]> Git Repo - linux.git/blob - drivers/irqchip/irq-gic-v3-its.c
ACPI: CPPC: Adjust debug messages in amd_set_max_freq_ratio() to warn
[linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <[email protected]>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41 #include "irq-msi-lib.h"
42
43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
46 #define ITS_FLAGS_FORCE_NON_SHAREABLE           (1ULL << 3)
47
48 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
49 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
50 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
51
52 static u32 lpi_id_bits;
53
54 /*
55  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56  * deal with (one configuration byte per interrupt). PENDBASE has to
57  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58  */
59 #define LPI_NRBITS              lpi_id_bits
60 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62
63 static u8 __ro_after_init lpi_prop_prio;
64
65 /*
66  * Collection structure - just an ID, and a redistributor address to
67  * ping. We use one per CPU as a bag of interrupts assigned to this
68  * CPU.
69  */
70 struct its_collection {
71         u64                     target_address;
72         u16                     col_id;
73 };
74
75 /*
76  * The ITS_BASER structure - contains memory information, cached
77  * value of BASER register configuration and ITS page size.
78  */
79 struct its_baser {
80         void            *base;
81         u64             val;
82         u32             order;
83         u32             psz;
84 };
85
86 struct its_device;
87
88 /*
89  * The ITS structure - contains most of the infrastructure, with the
90  * top-level MSI domain, the command queue, the collections, and the
91  * list of devices writing to it.
92  *
93  * dev_alloc_lock has to be taken for device allocations, while the
94  * spinlock must be taken to parse data structures such as the device
95  * list.
96  */
97 struct its_node {
98         raw_spinlock_t          lock;
99         struct mutex            dev_alloc_lock;
100         struct list_head        entry;
101         void __iomem            *base;
102         void __iomem            *sgir_base;
103         phys_addr_t             phys_base;
104         struct its_cmd_block    *cmd_base;
105         struct its_cmd_block    *cmd_write;
106         struct its_baser        tables[GITS_BASER_NR_REGS];
107         struct its_collection   *collections;
108         struct fwnode_handle    *fwnode_handle;
109         u64                     (*get_msi_base)(struct its_device *its_dev);
110         u64                     typer;
111         u64                     cbaser_save;
112         u32                     ctlr_save;
113         u32                     mpidr;
114         struct list_head        its_device_list;
115         u64                     flags;
116         unsigned long           list_nr;
117         int                     numa_node;
118         unsigned int            msi_domain_flags;
119         u32                     pre_its_base; /* for Socionext Synquacer */
120         int                     vlpi_redist_offset;
121 };
122
123 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
124 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
125 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
126
127 #define ITS_ITT_ALIGN           SZ_256
128
129 /* The maximum number of VPEID bits supported by VLPI commands */
130 #define ITS_MAX_VPEID_BITS                                              \
131         ({                                                              \
132                 int nvpeid = 16;                                        \
133                 if (gic_rdists->has_rvpeid &&                           \
134                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
135                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
136                                       GICD_TYPER2_VID);                 \
137                                                                         \
138                 nvpeid;                                                 \
139         })
140 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
141
142 /* Convert page order to size in bytes */
143 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
144
145 struct event_lpi_map {
146         unsigned long           *lpi_map;
147         u16                     *col_map;
148         irq_hw_number_t         lpi_base;
149         int                     nr_lpis;
150         raw_spinlock_t          vlpi_lock;
151         struct its_vm           *vm;
152         struct its_vlpi_map     *vlpi_maps;
153         int                     nr_vlpis;
154 };
155
156 /*
157  * The ITS view of a device - belongs to an ITS, owns an interrupt
158  * translation table, and a list of interrupts.  If it some of its
159  * LPIs are injected into a guest (GICv4), the event_map.vm field
160  * indicates which one.
161  */
162 struct its_device {
163         struct list_head        entry;
164         struct its_node         *its;
165         struct event_lpi_map    event_map;
166         void                    *itt;
167         u32                     nr_ites;
168         u32                     device_id;
169         bool                    shared;
170 };
171
172 static struct {
173         raw_spinlock_t          lock;
174         struct its_device       *dev;
175         struct its_vpe          **vpes;
176         int                     next_victim;
177 } vpe_proxy;
178
179 struct cpu_lpi_count {
180         atomic_t        managed;
181         atomic_t        unmanaged;
182 };
183
184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
185
186 static LIST_HEAD(its_nodes);
187 static DEFINE_RAW_SPINLOCK(its_lock);
188 static struct rdists *gic_rdists;
189 static struct irq_domain *its_parent;
190
191 static unsigned long its_list_map;
192 static u16 vmovp_seq_num;
193 static DEFINE_RAW_SPINLOCK(vmovp_lock);
194
195 static DEFINE_IDA(its_vpeid_ida);
196
197 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
198 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
199 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
200 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
201
202 /*
203  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
204  * always have vSGIs mapped.
205  */
206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
207 {
208         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
209 }
210
211 static bool rdists_support_shareable(void)
212 {
213         return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
214 }
215
216 static u16 get_its_list(struct its_vm *vm)
217 {
218         struct its_node *its;
219         unsigned long its_list = 0;
220
221         list_for_each_entry(its, &its_nodes, entry) {
222                 if (!is_v4(its))
223                         continue;
224
225                 if (require_its_list_vmovp(vm, its))
226                         __set_bit(its->list_nr, &its_list);
227         }
228
229         return (u16)its_list;
230 }
231
232 static inline u32 its_get_event_id(struct irq_data *d)
233 {
234         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
235         return d->hwirq - its_dev->event_map.lpi_base;
236 }
237
238 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
239                                                u32 event)
240 {
241         struct its_node *its = its_dev->its;
242
243         return its->collections + its_dev->event_map.col_map[event];
244 }
245
246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
247                                                u32 event)
248 {
249         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
250                 return NULL;
251
252         return &its_dev->event_map.vlpi_maps[event];
253 }
254
255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
256 {
257         if (irqd_is_forwarded_to_vcpu(d)) {
258                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
259                 u32 event = its_get_event_id(d);
260
261                 return dev_event_to_vlpi_map(its_dev, event);
262         }
263
264         return NULL;
265 }
266
267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
268 {
269         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
270         return vpe->col_idx;
271 }
272
273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
274 {
275         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
276 }
277
278 static struct irq_chip its_vpe_irq_chip;
279
280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
281 {
282         struct its_vpe *vpe = NULL;
283         int cpu;
284
285         if (d->chip == &its_vpe_irq_chip) {
286                 vpe = irq_data_get_irq_chip_data(d);
287         } else {
288                 struct its_vlpi_map *map = get_vlpi_map(d);
289                 if (map)
290                         vpe = map->vpe;
291         }
292
293         if (vpe) {
294                 cpu = vpe_to_cpuid_lock(vpe, flags);
295         } else {
296                 /* Physical LPIs are already locked via the irq_desc lock */
297                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
298                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
299                 /* Keep GCC quiet... */
300                 *flags = 0;
301         }
302
303         return cpu;
304 }
305
306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
307 {
308         struct its_vpe *vpe = NULL;
309
310         if (d->chip == &its_vpe_irq_chip) {
311                 vpe = irq_data_get_irq_chip_data(d);
312         } else {
313                 struct its_vlpi_map *map = get_vlpi_map(d);
314                 if (map)
315                         vpe = map->vpe;
316         }
317
318         if (vpe)
319                 vpe_to_cpuid_unlock(vpe, flags);
320 }
321
322 static struct its_collection *valid_col(struct its_collection *col)
323 {
324         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
325                 return NULL;
326
327         return col;
328 }
329
330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
331 {
332         if (valid_col(its->collections + vpe->col_idx))
333                 return vpe;
334
335         return NULL;
336 }
337
338 /*
339  * ITS command descriptors - parameters to be encoded in a command
340  * block.
341  */
342 struct its_cmd_desc {
343         union {
344                 struct {
345                         struct its_device *dev;
346                         u32 event_id;
347                 } its_inv_cmd;
348
349                 struct {
350                         struct its_device *dev;
351                         u32 event_id;
352                 } its_clear_cmd;
353
354                 struct {
355                         struct its_device *dev;
356                         u32 event_id;
357                 } its_int_cmd;
358
359                 struct {
360                         struct its_device *dev;
361                         int valid;
362                 } its_mapd_cmd;
363
364                 struct {
365                         struct its_collection *col;
366                         int valid;
367                 } its_mapc_cmd;
368
369                 struct {
370                         struct its_device *dev;
371                         u32 phys_id;
372                         u32 event_id;
373                 } its_mapti_cmd;
374
375                 struct {
376                         struct its_device *dev;
377                         struct its_collection *col;
378                         u32 event_id;
379                 } its_movi_cmd;
380
381                 struct {
382                         struct its_device *dev;
383                         u32 event_id;
384                 } its_discard_cmd;
385
386                 struct {
387                         struct its_collection *col;
388                 } its_invall_cmd;
389
390                 struct {
391                         struct its_vpe *vpe;
392                 } its_vinvall_cmd;
393
394                 struct {
395                         struct its_vpe *vpe;
396                         struct its_collection *col;
397                         bool valid;
398                 } its_vmapp_cmd;
399
400                 struct {
401                         struct its_vpe *vpe;
402                         struct its_device *dev;
403                         u32 virt_id;
404                         u32 event_id;
405                         bool db_enabled;
406                 } its_vmapti_cmd;
407
408                 struct {
409                         struct its_vpe *vpe;
410                         struct its_device *dev;
411                         u32 event_id;
412                         bool db_enabled;
413                 } its_vmovi_cmd;
414
415                 struct {
416                         struct its_vpe *vpe;
417                         struct its_collection *col;
418                         u16 seq_num;
419                         u16 its_list;
420                 } its_vmovp_cmd;
421
422                 struct {
423                         struct its_vpe *vpe;
424                 } its_invdb_cmd;
425
426                 struct {
427                         struct its_vpe *vpe;
428                         u8 sgi;
429                         u8 priority;
430                         bool enable;
431                         bool group;
432                         bool clear;
433                 } its_vsgi_cmd;
434         };
435 };
436
437 /*
438  * The ITS command block, which is what the ITS actually parses.
