1 // SPDX-License-Identifier: GPL-2.0
3 * Thunderbolt driver - switch/port utility functions
6 * Copyright (C) 2018, Intel Corporation
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
21 /* Switch NVM support */
23 struct nvm_auth_status {
24 struct list_head list;
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
39 struct nvm_auth_status *st;
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
51 struct nvm_auth_status *st;
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
57 *status = st ? st->status : 0;
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
62 struct nvm_auth_status *st;
64 if (WARN_ON(!sw->uuid))
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
82 mutex_unlock(&nvm_auth_status_lock);
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
87 struct nvm_auth_status *st;
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
95 mutex_unlock(&nvm_auth_status_lock);
98 static int nvm_validate_and_write(struct tb_switch *sw)
100 unsigned int image_size;
104 ret = tb_nvm_validate(sw->nvm);
108 ret = tb_nvm_write_headers(sw->nvm);
112 buf = sw->nvm->buf_data_start;
113 image_size = sw->nvm->buf_data_size;
115 if (tb_switch_is_usb4(sw))
116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
122 sw->nvm->flushed = true;
126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
135 if (!sw->safe_mode) {
138 ret = tb_domain_disconnect_all_paths(sw->tb);
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
145 ret = dma_port_flash_update_auth(sw->dma_port);
146 if (!ret || ret == -ETIMEDOUT)
150 * Any error from update auth operation requires power
151 * cycling of the host router.
153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 nvm_set_auth_status(sw, status);
159 * From safe mode we can get out by just power cycling the
162 dma_port_power_cycle(sw->dma_port);
166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
168 int ret, retries = 10;
170 ret = dma_port_flash_update_auth(sw->dma_port);
176 /* Power cycle is required */
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 if (ret < 0 && ret != -ETIMEDOUT)
196 tb_sw_warn(sw, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw, status);
200 tb_sw_info(sw, "power cycling the switch now\n");
201 dma_port_power_cycle(sw->dma_port);
211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
213 struct pci_dev *root_port;
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
221 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
223 pm_runtime_get_noresume(&root_port->dev);
226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
228 struct pci_dev *root_port;
230 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
232 pm_runtime_put(&root_port->dev);
235 static inline bool nvm_readable(struct tb_switch *sw)
237 if (tb_switch_is_usb4(sw)) {
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
244 return usb4_switch_nvm_sector_size(sw) > 0;
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw->dma_port;
251 static inline bool nvm_upgradeable(struct tb_switch *sw)
253 if (sw->no_nvm_upgrade)
255 return nvm_readable(sw);
258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
262 if (tb_switch_is_usb4(sw)) {
264 ret = usb4_switch_nvm_set_offset(sw, 0);
268 sw->nvm->authenticating = true;
269 return usb4_switch_nvm_authenticate(sw);
274 sw->nvm->authenticating = true;
276 nvm_authenticate_start_dma_port(sw);
277 ret = nvm_authenticate_host_dma_port(sw);
279 ret = nvm_authenticate_device_dma_port(sw);
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
299 if (tb_switch_is_usb4(sw))
300 return usb4_switch_nvm_read(sw, address, buf, size);
301 return dma_port_flash_read(sw->dma_port, address, buf, size);
304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
306 struct tb_nvm *nvm = priv;
307 struct tb_switch *sw = tb_to_switch(nvm->dev);
310 pm_runtime_get_sync(&sw->dev);
312 if (!mutex_trylock(&sw->tb->lock)) {
313 ret = restart_syscall();
317 ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 mutex_unlock(&sw->tb->lock);
321 pm_runtime_mark_last_busy(&sw->dev);
322 pm_runtime_put_autosuspend(&sw->dev);
327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
329 struct tb_nvm *nvm = priv;
330 struct tb_switch *sw = tb_to_switch(nvm->dev);
333 if (!mutex_trylock(&sw->tb->lock))
334 return restart_syscall();
337 * Since writing the NVM image might require some special steps,
338 * for example when CSS headers are written, we cache the image
339 * locally here and handle the special cases when the user asks
340 * us to authenticate the image.
342 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
348 static int tb_switch_nvm_add(struct tb_switch *sw)
353 if (!nvm_readable(sw))
356 nvm = tb_nvm_alloc(&sw->dev);
358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
362 ret = tb_nvm_read_version(nvm);
367 * If the switch is in safe-mode the only accessible portion of
368 * the NVM is the non-active one where userspace is expected to
369 * write new functional NVM.
371 if (!sw->safe_mode) {
372 ret = tb_nvm_add_active(nvm, nvm_read);
375 tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
378 if (!sw->no_nvm_upgrade) {
379 ret = tb_nvm_add_non_active(nvm, nvm_write);
388 tb_sw_dbg(sw, "NVM upgrade disabled\n");
389 sw->no_nvm_upgrade = true;
396 static void tb_switch_nvm_remove(struct tb_switch *sw)
406 /* Remove authentication status in case the switch is unplugged */
407 if (!nvm->authenticating)
408 nvm_clear_auth_status(sw);
413 /* port utility functions */
415 static const char *tb_port_type(const struct tb_regs_port_header *port)
417 switch (port->type >> 16) {
419 switch ((u8) port->type) {
444 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
446 const struct tb_regs_port_header *regs = &port->config;
449 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 regs->port_number, regs->vendor_id, regs->device_id,
451 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
453 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
454 regs->max_in_hop_id, regs->max_out_hop_id);
455 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
456 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
457 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
462 * tb_port_state() - get connectedness state of a port
463 * @port: the port to check
465 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
467 * Return: Returns an enum tb_port_state on success or an error code on failure.
469 int tb_port_state(struct tb_port *port)
471 struct tb_cap_phy phy;
473 if (port->cap_phy == 0) {
474 tb_port_WARN(port, "does not have a PHY\n");
477 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
484 * tb_wait_for_port() - wait for a port to become ready
485 * @port: Port to wait
486 * @wait_if_unplugged: Wait also when port is unplugged
488 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489 * wait_if_unplugged is set then we also wait if the port is in state
490 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491 * switch resume). Otherwise we only wait if a device is registered but the link
492 * has not yet been established.
494 * Return: Returns an error code on failure. Returns 0 if the port is not
495 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496 * if the port is connected and in state TB_PORT_UP.
498 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
502 if (!port->cap_phy) {
503 tb_port_WARN(port, "does not have PHY\n");
506 if (tb_is_upstream_port(port)) {
507 tb_port_WARN(port, "is the upstream port\n");
512 state = tb_port_state(port);
514 case TB_PORT_DISABLED:
515 tb_port_dbg(port, "is disabled (state: 0)\n");
518 case TB_PORT_UNPLUGGED:
519 if (wait_if_unplugged) {
520 /* used during resume */
522 "is unplugged (state: 7), retrying...\n");
526 tb_port_dbg(port, "is unplugged (state: 7)\n");
530 case TB_PORT_TX_CL0S:
531 case TB_PORT_RX_CL0S:
534 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
542 * After plug-in the state is TB_PORT_CONNECTING. Give it some
546 "is connected, link is not up (state: %d), retrying...\n",
553 "failed to reach state TB_PORT_UP. Ignoring port...\n");
558 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559 * @port: Port to add/remove NFC credits
560 * @credits: Credits to add/remove
562 * Change the number of NFC credits allocated to @port by @credits. To remove
563 * NFC credits pass a negative amount of credits.
565 * Return: Returns 0 on success or an error code on failure.
567 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
571 if (credits == 0 || port->sw->is_unplugged)
575 * USB4 restricts programming NFC buffers to lane adapters only
576 * so skip other ports.
578 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
581 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
583 credits = max_t(int, -nfc_credits, credits);
585 nfc_credits += credits;
587 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
590 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591 port->config.nfc_credits |= nfc_credits;
593 return tb_port_write(port, &port->config.nfc_credits,
594 TB_CFG_PORT, ADP_CS_4, 1);
598 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599 * @port: Port whose counters to clear
600 * @counter: Counter index to clear
602 * Return: Returns 0 on success or an error code on failure.
604 int tb_port_clear_counter(struct tb_port *port, int counter)
606 u32 zero[3] = { 0, 0, 0 };
607 tb_port_dbg(port, "clearing counter %d\n", counter);
608 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
612 * tb_port_unlock() - Unlock downstream port
613 * @port: Port to unlock
615 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616 * downstream router accessible for CM.
618 int tb_port_unlock(struct tb_port *port)
620 if (tb_switch_is_icm(port->sw))
622 if (!tb_port_is_null(port))
624 if (tb_switch_is_usb4(port->sw))
625 return usb4_port_unlock(port);
629 static int __tb_port_enable(struct tb_port *port, bool enable)
634 if (!tb_port_is_null(port))
637 ret = tb_port_read(port, &phy, TB_CFG_PORT,
638 port->cap_phy + LANE_ADP_CS_1, 1);
643 phy &= ~LANE_ADP_CS_1_LD;
645 phy |= LANE_ADP_CS_1_LD;
648 ret = tb_port_write(port, &phy, TB_CFG_PORT,
649 port->cap_phy + LANE_ADP_CS_1, 1);
653 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
658 * tb_port_enable() - Enable lane adapter
659 * @port: Port to enable (can be %NULL)
661 * This is used for lane 0 and 1 adapters to enable it.
663 int tb_port_enable(struct tb_port *port)
665 return __tb_port_enable(port, true);
669 * tb_port_disable() - Disable lane adapter
670 * @port: Port to disable (can be %NULL)
672 * This is used for lane 0 and 1 adapters to disable it.
