - cur_offset);
2448 * We couldn't clear our area, so we could
2449 * presumably adjust up and corrupt the fs, so
2452 btrfs_abort_transaction(trans, ret);
2458 drop_args.drop_end > extent_info->file_offset) {
2459 u64 replace_len = drop_args.drop_end -
2460 extent_info->file_offset;
2462 ret = btrfs_insert_replace_extent(trans, inode, path,
2463 extent_info, replace_len,
2464 drop_args.bytes_found);
2466 btrfs_abort_transaction(trans, ret);
2469 extent_info->data_len -= replace_len;
2470 extent_info->data_offset += replace_len;
2471 extent_info->file_offset += replace_len;
2475 * We are releasing our handle on the transaction, balance the
2476 * dirty pages of the btree inode and flush delayed items, and
2477 * then get a new transaction handle, which may now point to a
2478 * new transaction in case someone else may have committed the
2479 * transaction we used to replace/drop file extent items. So
2480 * bump the inode's iversion and update mtime and ctime except
2481 * if we are called from a dedupe context. This is because a
2482 * power failure/crash may happen after the transaction is
2483 * committed and before we finish replacing/dropping all the
2484 * file extent items we need.
2486 inode_inc_iversion(&inode->vfs_inode);
2488 if (!extent_info || extent_info->update_times)
2489 inode_set_mtime_to_ts(&inode->vfs_inode,
2490 inode_set_ctime_current(&inode->vfs_inode));
2492 ret = btrfs_update_inode(trans, inode);
2496 btrfs_end_transaction(trans);
2497 btrfs_btree_balance_dirty(fs_info);
2499 trans = btrfs_start_transaction(root, rsv_count);
2500 if (IS_ERR(trans)) {
2501 ret = PTR_ERR(trans);
2506 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2507 rsv, min_size, false);
2510 trans->block_rsv = rsv;
2512 cur_offset = drop_args.drop_end;
2513 len = end - cur_offset;
2514 if (!extent_info && len) {
2515 ret = find_first_non_hole(inode, &cur_offset, &len);
2516 if (unlikely(ret < 0))
2526 * If we were cloning, force the next fsync to be a full one since we
2527 * we replaced (or just dropped in the case of cloning holes when
2528 * NO_HOLES is enabled) file extent items and did not setup new extent
2529 * maps for the replacement extents (or holes).
2531 if (extent_info && !extent_info->is_new_extent)
2532 btrfs_set_inode_full_sync(inode);
2537 trans->block_rsv = &fs_info->trans_block_rsv;
2539 * If we are using the NO_HOLES feature we might have had already an
2540 * hole that overlaps a part of the region [lockstart, lockend] and
2541 * ends at (or beyond) lockend. Since we have no file extent items to
2542 * represent holes, drop_end can be less than lockend and so we must
2543 * make sure we have an extent map representing the existing hole (the
2544 * call to __btrfs_drop_extents() might have dropped the existing extent
2545 * map representing the existing hole), otherwise the fast fsync path
2546 * will not record the existence of the hole region
2547 * [existing_hole_start, lockend].
2549 if (drop_args.drop_end <= end)
2550 drop_args.drop_end = end + 1;
2552 * Don't insert file hole extent item if it's for a range beyond eof
2553 * (because it's useless) or if it represents a 0 bytes range (when
2554 * cur_offset == drop_end).
2556 if (!extent_info && cur_offset < ino_size &&
2557 cur_offset < drop_args.drop_end) {
2558 ret = fill_holes(trans, inode, path, cur_offset,
2559 drop_args.drop_end);
2561 /* Same comment as above. */
2562 btrfs_abort_transaction(trans, ret);
2565 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2566 /* See the comment in the loop above for the reasoning here. */
2567 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2568 drop_args.drop_end - cur_offset);
2570 btrfs_abort_transaction(trans, ret);
2576 ret = btrfs_insert_replace_extent(trans, inode, path,
2577 extent_info, extent_info->data_len,
2578 drop_args.bytes_found);
2580 btrfs_abort_transaction(trans, ret);
2589 trans->block_rsv = &fs_info->trans_block_rsv;
2591 btrfs_end_transaction(trans);
2595 btrfs_free_block_rsv(fs_info, rsv);
2600 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2602 struct inode *inode = file_inode(file);
2603 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2604 struct btrfs_root *root = BTRFS_I(inode)->root;
2605 struct extent_state *cached_state = NULL;
2606 struct btrfs_path *path;
2607 struct btrfs_trans_handle *trans = NULL;
2612 u64 orig_start = offset;
2616 bool truncated_block = false;
2617 bool updated_inode = false;
2619 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2621 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2623 goto out_only_mutex;
2625 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2626 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2628 goto out_only_mutex;
2630 /* Already in a large hole */
2632 goto out_only_mutex;
2635 ret = file_modified(file);
2637 goto out_only_mutex;
2639 lockstart = round_up(offset, fs_info->sectorsize);
2640 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2641 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2642 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2644 * We needn't truncate any block which is beyond the end of the file
2645 * because we are sure there is no data there.