439  */
440 struct its_cmd_block {
441         union {
442                 u64     raw_cmd[4];
443                 __le64  raw_cmd_le[4];
444         };
445 };
446
447 #define ITS_CMD_QUEUE_SZ                SZ_64K
448 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
449
450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
451                                                     struct its_cmd_block *,
452                                                     struct its_cmd_desc *);
453
454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
455                                               struct its_cmd_block *,
456                                               struct its_cmd_desc *);
457
458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
459 {
460         u64 mask = GENMASK_ULL(h, l);
461         *raw_cmd &= ~mask;
462         *raw_cmd |= (val << l) & mask;
463 }
464
465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
466 {
467         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
468 }
469
470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
471 {
472         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
473 }
474
475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
476 {
477         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
478 }
479
480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
481 {
482         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
483 }
484
485 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
486 {
487         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
488 }
489
490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
491 {
492         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
493 }
494
495 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
496 {
497         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
498 }
499
500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
501 {
502         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
503 }
504
505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
506 {
507         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
508 }
509
510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
511 {
512         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
513 }
514
515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
516 {
517         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
518 }
519
520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
521 {
522         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
523 }
524
525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
526 {
527         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
528 }
529
530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
531 {
532         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
533 }
534
535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
536 {
537         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
538 }
539
540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
541 {
542         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
543 }
544
545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
546 {
547         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
548 }
549
550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
551 {
552         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
553 }
554
555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
556 {
557         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
558 }
559
560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
561 {
562         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
563 }
564
565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
566                                         u32 vpe_db_lpi)
567 {
568         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
569 }
570
571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
572                                         u32 vpe_db_lpi)
573 {
574         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
575 }
576
577 static void its_encode_db(struct its_cmd_block *cmd, bool db)
578 {
579         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
580 }
581
582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
583 {
584         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
585 }
586
587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
588 {
589         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
590 }
591
592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
593 {
594         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
595 }
596
597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
598 {
599         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
600 }
601
602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
603 {
604         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
605 }
606
607 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
608 {
609         /* Let's fixup BE commands */
610         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
611         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
612         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
613         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
614 }
615
616 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
617                                                  struct its_cmd_block *cmd,
618                                                  struct its_cmd_desc *desc)
619 {
620         unsigned long itt_addr;
621         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
622
623         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
624         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
625
626         its_encode_cmd(cmd, GITS_CMD_MAPD);
627         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
628         its_encode_size(cmd, size - 1);
629         its_encode_itt(cmd, itt_addr);
630         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
631
632         its_fixup_cmd(cmd);
633
634         return NULL;
635 }
636
637 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
638                                                  struct its_cmd_block *cmd,
639                                                  struct its_cmd_desc *desc)
640 {
641         its_encode_cmd(cmd, GITS_CMD_MAPC);
642         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
643         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
644         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
645
646         its_fixup_cmd(cmd);
647
648         return desc->its_mapc_cmd.col;
649 }
650
651 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
652                                                   struct its_cmd_block *cmd,
653                                                   struct its_cmd_desc *desc)
654 {
655         struct its_collection *col;
656
657         col = dev_event_to_col(desc->its_mapti_cmd.dev,
658                                desc->its_mapti_cmd.event_id);
659
660         its_encode_cmd(cmd, GITS_CMD_MAPTI);
661         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
662         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
663         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
664         its_encode_collection(cmd, col->col_id);
665
666         its_fixup_cmd(cmd);
667
668         return valid_col(col);
669 }
670
671 static struct its_collection *its_build_movi_cmd(struct its_node *its,
672                                                  struct its_cmd_block *cmd,
673                                                  struct its_cmd_desc *desc)
674 {
675         struct its_collection *col;
676
677         col = dev_event_to_col(desc->its_movi_cmd.dev,
678                                desc->its_movi_cmd.event_id);
679
680         its_encode_cmd(cmd, GITS_CMD_MOVI);
681         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
682         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
683         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
684
685         its_fixup_cmd(cmd);
686
687         return valid_col(col);
688 }
689
690 static struct its_collection *its_build_discard_cmd(struct its_node *its,
691                                                     struct its_cmd_block *cmd,
692                                                     struct its_cmd_desc *desc)
693 {
694         struct its_collection *col;
695
696         col = dev_event_to_col(desc->its_discard_cmd.dev,
697                                desc->its_discard_cmd.event_id);
698
699         its_encode_cmd(cmd, GITS_CMD_DISCARD);
700         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
701         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
702
703         its_fixup_cmd(cmd);
704
705         return valid_col(col);
706 }
707
708 static struct its_collection *its_build_inv_cmd(struct its_node *its,
709                                                 struct its_cmd_block *cmd,
710                                                 struct its_cmd_desc *desc)
711 {
712         struct its_collection *col;
713
714         col = dev_event_to_col(desc->its_inv_cmd.dev,
715                                desc->its_inv_cmd.event_id);
716
717         its_encode_cmd(cmd, GITS_CMD_INV);
718         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
719         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
720
721         its_fixup_cmd(cmd);
722
723         return valid_col(col);
724 }
725
726 static struct its_collection *its_build_int_cmd(struct its_node *its,
727                                                 struct its_cmd_block *cmd,
728                                                 struct its_cmd_desc *desc)
729 {
730         struct its_collection *col;
731
732         col = dev_event_to_col(desc->its_int_cmd.dev,
733                                desc->its_int_cmd.event_id);
734
735         its_encode_cmd(cmd, GITS_CMD_INT);
736         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
737         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
738
739         its_fixup_cmd(cmd);
740
741         return valid_col(col);
742 }
743
744 static struct its_collection *its_build_clear_cmd(struct its_node *its,
745                                                   struct its_cmd_block *cmd,
746                                                   struct its_cmd_desc *desc)
747 {
748         struct its_collection *col;
749
750         col = dev_event_to_col(desc->its_clear_cmd.dev,
751                                desc->its_clear_cmd.event_id);
752
753         its_encode_cmd(cmd, GITS_CMD_CLEAR);
754         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
755         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
756
757         its_fixup_cmd(cmd);
758
759         return valid_col(col);
760 }
761
762 static struct its_collection *its_build_invall_cmd(struct its_node *its,
763                                                    struct its_cmd_block *cmd,
764                                                    struct its_cmd_desc *desc)
765 {
766         its_encode_cmd(cmd, GITS_CMD_INVALL);
767         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
768
769         its_fixup_cmd(cmd);
770
771         return desc->its_invall_cmd.col;
772 }
773
774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
775                                              struct its_cmd_block *cmd,
776                                              struct its_cmd_desc *desc)
777 {
778         its_encode_cmd(cmd, GITS_CMD_VINVALL);
779         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
780
781         its_fixup_cmd(cmd);
782
783         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
784 }
785
786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
787                                            struct its_cmd_block *cmd,
788                                            struct its_cmd_desc *desc)
789 {
790         struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
791         unsigned long vpt_addr, vconf_addr;
792         u64 target;
793         bool alloc;
794
795         its_encode_cmd(cmd, GITS_CMD_VMAPP);
796         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
797         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
798
799         if (!desc->its_vmapp_cmd.valid) {
800                 if (is_v4_1(its)) {
801                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
802                         its_encode_alloc(cmd, alloc);
803                         /*
804                          * Unmapping a VPE is self-synchronizing on GICv4.1,
805                          * no need to issue a VSYNC.
806                          */
807                         vpe = NULL;
808                 }
809
810                 goto out;
811         }
812
813         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
814         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
815
816         its_encode_target(cmd, target);
817         its_encode_vpt_addr(cmd, vpt_addr);
818         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
819
820         if (!is_v4_1(its))
821                 goto out;
822
823         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
824
825         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
826
827         its_encode_alloc(cmd, alloc);
828
829         /*
830          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
831          * to be unmapped first, and in this case, we may remap the vPE
832          * back while the VPT is not empty. So we can't assume that the
833          * VPT is empty on map. This is why we never advertise PTZ.
834          */
835         its_encode_ptz(cmd, false);
836         its_encode_vconf_addr(cmd, vconf_addr);
837         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
838
839 out:
840         its_fixup_cmd(cmd);
841
842         return vpe;
843 }
844
845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
846                                             struct its_cmd_block *cmd,
847                                             struct its_cmd_desc *desc)
848 {
849         u32 db;
850
851         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
852                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
853         else
854                 db = 1023;
855
856         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
857         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
858         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
859         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
860         its_encode_db_phys_id(cmd, db);
861         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
862
863         its_fixup_cmd(cmd);
864
865         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
866 }
867
868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
869                                            struct its_cmd_block *cmd,
870                                            struct its_cmd_desc *desc)
871 {
872         u32 db;
873
874         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
875                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
876         else
877                 db = 1023;
878
879         its_encode_cmd(cmd, GITS_CMD_VMOVI);
880         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
881         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
882         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
883         its_encode_db_phys_id(cmd, db);
884         its_encode_db_valid(cmd, true);
885
886         its_fixup_cmd(cmd);
887
888         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
889 }
890
891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
892                                            struct its_cmd_block *cmd,
893                                            struct its_cmd_desc *desc)
894 {
895         u64 target;
896
897         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
898         its_encode_cmd(cmd, GITS_CMD_VMOVP);
899         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
900         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
901         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
902         its_encode_target(cmd, target);
903
904         if (is_v4_1(its)) {
905                 its_encode_db(cmd, true);
906                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
907         }
908
909         its_fixup_cmd(cmd);
910
911         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
912 }
913
914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
915                                           struct its_cmd_block *cmd,
916                                           struct its_cmd_desc *desc)
917 {
918         struct its_vlpi_map *map;
919
920         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
921                                     desc->its_inv_cmd.event_id);
922
923         its_encode_cmd(cmd, GITS_CMD_INV);
924         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
925         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
926
927         its_fixup_cmd(cmd);
928
929         return valid_vpe(its, map->vpe);
930 }
931
932 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
933                                           struct its_cmd_block *cmd,
934                                           struct its_cmd_desc *desc)
935 {
936         struct its_vlpi_map *map;
937
938         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
939                                     desc->its_int_cmd.event_id);
940
941         its_encode_cmd(cmd, GITS_CMD_INT);
942         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
943         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
944
945         its_fixup_cmd(cmd);
946
947         return valid_vpe(its, map->vpe);
948 }
949
950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
951                                             struct its_cmd_block *cmd,
952                                             struct its_cmd_desc *desc)
953 {
954         struct its_vlpi_map *map;
955
956         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
957                                     desc->its_clear_cmd.event_id);
958
959         its_encode_cmd(cmd, GITS_CMD_CLEAR);
960         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
961         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
962
963         its_fixup_cmd(cmd);
964
965         return valid_vpe(its, map->vpe);
966 }
967
968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
969                                            struct its_cmd_block *cmd,
970                                            struct its_cmd_desc *desc)
971 {
972         if (WARN_ON(!is_v4_1(its)))
973                 return NULL;
974
975         its_encode_cmd(cmd, GITS_CMD_INVDB);
976         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
977
978         its_fixup_cmd(cmd);
979
980         return valid_vpe(its, desc->its_invdb_cmd.vpe);
981 }
982
983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
984                                           struct its_cmd_block *cmd,
985                                           struct its_cmd_desc *desc)
986 {
987         if (WARN_ON(!is_v4_1(its)))
988                 return NULL;
989
990         its_encode_cmd(cmd, GITS_CMD_VSGI);
991         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
992         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
993         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
994         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
995         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
996         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
997
998         its_fixup_cmd(cmd);
999
1000         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1001 }
1002
1003 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1004                                  struct its_cmd_block *ptr)
1005 {
1006         return (ptr - its->cmd_base) * sizeof(*ptr);
1007 }
1008
1009 static int its_queue_full(struct its_node *its)
1010 {
1011         int widx;
1012         int ridx;
1013
1014         widx = its->cmd_write - its->cmd_base;
1015         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1016
1017         /* This is incredibly unlikely to happen, unless the ITS locks up. */
1018         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1019                 return 1;
1020
1021         return 0;
1022 }
1023
1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1025 {
1026         struct its_cmd_block *cmd;
1027         u32 count = 1000000;    /* 1s! */
1028
1029         while (its_queue_full(its)) {
1030                 count--;
1031                 if (!count) {
1032                         pr_err_ratelimited("ITS queue not draining\n");
1033                         return NULL;
1034                 }
1035                 cpu_relax();
1036                 udelay(1);
1037         }
1038
1039         cmd = its->cmd_write++;
1040
1041         /* Handle queue wrapping */
1042         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1043                 its->cmd_write = its->cmd_base;
1044
1045         /* Clear command  */
1046         cmd->raw_cmd[0] = 0;
1047         cmd->raw_cmd[1] = 0;
1048         cmd->raw_cmd[2] = 0;
1049         cmd->raw_cmd[3] = 0;
1050
1051         return cmd;
1052 }
1053
1054 static struct its_cmd_block *its_post_commands(struct its_node *its)
1055 {
1056         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1057
1058         writel_relaxed(wr, its->base + GITS_CWRITER);
1059
1060         return its->cmd_write;
1061 }
1062
1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1064 {
1065         /*
1066          * Make sure the commands written to memory are observable by
1067          * the ITS.