674 int tb_port_disable(struct tb_port *port)
676 return __tb_port_enable(port, false);
679 static int tb_port_reset(struct tb_port *port)
681 if (tb_switch_is_usb4(port->sw))
682 return port->cap_usb4 ? usb4_port_reset(port) : 0;
683 return tb_lc_reset_port(port);
687 * tb_init_port() - initialize a port
689 * This is a helper method for tb_switch_alloc. Does not check or initialize
690 * any downstream switches.
692 * Return: Returns 0 on success or an error code on failure.
694 static int tb_init_port(struct tb_port *port)
699 INIT_LIST_HEAD(&port->list);
701 /* Control adapter does not have configuration space */
705 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
707 if (res == -ENODEV) {
708 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
710 port->disabled = true;
716 /* Port 0 is the switch itself and has no PHY. */
717 if (port->config.type == TB_TYPE_PORT) {
718 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
723 tb_port_WARN(port, "non switch port without a PHY\n");
725 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
727 port->cap_usb4 = cap;
730 * USB4 ports the buffers allocated for the control path
731 * can be read from the path config space. Legacy
732 * devices we use hard-coded value.
734 if (port->cap_usb4) {
735 struct tb_regs_hop hop;
737 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
738 port->ctl_credits = hop.initial_credits;
740 if (!port->ctl_credits)
741 port->ctl_credits = 2;
744 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
746 port->cap_adap = cap;
749 port->total_credits =
750 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
751 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
753 tb_dump_port(port->sw->tb, port);
757 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
764 port_max_hopid = port->config.max_in_hop_id;
765 ida = &port->in_hopids;
767 port_max_hopid = port->config.max_out_hop_id;
768 ida = &port->out_hopids;
772 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
775 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
776 min_hopid = TB_PATH_MIN_HOPID;
778 if (max_hopid < 0 || max_hopid > port_max_hopid)
779 max_hopid = port_max_hopid;
781 return ida_alloc_range(ida, min_hopid, max_hopid, GFP_KERNEL);
785 * tb_port_alloc_in_hopid() - Allocate input HopID from port
786 * @port: Port to allocate HopID for
787 * @min_hopid: Minimum acceptable input HopID
788 * @max_hopid: Maximum acceptable input HopID
790 * Return: HopID between @min_hopid and @max_hopid or negative errno in
793 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
795 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
799 * tb_port_alloc_out_hopid() - Allocate output HopID from port
800 * @port: Port to allocate HopID for
801 * @min_hopid: Minimum acceptable output HopID
802 * @max_hopid: Maximum acceptable output HopID
804 * Return: HopID between @min_hopid and @max_hopid or negative errno in
807 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
809 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
813 * tb_port_release_in_hopid() - Release allocated input HopID from port
814 * @port: Port whose HopID to release
815 * @hopid: HopID to release
817 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
819 ida_free(&port->in_hopids, hopid);
823 * tb_port_release_out_hopid() - Release allocated output HopID from port
824 * @port: Port whose HopID to release
825 * @hopid: HopID to release
827 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
829 ida_free(&port->out_hopids, hopid);
832 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
833 const struct tb_switch *sw)
835 u64 mask = (1ULL << parent->config.depth * 8) - 1;
836 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
840 * tb_next_port_on_path() - Return next port for given port on a path
841 * @start: Start port of the walk
842 * @end: End port of the walk
843 * @prev: Previous port (%NULL if this is the first)
845 * This function can be used to walk from one port to another if they
846 * are connected through zero or more switches. If the @prev is dual
847 * link port, the function follows that link and returns another end on
850 * If the @end port has been reached, return %NULL.
852 * Domain tb->lock must be held when this function is called.
854 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
855 struct tb_port *prev)
857 struct tb_port *next;
862 if (prev->sw == end->sw) {
868 if (tb_switch_is_reachable(prev->sw, end->sw)) {
869 next = tb_port_at(tb_route(end->sw), prev->sw);
870 /* Walk down the topology if next == prev */
872 (next == prev || next->dual_link_port == prev))
875 if (tb_is_upstream_port(prev)) {
878 next = tb_upstream_port(prev->sw);
880 * Keep the same link if prev and next are both
883 if (next->dual_link_port &&
884 next->link_nr != prev->link_nr) {
885 next = next->dual_link_port;
890 return next != prev ? next : NULL;
894 * tb_port_get_link_speed() - Get current link speed
895 * @port: Port to check (USB4 or CIO)
897 * Returns link speed in Gb/s or negative errno in case of failure.
899 int tb_port_get_link_speed(struct tb_port *port)
907 ret = tb_port_read(port, &val, TB_CFG_PORT,
908 port->cap_phy + LANE_ADP_CS_1, 1);
912 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
913 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
916 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
918 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
926 * tb_port_get_link_generation() - Returns link generation
927 * @port: Lane adapter
929 * Returns link generation as number or negative errno in case of
930 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
931 * links so for those always returns 2.
933 int tb_port_get_link_generation(struct tb_port *port)
937 ret = tb_port_get_link_speed(port);
952 * tb_port_get_link_width() - Get current link width
953 * @port: Port to check (USB4 or CIO)
955 * Returns link width. Return the link width as encoded in &enum
956 * tb_link_width or negative errno in case of failure.
958 int tb_port_get_link_width(struct tb_port *port)
966 ret = tb_port_read(port, &val, TB_CFG_PORT,
967 port->cap_phy + LANE_ADP_CS_1, 1);
971 /* Matches the values in enum tb_link_width */
972 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
973 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
977 * tb_port_width_supported() - Is the given link width supported
978 * @port: Port to check
979 * @width: Widths to check (bitmask)
981 * Can be called to any lane adapter. Checks if given @width is
982 * supported by the hardware and returns %true if it is.
984 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
992 if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
993 if (tb_port_get_link_generation(port) < 4 ||
994 !usb4_port_asym_supported(port))
998 ret = tb_port_read(port, &phy, TB_CFG_PORT,
999 port->cap_phy + LANE_ADP_CS_0, 1);
1004 * The field encoding is the same as &enum tb_link_width (which is
1005 * passed to @width).
1007 widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1008 return widths & width;
1012 * tb_port_set_link_width() - Set target link width of the lane adapter
1013 * @port: Lane adapter
1014 * @width: Target link width
1016 * Sets the target link width of the lane adapter to @width. Does not
1017 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1019 * Return: %0 in case of success and negative errno in case of error
1021 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1029 ret = tb_port_read(port, &val, TB_CFG_PORT,
1030 port->cap_phy + LANE_ADP_CS_1, 1);
1034 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1036 case TB_LINK_WIDTH_SINGLE:
1037 /* Gen 4 link cannot be single */
1038 if (tb_port_get_link_generation(port) >= 4)
1040 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1041 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1044 case TB_LINK_WIDTH_DUAL:
1045 if (tb_port_get_link_generation(port) >= 4)
1046 return usb4_port_asym_set_link_width(port, width);
1047 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1048 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1051 case TB_LINK_WIDTH_ASYM_TX:
1052 case TB_LINK_WIDTH_ASYM_RX:
1053 return usb4_port_asym_set_link_width(port, width);
1059 return tb_port_write(port, &val, TB_CFG_PORT,
1060 port->cap_phy + LANE_ADP_CS_1, 1);
1064 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1065 * @port: Lane adapter
1066 * @bonding: enable/disable bonding
1068 * Enables or disables lane bonding. This should be called after target
1069 * link width has been set (tb_port_set_link_width()). Note in most
1070 * cases one should use tb_port_lane_bonding_enable() instead to enable
1073 * Return: %0 in case of success and negative errno in case of error
1075 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1083 ret = tb_port_read(port, &val, TB_CFG_PORT,
1084 port->cap_phy + LANE_ADP_CS_1, 1);
1089 val |= LANE_ADP_CS_1_LB;
1091 val &= ~LANE_ADP_CS_1_LB;
1093 return tb_port_write(port, &val, TB_CFG_PORT,
1094 port->cap_phy + LANE_ADP_CS_1, 1);
1098 * tb_port_lane_bonding_enable() - Enable bonding on port
1099 * @port: port to enable
1101 * Enable bonding by setting the link width of the port and the other
1102 * port in case of dual link port. Does not wait for the link to
1103 * actually reach the bonded state so caller needs to call
1104 * tb_port_wait_for_link_width() before enabling any paths through the
1105 * link to make sure the link is in expected state.
1107 * Return: %0 in case of success and negative errno in case of error
1109 int tb_port_lane_bonding_enable(struct tb_port *port)
1111 enum tb_link_width width;
1115 * Enable lane bonding for both links if not already enabled by
1116 * for example the boot firmware.
1118 width = tb_port_get_link_width(port);
1119 if (width == TB_LINK_WIDTH_SINGLE) {
1120 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1125 width = tb_port_get_link_width(port->dual_link_port);
1126 if (width == TB_LINK_WIDTH_SINGLE) {
1127 ret = tb_port_set_link_width(port->dual_link_port,
1128 TB_LINK_WIDTH_DUAL);
1134 * Only set bonding if the link was not already bonded. This
1135 * avoids the lane adapter to re-enter bonding state.
1137 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1138 ret = tb_port_set_lane_bonding(port, true);
1144 * When lane 0 bonding is set it will affect lane 1 too so
1147 port->bonded = true;
1148 port->dual_link_port->bonded = true;
1153 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1155 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1161 * tb_port_lane_bonding_disable() - Disable bonding on port
1162 * @port: port to disable
1164 * Disable bonding by setting the link width of the port and the
1165 * other port in case of dual link port.