2648 * Only do this if we are in the same block and we aren't doing the
2651 if (same_block && len < fs_info->sectorsize) {
2652 if (offset < ino_size) {
2653 truncated_block = true;
2654 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2659 goto out_only_mutex;
2662 /* zero back part of the first block */
2663 if (offset < ino_size) {
2664 truncated_block = true;
2665 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2667 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2672 /* Check the aligned pages after the first unaligned page,
2673 * if offset != orig_start, which means the first unaligned page
2674 * including several following pages are already in holes,
2675 * the extra check can be skipped */
2676 if (offset == orig_start) {
2677 /* after truncate page, check hole again */
2678 len = offset + len - lockstart;
2680 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2682 goto out_only_mutex;
2685 goto out_only_mutex;
2690 /* Check the tail unaligned part is in a hole */
2691 tail_start = lockend + 1;
2692 tail_len = offset + len - tail_start;
2694 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2695 if (unlikely(ret < 0))
2696 goto out_only_mutex;
2698 /* zero the front end of the last page */
2699 if (tail_start + tail_len < ino_size) {
2700 truncated_block = true;
2701 ret = btrfs_truncate_block(BTRFS_I(inode),
2702 tail_start + tail_len,
2705 goto out_only_mutex;
2710 if (lockend < lockstart) {
2712 goto out_only_mutex;
2715 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2717 path = btrfs_alloc_path();
2723 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2724 lockend, NULL, &trans);
2725 btrfs_free_path(path);
2729 ASSERT(trans != NULL);
2730 inode_inc_iversion(inode);
2731 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2732 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2733 updated_inode = true;
2734 btrfs_end_transaction(trans);
2735 btrfs_btree_balance_dirty(fs_info);
2737 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2740 if (!updated_inode && truncated_block && !ret) {
2742 * If we only end up zeroing part of a page, we still need to
2743 * update the inode item, so that all the time fields are
2744 * updated as well as the necessary btrfs inode in memory fields
2745 * for detecting, at fsync time, if the inode isn't yet in the
2746 * log tree or it's there but not up to date.
2748 struct timespec64 now = inode_set_ctime_current(inode);
2750 inode_inc_iversion(inode);
2751 inode_set_mtime_to_ts(inode, now);
2752 trans = btrfs_start_transaction(root, 1);
2753 if (IS_ERR(trans)) {
2754 ret = PTR_ERR(trans);
2758 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2759 ret2 = btrfs_end_transaction(trans);
2764 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2768 /* Helper structure to record which range is already reserved */
2769 struct falloc_range {
2770 struct list_head list;
2776 * Helper function to add falloc range
2778 * Caller should have locked the larger range of extent containing
2781 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2783 struct falloc_range *range = NULL;
2785 if (!list_empty(head)) {
2787 * As fallocate iterates by bytenr order, we only need to check
2790 range = list_last_entry(head, struct falloc_range, list);
2791 if (range->start + range->len == start) {
2797 range = kmalloc(sizeof(*range), GFP_KERNEL);
2800 range->start = start;
2802 list_add_tail(&range->list, head);
2806 static int btrfs_fallocate_update_isize(struct inode *inode,
2810 struct btrfs_trans_handle *trans;
2811 struct btrfs_root *root = BTRFS_I(inode)->root;
2815 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2818 trans = btrfs_start_transaction(root, 1);
2820 return PTR_ERR(trans);
2822 inode_set_ctime_current(inode);
2823 i_size_write(inode, end);
2824 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2825 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2826 ret2 = btrfs_end_transaction(trans);
2828 return ret ? ret : ret2;
2832 RANGE_BOUNDARY_WRITTEN_EXTENT,
2833 RANGE_BOUNDARY_PREALLOC_EXTENT,
2834 RANGE_BOUNDARY_HOLE,
2837 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2840 const u64 sectorsize = inode->root->fs_info->sectorsize;
2841 struct extent_map *em;
2844 offset = round_down(offset, sectorsize);
2845 em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2849 if (em->disk_bytenr == EXTENT_MAP_HOLE)
2850 ret = RANGE_BOUNDARY_HOLE;
2851 else if (em->flags & EXTENT_FLAG_PREALLOC)
2852 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2854 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2856 free_extent_map(em);
2860 static int btrfs_zero_range(struct inode *inode,
2865 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2866 struct extent_map *em;
2867 struct extent_changeset *data_reserved = NULL;
2870 const u64 sectorsize = fs_info->sectorsize;
2871 u64 alloc_start = round_down(offset, sectorsize);
2872 u64 alloc_end = round_up(offset + len, sectorsize);
2873 u64 bytes_to_reserve = 0;
2874 bool space_reserved = false;
2876 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2877 alloc_end - alloc_start);