1068          */
1069         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1070                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1071         else
1072                 dsb(ishst);
1073 }
1074
1075 static int its_wait_for_range_completion(struct its_node *its,
1076                                          u64    prev_idx,
1077                                          struct its_cmd_block *to)
1078 {
1079         u64 rd_idx, to_idx, linear_idx;
1080         u32 count = 1000000;    /* 1s! */
1081
1082         /* Linearize to_idx if the command set has wrapped around */
1083         to_idx = its_cmd_ptr_to_offset(its, to);
1084         if (to_idx < prev_idx)
1085                 to_idx += ITS_CMD_QUEUE_SZ;
1086
1087         linear_idx = prev_idx;
1088
1089         while (1) {
1090                 s64 delta;
1091
1092                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1093
1094                 /*
1095                  * Compute the read pointer progress, taking the
1096                  * potential wrap-around into account.
1097                  */
1098                 delta = rd_idx - prev_idx;
1099                 if (rd_idx < prev_idx)
1100                         delta += ITS_CMD_QUEUE_SZ;
1101
1102                 linear_idx += delta;
1103                 if (linear_idx >= to_idx)
1104                         break;
1105
1106                 count--;
1107                 if (!count) {
1108                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1109                                            to_idx, linear_idx);
1110                         return -1;
1111                 }
1112                 prev_idx = rd_idx;
1113                 cpu_relax();
1114                 udelay(1);
1115         }
1116
1117         return 0;
1118 }
1119
1120 /* Warning, macro hell follows */
1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1122 void name(struct its_node *its,                                         \
1123           buildtype builder,                                            \
1124           struct its_cmd_desc *desc)                                    \
1125 {                                                                       \
1126         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1127         synctype *sync_obj;                                             \
1128         unsigned long flags;                                            \
1129         u64 rd_idx;                                                     \
1130                                                                         \
1131         raw_spin_lock_irqsave(&its->lock, flags);                       \
1132                                                                         \
1133         cmd = its_allocate_entry(its);                                  \
1134         if (!cmd) {             /* We're soooooo screewed... */         \
1135                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1136                 return;                                                 \
1137         }                                                               \
1138         sync_obj = builder(its, cmd, desc);                             \
1139         its_flush_cmd(its, cmd);                                        \
1140                                                                         \
1141         if (sync_obj) {                                                 \
1142                 sync_cmd = its_allocate_entry(its);                     \
1143                 if (!sync_cmd)                                          \
1144                         goto post;                                      \
1145                                                                         \
1146                 buildfn(its, sync_cmd, sync_obj);                       \
1147                 its_flush_cmd(its, sync_cmd);                           \
1148         }                                                               \
1149                                                                         \
1150 post:                                                                   \
1151         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1152         next_cmd = its_post_commands(its);                              \
1153         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1154                                                                         \
1155         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1156                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1157 }
1158
1159 static void its_build_sync_cmd(struct its_node *its,
1160                                struct its_cmd_block *sync_cmd,
1161                                struct its_collection *sync_col)
1162 {
1163         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1164         its_encode_target(sync_cmd, sync_col->target_address);
1165
1166         its_fixup_cmd(sync_cmd);
1167 }
1168
1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1170                              struct its_collection, its_build_sync_cmd)
1171
1172 static void its_build_vsync_cmd(struct its_node *its,
1173                                 struct its_cmd_block *sync_cmd,
1174                                 struct its_vpe *sync_vpe)
1175 {
1176         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1177         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1178
1179         its_fixup_cmd(sync_cmd);
1180 }
1181
1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1183                              struct its_vpe, its_build_vsync_cmd)
1184
1185 static void its_send_int(struct its_device *dev, u32 event_id)
1186 {
1187         struct its_cmd_desc desc;
1188
1189         desc.its_int_cmd.dev = dev;
1190         desc.its_int_cmd.event_id = event_id;
1191
1192         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1193 }
1194
1195 static void its_send_clear(struct its_device *dev, u32 event_id)
1196 {
1197         struct its_cmd_desc desc;
1198
1199         desc.its_clear_cmd.dev = dev;
1200         desc.its_clear_cmd.event_id = event_id;
1201
1202         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1203 }
1204
1205 static void its_send_inv(struct its_device *dev, u32 event_id)
1206 {
1207         struct its_cmd_desc desc;
1208
1209         desc.its_inv_cmd.dev = dev;
1210         desc.its_inv_cmd.event_id = event_id;
1211
1212         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1213 }
1214
1215 static void its_send_mapd(struct its_device *dev, int valid)
1216 {
1217         struct its_cmd_desc desc;
1218
1219         desc.its_mapd_cmd.dev = dev;
1220         desc.its_mapd_cmd.valid = !!valid;
1221
1222         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1223 }
1224
1225 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1226                           int valid)
1227 {
1228         struct its_cmd_desc desc;
1229
1230         desc.its_mapc_cmd.col = col;
1231         desc.its_mapc_cmd.valid = !!valid;
1232
1233         its_send_single_command(its, its_build_mapc_cmd, &desc);
1234 }
1235
1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1237 {
1238         struct its_cmd_desc desc;
1239
1240         desc.its_mapti_cmd.dev = dev;
1241         desc.its_mapti_cmd.phys_id = irq_id;
1242         desc.its_mapti_cmd.event_id = id;
1243
1244         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1245 }
1246
1247 static void its_send_movi(struct its_device *dev,
1248                           struct its_collection *col, u32 id)
1249 {
1250         struct its_cmd_desc desc;
1251
1252         desc.its_movi_cmd.dev = dev;
1253         desc.its_movi_cmd.col = col;
1254         desc.its_movi_cmd.event_id = id;
1255
1256         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1257 }
1258
1259 static void its_send_discard(struct its_device *dev, u32 id)
1260 {
1261         struct its_cmd_desc desc;
1262
1263         desc.its_discard_cmd.dev = dev;
1264         desc.its_discard_cmd.event_id = id;
1265
1266         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1267 }
1268
1269 static void its_send_invall(struct its_node *its, struct its_collection *col)
1270 {
1271         struct its_cmd_desc desc;
1272
1273         desc.its_invall_cmd.col = col;
1274
1275         its_send_single_command(its, its_build_invall_cmd, &desc);
1276 }
1277
1278 static void its_send_vmapti(struct its_device *dev, u32 id)
1279 {
1280         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1281         struct its_cmd_desc desc;
1282
1283         desc.its_vmapti_cmd.vpe = map->vpe;
1284         desc.its_vmapti_cmd.dev = dev;
1285         desc.its_vmapti_cmd.virt_id = map->vintid;
1286         desc.its_vmapti_cmd.event_id = id;
1287         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1288
1289         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1290 }
1291
1292 static void its_send_vmovi(struct its_device *dev, u32 id)
1293 {
1294         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1295         struct its_cmd_desc desc;
1296
1297         desc.its_vmovi_cmd.vpe = map->vpe;
1298         desc.its_vmovi_cmd.dev = dev;
1299         desc.its_vmovi_cmd.event_id = id;
1300         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1301
1302         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1303 }
1304
1305 static void its_send_vmapp(struct its_node *its,
1306                            struct its_vpe *vpe, bool valid)
1307 {
1308         struct its_cmd_desc desc;
1309
1310         desc.its_vmapp_cmd.vpe = vpe;
1311         desc.its_vmapp_cmd.valid = valid;
1312         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1313
1314         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1315 }
1316
1317 static void its_send_vmovp(struct its_vpe *vpe)
1318 {
1319         struct its_cmd_desc desc = {};
1320         struct its_node *its;
1321         int col_id = vpe->col_idx;
1322
1323         desc.its_vmovp_cmd.vpe = vpe;
1324
1325         if (!its_list_map) {
1326                 its = list_first_entry(&its_nodes, struct its_node, entry);
1327                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1328                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1329                 return;
1330         }
1331
1332         /*
1333          * Protect against concurrent updates of the mapping state on
1334          * individual VMs.
1335          */
1336         guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
1337
1338         /*
1339          * Yet another marvel of the architecture. If using the
1340          * its_list "feature", we need to make sure that all ITSs
1341          * receive all VMOVP commands in the same order. The only way
1342          * to guarantee this is to make vmovp a serialization point.
1343          *
1344          * Wall <-- Head.
1345          */
1346         guard(raw_spinlock)(&vmovp_lock);
1347         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1348         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1349
1350         /* Emit VMOVPs */
1351         list_for_each_entry(its, &its_nodes, entry) {
1352                 if (!is_v4(its))
1353                         continue;
1354
1355                 if (!require_its_list_vmovp(vpe->its_vm, its))
1356                         continue;
1357
1358                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1359                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1360         }
1361 }
1362
1363 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1364 {
1365         struct its_cmd_desc desc;
1366
1367         desc.its_vinvall_cmd.vpe = vpe;
1368         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1369 }
1370
1371 static void its_send_vinv(struct its_device *dev, u32 event_id)
1372 {
1373         struct its_cmd_desc desc;
1374
1375         /*
1376          * There is no real VINV command. This is just a normal INV,
1377          * with a VSYNC instead of a SYNC.
1378          */
1379         desc.its_inv_cmd.dev = dev;
1380         desc.its_inv_cmd.event_id = event_id;
1381
1382         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1383 }
1384
1385 static void its_send_vint(struct its_device *dev, u32 event_id)
1386 {
1387         struct its_cmd_desc desc;
1388
1389         /*
1390          * There is no real VINT command. This is just a normal INT,
1391          * with a VSYNC instead of a SYNC.
1392          */
1393         desc.its_int_cmd.dev = dev;
1394         desc.its_int_cmd.event_id = event_id;
1395
1396         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1397 }
1398
1399 static void its_send_vclear(struct its_device *dev, u32 event_id)
1400 {
1401         struct its_cmd_desc desc;
1402
1403         /*
1404          * There is no real VCLEAR command. This is just a normal CLEAR,
1405          * with a VSYNC instead of a SYNC.