1167 void tb_port_lane_bonding_disable(struct tb_port *port)
1169 tb_port_set_lane_bonding(port, false);
1170 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1171 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1172 port->dual_link_port->bonded = false;
1173 port->bonded = false;
1177 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1178 * @port: Port to wait for
1179 * @width: Expected link width (bitmask)
1180 * @timeout_msec: Timeout in ms how long to wait
1182 * Should be used after both ends of the link have been bonded (or
1183 * bonding has been disabled) to wait until the link actually reaches
1184 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1185 * within the given timeout, %0 if it did. Can be passed a mask of
1186 * expected widths and succeeds if any of the widths is reached.
1188 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1191 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1194 /* Gen 4 link does not support single lane */
1195 if ((width & TB_LINK_WIDTH_SINGLE) &&
1196 tb_port_get_link_generation(port) >= 4)
1200 ret = tb_port_get_link_width(port);
1203 * Sometimes we get port locked error when
1204 * polling the lanes so we can ignore it and
1209 } else if (ret & width) {
1213 usleep_range(1000, 2000);
1214 } while (ktime_before(ktime_get(), timeout));
1219 static int tb_port_do_update_credits(struct tb_port *port)
1224 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1228 if (nfc_credits != port->config.nfc_credits) {
1231 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1232 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1234 tb_port_dbg(port, "total credits changed %u -> %u\n",
1235 port->total_credits, total);
1237 port->config.nfc_credits = nfc_credits;
1238 port->total_credits = total;
1245 * tb_port_update_credits() - Re-read port total credits
1246 * @port: Port to update
1248 * After the link is bonded (or bonding was disabled) the port total
1249 * credits may change, so this function needs to be called to re-read
1250 * the credits. Updates also the second lane adapter.
1252 int tb_port_update_credits(struct tb_port *port)
1256 ret = tb_port_do_update_credits(port);
1260 if (!port->dual_link_port)
1262 return tb_port_do_update_credits(port->dual_link_port);
1265 static int tb_port_start_lane_initialization(struct tb_port *port)
1269 if (tb_switch_is_usb4(port->sw))
1272 ret = tb_lc_start_lane_initialization(port);
1273 return ret == -EINVAL ? 0 : ret;
1277 * Returns true if the port had something (router, XDomain) connected
1280 static bool tb_port_resume(struct tb_port *port)
1282 bool has_remote = tb_port_has_remote(port);
1285 usb4_port_device_resume(port->usb4);
1286 } else if (!has_remote) {
1288 * For disconnected downstream lane adapters start lane
1289 * initialization now so we detect future connects.
1291 * For XDomain start the lane initialzation now so the
1292 * link gets re-established.
1294 * This is only needed for non-USB4 ports.
1296 if (!tb_is_upstream_port(port) || port->xdomain)
1297 tb_port_start_lane_initialization(port);
1300 return has_remote || port->xdomain;
1304 * tb_port_is_enabled() - Is the adapter port enabled
1305 * @port: Port to check
1307 bool tb_port_is_enabled(struct tb_port *port)
1309 switch (port->config.type) {
1310 case TB_TYPE_PCIE_UP:
1311 case TB_TYPE_PCIE_DOWN:
1312 return tb_pci_port_is_enabled(port);
1314 case TB_TYPE_DP_HDMI_IN:
1315 case TB_TYPE_DP_HDMI_OUT:
1316 return tb_dp_port_is_enabled(port);
1318 case TB_TYPE_USB3_UP:
1319 case TB_TYPE_USB3_DOWN:
1320 return tb_usb3_port_is_enabled(port);
1328 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1329 * @port: USB3 adapter port to check
1331 bool tb_usb3_port_is_enabled(struct tb_port *port)
1335 if (tb_port_read(port, &data, TB_CFG_PORT,
1336 port->cap_adap + ADP_USB3_CS_0, 1))
1339 return !!(data & ADP_USB3_CS_0_PE);
1343 * tb_usb3_port_enable() - Enable USB3 adapter port
1344 * @port: USB3 adapter port to enable
1345 * @enable: Enable/disable the USB3 adapter
1347 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1349 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1352 if (!port->cap_adap)
1354 return tb_port_write(port, &word, TB_CFG_PORT,
1355 port->cap_adap + ADP_USB3_CS_0, 1);
1359 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1360 * @port: PCIe port to check
1362 bool tb_pci_port_is_enabled(struct tb_port *port)
1366 if (tb_port_read(port, &data, TB_CFG_PORT,
1367 port->cap_adap + ADP_PCIE_CS_0, 1))
1370 return !!(data & ADP_PCIE_CS_0_PE);
1374 * tb_pci_port_enable() - Enable PCIe adapter port
1375 * @port: PCIe port to enable
1376 * @enable: Enable/disable the PCIe adapter
1378 int tb_pci_port_enable(struct tb_port *port, bool enable)
1380 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1381 if (!port->cap_adap)
1383 return tb_port_write(port, &word, TB_CFG_PORT,
1384 port->cap_adap + ADP_PCIE_CS_0, 1);
1388 * tb_dp_port_hpd_is_active() - Is HPD already active
1389 * @port: DP out port to check
1391 * Checks if the DP OUT adapter port has HPD bit already set.
1393 int tb_dp_port_hpd_is_active(struct tb_port *port)
1398 ret = tb_port_read(port, &data, TB_CFG_PORT,
1399 port->cap_adap + ADP_DP_CS_2, 1);
1403 return !!(data & ADP_DP_CS_2_HPD);
1407 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1408 * @port: Port to clear HPD
1410 * If the DP IN port has HPD set, this function can be used to clear it.
1412 int tb_dp_port_hpd_clear(struct tb_port *port)
1417 ret = tb_port_read(port, &data, TB_CFG_PORT,
1418 port->cap_adap + ADP_DP_CS_3, 1);
1422 data |= ADP_DP_CS_3_HPDC;
1423 return tb_port_write(port, &data, TB_CFG_PORT,
1424 port->cap_adap + ADP_DP_CS_3, 1);
1428 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1429 * @port: DP IN/OUT port to set hops
1430 * @video: Video Hop ID
1431 * @aux_tx: AUX TX Hop ID
1432 * @aux_rx: AUX RX Hop ID
1434 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1435 * router DP adapters too but does not program the values as the fields
1438 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1439 unsigned int aux_tx, unsigned int aux_rx)
1444 if (tb_switch_is_usb4(port->sw))
1447 ret = tb_port_read(port, data, TB_CFG_PORT,
1448 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1452 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1453 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1454 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1456 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1457 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1458 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1459 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1460 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1462 return tb_port_write(port, data, TB_CFG_PORT,
1463 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1467 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1468 * @port: DP adapter port to check
1470 bool tb_dp_port_is_enabled(struct tb_port *port)
1474 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1478 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1482 * tb_dp_port_enable() - Enables/disables DP paths of a port
1483 * @port: DP IN/OUT port
1484 * @enable: Enable/disable DP path
1486 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1487 * calling this function.
1489 int tb_dp_port_enable(struct tb_port *port, bool enable)
1494 ret = tb_port_read(port, data, TB_CFG_PORT,
1495 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1500 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1502 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1504 return tb_port_write(port, data, TB_CFG_PORT,
1505 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1508 /* switch utility functions */
1510 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1512 switch (sw->generation) {
1514 return "Thunderbolt 1";
1516 return "Thunderbolt 2";
1518 return "Thunderbolt 3";
1526 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1528 const struct tb_regs_switch_header *regs = &sw->config;
1530 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1531 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1532 regs->revision, regs->thunderbolt_version);
1533 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1534 tb_dbg(tb, " Config:\n");
1536 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1537 regs->upstream_port_number, regs->depth,
1538 (((u64) regs->route_hi) << 32) | regs->route_lo,
1539 regs->enabled, regs->plug_events_delay);
1540 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1541 regs->__unknown1, regs->__unknown4);
1544 static int tb_switch_reset_host(struct tb_switch *sw)
1546 if (sw->generation > 1) {
1547 struct tb_port *port;
1549 tb_switch_for_each_port(sw, port) {
1553 * For lane adapters we issue downstream port
1554 * reset and clear up path config spaces.
1556 * For protocol adapters we disable the path and
1557 * clear path config space one by one (from 8 to
1558 * Max Input HopID of the adapter).
1560 if (tb_port_is_null(port) && !tb_is_upstream_port(port)) {
1561 ret = tb_port_reset(port);
1564 } else if (tb_port_is_usb3_down(port) ||
1565 tb_port_is_usb3_up(port)) {
1566 tb_usb3_port_enable(port, false);
1567 } else if (tb_port_is_dpin(port) ||
1568 tb_port_is_dpout(port)) {
1569 tb_dp_port_enable(port, false);
1570 } else if (tb_port_is_pcie_down(port) ||
1571 tb_port_is_pcie_up(port)) {
1572 tb_pci_port_enable(port, false);
1577 /* Cleanup path config space of protocol adapter */
1578 for (i = TB_PATH_MIN_HOPID;
1579 i <= port->config.max_in_hop_id; i++) {
1580 ret = tb_path_deactivate_hop(port, i);
1586 struct tb_cfg_result res;
1588 /* Thunderbolt 1 uses the "reset" config space packet */
1589 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1590 TB_CFG_SWITCH, 2, 2);
1593 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1596 else if (res.err < 0)
1603 static int tb_switch_reset_device(struct tb_switch *sw)
1605 return tb_port_reset(tb_switch_downstream_port(sw));
1608 static bool tb_switch_enumerated(struct tb_switch *sw)
1614 * Read directly from the hardware because we use this also
1615 * during system sleep where sw->config.enabled is already set
1618 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1);
1622 return !!(val & ROUTER_CS_3_V);
1626 * tb_switch_reset() - Perform reset to the router
1627 * @sw: Router to reset
1629 * Issues reset to the router @sw. Can be used for any router. For host
1630 * routers, resets all the downstream ports and cleans up path config
1631 * spaces accordingly. For device routers issues downstream port reset
1632 * through the parent router, so as side effect there will be unplug
1633 * soon after this is finished.