2884 * Avoid hole punching and extent allocation for some cases. More cases
2885 * could be considered, but these are unlikely common and we keep things
2886 * as simple as possible for now. Also, intentionally, if the target
2887 * range contains one or more prealloc extents together with regular
2888 * extents and holes, we drop all the existing extents and allocate a
2889 * new prealloc extent, so that we get a larger contiguous disk extent.
2891 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2892 const u64 em_end = em->start + em->len;
2894 if (em_end >= offset + len) {
2896 * The whole range is already a prealloc extent,
2897 * do nothing except updating the inode's i_size if
2900 free_extent_map(em);
2901 ret = btrfs_fallocate_update_isize(inode, offset + len,
2906 * Part of the range is already a prealloc extent, so operate
2907 * only on the remaining part of the range.
2909 alloc_start = em_end;
2910 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2911 len = offset + len - alloc_start;
2912 offset = alloc_start;
2913 alloc_hint = extent_map_block_start(em) + em->len;
2915 free_extent_map(em);
2917 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2918 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2919 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2925 if (em->flags & EXTENT_FLAG_PREALLOC) {
2926 free_extent_map(em);
2927 ret = btrfs_fallocate_update_isize(inode, offset + len,
2931 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2932 free_extent_map(em);
2933 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2936 ret = btrfs_fallocate_update_isize(inode,
2941 free_extent_map(em);
2942 alloc_start = round_down(offset, sectorsize);
2943 alloc_end = alloc_start + sectorsize;
2947 alloc_start = round_up(offset, sectorsize);
2948 alloc_end = round_down(offset + len, sectorsize);
2951 * For unaligned ranges, check the pages at the boundaries, they might
2952 * map to an extent, in which case we need to partially zero them, or
2953 * they might map to a hole, in which case we need our allocation range
2956 if (!IS_ALIGNED(offset, sectorsize)) {
2957 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2961 if (ret == RANGE_BOUNDARY_HOLE) {
2962 alloc_start = round_down(offset, sectorsize);
2964 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2965 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2973 if (!IS_ALIGNED(offset + len, sectorsize)) {
2974 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2978 if (ret == RANGE_BOUNDARY_HOLE) {
2979 alloc_end = round_up(offset + len, sectorsize);
2981 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2982 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2992 if (alloc_start < alloc_end) {
2993 struct extent_state *cached_state = NULL;
2994 const u64 lockstart = alloc_start;
2995 const u64 lockend = alloc_end - 1;
2997 bytes_to_reserve = alloc_end - alloc_start;
2998 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3002 space_reserved = true;
3003 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3005 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3006 alloc_start, bytes_to_reserve);
3008 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3009 lockend, &cached_state);
3012 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3013 alloc_end - alloc_start,
3014 fs_info->sectorsize,
3015 offset + len, &alloc_hint);
3016 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3018 /* btrfs_prealloc_file_range releases reserved space on error */
3020 space_reserved = false;
3024 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3026 if (ret && space_reserved)
3027 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3028 alloc_start, bytes_to_reserve);
3029 extent_changeset_free(data_reserved);
3034 static long btrfs_fallocate(struct file *file, int mode,
3035 loff_t offset, loff_t len)
3037 struct inode *inode = file_inode(file);
3038 struct extent_state *cached_state = NULL;
3039 struct extent_changeset *data_reserved = NULL;
3040 struct falloc_range *range;
3041 struct falloc_range *tmp;
3042 LIST_HEAD(reserve_list);
3050 u64 data_space_needed = 0;
3051 u64 data_space_reserved = 0;
3052 u64 qgroup_reserved = 0;
3053 struct extent_map *em;
3054 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3057 /* Do not allow fallocate in ZONED mode */
3058 if (btrfs_is_zoned(inode_to_fs_info(inode)))
3061 alloc_start = round_down(offset, blocksize);
3062 alloc_end = round_up(offset + len, blocksize);
3063 cur_offset = alloc_start;
3065 /* Make sure we aren't being give some crap mode */
3066 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3067 FALLOC_FL_ZERO_RANGE))
3070 if (mode & FALLOC_FL_PUNCH_HOLE)
3071 return btrfs_punch_hole(file, offset, len);
3073 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3075 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3076 ret = inode_newsize_ok(inode, offset + len);
3081 ret = file_modified(file);
3086 * TODO: Move these two operations after we have checked
3087 * accurate reserved space, or fallocate can still fail but
3088 * with page truncated or size expanded.