1406          */
1407         desc.its_clear_cmd.dev = dev;
1408         desc.its_clear_cmd.event_id = event_id;
1409
1410         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1411 }
1412
1413 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1414 {
1415         struct its_cmd_desc desc;
1416
1417         desc.its_invdb_cmd.vpe = vpe;
1418         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1419 }
1420
1421 /*
1422  * irqchip functions - assumes MSI, mostly.
1423  */
1424 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1425 {
1426         struct its_vlpi_map *map = get_vlpi_map(d);
1427         irq_hw_number_t hwirq;
1428         void *va;
1429         u8 *cfg;
1430
1431         if (map) {
1432                 va = page_address(map->vm->vprop_page);
1433                 hwirq = map->vintid;
1434
1435                 /* Remember the updated property */
1436                 map->properties &= ~clr;
1437                 map->properties |= set | LPI_PROP_GROUP1;
1438         } else {
1439                 va = gic_rdists->prop_table_va;
1440                 hwirq = d->hwirq;
1441         }
1442
1443         cfg = va + hwirq - 8192;
1444         *cfg &= ~clr;
1445         *cfg |= set | LPI_PROP_GROUP1;
1446
1447         /*
1448          * Make the above write visible to the redistributors.
1449          * And yes, we're flushing exactly: One. Single. Byte.
1450          * Humpf...
1451          */
1452         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1453                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1454         else
1455                 dsb(ishst);
1456 }
1457
1458 static void wait_for_syncr(void __iomem *rdbase)
1459 {
1460         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1461                 cpu_relax();
1462 }
1463
1464 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1465 {
1466         void __iomem *rdbase;
1467         unsigned long flags;
1468         int cpu;
1469
1470         /* Target the redistributor this LPI is currently routed to */
1471         cpu = irq_to_cpuid_lock(d, &flags);
1472         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1473
1474         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1475         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1476         wait_for_syncr(rdbase);
1477
1478         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1479         irq_to_cpuid_unlock(d, flags);
1480 }
1481
1482 static void direct_lpi_inv(struct irq_data *d)
1483 {
1484         struct its_vlpi_map *map = get_vlpi_map(d);
1485         u64 val;
1486
1487         if (map) {
1488                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1489
1490                 WARN_ON(!is_v4_1(its_dev->its));
1491
1492                 val  = GICR_INVLPIR_V;
1493                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1494                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1495         } else {
1496                 val = d->hwirq;
1497         }
1498
1499         __direct_lpi_inv(d, val);
1500 }
1501
1502 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1503 {
1504         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1505
1506         lpi_write_config(d, clr, set);
1507         if (gic_rdists->has_direct_lpi &&
1508             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1509                 direct_lpi_inv(d);
1510         else if (!irqd_is_forwarded_to_vcpu(d))
1511                 its_send_inv(its_dev, its_get_event_id(d));
1512         else
1513                 its_send_vinv(its_dev, its_get_event_id(d));
1514 }
1515
1516 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1517 {
1518         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1519         u32 event = its_get_event_id(d);
1520         struct its_vlpi_map *map;
1521
1522         /*
1523          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1524          * here.
1525          */
1526         if (is_v4_1(its_dev->its))
1527                 return;
1528
1529         map = dev_event_to_vlpi_map(its_dev, event);
1530
1531         if (map->db_enabled == enable)
1532                 return;
1533
1534         map->db_enabled = enable;
1535
1536         /*
1537          * More fun with the architecture:
1538          *
1539          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1540          * value or to 1023, depending on the enable bit. But that
1541          * would be issuing a mapping for an /existing/ DevID+EventID
1542          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1543          * to the /same/ vPE, using this opportunity to adjust the
1544          * doorbell. Mouahahahaha. We loves it, Precious.
1545          */
1546         its_send_vmovi(its_dev, event);
1547 }
1548
1549 static void its_mask_irq(struct irq_data *d)
1550 {
1551         if (irqd_is_forwarded_to_vcpu(d))
1552                 its_vlpi_set_doorbell(d, false);
1553
1554         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1555 }
1556
1557 static void its_unmask_irq(struct irq_data *d)
1558 {
1559         if (irqd_is_forwarded_to_vcpu(d))
1560                 its_vlpi_set_doorbell(d, true);
1561
1562         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1563 }
1564
1565 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1566 {
1567         if (irqd_affinity_is_managed(d))
1568                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1569
1570         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1571 }
1572
1573 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1574 {
1575         if (irqd_affinity_is_managed(d))
1576                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1577         else
1578                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1579 }
1580
1581 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1582 {
1583         if (irqd_affinity_is_managed(d))
1584                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1585         else
1586                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1587 }
1588
1589 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1590                                               const struct cpumask *cpu_mask)
1591 {
1592         unsigned int cpu = nr_cpu_ids, tmp;
1593         int count = S32_MAX;
1594
1595         for_each_cpu(tmp, cpu_mask) {
1596                 int this_count = its_read_lpi_count(d, tmp);
1597                 if (this_count < count) {
1598                         cpu = tmp;
1599                         count = this_count;
1600                 }
1601         }
1602
1603         return cpu;
1604 }
1605
1606 /*
1607  * As suggested by Thomas Gleixner in:
1608  * https://lore.kernel.org/r/[email protected]
1609  */
1610 static int its_select_cpu(struct irq_data *d,
1611                           const struct cpumask *aff_mask)
1612 {
1613         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1614         static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1615         static struct cpumask __tmpmask;
1616         struct cpumask *tmpmask;
1617         unsigned long flags;
1618         int cpu, node;
1619         node = its_dev->its->numa_node;
1620         tmpmask = &__tmpmask;
1621
1622         raw_spin_lock_irqsave(&tmpmask_lock, flags);
1623
1624         if (!irqd_affinity_is_managed(d)) {
1625                 /* First try the NUMA node */
1626                 if (node != NUMA_NO_NODE) {
1627                         /*
1628                          * Try the intersection of the affinity mask and the
1629                          * node mask (and the online mask, just to be safe).
1630                          */
1631                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1632                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1633
1634                         /*
1635                          * Ideally, we would check if the mask is empty, and
1636                          * try again on the full node here.
1637                          *
1638                          * But it turns out that the way ACPI describes the
1639                          * affinity for ITSs only deals about memory, and
1640                          * not target CPUs, so it cannot describe a single
1641                          * ITS placed next to two NUMA nodes.
1642                          *
1643                          * Instead, just fallback on the online mask. This
1644                          * diverges from Thomas' suggestion above.
1645                          */
1646                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1647                         if (cpu < nr_cpu_ids)
1648                                 goto out;
1649
1650                         /* If we can't cross sockets, give up */
1651                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1652                                 goto out;
1653
1654                         /* If the above failed, expand the search */
1655                 }
1656
1657                 /* Try the intersection of the affinity and online masks */
1658                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1659
1660                 /* If that doesn't fly, the online mask is the last resort */
1661                 if (cpumask_empty(tmpmask))
1662                         cpumask_copy(tmpmask, cpu_online_mask);
1663
1664                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1665         } else {
1666                 cpumask_copy(tmpmask, aff_mask);
1667
1668                 /* If we cannot cross sockets, limit the search to that node */
1669                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1670                     node != NUMA_NO_NODE)
1671                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1672
1673                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1674         }
1675 out:
1676         raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1677
1678         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1679         return cpu;
1680 }
1681
1682 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1683                             bool force)
1684 {
1685         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1686         struct its_collection *target_col;
1687         u32 id = its_get_event_id(d);
1688         int cpu, prev_cpu;
1689
1690         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1691         if (irqd_is_forwarded_to_vcpu(d))
1692                 return -EINVAL;
1693
1694         prev_cpu = its_dev->event_map.col_map[id];
1695         its_dec_lpi_count(d, prev_cpu);
1696
1697         if (!force)
1698                 cpu = its_select_cpu(d, mask_val);
1699         else
1700                 cpu = cpumask_pick_least_loaded(d, mask_val);
1701
1702         if (cpu < 0 || cpu >= nr_cpu_ids)
1703                 goto err;
1704
1705         /* don't set the affinity when the target cpu is same as current one */
1706         if (cpu != prev_cpu) {
1707                 target_col = &its_dev->its->collections[cpu];
1708                 its_send_movi(its_dev, target_col, id);
1709                 its_dev->event_map.col_map[id] = cpu;
1710                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1711         }
1712
1713         its_inc_lpi_count(d, cpu);
1714
1715         return IRQ_SET_MASK_OK_DONE;
1716
1717 err:
1718         its_inc_lpi_count(d, prev_cpu);
1719         return -EINVAL;
1720 }
1721
1722 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1723 {
1724         struct its_node *its = its_dev->its;
1725
1726         return its->phys_base + GITS_TRANSLATER;
1727 }
1728
1729 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1730 {
1731         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1732         struct its_node *its;
1733         u64 addr;
1734
1735         its = its_dev->its;
1736         addr = its->get_msi_base(its_dev);
1737
1738         msg->address_lo         = lower_32_bits(addr);
1739         msg->address_hi         = upper_32_bits(addr);
1740         msg->data               = its_get_event_id(d);
1741
1742         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1743 }
1744
1745 static int its_irq_set_irqchip_state(struct irq_data *d,
1746                                      enum irqchip_irq_state which,
1747                                      bool state)
1748 {
1749         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1750         u32 event = its_get_event_id(d);
1751
1752         if (which != IRQCHIP_STATE_PENDING)
1753                 return -EINVAL;
1754
1755         if (irqd_is_forwarded_to_vcpu(d)) {
1756                 if (state)
1757                         its_send_vint(its_dev, event);
1758                 else
1759                         its_send_vclear(its_dev, event);
1760         } else {
1761                 if (state)
1762                         its_send_int(its_dev, event);
1763                 else
1764                         its_send_clear(its_dev, event);
1765         }
1766
1767         return 0;
1768 }
1769
1770 static int its_irq_retrigger(struct irq_data *d)
1771 {
1772         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1773 }
1774
1775 /*
1776  * Two favourable cases:
1777  *
1778  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1779  *     for vSGI delivery
1780  *
1781  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1782  *     and we're better off mapping all VPEs always
1783  *
1784  * If neither (a) nor (b) is true, then we map vPEs on demand.
1785  *
1786  */
1787 static bool gic_requires_eager_mapping(void)
1788 {
1789         if (!its_list_map || gic_rdists->has_rvpeid)
1790                 return true;
1791
1792         return false;
1793 }
1794
1795 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1796 {
1797         if (gic_requires_eager_mapping())
1798                 return;
1799
1800         guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1801
1802         /*
1803          * If the VM wasn't mapped yet, iterate over the vpes and get
1804          * them mapped now.