1635 * If the router is not enumerated does nothing.
1637 * Returns %0 on success or negative errno in case of failure.
1639 int tb_switch_reset(struct tb_switch *sw)
1644 * We cannot access the port config spaces unless the router is
1645 * already enumerated. If the router is not enumerated it is
1646 * equal to being reset so we can skip that here.
1648 if (!tb_switch_enumerated(sw))
1651 tb_sw_dbg(sw, "resetting\n");
1654 ret = tb_switch_reset_device(sw);
1656 ret = tb_switch_reset_host(sw);
1659 tb_sw_warn(sw, "failed to reset\n");
1665 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1666 * @sw: Router to read the offset value from
1667 * @offset: Offset in the router config space to read from
1668 * @bit: Bit mask in the offset to wait for
1669 * @value: Value of the bits to wait for
1670 * @timeout_msec: Timeout in ms how long to wait
1672 * Wait till the specified bits in specified offset reach specified value.
1673 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1674 * within the given timeout or a negative errno in case of failure.
1676 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1677 u32 value, int timeout_msec)
1679 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1685 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1689 if ((val & bit) == value)
1692 usleep_range(50, 100);
1693 } while (ktime_before(ktime_get(), timeout));
1699 * tb_plug_events_active() - enable/disable plug events on a switch
1701 * Also configures a sane plug_events_delay of 255ms.
1703 * Return: Returns 0 on success or an error code on failure.
1705 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1710 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1713 sw->config.plug_events_delay = 0xff;
1714 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1718 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1723 data = data & 0xFFFFFF83;
1724 switch (sw->config.device_id) {
1725 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1726 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1727 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1731 * Skip Alpine Ridge, it needs to have vendor
1732 * specific USB hotplug event enabled for the
1733 * internal xHCI to work.
1735 if (!tb_switch_is_alpine_ridge(sw))
1736 data |= TB_PLUG_EVENTS_USB_DISABLE;
1741 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1742 sw->cap_plug_events + 1, 1);
1745 static ssize_t authorized_show(struct device *dev,
1746 struct device_attribute *attr,
1749 struct tb_switch *sw = tb_to_switch(dev);
1751 return sysfs_emit(buf, "%u\n", sw->authorized);
1754 static int disapprove_switch(struct device *dev, void *not_used)
1756 char *envp[] = { "AUTHORIZED=0", NULL };
1757 struct tb_switch *sw;
1759 sw = tb_to_switch(dev);
1760 if (sw && sw->authorized) {
1763 /* First children */
1764 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1768 ret = tb_domain_disapprove_switch(sw->tb, sw);
1773 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1779 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1781 char envp_string[13];
1783 char *envp[] = { envp_string, NULL };
1785 if (!mutex_trylock(&sw->tb->lock))
1786 return restart_syscall();
1788 if (!!sw->authorized == !!val)
1792 /* Disapprove switch */
1795 ret = disapprove_switch(&sw->dev, NULL);
1800 /* Approve switch */
1803 ret = tb_domain_approve_switch_key(sw->tb, sw);
1805 ret = tb_domain_approve_switch(sw->tb, sw);
1808 /* Challenge switch */
1811 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1819 sw->authorized = val;
1821 * Notify status change to the userspace, informing the new
1822 * value of /sys/bus/thunderbolt/devices/.../authorized.
1824 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1825 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1829 mutex_unlock(&sw->tb->lock);
1833 static ssize_t authorized_store(struct device *dev,
1834 struct device_attribute *attr,
1835 const char *buf, size_t count)
1837 struct tb_switch *sw = tb_to_switch(dev);
1841 ret = kstrtouint(buf, 0, &val);
1847 pm_runtime_get_sync(&sw->dev);
1848 ret = tb_switch_set_authorized(sw, val);
1849 pm_runtime_mark_last_busy(&sw->dev);
1850 pm_runtime_put_autosuspend(&sw->dev);
1852 return ret ? ret : count;
1854 static DEVICE_ATTR_RW(authorized);
1856 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1859 struct tb_switch *sw = tb_to_switch(dev);
1861 return sysfs_emit(buf, "%u\n", sw->boot);
1863 static DEVICE_ATTR_RO(boot);
1865 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1868 struct tb_switch *sw = tb_to_switch(dev);
1870 return sysfs_emit(buf, "%#x\n", sw->device);
1872 static DEVICE_ATTR_RO(device);
1875 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1877 struct tb_switch *sw = tb_to_switch(dev);
1879 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1881 static DEVICE_ATTR_RO(device_name);
1884 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1886 struct tb_switch *sw = tb_to_switch(dev);
1888 return sysfs_emit(buf, "%u\n", sw->generation);
1890 static DEVICE_ATTR_RO(generation);
1892 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1895 struct tb_switch *sw = tb_to_switch(dev);
1898 if (!mutex_trylock(&sw->tb->lock))
1899 return restart_syscall();
1902 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1904 ret = sysfs_emit(buf, "\n");
1906 mutex_unlock(&sw->tb->lock);
1910 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1911 const char *buf, size_t count)
1913 struct tb_switch *sw = tb_to_switch(dev);
1914 u8 key[TB_SWITCH_KEY_SIZE];
1915 ssize_t ret = count;
1918 if (!strcmp(buf, "\n"))
1920 else if (hex2bin(key, buf, sizeof(key)))
1923 if (!mutex_trylock(&sw->tb->lock))
1924 return restart_syscall();
1926 if (sw->authorized) {
1933 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1939 mutex_unlock(&sw->tb->lock);
1942 static DEVICE_ATTR(key, 0600, key_show, key_store);
1944 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1947 struct tb_switch *sw = tb_to_switch(dev);
1949 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1953 * Currently all lanes must run at the same speed but we expose here
1954 * both directions to allow possible asymmetric links in the future.
1956 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1957 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1959 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1962 struct tb_switch *sw = tb_to_switch(dev);
1965 switch (sw->link_width) {
1966 case TB_LINK_WIDTH_SINGLE:
1967 case TB_LINK_WIDTH_ASYM_TX:
1970 case TB_LINK_WIDTH_DUAL:
1973 case TB_LINK_WIDTH_ASYM_RX:
1981 return sysfs_emit(buf, "%u\n", width);
1983 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1985 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1988 struct tb_switch *sw = tb_to_switch(dev);
1991 switch (sw->link_width) {
1992 case TB_LINK_WIDTH_SINGLE:
1993 case TB_LINK_WIDTH_ASYM_RX:
1996 case TB_LINK_WIDTH_DUAL:
1999 case TB_LINK_WIDTH_ASYM_TX:
2007 return sysfs_emit(buf, "%u\n", width);
2009 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
2011 static ssize_t nvm_authenticate_show(struct device *dev,
2012 struct device_attribute *attr, char *buf)
2014 struct tb_switch *sw = tb_to_switch(dev);
2017 nvm_get_auth_status(sw, &status);
2018 return sysfs_emit(buf, "%#x\n", status);
2021 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
2024 struct tb_switch *sw = tb_to_switch(dev);
2027 pm_runtime_get_sync(&sw->dev);
2029 if (!mutex_trylock(&sw->tb->lock)) {
2030 ret = restart_syscall();
2034 if (sw->no_nvm_upgrade) {
2039 /* If NVMem devices are not yet added */
2045 ret = kstrtoint(buf, 10, &val);
2049 /* Always clear the authentication status */
2050 nvm_clear_auth_status(sw);
2053 if (val == AUTHENTICATE_ONLY) {
2057 ret = nvm_authenticate(sw, true);
2059 if (!sw->nvm->flushed) {
2060 if (!sw->nvm->buf) {
2065 ret = nvm_validate_and_write(sw);
2066 if (ret || val == WRITE_ONLY)
2069 if (val == WRITE_AND_AUTHENTICATE) {
2071 ret = tb_lc_force_power(sw);
2073 ret = nvm_authenticate(sw, false);
2079 mutex_unlock(&sw->tb->lock);
2081 pm_runtime_mark_last_busy(&sw->dev);
2082 pm_runtime_put_autosuspend(&sw->dev);
2087 static ssize_t nvm_authenticate_store(struct device *dev,
2088 struct device_attribute *attr, const char *buf, size_t count)
2090 int ret = nvm_authenticate_sysfs(dev, buf, false);
2095 static DEVICE_ATTR_RW(nvm_authenticate);
2097 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2098 struct device_attribute *attr, char *buf)
2100 return nvm_authenticate_show(dev, attr, buf);
2103 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2104 struct device_attribute *attr, const char *buf, size_t count)
2108 ret = nvm_authenticate_sysfs(dev, buf, true);
2109 return ret ? ret : count;
2111 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2113 static ssize_t nvm_version_show(struct device *dev,
2114 struct device_attribute *attr, char *buf)
2116 struct tb_switch *sw = tb_to_switch(dev);
2119 if (!mutex_trylock(&sw->tb->lock))
2120 return restart_syscall();
2127 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2129 mutex_unlock(&sw->tb->lock);
2133 static DEVICE_ATTR_RO(nvm_version);
2135 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2138 struct tb_switch *sw = tb_to_switch(dev);
2140 return sysfs_emit(buf, "%#x\n", sw->vendor);
2142 static DEVICE_ATTR_RO(vendor);
2145 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2147 struct tb_switch *sw = tb_to_switch(dev);
2149 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2151 static DEVICE_ATTR_RO(vendor_name);
2153 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2156 struct tb_switch *sw = tb_to_switch(dev);
2158 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2160 static DEVICE_ATTR_RO(unique_id);
2162 static struct attribute *switch_attrs[] = {