3090 * But that's a minor problem and won't do much harm BTW.
3092 if (alloc_start > inode->i_size) {
3093 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3097 } else if (offset + len > inode->i_size) {
3099 * If we are fallocating from the end of the file onward we
3100 * need to zero out the end of the block if i_size lands in the
3101 * middle of a block.
3103 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3109 * We have locked the inode at the VFS level (in exclusive mode) and we
3110 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3111 * locking the file range, flush all dealloc in the range and wait for
3112 * all ordered extents in the range to complete. After this we can lock
3113 * the file range and, due to the previous locking we did, we know there
3114 * can't be more delalloc or ordered extents in the range.
3116 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3117 alloc_end - alloc_start);
3121 if (mode & FALLOC_FL_ZERO_RANGE) {
3122 ret = btrfs_zero_range(inode, offset, len, mode);
3123 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3127 locked_end = alloc_end - 1;
3128 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3131 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3133 /* First, check if we exceed the qgroup limit */
3134 while (cur_offset < alloc_end) {
3135 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3136 alloc_end - cur_offset);
3141 last_byte = min(extent_map_end(em), alloc_end);
3142 actual_end = min_t(u64, extent_map_end(em), offset + len);
3143 last_byte = ALIGN(last_byte, blocksize);
3144 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3145 (cur_offset >= inode->i_size &&
3146 !(em->flags & EXTENT_FLAG_PREALLOC))) {
3147 const u64 range_len = last_byte - cur_offset;
3149 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3151 free_extent_map(em);
3154 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3155 &data_reserved, cur_offset, range_len);
3157 free_extent_map(em);
3160 qgroup_reserved += range_len;
3161 data_space_needed += range_len;
3163 free_extent_map(em);
3164 cur_offset = last_byte;
3167 if (!ret && data_space_needed > 0) {
3169 * We are safe to reserve space here as we can't have delalloc
3170 * in the range, see above.
3172 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3175 data_space_reserved = data_space_needed;
3179 * If ret is still 0, means we're OK to fallocate.
3180 * Or just cleanup the list and exit.
3182 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3184 ret = btrfs_prealloc_file_range(inode, mode,
3186 range->len, blocksize,
3187 offset + len, &alloc_hint);
3189 * btrfs_prealloc_file_range() releases space even
3190 * if it returns an error.
3192 data_space_reserved -= range->len;
3193 qgroup_reserved -= range->len;
3194 } else if (data_space_reserved > 0) {
3195 btrfs_free_reserved_data_space(BTRFS_I(inode),
3196 data_reserved, range->start,
3198 data_space_reserved -= range->len;
3199 qgroup_reserved -= range->len;
3200 } else if (qgroup_reserved > 0) {
3201 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3202 range->start, range->len, NULL);
3203 qgroup_reserved -= range->len;
3205 list_del(&range->list);
3212 * We didn't need to allocate any more space, but we still extended the
3213 * size of the file so we need to update i_size and the inode item.
3215 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3217 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3220 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3221 extent_changeset_free(data_reserved);
3226 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3227 * that has unflushed and/or flushing delalloc. There might be other adjacent
3228 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3229 * looping while it gets adjacent subranges, and merging them together.