1805          */
1806         vm->vlpi_count[its->list_nr]++;
1807
1808         if (vm->vlpi_count[its->list_nr] == 1) {
1809                 int i;
1810
1811                 for (i = 0; i < vm->nr_vpes; i++) {
1812                         struct its_vpe *vpe = vm->vpes[i];
1813
1814                         scoped_guard(raw_spinlock, &vpe->vpe_lock)
1815                                 its_send_vmapp(its, vpe, true);
1816
1817                         its_send_vinvall(its, vpe);
1818                 }
1819         }
1820 }
1821
1822 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1823 {
1824         /* Not using the ITS list? Everything is always mapped. */
1825         if (gic_requires_eager_mapping())
1826                 return;
1827
1828         guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1829
1830         if (!--vm->vlpi_count[its->list_nr]) {
1831                 int i;
1832
1833                 for (i = 0; i < vm->nr_vpes; i++) {
1834                         guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1835                         its_send_vmapp(its, vm->vpes[i], false);
1836                 }
1837         }
1838 }
1839
1840 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1841 {
1842         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1843         u32 event = its_get_event_id(d);
1844
1845         if (!info->map)
1846                 return -EINVAL;
1847
1848         if (!its_dev->event_map.vm) {
1849                 struct its_vlpi_map *maps;
1850
1851                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1852                                GFP_ATOMIC);
1853                 if (!maps)
1854                         return -ENOMEM;
1855
1856                 its_dev->event_map.vm = info->map->vm;
1857                 its_dev->event_map.vlpi_maps = maps;
1858         } else if (its_dev->event_map.vm != info->map->vm) {
1859                 return -EINVAL;
1860         }
1861
1862         /* Get our private copy of the mapping information */
1863         its_dev->event_map.vlpi_maps[event] = *info->map;
1864
1865         if (irqd_is_forwarded_to_vcpu(d)) {
1866                 /* Already mapped, move it around */
1867                 its_send_vmovi(its_dev, event);
1868         } else {
1869                 /* Ensure all the VPEs are mapped on this ITS */
1870                 its_map_vm(its_dev->its, info->map->vm);
1871
1872                 /*
1873                  * Flag the interrupt as forwarded so that we can
1874                  * start poking the virtual property table.
1875                  */
1876                 irqd_set_forwarded_to_vcpu(d);
1877
1878                 /* Write out the property to the prop table */
1879                 lpi_write_config(d, 0xff, info->map->properties);
1880
1881                 /* Drop the physical mapping */
1882                 its_send_discard(its_dev, event);
1883
1884                 /* and install the virtual one */
1885                 its_send_vmapti(its_dev, event);
1886
1887                 /* Increment the number of VLPIs */
1888                 its_dev->event_map.nr_vlpis++;
1889         }
1890
1891         return 0;
1892 }
1893
1894 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1895 {
1896         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1897         struct its_vlpi_map *map;
1898
1899         map = get_vlpi_map(d);
1900
1901         if (!its_dev->event_map.vm || !map)
1902                 return -EINVAL;
1903
1904         /* Copy our mapping information to the incoming request */
1905         *info->map = *map;
1906
1907         return 0;
1908 }
1909
1910 static int its_vlpi_unmap(struct irq_data *d)
1911 {
1912         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1913         u32 event = its_get_event_id(d);
1914
1915         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1916                 return -EINVAL;
1917
1918         /* Drop the virtual mapping */
1919         its_send_discard(its_dev, event);
1920
1921         /* and restore the physical one */
1922         irqd_clr_forwarded_to_vcpu(d);
1923         its_send_mapti(its_dev, d->hwirq, event);
1924         lpi_update_config(d, 0xff, (lpi_prop_prio |
1925                                     LPI_PROP_ENABLED |
1926                                     LPI_PROP_GROUP1));
1927
1928         /* Potentially unmap the VM from this ITS */
1929         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1930
1931         /*
1932          * Drop the refcount and make the device available again if
1933          * this was the last VLPI.
1934          */
1935         if (!--its_dev->event_map.nr_vlpis) {
1936                 its_dev->event_map.vm = NULL;
1937                 kfree(its_dev->event_map.vlpi_maps);
1938         }
1939
1940         return 0;
1941 }
1942
1943 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1944 {
1945         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1946
1947         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1948                 return -EINVAL;
1949
1950         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1951                 lpi_update_config(d, 0xff, info->config);
1952         else
1953                 lpi_write_config(d, 0xff, info->config);
1954         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1955
1956         return 0;
1957 }
1958
1959 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1960 {
1961         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1962         struct its_cmd_info *info = vcpu_info;
1963
1964         /* Need a v4 ITS */
1965         if (!is_v4(its_dev->its))
1966                 return -EINVAL;
1967
1968         guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
1969
1970         /* Unmap request? */
1971         if (!info)
1972                 return its_vlpi_unmap(d);
1973
1974         switch (info->cmd_type) {
1975         case MAP_VLPI:
1976                 return its_vlpi_map(d, info);
1977
1978         case GET_VLPI:
1979                 return its_vlpi_get(d, info);
1980
1981         case PROP_UPDATE_VLPI:
1982         case PROP_UPDATE_AND_INV_VLPI:
1983                 return its_vlpi_prop_update(d, info);
1984
1985         default:
1986                 return -EINVAL;
1987         }
1988 }
1989
1990 static struct irq_chip its_irq_chip = {
1991         .name                   = "ITS",
1992         .irq_mask               = its_mask_irq,
1993         .irq_unmask             = its_unmask_irq,
1994         .irq_eoi                = irq_chip_eoi_parent,
1995         .irq_set_affinity       = its_set_affinity,
1996         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1997         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1998         .irq_retrigger          = its_irq_retrigger,
1999         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
2000 };
2001
2002
2003 /*
2004  * How we allocate LPIs:
2005  *
2006  * lpi_range_list contains ranges of LPIs that are to available to
2007  * allocate from. To allocate LPIs, just pick the first range that
2008  * fits the required allocation, and reduce it by the required
2009  * amount. Once empty, remove the range from the list.
2010  *
2011  * To free a range of LPIs, add a free range to the list, sort it and
2012  * merge the result if the new range happens to be adjacent to an
2013  * already free block.
2014  *
2015  * The consequence of the above is that allocation is cost is low, but
2016  * freeing is expensive. We assumes that freeing rarely occurs.
2017  */
2018 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2019
2020 static DEFINE_MUTEX(lpi_range_lock);
2021 static LIST_HEAD(lpi_range_list);
2022
2023 struct lpi_range {
2024         struct list_head        entry;
2025         u32                     base_id;
2026         u32                     span;
2027 };
2028
2029 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2030 {
2031         struct lpi_range *range;
2032
2033         range = kmalloc(sizeof(*range), GFP_KERNEL);
2034         if (range) {
2035                 range->base_id = base;
2036                 range->span = span;
2037         }
2038
2039         return range;
2040 }
2041
2042 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2043 {
2044         struct lpi_range *range, *tmp;
2045         int err = -ENOSPC;
2046
2047         mutex_lock(&lpi_range_lock);
2048
2049         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2050                 if (range->span >= nr_lpis) {
2051                         *base = range->base_id;
2052                         range->base_id += nr_lpis;
2053                         range->span -= nr_lpis;
2054
2055                         if (range->span == 0) {
2056                                 list_del(&range->entry);
2057                                 kfree(range);
2058                         }
2059
2060                         err = 0;
2061                         break;
2062                 }
2063         }
2064
2065         mutex_unlock(&lpi_range_lock);
2066
2067         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2068         return err;
2069 }
2070
2071 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2072 {
2073         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2074                 return;
2075         if (a->base_id + a->span != b->base_id)
2076                 return;
2077         b->base_id = a->base_id;
2078         b->span += a->span;
2079         list_del(&a->entry);
2080         kfree(a);
2081 }
2082
2083 static int free_lpi_range(u32 base, u32 nr_lpis)
2084 {
2085         struct lpi_range *new, *old;
2086
2087         new = mk_lpi_range(base, nr_lpis);
2088         if (!new)
2089                 return -ENOMEM;
2090
2091         mutex_lock(&lpi_range_lock);
2092
2093         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2094                 if (old->base_id < base)
2095                         break;
2096         }
2097         /*
2098          * old is the last element with ->base_id smaller than base,
2099          * so new goes right after it. If there are no elements with
2100          * ->base_id smaller than base, &old->entry ends up pointing
2101          * at the head of the list, and inserting new it the start of
2102          * the list is the right thing to do in that case as well.
2103          */
2104         list_add(&new->entry, &old->entry);
2105         /*
2106          * Now check if we can merge with the preceding and/or
2107          * following ranges.
2108          */
2109         merge_lpi_ranges(old, new);
2110         merge_lpi_ranges(new, list_next_entry(new, entry));
2111
2112         mutex_unlock(&lpi_range_lock);
2113         return 0;
2114 }
2115
2116 static int __init its_lpi_init(u32 id_bits)
2117 {
2118         u32 lpis = (1UL << id_bits) - 8192;
2119         u32 numlpis;
2120         int err;
2121
2122         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2123
2124         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2125                 lpis = numlpis;
2126                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2127                         lpis);
2128         }
2129
2130         /*
2131          * Initializing the allocator is just the same as freeing the
2132          * full range of LPIs.
2133          */
2134         err = free_lpi_range(8192, lpis);
2135         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2136         return err;
2137 }
2138
2139 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2140 {
2141         unsigned long *bitmap = NULL;
2142         int err = 0;
2143
2144         do {
2145                 err = alloc_lpi_range(nr_irqs, base);
2146                 if (!err)
2147                         break;
2148
2149                 nr_irqs /= 2;
2150         } while (nr_irqs > 0);
2151
2152         if (!nr_irqs)
2153                 err = -ENOSPC;
2154
2155         if (err)
2156                 goto out;
2157
2158         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2159         if (!bitmap)
2160                 goto out;
2161
2162         *nr_ids = nr_irqs;
2163
2164 out:
2165         if (!bitmap)
2166                 *base = *nr_ids = 0;
2167
2168         return bitmap;
2169 }
2170
2171 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2172 {
2173         WARN_ON(free_lpi_range(base, nr_ids));
2174         bitmap_free(bitmap);
2175 }
2176
2177 static void gic_reset_prop_table(void *va)
2178 {
2179         /* Regular IRQ priority, Group-1, disabled */
2180         memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2181
2182         /* Make sure the GIC will observe the written configuration */
2183         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2184 }
2185
2186 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2187 {
2188         struct page *prop_page;
2189
2190         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2191         if (!prop_page)
2192                 return NULL;
2193
2194         gic_reset_prop_table(page_address(prop_page));
2195
2196         return prop_page;
2197 }
2198
2199 static void its_free_prop_table(struct page *prop_page)
2200 {
2201         free_pages((unsigned long)page_address(prop_page),
2202                    get_order(LPI_PROPBASE_SZ));
2203 }
2204
2205 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2206 {
2207         phys_addr_t start, end, addr_end;
2208         u64 i;
2209
2210         /*
2211          * We don't bother checking for a kdump kernel as by
2212          * construction, the LPI tables are out of this kernel's
2213          * memory map.