2163 &dev_attr_authorized.attr,
2164 &dev_attr_boot.attr,
2165 &dev_attr_device.attr,
2166 &dev_attr_device_name.attr,
2167 &dev_attr_generation.attr,
2169 &dev_attr_nvm_authenticate.attr,
2170 &dev_attr_nvm_authenticate_on_disconnect.attr,
2171 &dev_attr_nvm_version.attr,
2172 &dev_attr_rx_speed.attr,
2173 &dev_attr_rx_lanes.attr,
2174 &dev_attr_tx_speed.attr,
2175 &dev_attr_tx_lanes.attr,
2176 &dev_attr_vendor.attr,
2177 &dev_attr_vendor_name.attr,
2178 &dev_attr_unique_id.attr,
2182 static umode_t switch_attr_is_visible(struct kobject *kobj,
2183 struct attribute *attr, int n)
2185 struct device *dev = kobj_to_dev(kobj);
2186 struct tb_switch *sw = tb_to_switch(dev);
2188 if (attr == &dev_attr_authorized.attr) {
2189 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2190 sw->tb->security_level == TB_SECURITY_DPONLY)
2192 } else if (attr == &dev_attr_device.attr) {
2195 } else if (attr == &dev_attr_device_name.attr) {
2196 if (!sw->device_name)
2198 } else if (attr == &dev_attr_vendor.attr) {
2201 } else if (attr == &dev_attr_vendor_name.attr) {
2202 if (!sw->vendor_name)
2204 } else if (attr == &dev_attr_key.attr) {
2206 sw->tb->security_level == TB_SECURITY_SECURE &&
2207 sw->security_level == TB_SECURITY_SECURE)
2210 } else if (attr == &dev_attr_rx_speed.attr ||
2211 attr == &dev_attr_rx_lanes.attr ||
2212 attr == &dev_attr_tx_speed.attr ||
2213 attr == &dev_attr_tx_lanes.attr) {
2217 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2218 if (nvm_upgradeable(sw))
2221 } else if (attr == &dev_attr_nvm_version.attr) {
2222 if (nvm_readable(sw))
2225 } else if (attr == &dev_attr_boot.attr) {
2229 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2230 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2235 return sw->safe_mode ? 0 : attr->mode;
2238 static const struct attribute_group switch_group = {
2239 .is_visible = switch_attr_is_visible,
2240 .attrs = switch_attrs,
2243 static const struct attribute_group *switch_groups[] = {
2248 static void tb_switch_release(struct device *dev)
2250 struct tb_switch *sw = tb_to_switch(dev);
2251 struct tb_port *port;
2253 dma_port_free(sw->dma_port);
2255 tb_switch_for_each_port(sw, port) {
2256 ida_destroy(&port->in_hopids);
2257 ida_destroy(&port->out_hopids);
2261 kfree(sw->device_name);
2262 kfree(sw->vendor_name);
2269 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2271 const struct tb_switch *sw = tb_to_switch(dev);
2274 if (tb_switch_is_usb4(sw)) {
2275 if (add_uevent_var(env, "USB4_VERSION=%u.0",
2276 usb4_switch_version(sw)))
2280 if (!tb_route(sw)) {
2283 const struct tb_port *port;
2286 /* Device is hub if it has any downstream ports */
2287 tb_switch_for_each_port(sw, port) {
2288 if (!port->disabled && !tb_is_upstream_port(port) &&
2289 tb_port_is_null(port)) {
2295 type = hub ? "hub" : "device";
2298 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2304 * Currently only need to provide the callbacks. Everything else is handled
2305 * in the connection manager.
2307 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2309 struct tb_switch *sw = tb_to_switch(dev);
2310 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2312 if (cm_ops->runtime_suspend_switch)
2313 return cm_ops->runtime_suspend_switch(sw);
2318 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2320 struct tb_switch *sw = tb_to_switch(dev);
2321 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2323 if (cm_ops->runtime_resume_switch)
2324 return cm_ops->runtime_resume_switch(sw);
2328 static const struct dev_pm_ops tb_switch_pm_ops = {
2329 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2333 const struct device_type tb_switch_type = {
2334 .name = "thunderbolt_device",
2335 .release = tb_switch_release,
2336 .uevent = tb_switch_uevent,
2337 .pm = &tb_switch_pm_ops,
2340 static int tb_switch_get_generation(struct tb_switch *sw)
2342 if (tb_switch_is_usb4(sw))
2345 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2346 switch (sw->config.device_id) {
2347 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2348 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2349 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2350 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2351 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2352 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2353 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2354 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2357 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2358 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2359 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2362 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2363 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2364 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2365 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2366 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2367 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2368 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2369 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2370 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2371 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2377 * For unknown switches assume generation to be 1 to be on the
2380 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2381 sw->config.device_id);
2385 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2389 if (tb_switch_is_usb4(sw) ||
2390 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2391 max_depth = USB4_SWITCH_MAX_DEPTH;
2393 max_depth = TB_SWITCH_MAX_DEPTH;
2395 return depth > max_depth;
2399 * tb_switch_alloc() - allocate a switch
2400 * @tb: Pointer to the owning domain
2401 * @parent: Parent device for this switch
2402 * @route: Route string for this switch
2404 * Allocates and initializes a switch. Will not upload configuration to
2405 * the switch. For that you need to call tb_switch_configure()
2406 * separately. The returned switch should be released by calling
2409 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2412 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2415 struct tb_switch *sw;
2419 /* Unlock the downstream port so we can access the switch below */
2421 struct tb_switch *parent_sw = tb_to_switch(parent);
2422 struct tb_port *down;
2424 down = tb_port_at(route, parent_sw);
2425 tb_port_unlock(down);
2428 depth = tb_route_length(route);
2430 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2431 if (upstream_port < 0)
2432 return ERR_PTR(upstream_port);
2434 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2436 return ERR_PTR(-ENOMEM);
2439 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2441 goto err_free_sw_ports;
2443 sw->generation = tb_switch_get_generation(sw);
2445 tb_dbg(tb, "current switch config:\n");
2446 tb_dump_switch(tb, sw);
2448 /* configure switch */
2449 sw->config.upstream_port_number = upstream_port;
2450 sw->config.depth = depth;
2451 sw->config.route_hi = upper_32_bits(route);
2452 sw->config.route_lo = lower_32_bits(route);
2453 sw->config.enabled = 0;
2455 /* Make sure we do not exceed maximum topology limit */
2456 if (tb_switch_exceeds_max_depth(sw, depth)) {
2457 ret = -EADDRNOTAVAIL;
2458 goto err_free_sw_ports;
2461 /* initialize ports */
2462 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2466 goto err_free_sw_ports;
2469 for (i = 0; i <= sw->config.max_port_number; i++) {
2470 /* minimum setup for tb_find_cap and tb_drom_read to work */
2471 sw->ports[i].sw = sw;
2472 sw->ports[i].port = i;
2474 /* Control port does not need HopID allocation */
2476 ida_init(&sw->ports[i].in_hopids);
2477 ida_init(&sw->ports[i].out_hopids);
2481 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2483 sw->cap_plug_events = ret;
2485 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2487 sw->cap_vsec_tmu = ret;
2489 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2493 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2497 /* Root switch is always authorized */
2499 sw->authorized = true;
2501 device_initialize(&sw->dev);
2502 sw->dev.parent = parent;
2503 sw->dev.bus = &tb_bus_type;
2504 sw->dev.type = &tb_switch_type;
2505 sw->dev.groups = switch_groups;
2506 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2514 return ERR_PTR(ret);
2518 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2519 * @tb: Pointer to the owning domain
2520 * @parent: Parent device for this switch
2521 * @route: Route string for this switch
2523 * This creates a switch in safe mode. This means the switch pretty much
2524 * lacks all capabilities except DMA configuration port before it is
2525 * flashed with a valid NVM firmware.
2527 * The returned switch must be released by calling tb_switch_put().
2529 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2532 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2534 struct tb_switch *sw;
2536 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2538 return ERR_PTR(-ENOMEM);
2541 sw->config.depth = tb_route_length(route);
2542 sw->config.route_hi = upper_32_bits(route);
2543 sw->config.route_lo = lower_32_bits(route);
2544 sw->safe_mode = true;
2546 device_initialize(&sw->dev);
2547 sw->dev.parent = parent;
2548 sw->dev.bus = &tb_bus_type;
2549 sw->dev.type = &tb_switch_type;
2550 sw->dev.groups = switch_groups;
2551 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2557 * tb_switch_configure() - Uploads configuration to the switch
2558 * @sw: Switch to configure
2560 * Call this function before the switch is added to the system. It will
2561 * upload configuration to the switch and makes it available for the
2562 * connection manager to use. Can be called to the switch again after
2563 * resume from low power states to re-initialize it.