3231 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3232 struct extent_state **cached_state,
3233 bool *search_io_tree,
3234 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3236 u64 len = end + 1 - start;
3237 u64 delalloc_len = 0;
3238 struct btrfs_ordered_extent *oe;
3243 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3244 * means we have delalloc (dirty pages) for which writeback has not
3247 if (*search_io_tree) {
3248 spin_lock(&inode->lock);
3249 if (inode->delalloc_bytes > 0) {
3250 spin_unlock(&inode->lock);
3251 *delalloc_start_ret = start;
3252 delalloc_len = count_range_bits(&inode->io_tree,
3253 delalloc_start_ret, end,
3254 len, EXTENT_DELALLOC, 1,
3257 spin_unlock(&inode->lock);
3261 if (delalloc_len > 0) {
3263 * If delalloc was found then *delalloc_start_ret has a sector size
3264 * aligned value (rounded down).
3266 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3268 if (*delalloc_start_ret == start) {
3269 /* Delalloc for the whole range, nothing more to do. */
3270 if (*delalloc_end_ret == end)
3272 /* Else trim our search range for ordered extents. */
3273 start = *delalloc_end_ret + 1;
3274 len = end + 1 - start;
3277 /* No delalloc, future calls don't need to search again. */
3278 *search_io_tree = false;
3282 * Now also check if there's any ordered extent in the range.
3283 * We do this because:
3285 * 1) When delalloc is flushed, the file range is locked, we clear the
3286 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3287 * an ordered extent for the write. So we might just have been called
3288 * after delalloc is flushed and before the ordered extent completes
3289 * and inserts the new file extent item in the subvolume's btree;
3291 * 2) We may have an ordered extent created by flushing delalloc for a
3292 * subrange that starts before the subrange we found marked with
3293 * EXTENT_DELALLOC in the io tree.
3295 * We could also use the extent map tree to find such delalloc that is
3296 * being flushed, but using the ordered extents tree is more efficient
3297 * because it's usually much smaller as ordered extents are removed from
3298 * the tree once they complete. With the extent maps, we mau have them
3299 * in the extent map tree for a very long time, and they were either
3300 * created by previous writes or loaded by read operations.
3302 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3304 return (delalloc_len > 0);
3306 /* The ordered extent may span beyond our search range. */
3307 oe_start = max(oe->file_offset, start);
3308 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3310 btrfs_put_ordered_extent(oe);
3312 /* Don't have unflushed delalloc, return the ordered extent range. */
3313 if (delalloc_len == 0) {
3314 *delalloc_start_ret = oe_start;
3315 *delalloc_end_ret = oe_end;
3320 * We have both unflushed delalloc (io_tree) and an ordered extent.
3321 * If the ranges are adjacent returned a combined range, otherwise
3322 * return the leftmost range.
3324 if (oe_start < *delalloc_start_ret) {
3325 if (oe_end < *delalloc_start_ret)
3326 *delalloc_end_ret = oe_end;
3327 *delalloc_start_ret = oe_start;
3328 } else if (*delalloc_end_ret + 1 == oe_start) {
3329 *delalloc_end_ret = oe_end;
3336 * Check if there's delalloc in a given range.
3338 * @inode: The inode.
3339 * @start: The start offset of the range. It does not need to be
3340 * sector size aligned.
3341 * @end: The end offset (inclusive value) of the search range.
3342 * It does not need to be sector size aligned.
3343 * @cached_state: Extent state record used for speeding up delalloc
3344 * searches in the inode's io_tree. Can be NULL.
3345 * @delalloc_start_ret: Output argument, set to the start offset of the
3346 * subrange found with delalloc (may not be sector size
3348 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3349 * of the subrange found with delalloc.
3351 * Returns true if a subrange with delalloc is found within the given range, and
3352 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3353 * end offsets of the subrange.
3355 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3356 struct extent_state **cached_state,
3357 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3359 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3360 u64 prev_delalloc_end = 0;
3361 bool search_io_tree = true;
3364 while (cur_offset <= end) {
3369 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3370 cached_state, &search_io_tree,
3376 if (prev_delalloc_end == 0) {
3377 /* First subrange found. */
3378 *delalloc_start_ret = max(delalloc_start, start);
3379 *delalloc_end_ret = delalloc_end;
3381 } else if (delalloc_start == prev_delalloc_end + 1) {
3382 /* Subrange adjacent to the previous one, merge them. */
3383 *delalloc_end_ret = delalloc_end;
3385 /* Subrange not adjacent to the previous one, exit. */
3389 prev_delalloc_end = delalloc_end;
3390 cur_offset = delalloc_end + 1;
3398 * Check if there's a hole or delalloc range in a range representing a hole (or
3399 * prealloc extent) found in the inode's subvolume btree.