2214          */
2215         if (is_kdump_kernel())
2216                 return true;
2217
2218         addr_end = addr + size - 1;
2219
2220         for_each_reserved_mem_range(i, &start, &end) {
2221                 if (addr >= start && addr_end <= end)
2222                         return true;
2223         }
2224
2225         /* Not found, not a good sign... */
2226         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2227                 &addr, &addr_end);
2228         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2229         return false;
2230 }
2231
2232 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2233 {
2234         if (efi_enabled(EFI_CONFIG_TABLES))
2235                 return efi_mem_reserve_persistent(addr, size);
2236
2237         return 0;
2238 }
2239
2240 static int __init its_setup_lpi_prop_table(void)
2241 {
2242         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2243                 u64 val;
2244
2245                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2246                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2247
2248                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2249                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2250                                                      LPI_PROPBASE_SZ,
2251                                                      MEMREMAP_WB);
2252                 gic_reset_prop_table(gic_rdists->prop_table_va);
2253         } else {
2254                 struct page *page;
2255
2256                 lpi_id_bits = min_t(u32,
2257                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2258                                     ITS_MAX_LPI_NRBITS);
2259                 page = its_allocate_prop_table(GFP_NOWAIT);
2260                 if (!page) {
2261                         pr_err("Failed to allocate PROPBASE\n");
2262                         return -ENOMEM;
2263                 }
2264
2265                 gic_rdists->prop_table_pa = page_to_phys(page);
2266                 gic_rdists->prop_table_va = page_address(page);
2267                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2268                                           LPI_PROPBASE_SZ));
2269         }
2270
2271         pr_info("GICv3: using LPI property table @%pa\n",
2272                 &gic_rdists->prop_table_pa);
2273
2274         return its_lpi_init(lpi_id_bits);
2275 }
2276
2277 static const char *its_base_type_string[] = {
2278         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2279         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2280         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2281         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2282         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2283         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2284         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2285 };
2286
2287 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2288 {
2289         u32 idx = baser - its->tables;
2290
2291         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2292 }
2293
2294 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2295                             u64 val)
2296 {
2297         u32 idx = baser - its->tables;
2298
2299         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2300         baser->val = its_read_baser(its, baser);
2301 }
2302
2303 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2304                            u64 cache, u64 shr, u32 order, bool indirect)
2305 {
2306         u64 val = its_read_baser(its, baser);
2307         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2308         u64 type = GITS_BASER_TYPE(val);
2309         u64 baser_phys, tmp;
2310         u32 alloc_pages, psz;
2311         struct page *page;
2312         void *base;
2313
2314         psz = baser->psz;
2315         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2316         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2317                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2318                         &its->phys_base, its_base_type_string[type],
2319                         alloc_pages, GITS_BASER_PAGES_MAX);
2320                 alloc_pages = GITS_BASER_PAGES_MAX;
2321                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2322         }
2323
2324         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2325         if (!page)
2326                 return -ENOMEM;
2327
2328         base = (void *)page_address(page);
2329         baser_phys = virt_to_phys(base);
2330
2331         /* Check if the physical address of the memory is above 48bits */
2332         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2333
2334                 /* 52bit PA is supported only when PageSize=64K */
2335                 if (psz != SZ_64K) {
2336                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2337                         free_pages((unsigned long)base, order);
2338                         return -ENXIO;
2339                 }
2340
2341                 /* Convert 52bit PA to 48bit field */
2342                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2343         }
2344
2345 retry_baser:
2346         val = (baser_phys                                        |
2347                 (type << GITS_BASER_TYPE_SHIFT)                  |
2348                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2349                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2350                 cache                                            |
2351                 shr                                              |
2352                 GITS_BASER_VALID);
2353
2354         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2355
2356         switch (psz) {
2357         case SZ_4K:
2358                 val |= GITS_BASER_PAGE_SIZE_4K;
2359                 break;
2360         case SZ_16K:
2361                 val |= GITS_BASER_PAGE_SIZE_16K;
2362                 break;
2363         case SZ_64K:
2364                 val |= GITS_BASER_PAGE_SIZE_64K;
2365                 break;
2366         }
2367
2368         if (!shr)
2369                 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2370
2371         its_write_baser(its, baser, val);
2372         tmp = baser->val;
2373
2374         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2375                 /*
2376                  * Shareability didn't stick. Just use
2377                  * whatever the read reported, which is likely
2378                  * to be the only thing this redistributor
2379                  * supports. If that's zero, make it
2380                  * non-cacheable as well.
2381                  */
2382                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2383                 if (!shr)
2384                         cache = GITS_BASER_nC;
2385
2386                 goto retry_baser;
2387         }
2388
2389         if (val != tmp) {
2390                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2391                        &its->phys_base, its_base_type_string[type],
2392                        val, tmp);
2393                 free_pages((unsigned long)base, order);
2394                 return -ENXIO;
2395         }
2396
2397         baser->order = order;
2398         baser->base = base;
2399         baser->psz = psz;
2400         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2401
2402         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2403                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2404                 its_base_type_string[type],
2405                 (unsigned long)virt_to_phys(base),
2406                 indirect ? "indirect" : "flat", (int)esz,
2407                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2408
2409         return 0;
2410 }
2411
2412 static bool its_parse_indirect_baser(struct its_node *its,
2413                                      struct its_baser *baser,
2414                                      u32 *order, u32 ids)
2415 {
2416         u64 tmp = its_read_baser(its, baser);
2417         u64 type = GITS_BASER_TYPE(tmp);
2418         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2419         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2420         u32 new_order = *order;
2421         u32 psz = baser->psz;
2422         bool indirect = false;
2423
2424         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2425         if ((esz << ids) > (psz * 2)) {
2426                 /*
2427                  * Find out whether hw supports a single or two-level table by
2428                  * table by reading bit at offset '62' after writing '1' to it.
2429                  */
2430                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2431                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2432
2433                 if (indirect) {
2434                         /*
2435                          * The size of the lvl2 table is equal to ITS page size
2436                          * which is 'psz'. For computing lvl1 table size,
2437                          * subtract ID bits that sparse lvl2 table from 'ids'
2438                          * which is reported by ITS hardware times lvl1 table
2439                          * entry size.
2440                          */
2441                         ids -= ilog2(psz / (int)esz);
2442                         esz = GITS_LVL1_ENTRY_SIZE;
2443                 }
2444         }
2445
2446         /*
2447          * Allocate as many entries as required to fit the
2448          * range of device IDs that the ITS can grok... The ID
2449          * space being incredibly sparse, this results in a
2450          * massive waste of memory if two-level device table
2451          * feature is not supported by hardware.
2452          */
2453         new_order = max_t(u32, get_order(esz << ids), new_order);
2454         if (new_order > MAX_PAGE_ORDER) {
2455                 new_order = MAX_PAGE_ORDER;
2456                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2457                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2458                         &its->phys_base, its_base_type_string[type],
2459                         device_ids(its), ids);
2460         }
2461
2462         *order = new_order;
2463
2464         return indirect;
2465 }
2466
2467 static u32 compute_common_aff(u64 val)
2468 {
2469         u32 aff, clpiaff;
2470
2471         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2472         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2473
2474         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2475 }
2476
2477 static u32 compute_its_aff(struct its_node *its)
2478 {
2479         u64 val;
2480         u32 svpet;
2481
2482         /*
2483          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2484          * the resulting affinity. We then use that to see if this match
2485          * our own affinity.
2486          */
2487         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2488         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2489         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2490         return compute_common_aff(val);
2491 }
2492
2493 static struct its_node *find_sibling_its(struct its_node *cur_its)
2494 {
2495         struct its_node *its;
2496         u32 aff;
2497
2498         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2499                 return NULL;
2500
2501         aff = compute_its_aff(cur_its);
2502
2503         list_for_each_entry(its, &its_nodes, entry) {
2504                 u64 baser;
2505
2506                 if (!is_v4_1(its) || its == cur_its)
2507                         continue;
2508
2509                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2510                         continue;
2511
2512                 if (aff != compute_its_aff(its))
2513                         continue;
2514
2515                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2516                 baser = its->tables[2].val;
2517                 if (!(baser & GITS_BASER_VALID))
2518                         continue;
2519
2520                 return its;
2521         }
2522
2523         return NULL;
2524 }
2525
2526 static void its_free_tables(struct its_node *its)
2527 {
2528         int i;
2529
2530         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2531                 if (its->tables[i].base) {
2532                         free_pages((unsigned long)its->tables[i].base,
2533                                    its->tables[i].order);
2534                         its->tables[i].base = NULL;
2535                 }
2536         }
2537 }
2538
2539 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2540 {
2541         u64 psz = SZ_64K;
2542
2543         while (psz) {
2544                 u64 val, gpsz;
2545
2546                 val = its_read_baser(its, baser);
2547                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2548
2549                 switch (psz) {
2550                 case SZ_64K:
2551                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2552                         break;
2553                 case SZ_16K:
2554                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2555                         break;
2556                 case SZ_4K:
2557                 default:
2558                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2559                         break;
2560                 }
2561
2562                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2563
2564                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2565                 its_write_baser(its, baser, val);
2566
2567                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2568                         break;
2569
2570                 switch (psz) {
2571                 case SZ_64K:
2572                         psz = SZ_16K;
2573                         break;
2574                 case SZ_16K:
2575                         psz = SZ_4K;
2576                         break;
2577                 case SZ_4K:
2578                 default:
2579                         return -1;
2580                 }
2581         }
2582
2583         baser->psz = psz;
2584         return 0;
2585 }
2586
2587 static int its_alloc_tables(struct its_node *its)
2588 {
2589         u64 shr = GITS_BASER_InnerShareable;
2590         u64 cache = GITS_BASER_RaWaWb;
2591         int err, i;
2592
2593         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2594                 /* erratum 24313: ignore memory access type */
2595                 cache = GITS_BASER_nCnB;
2596
2597         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2598                 cache = GITS_BASER_nC;
2599                 shr = 0;
2600         }
2601
2602         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2603                 struct its_baser *baser = its->tables + i;
2604                 u64 val = its_read_baser(its, baser);
2605                 u64 type = GITS_BASER_TYPE(val);
2606                 bool indirect = false;
2607                 u32 order;
2608
2609                 if (type == GITS_BASER_TYPE_NONE)
2610                         continue;
2611
2612                 if (its_probe_baser_psz(its, baser)) {
2613                         its_free_tables(its);
2614                         return -ENXIO;
2615                 }
2616
2617                 order = get_order(baser->psz);
2618
2619                 switch (type) {
2620                 case GITS_BASER_TYPE_DEVICE:
2621                         indirect = its_parse_indirect_baser(its, baser, &order,
2622                                                             device_ids(its));
2623                         break;
2624
2625                 case GITS_BASER_TYPE_VCPU:
2626                         if (is_v4_1(its)) {
2627                                 struct its_node *sibling;
2628
2629                                 WARN_ON(i != 2);
2630                                 if ((sibling = find_sibling_its(its))) {
2631                                         *baser = sibling->tables[2];
2632                                         its_write_baser(its, baser, baser->val);
2633                                         continue;
2634                                 }
2635                         }
2636
2637                         indirect = its_parse_indirect_baser(its, baser, &order,
2638                                                             ITS_MAX_VPEID_BITS);
2639                         break;
2640                 }
2641
2642                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2643                 if (err < 0) {
2644                         its_free_tables(its);
2645                         return err;
2646                 }
2647
2648                 /* Update settings which will be used for next BASERn */
2649                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2650                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2651         }
2652
2653         return 0;
2654 }
2655
2656 static u64 inherit_vpe_l1_table_from_its(void)
2657 {
2658         struct its_node *its;
2659         u64 val;
2660         u32 aff;
2661
2662         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2663         aff = compute_common_aff(val);
2664
2665         list_for_each_entry(its, &its_nodes, entry) {
2666                 u64 baser, addr;
2667
2668                 if (!is_v4_1(its))
2669                         continue;
2670
2671                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2672                         continue;
2673
2674                 if (aff != compute_its_aff(its))
2675                         continue;
2676
2677                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2678                 baser = its->tables[2].val;
2679                 if (!(baser & GITS_BASER_VALID))
2680                         continue;
2681
2682                 /* We have a winner! */
2683                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2684
2685                 val  = GICR_VPROPBASER_4_1_VALID;
2686                 if (baser & GITS_BASER_INDIRECT)
2687                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2688                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2689                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2690                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2691                 case GIC_PAGE_SIZE_64K:
2692                         addr = GITS_BASER_ADDR_48_to_52(baser);
2693                         break;
2694                 default:
2695                         addr = baser & GENMASK_ULL(47, 12);
2696                         break;
2697                 }
2698                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2699                 if (rdists_support_shareable()) {
2700                         val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2701                                           FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2702                         val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2703                                           FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2704                 }
2705                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2706
2707                 return val;
2708         }
2709
2710         return 0;
2711 }
2712
2713 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2714 {
2715         u32 aff;
2716         u64 val;
2717         int cpu;
2718
2719         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2720         aff = compute_common_aff(val);
2721
2722         for_each_possible_cpu(cpu) {
2723                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2724
2725                 if (!base || cpu == smp_processor_id())
2726                         continue;
2727
2728                 val = gic_read_typer(base + GICR_TYPER);
2729                 if (aff != compute_common_aff(val))
2730                         continue;
2731
2732                 /*
2733                  * At this point, we have a victim. This particular CPU
2734                  * has already booted, and has an affinity that matches
2735                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2736                  * Make sure we don't write the Z bit in that case.