2565 * Return: %0 in case of success and negative errno in case of failure
2567 int tb_switch_configure(struct tb_switch *sw)
2569 struct tb *tb = sw->tb;
2573 route = tb_route(sw);
2575 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2576 sw->config.enabled ? "restoring" : "initializing", route,
2577 tb_route_length(route), sw->config.upstream_port_number);
2579 sw->config.enabled = 1;
2581 if (tb_switch_is_usb4(sw)) {
2583 * For USB4 devices, we need to program the CM version
2584 * accordingly so that it knows to expose all the
2585 * additional capabilities. Program it according to USB4
2586 * version to avoid changing existing (v1) routers behaviour.
2588 if (usb4_switch_version(sw) < 2)
2589 sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2591 sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2592 sw->config.plug_events_delay = 0xa;
2594 /* Enumerate the switch */
2595 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2600 ret = usb4_switch_setup(sw);
2602 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2603 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2604 sw->config.vendor_id);
2606 if (!sw->cap_plug_events) {
2607 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2611 /* Enumerate the switch */
2612 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2618 return tb_plug_events_active(sw, true);
2622 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2623 * @sw: Router to configure
2625 * Needs to be called before any tunnels can be setup through the
2626 * router. Can be called to any router.
2628 * Returns %0 in success and negative errno otherwise.
2630 int tb_switch_configuration_valid(struct tb_switch *sw)
2632 if (tb_switch_is_usb4(sw))
2633 return usb4_switch_configuration_valid(sw);
2637 static int tb_switch_set_uuid(struct tb_switch *sw)
2646 if (tb_switch_is_usb4(sw)) {
2647 ret = usb4_switch_read_uid(sw, &sw->uid);
2653 * The newer controllers include fused UUID as part of
2654 * link controller specific registers
2656 ret = tb_lc_read_uuid(sw, uuid);
2666 * ICM generates UUID based on UID and fills the upper
2667 * two words with ones. This is not strictly following
2668 * UUID format but we want to be compatible with it so
2669 * we do the same here.
2671 uuid[0] = sw->uid & 0xffffffff;
2672 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2673 uuid[2] = 0xffffffff;
2674 uuid[3] = 0xffffffff;
2677 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2683 static int tb_switch_add_dma_port(struct tb_switch *sw)
2688 switch (sw->generation) {
2690 /* Only root switch can be upgraded */
2697 ret = tb_switch_set_uuid(sw);
2704 * DMA port is the only thing available when the switch
2712 if (sw->no_nvm_upgrade)
2715 if (tb_switch_is_usb4(sw)) {
2716 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2721 tb_sw_info(sw, "switch flash authentication failed\n");
2722 nvm_set_auth_status(sw, status);
2728 /* Root switch DMA port requires running firmware */
2729 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2732 sw->dma_port = dma_port_alloc(sw);
2737 * If there is status already set then authentication failed
2738 * when the dma_port_flash_update_auth() returned. Power cycling
2739 * is not needed (it was done already) so only thing we do here
2740 * is to unblock runtime PM of the root port.
2742 nvm_get_auth_status(sw, &status);
2745 nvm_authenticate_complete_dma_port(sw);
2750 * Check status of the previous flash authentication. If there
2751 * is one we need to power cycle the switch in any case to make
2752 * it functional again.
2754 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2758 /* Now we can allow root port to suspend again */
2760 nvm_authenticate_complete_dma_port(sw);
2763 tb_sw_info(sw, "switch flash authentication failed\n");
2764 nvm_set_auth_status(sw, status);
2767 tb_sw_info(sw, "power cycling the switch now\n");
2768 dma_port_power_cycle(sw->dma_port);
2771 * We return error here which causes the switch adding failure.
2772 * It should appear back after power cycle is complete.
2777 static void tb_switch_default_link_ports(struct tb_switch *sw)
2781 for (i = 1; i <= sw->config.max_port_number; i++) {
2782 struct tb_port *port = &sw->ports[i];
2783 struct tb_port *subordinate;
2785 if (!tb_port_is_null(port))
2788 /* Check for the subordinate port */
2789 if (i == sw->config.max_port_number ||
2790 !tb_port_is_null(&sw->ports[i + 1]))
2793 /* Link them if not already done so (by DROM) */
2794 subordinate = &sw->ports[i + 1];
2795 if (!port->dual_link_port && !subordinate->dual_link_port) {
2797 port->dual_link_port = subordinate;
2798 subordinate->link_nr = 1;
2799 subordinate->dual_link_port = port;
2801 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2802 port->port, subordinate->port);
2807 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2809 const struct tb_port *up = tb_upstream_port(sw);
2811 if (!up->dual_link_port || !up->dual_link_port->remote)
2814 if (tb_switch_is_usb4(sw))
2815 return usb4_switch_lane_bonding_possible(sw);
2816 return tb_lc_lane_bonding_possible(sw);
2819 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2822 bool change = false;
2825 if (!tb_route(sw) || tb_switch_is_icm(sw))
2828 up = tb_upstream_port(sw);
2830 ret = tb_port_get_link_speed(up);
2833 if (sw->link_speed != ret)
2835 sw->link_speed = ret;
2837 ret = tb_port_get_link_width(up);
2840 if (sw->link_width != ret)
2842 sw->link_width = ret;
2844 /* Notify userspace that there is possible link attribute change */
2845 if (device_is_registered(&sw->dev) && change)
2846 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2851 /* Must be called after tb_switch_update_link_attributes() */
2852 static void tb_switch_link_init(struct tb_switch *sw)
2854 struct tb_port *up, *down;
2857 if (!tb_route(sw) || tb_switch_is_icm(sw))
2860 tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2861 tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width));
2863 bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2866 * Gen 4 links come up as bonded so update the port structures
2869 up = tb_upstream_port(sw);
2870 down = tb_switch_downstream_port(sw);
2872 up->bonded = bonded;
2873 if (up->dual_link_port)
2874 up->dual_link_port->bonded = bonded;
2875 tb_port_update_credits(up);
2877 down->bonded = bonded;
2878 if (down->dual_link_port)
2879 down->dual_link_port->bonded = bonded;
2880 tb_port_update_credits(down);
2882 if (tb_port_get_link_generation(up) < 4)
2886 * Set the Gen 4 preferred link width. This is what the router
2887 * prefers when the link is brought up. If the router does not
2888 * support asymmetric link configuration, this also will be set
2889 * to TB_LINK_WIDTH_DUAL.
2891 sw->preferred_link_width = sw->link_width;
2892 tb_sw_dbg(sw, "preferred link width %s\n",
2893 tb_width_name(sw->preferred_link_width));
2897 * tb_switch_lane_bonding_enable() - Enable lane bonding
2898 * @sw: Switch to enable lane bonding
2900 * Connection manager can call this function to enable lane bonding of a
2901 * switch. If conditions are correct and both switches support the feature,
2902 * lanes are bonded. It is safe to call this to any switch.
2904 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2906 struct tb_port *up, *down;
2910 if (!tb_switch_lane_bonding_possible(sw))
2913 up = tb_upstream_port(sw);
2914 down = tb_switch_downstream_port(sw);
2916 if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2917 !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2921 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2922 * CL0 and check just for lane 1.
2924 if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2927 ret = tb_port_lane_bonding_enable(up);
2929 tb_port_warn(up, "failed to enable lane bonding\n");
2933 ret = tb_port_lane_bonding_enable(down);
2935 tb_port_warn(down, "failed to enable lane bonding\n");
2936 tb_port_lane_bonding_disable(up);
2940 /* Any of the widths are all bonded */
2941 width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2942 TB_LINK_WIDTH_ASYM_RX;
2944 return tb_port_wait_for_link_width(down, width, 100);
2948 * tb_switch_lane_bonding_disable() - Disable lane bonding
2949 * @sw: Switch whose lane bonding to disable
2951 * Disables lane bonding between @sw and parent. This can be called even
2952 * if lanes were not bonded originally.
2954 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2956 struct tb_port *up, *down;
2959 up = tb_upstream_port(sw);
2964 * If the link is Gen 4 there is no way to switch the link to
2965 * two single lane links so avoid that here. Also don't bother
2966 * if the link is not up anymore (sw is unplugged).
2968 ret = tb_port_get_link_generation(up);
2974 down = tb_switch_downstream_port(sw);
2975 tb_port_lane_bonding_disable(up);
2976 tb_port_lane_bonding_disable(down);
2979 * It is fine if we get other errors as the router might have
2982 return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2985 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2986 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2988 struct tb_port *up, *down, *port;
2989 enum tb_link_width down_width;
2992 up = tb_upstream_port(sw);
2993 down = tb_switch_downstream_port(sw);
2995 if (width == TB_LINK_WIDTH_ASYM_TX) {
2996 down_width = TB_LINK_WIDTH_ASYM_RX;
2999 down_width = TB_LINK_WIDTH_ASYM_TX;
3003 ret = tb_port_set_link_width(up, width);
3007 ret = tb_port_set_link_width(down, down_width);
3012 * Initiate the change in the router that one of its TX lanes is
3013 * changing to RX but do so only if there is an actual change.
3015 if (sw->link_width != width) {
3016 ret = usb4_port_asym_start(port);
3020 ret = tb_port_wait_for_link_width(up, width, 100);
3028 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
3029 static int tb_switch_asym_disable(struct tb_switch *sw)
3031 struct tb_port *up, *down;
3034 up = tb_upstream_port(sw);
3035 down = tb_switch_downstream_port(sw);
3037 ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
3041 ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
3046 * Initiate the change in the router that has three TX lanes and
3047 * is changing one of its TX lanes to RX but only if there is a
3048 * change in the link width.