3401 * @inode: The inode.
3402 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3403 * @start: Start offset of the hole region. It does not need to be sector
3405 * @end: End offset (inclusive value) of the hole region. It does not
3406 * need to be sector size aligned.
3407 * @start_ret: Return parameter, used to set the start of the subrange in the
3408 * hole that matches the search criteria (seek mode), if such
3409 * subrange is found (return value of the function is true).
3410 * The value returned here may not be sector size aligned.
3412 * Returns true if a subrange matching the given seek mode is found, and if one
3413 * is found, it updates @start_ret with the start of the subrange.
3415 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3416 struct extent_state **cached_state,
3417 u64 start, u64 end, u64 *start_ret)
3423 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3424 &delalloc_start, &delalloc_end);
3425 if (delalloc && whence == SEEK_DATA) {
3426 *start_ret = delalloc_start;
3430 if (delalloc && whence == SEEK_HOLE) {
3432 * We found delalloc but it starts after out start offset. So we
3433 * have a hole between our start offset and the delalloc start.
3435 if (start < delalloc_start) {
3440 * Delalloc range starts at our start offset.
3441 * If the delalloc range's length is smaller than our range,
3442 * then it means we have a hole that starts where the delalloc
3445 if (delalloc_end < end) {
3446 *start_ret = delalloc_end + 1;
3450 /* There's delalloc for the whole range. */
3454 if (!delalloc && whence == SEEK_HOLE) {
3460 * No delalloc in the range and we are seeking for data. The caller has
3461 * to iterate to the next extent item in the subvolume btree.
3466 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3468 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3469 struct btrfs_file_private *private = file->private_data;
3470 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3471 struct extent_state *cached_state = NULL;
3472 struct extent_state **delalloc_cached_state;
3473 const loff_t i_size = i_size_read(&inode->vfs_inode);
3474 const u64 ino = btrfs_ino(inode);
3475 struct btrfs_root *root = inode->root;
3476 struct btrfs_path *path;
3477 struct btrfs_key key;
3478 u64 last_extent_end;
3485 if (i_size == 0 || offset >= i_size)
3489 * Quick path. If the inode has no prealloc extents and its number of
3490 * bytes used matches its i_size, then it can not have holes.
3492 if (whence == SEEK_HOLE &&
3493 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3494 inode_get_bytes(&inode->vfs_inode) == i_size)
3498 private = kzalloc(sizeof(*private), GFP_KERNEL);
3500 * No worries if memory allocation failed.
3501 * The private structure is used only for speeding up multiple
3502 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3503 * so everything will still be correct.
3505 file->private_data = private;
3509 delalloc_cached_state = &private->llseek_cached_state;
3511 delalloc_cached_state = NULL;
3514 * offset can be negative, in this case we start finding DATA/HOLE from
3515 * the very start of the file.
3517 start = max_t(loff_t, 0, offset);
3519 lockstart = round_down(start, fs_info->sectorsize);
3520 lockend = round_up(i_size, fs_info->sectorsize);
3521 if (lockend <= lockstart)
3522 lockend = lockstart + fs_info->sectorsize;
3525 path = btrfs_alloc_path();
3528 path->reada = READA_FORWARD;
3531 key.type = BTRFS_EXTENT_DATA_KEY;
3534 last_extent_end = lockstart;
3536 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3538 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3541 } else if (ret > 0 && path->slots[0] > 0) {
3542 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3543 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3547 while (start < i_size) {
3548 struct extent_buffer *leaf = path->nodes[0];
3549 struct btrfs_file_extent_item *extent;
3553 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3554 ret = btrfs_next_leaf(root, path);
3560 leaf = path->nodes[0];
3563 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3564 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3567 extent_end = btrfs_file_extent_end(path);
3570 * In the first iteration we may have a slot that points to an
3571 * extent that ends before our start offset, so skip it.
3573 if (extent_end <= start) {
3578 /* We have an implicit hole, NO_HOLES feature is likely set. */
3579 if (last_extent_end < key.offset) {
3580 u64 search_start = last_extent_end;
3584 * First iteration, @start matches @offset and it's
3587 if (start == offset)
3588 search_start = offset;
3590 found = find_desired_extent_in_hole(inode, whence,
3591 delalloc_cached_state,
3596 start = found_start;
3600 * Didn't find data or a hole (due to delalloc) in the
3601 * implicit hole range, so need to analyze the extent.