2737                  */
2738                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2739                 val &= ~GICR_VPROPBASER_4_1_Z;
2740
2741                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2742                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2743
2744                 return val;
2745         }
2746
2747         return 0;
2748 }
2749
2750 static bool allocate_vpe_l2_table(int cpu, u32 id)
2751 {
2752         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2753         unsigned int psz, esz, idx, npg, gpsz;
2754         u64 val;
2755         struct page *page;
2756         __le64 *table;
2757
2758         if (!gic_rdists->has_rvpeid)
2759                 return true;
2760
2761         /* Skip non-present CPUs */
2762         if (!base)
2763                 return true;
2764
2765         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2766
2767         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2768         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2769         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2770
2771         switch (gpsz) {
2772         default:
2773                 WARN_ON(1);
2774                 fallthrough;
2775         case GIC_PAGE_SIZE_4K:
2776                 psz = SZ_4K;
2777                 break;
2778         case GIC_PAGE_SIZE_16K:
2779                 psz = SZ_16K;
2780                 break;
2781         case GIC_PAGE_SIZE_64K:
2782                 psz = SZ_64K;
2783                 break;
2784         }
2785
2786         /* Don't allow vpe_id that exceeds single, flat table limit */
2787         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2788                 return (id < (npg * psz / (esz * SZ_8)));
2789
2790         /* Compute 1st level table index & check if that exceeds table limit */
2791         idx = id >> ilog2(psz / (esz * SZ_8));
2792         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2793                 return false;
2794
2795         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2796
2797         /* Allocate memory for 2nd level table */
2798         if (!table[idx]) {
2799                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2800                 if (!page)
2801                         return false;
2802
2803                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2804                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2805                         gic_flush_dcache_to_poc(page_address(page), psz);
2806
2807                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2808
2809                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2810                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2811                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2812
2813                 /* Ensure updated table contents are visible to RD hardware */
2814                 dsb(sy);
2815         }
2816
2817         return true;
2818 }
2819
2820 static int allocate_vpe_l1_table(void)
2821 {
2822         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2823         u64 val, gpsz, npg, pa;
2824         unsigned int psz = SZ_64K;
2825         unsigned int np, epp, esz;
2826         struct page *page;
2827
2828         if (!gic_rdists->has_rvpeid)
2829                 return 0;
2830
2831         /*
2832          * if VPENDBASER.Valid is set, disable any previously programmed
2833          * VPE by setting PendingLast while clearing Valid. This has the
2834          * effect of making sure no doorbell will be generated and we can
2835          * then safely clear VPROPBASER.Valid.
2836          */
2837         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2838                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2839                                       vlpi_base + GICR_VPENDBASER);
2840
2841         /*
2842          * If we can inherit the configuration from another RD, let's do
2843          * so. Otherwise, we have to go through the allocation process. We
2844          * assume that all RDs have the exact same requirements, as
2845          * nothing will work otherwise.
2846          */
2847         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2848         if (val & GICR_VPROPBASER_4_1_VALID)
2849                 goto out;
2850
2851         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2852         if (!gic_data_rdist()->vpe_table_mask)
2853                 return -ENOMEM;
2854
2855         val = inherit_vpe_l1_table_from_its();
2856         if (val & GICR_VPROPBASER_4_1_VALID)
2857                 goto out;
2858
2859         /* First probe the page size */
2860         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2861         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2862         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2863         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2864         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2865
2866         switch (gpsz) {
2867         default:
2868                 gpsz = GIC_PAGE_SIZE_4K;
2869                 fallthrough;
2870         case GIC_PAGE_SIZE_4K:
2871                 psz = SZ_4K;
2872                 break;
2873         case GIC_PAGE_SIZE_16K:
2874                 psz = SZ_16K;
2875                 break;
2876         case GIC_PAGE_SIZE_64K:
2877                 psz = SZ_64K;
2878                 break;
2879         }
2880
2881         /*
2882          * Start populating the register from scratch, including RO fields
2883          * (which we want to print in debug cases...)
2884          */
2885         val = 0;
2886         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2887         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2888
2889         /* How many entries per GIC page? */
2890         esz++;
2891         epp = psz / (esz * SZ_8);
2892
2893         /*
2894          * If we need more than just a single L1 page, flag the table
2895          * as indirect and compute the number of required L1 pages.
2896          */
2897         if (epp < ITS_MAX_VPEID) {
2898                 int nl2;
2899
2900                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2901
2902                 /* Number of L2 pages required to cover the VPEID space */
2903                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2904
2905                 /* Number of L1 pages to point to the L2 pages */
2906                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2907         } else {
2908                 npg = 1;
2909         }
2910
2911         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2912
2913         /* Right, that's the number of CPU pages we need for L1 */
2914         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2915
2916         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2917                  np, npg, psz, epp, esz);
2918         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2919         if (!page)
2920                 return -ENOMEM;
2921
2922         gic_data_rdist()->vpe_l1_base = page_address(page);
2923         pa = virt_to_phys(page_address(page));
2924         WARN_ON(!IS_ALIGNED(pa, psz));
2925
2926         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2927         if (rdists_support_shareable()) {
2928                 val |= GICR_VPROPBASER_RaWb;
2929                 val |= GICR_VPROPBASER_InnerShareable;
2930         }
2931         val |= GICR_VPROPBASER_4_1_Z;
2932         val |= GICR_VPROPBASER_4_1_VALID;
2933
2934 out:
2935         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2936         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2937
2938         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2939                  smp_processor_id(), val,
2940                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2941
2942         return 0;
2943 }
2944
2945 static int its_alloc_collections(struct its_node *its)
2946 {
2947         int i;
2948
2949         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2950                                    GFP_KERNEL);
2951         if (!its->collections)
2952                 return -ENOMEM;
2953
2954         for (i = 0; i < nr_cpu_ids; i++)
2955                 its->collections[i].target_address = ~0ULL;
2956
2957         return 0;
2958 }
2959
2960 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2961 {
2962         struct page *pend_page;
2963
2964         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2965                                 get_order(LPI_PENDBASE_SZ));
2966         if (!pend_page)
2967                 return NULL;
2968
2969         /* Make sure the GIC will observe the zero-ed page */
2970         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2971
2972         return pend_page;
2973 }
2974
2975 static void its_free_pending_table(struct page *pt)
2976 {
2977         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2978 }
2979
2980 /*
2981  * Booting with kdump and LPIs enabled is generally fine. Any other
2982  * case is wrong in the absence of firmware/EFI support.
2983  */
2984 static bool enabled_lpis_allowed(void)
2985 {
2986         phys_addr_t addr;
2987         u64 val;
2988
2989         /* Check whether the property table is in a reserved region */
2990         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2991         addr = val & GENMASK_ULL(51, 12);
2992
2993         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2994 }
2995
2996 static int __init allocate_lpi_tables(void)
2997 {
2998         u64 val;
2999         int err, cpu;
3000
3001         /*
3002          * If LPIs are enabled while we run this from the boot CPU,
3003          * flag the RD tables as pre-allocated if the stars do align.
3004          */
3005         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3006         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3007                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3008                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3009                 pr_info("GICv3: Using preallocated redistributor tables\n");
3010         }
3011
3012         err = its_setup_lpi_prop_table();
3013         if (err)
3014                 return err;
3015
3016         /*
3017          * We allocate all the pending tables anyway, as we may have a
3018          * mix of RDs that have had LPIs enabled, and some that
3019          * don't. We'll free the unused ones as each CPU comes online.
3020          */
3021         for_each_possible_cpu(cpu) {
3022                 struct page *pend_page;
3023
3024                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3025                 if (!pend_page) {
3026                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3027                         return -ENOMEM;
3028                 }
3029
3030                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3031         }
3032
3033         return 0;
3034 }
3035
3036 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3037 {
3038         u32 count = 1000000;    /* 1s! */
3039         bool clean;
3040         u64 val;
3041
3042         do {
3043                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3044                 clean = !(val & GICR_VPENDBASER_Dirty);
3045                 if (!clean) {
3046                         count--;
3047                         cpu_relax();
3048                         udelay(1);
3049                 }
3050         } while (!clean && count);
3051
3052         if (unlikely(!clean))
3053                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3054
3055         return val;
3056 }
3057
3058 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3059 {
3060         u64 val;
3061
3062         /* Make sure we wait until the RD is done with the initial scan */
3063         val = read_vpend_dirty_clear(vlpi_base);
3064         val &= ~GICR_VPENDBASER_Valid;
3065         val &= ~clr;
3066         val |= set;
3067         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3068
3069         val = read_vpend_dirty_clear(vlpi_base);
3070         if (unlikely(val & GICR_VPENDBASER_Dirty))
3071                 val |= GICR_VPENDBASER_PendingLast;
3072
3073         return val;
3074 }
3075
3076 static void its_cpu_init_lpis(void)
3077 {
3078         void __iomem *rbase = gic_data_rdist_rd_base();
3079         struct page *pend_page;
3080         phys_addr_t paddr;
3081         u64 val, tmp;
3082
3083         if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3084                 return;
3085
3086         val = readl_relaxed(rbase + GICR_CTLR);
3087         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3088             (val & GICR_CTLR_ENABLE_LPIS)) {
3089                 /*
3090                  * Check that we get the same property table on all
3091                  * RDs. If we don't, this is hopeless.