3050 if (sw->link_width > TB_LINK_WIDTH_DUAL) {
3051 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
3052 ret = usb4_port_asym_start(up);
3054 ret = usb4_port_asym_start(down);
3058 ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
3067 * tb_switch_set_link_width() - Configure router link width
3068 * @sw: Router to configure
3069 * @width: The new link width
3071 * Set device router link width to @width from router upstream port
3072 * perspective. Supports also asymmetric links if the routers boths side
3073 * of the link supports it.
3075 * Does nothing for host router.
3077 * Returns %0 in case of success, negative errno otherwise.
3079 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
3081 struct tb_port *up, *down;
3087 up = tb_upstream_port(sw);
3088 down = tb_switch_downstream_port(sw);
3091 case TB_LINK_WIDTH_SINGLE:
3092 ret = tb_switch_lane_bonding_disable(sw);
3095 case TB_LINK_WIDTH_DUAL:
3096 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
3097 sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
3098 ret = tb_switch_asym_disable(sw);
3102 ret = tb_switch_lane_bonding_enable(sw);
3105 case TB_LINK_WIDTH_ASYM_TX:
3106 case TB_LINK_WIDTH_ASYM_RX:
3107 ret = tb_switch_asym_enable(sw, width);
3116 tb_sw_warn(sw, "timeout changing link width\n");
3125 tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3129 tb_port_update_credits(down);
3130 tb_port_update_credits(up);
3132 tb_switch_update_link_attributes(sw);
3134 tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width));
3139 * tb_switch_configure_link() - Set link configured
3140 * @sw: Switch whose link is configured
3142 * Sets the link upstream from @sw configured (from both ends) so that
3143 * it will not be disconnected when the domain exits sleep. Can be
3144 * called for any switch.
3146 * It is recommended that this is called after lane bonding is enabled.
3148 * Returns %0 on success and negative errno in case of error.
3150 int tb_switch_configure_link(struct tb_switch *sw)
3152 struct tb_port *up, *down;
3155 if (!tb_route(sw) || tb_switch_is_icm(sw))
3158 up = tb_upstream_port(sw);
3159 if (tb_switch_is_usb4(up->sw))
3160 ret = usb4_port_configure(up);
3162 ret = tb_lc_configure_port(up);
3167 if (tb_switch_is_usb4(down->sw))
3168 return usb4_port_configure(down);
3169 return tb_lc_configure_port(down);
3173 * tb_switch_unconfigure_link() - Unconfigure link
3174 * @sw: Switch whose link is unconfigured
3176 * Sets the link unconfigured so the @sw will be disconnected if the
3177 * domain exists sleep.
3179 void tb_switch_unconfigure_link(struct tb_switch *sw)
3181 struct tb_port *up, *down;
3183 if (!tb_route(sw) || tb_switch_is_icm(sw))
3187 * Unconfigure downstream port so that wake-on-connect can be
3188 * configured after router unplug. No need to unconfigure upstream port
3189 * since its router is unplugged.
3191 up = tb_upstream_port(sw);
3193 if (tb_switch_is_usb4(down->sw))
3194 usb4_port_unconfigure(down);
3196 tb_lc_unconfigure_port(down);
3198 if (sw->is_unplugged)
3201 up = tb_upstream_port(sw);
3202 if (tb_switch_is_usb4(up->sw))
3203 usb4_port_unconfigure(up);
3205 tb_lc_unconfigure_port(up);
3208 static void tb_switch_credits_init(struct tb_switch *sw)
3210 if (tb_switch_is_icm(sw))
3212 if (!tb_switch_is_usb4(sw))
3214 if (usb4_switch_credits_init(sw))
3215 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3218 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3220 struct tb_port *port;
3222 if (tb_switch_is_icm(sw))
3225 tb_switch_for_each_port(sw, port) {
3228 if (!port->cap_usb4)
3231 res = usb4_port_hotplug_enable(port);
3239 * tb_switch_add() - Add a switch to the domain
3240 * @sw: Switch to add
3242 * This is the last step in adding switch to the domain. It will read
3243 * identification information from DROM and initializes ports so that
3244 * they can be used to connect other switches. The switch will be
3245 * exposed to the userspace when this function successfully returns. To
3246 * remove and release the switch, call tb_switch_remove().
3248 * Return: %0 in case of success and negative errno in case of failure
3250 int tb_switch_add(struct tb_switch *sw)
3255 * Initialize DMA control port now before we read DROM. Recent
3256 * host controllers have more complete DROM on NVM that includes
3257 * vendor and model identification strings which we then expose
3258 * to the userspace. NVM can be accessed through DMA
3259 * configuration based mailbox.
3261 ret = tb_switch_add_dma_port(sw);
3263 dev_err(&sw->dev, "failed to add DMA port\n");
3267 if (!sw->safe_mode) {
3268 tb_switch_credits_init(sw);
3271 ret = tb_drom_read(sw);
3273 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3274 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3276 ret = tb_switch_set_uuid(sw);
3278 dev_err(&sw->dev, "failed to set UUID\n");
3282 for (i = 0; i <= sw->config.max_port_number; i++) {
3283 if (sw->ports[i].disabled) {
3284 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3287 ret = tb_init_port(&sw->ports[i]);
3289 dev_err(&sw->dev, "failed to initialize port %d\n", i);
3294 tb_check_quirks(sw);
3296 tb_switch_default_link_ports(sw);
3298 ret = tb_switch_update_link_attributes(sw);
3302 tb_switch_link_init(sw);
3304 ret = tb_switch_clx_init(sw);
3308 ret = tb_switch_tmu_init(sw);
3313 ret = tb_switch_port_hotplug_enable(sw);
3317 ret = device_add(&sw->dev);
3319 dev_err(&sw->dev, "failed to add device: %d\n", ret);
3324 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3325 sw->vendor, sw->device);
3326 if (sw->vendor_name && sw->device_name)
3327 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3331 ret = usb4_switch_add_ports(sw);
3333 dev_err(&sw->dev, "failed to add USB4 ports\n");
3337 ret = tb_switch_nvm_add(sw);
3339 dev_err(&sw->dev, "failed to add NVM devices\n");
3344 * Thunderbolt routers do not generate wakeups themselves but
3345 * they forward wakeups from tunneled protocols, so enable it
3348 device_init_wakeup(&sw->dev, true);
3350 pm_runtime_set_active(&sw->dev);
3352 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3353 pm_runtime_use_autosuspend(&sw->dev);
3354 pm_runtime_mark_last_busy(&sw->dev);
3355 pm_runtime_enable(&sw->dev);
3356 pm_request_autosuspend(&sw->dev);
3359 tb_switch_debugfs_init(sw);
3363 usb4_switch_remove_ports(sw);
3365 device_del(&sw->dev);
3371 * tb_switch_remove() - Remove and release a switch
3372 * @sw: Switch to remove
3374 * This will remove the switch from the domain and release it after last
3375 * reference count drops to zero. If there are switches connected below
3376 * this switch, they will be removed as well.
3378 void tb_switch_remove(struct tb_switch *sw)
3380 struct tb_port *port;
3382 tb_switch_debugfs_remove(sw);
3385 pm_runtime_get_sync(&sw->dev);
3386 pm_runtime_disable(&sw->dev);
3389 /* port 0 is the switch itself and never has a remote */
3390 tb_switch_for_each_port(sw, port) {
3391 if (tb_port_has_remote(port)) {
3392 tb_switch_remove(port->remote->sw);
3393 port->remote = NULL;
3394 } else if (port->xdomain) {
3395 tb_xdomain_remove(port->xdomain);
3396 port->xdomain = NULL;
3399 /* Remove any downstream retimers */
3400 tb_retimer_remove_all(port);
3403 if (!sw->is_unplugged)
3404 tb_plug_events_active(sw, false);
3406 tb_switch_nvm_remove(sw);
3407 usb4_switch_remove_ports(sw);
3410 dev_info(&sw->dev, "device disconnected\n");
3411 device_unregister(&sw->dev);
3415 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3416 * @sw: Router to mark unplugged
3418 void tb_sw_set_unplugged(struct tb_switch *sw)
3420 struct tb_port *port;
3422 if (sw == sw->tb->root_switch) {
3423 tb_sw_WARN(sw, "cannot unplug root switch\n");
3426 if (sw->is_unplugged) {
3427 tb_sw_WARN(sw, "is_unplugged already set\n");
3430 sw->is_unplugged = true;
3431 tb_switch_for_each_port(sw, port) {
3432 if (tb_port_has_remote(port))
3433 tb_sw_set_unplugged(port->remote->sw);
3434 else if (port->xdomain)
3435 port->xdomain->is_unplugged = true;
3439 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3442 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3444 tb_sw_dbg(sw, "disabling wakeup\n");
3446 if (tb_switch_is_usb4(sw))
3447 return usb4_switch_set_wake(sw, flags);
3448 return tb_lc_set_wake(sw, flags);
3451 static void tb_switch_check_wakes(struct tb_switch *sw)
3453 if (device_may_wakeup(&sw->dev)) {
3454 if (tb_switch_is_usb4(sw))
3455 usb4_switch_check_wakes(sw);
3460 * tb_switch_resume() - Resume a switch after sleep
3461 * @sw: Switch to resume
3462 * @runtime: Is this resume from runtime suspend or system sleep
3464 * Resumes and re-enumerates router (and all its children), if still plugged
3465 * after suspend. Don't enumerate device router whose UID was changed during
3466 * suspend. If this is resume from system sleep, notifies PM core about the
3467 * wakes occurred during suspend. Disables all wakes, except USB4 wake of
3468 * upstream port for USB4 routers that shall be always enabled.