3605 extent = btrfs_item_ptr(leaf, path->slots[0],
3606 struct btrfs_file_extent_item);
3607 type = btrfs_file_extent_type(leaf, extent);
3610 * Can't access the extent's disk_bytenr field if this is an
3611 * inline extent, since at that offset, it's where the extent
3614 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3615 (type == BTRFS_FILE_EXTENT_REG &&
3616 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3618 * Explicit hole or prealloc extent, search for delalloc.
3619 * A prealloc extent is treated like a hole.
3621 u64 search_start = key.offset;
3625 * First iteration, @start matches @offset and it's
3628 if (start == offset)
3629 search_start = offset;
3631 found = find_desired_extent_in_hole(inode, whence,
3632 delalloc_cached_state,
3637 start = found_start;
3641 * Didn't find data or a hole (due to delalloc) in the
3642 * implicit hole range, so need to analyze the next
3647 * Found a regular or inline extent.
3648 * If we are seeking for data, adjust the start offset
3649 * and stop, we're done.
3651 if (whence == SEEK_DATA) {
3652 start = max_t(u64, key.offset, offset);
3657 * Else, we are seeking for a hole, check the next file
3663 last_extent_end = extent_end;
3665 if (fatal_signal_pending(current)) {
3672 /* We have an implicit hole from the last extent found up to i_size. */
3673 if (!found && start < i_size) {
3674 found = find_desired_extent_in_hole(inode, whence,
3675 delalloc_cached_state, start,
3676 i_size - 1, &start);
3682 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3683 btrfs_free_path(path);
3688 if (whence == SEEK_DATA && start >= i_size)
3691 return min_t(loff_t, start, i_size);
3694 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3696 struct inode *inode = file->f_mapping->host;
3700 return generic_file_llseek(file, offset, whence);
3703 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3704 offset = find_desired_extent(file, offset, whence);
3705 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3712 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3715 static int btrfs_file_open(struct inode *inode, struct file *filp)
3719 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3721 ret = fsverity_file_open(inode, filp);
3724 return generic_file_open(inode, filp);
3727 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3731 if (iocb->ki_flags & IOCB_DIRECT) {
3732 ret = btrfs_direct_read(iocb, to);
3733 if (ret < 0 || !iov_iter_count(to) ||
3734 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3738 return filemap_read(iocb, to, ret);
3741 const struct file_operations btrfs_file_operations = {
3742 .llseek = btrfs_file_llseek,
3743 .read_iter = btrfs_file_read_iter,
3744 .splice_read = filemap_splice_read,
3745 .write_iter = btrfs_file_write_iter,
3746 .splice_write = iter_file_splice_write,
3747 .mmap = btrfs_file_mmap,
3748 .open = btrfs_file_open,
3749 .release = btrfs_release_file,
3750 .get_unmapped_area = thp_get_unmapped_area,
3751 .fsync = btrfs_sync_file,
3752 .fallocate = btrfs_fallocate,
3753 .unlocked_ioctl = btrfs_ioctl,
3754 #ifdef CONFIG_COMPAT
3755 .compat_ioctl = btrfs_compat_ioctl,
3757 .remap_file_range = btrfs_remap_file_range,
3758 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3761 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3763 struct address_space *mapping = inode->vfs_inode.i_mapping;
3767 * So with compression we will find and lock a dirty page and clear the
3768 * first one as dirty, setup an async extent, and immediately return
3769 * with the entire range locked but with nobody actually marked with
3770 * writeback. So we can't just filemap_write_and_wait_range() and
3771 * expect it to work since it will just kick off a thread to do the
3772 * actual work. So we need to call filemap_fdatawrite_range _again_
3773 * since it will wait on the page lock, which won't be unlocked until
3774 * after the pages have been marked as writeback and so we're good to go
3775 * from there. We have to do this otherwise we'll miss the ordered
3776 * extents and that results in badness. Please Josef, do not think you
3777 * know better and pull this out at some point in the future, it is
3778 * right and you are wrong.
3780 ret = filemap_fdatawrite_range(mapping, start, end);
3781 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3782 ret = filemap_fdatawrite_range(mapping, start, end);