3470 int tb_switch_resume(struct tb_switch *sw, bool runtime)
3472 struct tb_port *port;
3475 tb_sw_dbg(sw, "resuming switch\n");
3478 * Check for UID of the connected switches except for root
3479 * switch which we assume cannot be removed.
3485 * Check first that we can still read the switch config
3486 * space. It may be that there is now another domain
3489 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3491 tb_sw_info(sw, "switch not present anymore\n");
3495 /* We don't have any way to confirm this was the same device */
3499 if (tb_switch_is_usb4(sw))
3500 err = usb4_switch_read_uid(sw, &uid);
3502 err = tb_drom_read_uid_only(sw, &uid);
3504 tb_sw_warn(sw, "uid read failed\n");
3507 if (sw->uid != uid) {
3509 "changed while suspended (uid %#llx -> %#llx)\n",
3515 err = tb_switch_configure(sw);
3520 tb_switch_check_wakes(sw);
3523 tb_switch_set_wake(sw, 0);
3525 err = tb_switch_tmu_init(sw);
3529 /* check for surviving downstream switches */
3530 tb_switch_for_each_port(sw, port) {
3531 if (!tb_port_is_null(port))
3534 if (!tb_port_resume(port))
3537 if (tb_wait_for_port(port, true) <= 0) {
3539 "lost during suspend, disconnecting\n");
3540 if (tb_port_has_remote(port))
3541 tb_sw_set_unplugged(port->remote->sw);
3542 else if (port->xdomain)
3543 port->xdomain->is_unplugged = true;
3546 * Always unlock the port so the downstream
3547 * switch/domain is accessible.
3549 if (tb_port_unlock(port))
3550 tb_port_warn(port, "failed to unlock port\n");
3552 tb_switch_resume(port->remote->sw, runtime)) {
3554 "lost during suspend, disconnecting\n");
3555 tb_sw_set_unplugged(port->remote->sw);
3563 * tb_switch_suspend() - Put a switch to sleep
3564 * @sw: Switch to suspend
3565 * @runtime: Is this runtime suspend or system sleep
3567 * Suspends router and all its children. Enables wakes according to
3568 * value of @runtime and then sets sleep bit for the router. If @sw is
3569 * host router the domain is ready to go to sleep once this function
3572 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3574 unsigned int flags = 0;
3575 struct tb_port *port;
3578 tb_sw_dbg(sw, "suspending switch\n");
3581 * Actually only needed for Titan Ridge but for simplicity can be
3582 * done for USB4 device too as CLx is re-enabled at resume.
3584 tb_switch_clx_disable(sw);
3586 err = tb_plug_events_active(sw, false);
3590 tb_switch_for_each_port(sw, port) {
3591 if (tb_port_has_remote(port))
3592 tb_switch_suspend(port->remote->sw, runtime);
3596 /* Trigger wake when something is plugged in/out */
3597 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3598 flags |= TB_WAKE_ON_USB4;
3599 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3600 } else if (device_may_wakeup(&sw->dev)) {
3601 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3604 tb_switch_set_wake(sw, flags);
3606 if (tb_switch_is_usb4(sw))
3607 usb4_switch_set_sleep(sw);
3609 tb_lc_set_sleep(sw);
3613 * tb_switch_query_dp_resource() - Query availability of DP resource
3614 * @sw: Switch whose DP resource is queried
3617 * Queries availability of DP resource for DP tunneling using switch
3618 * specific means. Returns %true if resource is available.
3620 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3622 if (tb_switch_is_usb4(sw))
3623 return usb4_switch_query_dp_resource(sw, in);
3624 return tb_lc_dp_sink_query(sw, in);
3628 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3629 * @sw: Switch whose DP resource is allocated
3632 * Allocates DP resource for DP tunneling. The resource must be
3633 * available for this to succeed (see tb_switch_query_dp_resource()).
3634 * Returns %0 in success and negative errno otherwise.
3636 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3640 if (tb_switch_is_usb4(sw))
3641 ret = usb4_switch_alloc_dp_resource(sw, in);
3643 ret = tb_lc_dp_sink_alloc(sw, in);
3646 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3649 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3655 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3656 * @sw: Switch whose DP resource is de-allocated
3659 * De-allocates DP resource that was previously allocated for DP
3662 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3666 if (tb_switch_is_usb4(sw))
3667 ret = usb4_switch_dealloc_dp_resource(sw, in);
3669 ret = tb_lc_dp_sink_dealloc(sw, in);
3672 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3675 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3678 struct tb_sw_lookup {
3686 static int tb_switch_match(struct device *dev, const void *data)
3688 struct tb_switch *sw = tb_to_switch(dev);
3689 const struct tb_sw_lookup *lookup = data;
3693 if (sw->tb != lookup->tb)
3697 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3699 if (lookup->route) {
3700 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3701 sw->config.route_hi == upper_32_bits(lookup->route);
3704 /* Root switch is matched only by depth */
3708 return sw->link == lookup->link && sw->depth == lookup->depth;
3712 * tb_switch_find_by_link_depth() - Find switch by link and depth
3713 * @tb: Domain the switch belongs
3714 * @link: Link number the switch is connected
3715 * @depth: Depth of the switch in link
3717 * Returned switch has reference count increased so the caller needs to
3718 * call tb_switch_put() when done with the switch.
3720 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3722 struct tb_sw_lookup lookup;
3725 memset(&lookup, 0, sizeof(lookup));
3728 lookup.depth = depth;
3730 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3732 return tb_to_switch(dev);
3738 * tb_switch_find_by_uuid() - Find switch by UUID
3739 * @tb: Domain the switch belongs
3740 * @uuid: UUID to look for
3742 * Returned switch has reference count increased so the caller needs to
3743 * call tb_switch_put() when done with the switch.
3745 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3747 struct tb_sw_lookup lookup;
3750 memset(&lookup, 0, sizeof(lookup));
3754 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3756 return tb_to_switch(dev);
3762 * tb_switch_find_by_route() - Find switch by route string
3763 * @tb: Domain the switch belongs
3764 * @route: Route string to look for
3766 * Returned switch has reference count increased so the caller needs to
3767 * call tb_switch_put() when done with the switch.
3769 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3771 struct tb_sw_lookup lookup;
3775 return tb_switch_get(tb->root_switch);
3777 memset(&lookup, 0, sizeof(lookup));
3779 lookup.route = route;
3781 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3783 return tb_to_switch(dev);
3789 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3790 * @sw: Switch to find the port from
3791 * @type: Port type to look for
3793 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3794 enum tb_port_type type)
3796 struct tb_port *port;
3798 tb_switch_for_each_port(sw, port) {
3799 if (port->config.type == type)
3807 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3808 * device. For now used only for Titan Ridge.
3810 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3811 unsigned int pcie_offset, u32 value)
3813 u32 offset, command, val;
3816 if (sw->generation != 3)
3819 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3820 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3824 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3825 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3826 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3827 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3828 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3829 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3831 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3833 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3837 ret = tb_switch_wait_for_bit(sw, offset,
3838 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3842 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3846 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3853 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3854 * @sw: Router to enable PCIe L1
3856 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3857 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3858 * was configured. Due to Intel platforms limitation, shall be called only
3859 * for first hop switch.
3861 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3863 struct tb_switch *parent = tb_switch_parent(sw);
3869 if (!tb_switch_is_titan_ridge(sw))
3872 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3873 if (tb_route(parent))
3876 /* Write to downstream PCIe bridge #5 aka Dn4 */
3877 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3881 /* Write to Upstream PCIe bridge #0 aka Up0 */
3882 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3886 * tb_switch_xhci_connect() - Connect internal xHCI
3887 * @sw: Router whose xHCI to connect
3889 * Can be called to any router. For Alpine Ridge and Titan Ridge
3890 * performs special flows that bring the xHCI functional for any device
3891 * connected to the type-C port. Call only after PCIe tunnel has been
3892 * established. The function only does the connect if not done already
3893 * so can be called several times for the same router.
3895 int tb_switch_xhci_connect(struct tb_switch *sw)
3897 struct tb_port *port1, *port3;
3900 if (sw->generation != 3)
3903 port1 = &sw->ports[1];
3904 port3 = &sw->ports[3];
3906 if (tb_switch_is_alpine_ridge(sw)) {
3907 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3909 usb_port1 = tb_lc_is_usb_plugged(port1);
3910 usb_port3 = tb_lc_is_usb_plugged(port3);
3911 xhci_port1 = tb_lc_is_xhci_connected(port1);
3912 xhci_port3 = tb_lc_is_xhci_connected(port3);
3914 /* Figure out correct USB port to connect */
3915 if (usb_port1 && !xhci_port1) {
3916 ret = tb_lc_xhci_connect(port1);
3920 if (usb_port3 && !xhci_port3)
3921 return tb_lc_xhci_connect(port3);
3922 } else if (tb_switch_is_titan_ridge(sw)) {
3923 ret = tb_lc_xhci_connect(port1);
3926 return tb_lc_xhci_connect(port3);
3933 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3934 * @sw: Router whose xHCI to disconnect
3936 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3939 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3941 if (sw->generation == 3) {
3942 struct tb_port *port1 = &sw->ports[1];
3943 struct tb_port *port3 = &sw->ports[3];
3945 tb_lc_xhci_disconnect(port1);
3946 tb_port_dbg(port1, "disconnected xHCI\n");
3947 tb_lc_xhci_disconnect(port3);
3948 tb_port_dbg(port3, "disconnected xHCI\n");