3092                  */
3093                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3094                 paddr &= GENMASK_ULL(51, 12);
3095                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3096                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3097
3098                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3099                 paddr &= GENMASK_ULL(51, 16);
3100
3101                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3102                 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3103
3104                 goto out;
3105         }
3106
3107         pend_page = gic_data_rdist()->pend_page;
3108         paddr = page_to_phys(pend_page);
3109
3110         /* set PROPBASE */
3111         val = (gic_rdists->prop_table_pa |
3112                GICR_PROPBASER_InnerShareable |
3113                GICR_PROPBASER_RaWaWb |
3114                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3115
3116         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3117         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3118
3119         if (!rdists_support_shareable())
3120                 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3121
3122         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3123                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3124                         /*
3125                          * The HW reports non-shareable, we must
3126                          * remove the cacheability attributes as
3127                          * well.
3128                          */
3129                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3130                                  GICR_PROPBASER_CACHEABILITY_MASK);
3131                         val |= GICR_PROPBASER_nC;
3132                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3133                 }
3134                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3135                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3136         }
3137
3138         /* set PENDBASE */
3139         val = (page_to_phys(pend_page) |
3140                GICR_PENDBASER_InnerShareable |
3141                GICR_PENDBASER_RaWaWb);
3142
3143         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3144         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3145
3146         if (!rdists_support_shareable())
3147                 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3148
3149         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3150                 /*
3151                  * The HW reports non-shareable, we must remove the
3152                  * cacheability attributes as well.
3153                  */
3154                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3155                          GICR_PENDBASER_CACHEABILITY_MASK);
3156                 val |= GICR_PENDBASER_nC;
3157                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3158         }
3159
3160         /* Enable LPIs */
3161         val = readl_relaxed(rbase + GICR_CTLR);
3162         val |= GICR_CTLR_ENABLE_LPIS;
3163         writel_relaxed(val, rbase + GICR_CTLR);
3164
3165 out:
3166         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3167                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3168
3169                 /*
3170                  * It's possible for CPU to receive VLPIs before it is
3171                  * scheduled as a vPE, especially for the first CPU, and the
3172                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3173                  * as out of range and dropped by GIC.
3174                  * So we initialize IDbits to known value to avoid VLPI drop.
3175                  */
3176                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3177                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3178                         smp_processor_id(), val);
3179                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3180
3181                 /*
3182                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3183                  * ancient programming gets left in and has possibility of
3184                  * corrupting memory.
3185                  */
3186                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3187         }
3188
3189         if (allocate_vpe_l1_table()) {
3190                 /*
3191                  * If the allocation has failed, we're in massive trouble.
3192                  * Disable direct injection, and pray that no VM was
3193                  * already running...
3194                  */
3195                 gic_rdists->has_rvpeid = false;
3196                 gic_rdists->has_vlpis = false;
3197         }
3198
3199         /* Make sure the GIC has seen the above */
3200         dsb(sy);
3201         gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3202         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3203                 smp_processor_id(),
3204                 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3205                 "reserved" : "allocated",
3206                 &paddr);
3207 }
3208
3209 static void its_cpu_init_collection(struct its_node *its)
3210 {
3211         int cpu = smp_processor_id();
3212         u64 target;
3213
3214         /* avoid cross node collections and its mapping */
3215         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3216                 struct device_node *cpu_node;
3217
3218                 cpu_node = of_get_cpu_node(cpu, NULL);
3219                 if (its->numa_node != NUMA_NO_NODE &&
3220                         its->numa_node != of_node_to_nid(cpu_node))
3221                         return;
3222         }
3223
3224         /*
3225          * We now have to bind each collection to its target
3226          * redistributor.
3227          */
3228         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3229                 /*
3230                  * This ITS wants the physical address of the
3231                  * redistributor.
3232                  */
3233                 target = gic_data_rdist()->phys_base;
3234         } else {
3235                 /* This ITS wants a linear CPU number. */
3236                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3237                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3238         }
3239
3240         /* Perform collection mapping */
3241         its->collections[cpu].target_address = target;
3242         its->collections[cpu].col_id = cpu;
3243
3244         its_send_mapc(its, &its->collections[cpu], 1);
3245         its_send_invall(its, &its->collections[cpu]);
3246 }
3247
3248 static void its_cpu_init_collections(void)
3249 {
3250         struct its_node *its;
3251
3252         raw_spin_lock(&its_lock);
3253
3254         list_for_each_entry(its, &its_nodes, entry)
3255                 its_cpu_init_collection(its);
3256
3257         raw_spin_unlock(&its_lock);
3258 }
3259
3260 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3261 {
3262         struct its_device *its_dev = NULL, *tmp;
3263         unsigned long flags;
3264
3265         raw_spin_lock_irqsave(&its->lock, flags);
3266
3267         list_for_each_entry(tmp, &its->its_device_list, entry) {
3268                 if (tmp->device_id == dev_id) {
3269                         its_dev = tmp;
3270                         break;
3271                 }
3272         }
3273
3274         raw_spin_unlock_irqrestore(&its->lock, flags);
3275
3276         return its_dev;
3277 }
3278
3279 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3280 {
3281         int i;
3282
3283         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3284                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3285                         return &its->tables[i];
3286         }
3287
3288         return NULL;
3289 }
3290
3291 static bool its_alloc_table_entry(struct its_node *its,
3292                                   struct its_baser *baser, u32 id)
3293 {
3294         struct page *page;
3295         u32 esz, idx;
3296         __le64 *table;
3297
3298         /* Don't allow device id that exceeds single, flat table limit */
3299         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3300         if (!(baser->val & GITS_BASER_INDIRECT))
3301                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3302
3303         /* Compute 1st level table index & check if that exceeds table limit */
3304         idx = id >> ilog2(baser->psz / esz);
3305         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3306                 return false;
3307
3308         table = baser->base;
3309
3310         /* Allocate memory for 2nd level table */
3311         if (!table[idx]) {
3312                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3313                                         get_order(baser->psz));
3314                 if (!page)
3315                         return false;
3316
3317                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3318                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3319                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3320
3321                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3322
3323                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3324                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3325                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3326
3327                 /* Ensure updated table contents are visible to ITS hardware */
3328                 dsb(sy);
3329         }
3330
3331         return true;
3332 }
3333
3334 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3335 {
3336         struct its_baser *baser;
3337
3338         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3339
3340         /* Don't allow device id that exceeds ITS hardware limit */
3341         if (!baser)
3342                 return (ilog2(dev_id) < device_ids(its));
3343
3344         return its_alloc_table_entry(its, baser, dev_id);
3345 }
3346
3347 static bool its_alloc_vpe_table(u32 vpe_id)
3348 {
3349         struct its_node *its;
3350         int cpu;
3351
3352         /*
3353          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3354          * could try and only do it on ITSs corresponding to devices
3355          * that have interrupts targeted at this VPE, but the
3356          * complexity becomes crazy (and you have tons of memory
3357          * anyway, right?).
3358          */
3359         list_for_each_entry(its, &its_nodes, entry) {
3360                 struct its_baser *baser;
3361
3362                 if (!is_v4(its))
3363                         continue;
3364
3365                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3366                 if (!baser)
3367                         return false;
3368
3369                 if (!its_alloc_table_entry(its, baser, vpe_id))
3370                         return false;
3371         }
3372
3373         /* Non v4.1? No need to iterate RDs and go back early. */
3374         if (!gic_rdists->has_rvpeid)
3375                 return true;
3376
3377         /*
3378          * Make sure the L2 tables are allocated for all copies of
3379          * the L1 table on *all* v4.1 RDs.
3380          */
3381         for_each_possible_cpu(cpu) {
3382                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3383                         return false;
3384         }
3385
3386         return true;
3387 }
3388
3389 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3390                                             int nvecs, bool alloc_lpis)
3391 {
3392         struct its_device *dev;
3393         unsigned long *lpi_map = NULL;
3394         unsigned long flags;
3395         u16 *col_map = NULL;
3396         void *itt;
3397         int lpi_base;
3398         int nr_lpis;
3399         int nr_ites;
3400         int sz;
3401
3402         if (!its_alloc_device_table(its, dev_id))
3403                 return NULL;
3404
3405         if (WARN_ON(!is_power_of_2(nvecs)))
3406                 nvecs = roundup_pow_of_two(nvecs);
3407
3408         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3409         /*
3410          * Even if the device wants a single LPI, the ITT must be
3411          * sized as a power of two (and you need at least one bit...).
3412          */
3413         nr_ites = max(2, nvecs);
3414         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3415         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3416         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3417         if (alloc_lpis) {
3418                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3419                 if (lpi_map)
3420                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3421                                           GFP_KERNEL);
3422         } else {
3423                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3424                 nr_lpis = 0;
3425                 lpi_base = 0;
3426         }
3427
3428         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3429                 kfree(dev);
3430                 kfree(itt);
3431                 bitmap_free(lpi_map);
3432                 kfree(col_map);
3433                 return NULL;
3434         }
3435
3436         gic_flush_dcache_to_poc(itt, sz);
3437
3438         dev->its = its;
3439         dev->itt = itt;
3440         dev->nr_ites = nr_ites;
3441         dev->event_map.lpi_map = lpi_map;
3442         dev->event_map.col_map = col_map;
3443         dev->event_map.lpi_base = lpi_base;
3444         dev->event_map.nr_lpis = nr_lpis;
3445         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3446         dev->device_id = dev_id;
3447         INIT_LIST_HEAD(&dev->entry);
3448
3449         raw_spin_lock_irqsave(&its->lock, flags);
3450         list_add(&dev->entry, &its->its_device_list);
3451         raw_spin_unlock_irqrestore(&its->lock, flags);
3452
3453         /* Map device to its ITT */
3454         its_send_mapd(dev, 1);
3455
3456         return dev;
3457 }
3458
3459 static void its_free_device(struct its_device *its_dev)
3460 {
3461         unsigned long flags;
3462
3463         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3464         list_del(&its_dev->entry);
3465         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3466         kfree(its_dev->event_map.col_map);
3467         kfree(its_dev->itt);
3468         kfree(its_dev);
3469 }
3470
3471 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3472 {
3473         int idx;
3474
3475         /* Find a free LPI region in lpi_map and allocate them. */
3476         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3477                                       dev->event_map.nr_lpis,
3478                                       get_count_order(nvecs));
3479         if (idx < 0)
3480                 return -ENOSPC;
3481
3482         *hwirq = dev->event_map.lpi_base + idx;
3483
3484         return 0;
3485 }
3486
3487 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3488                            int nvec, msi_alloc_info_t *info)
3489 {
3490         struct its_node *its;
3491         struct its_device *its_dev;
3492         struct msi_domain_info *msi_info;
3493         u32 dev_id;
3494         int err = 0;
3495
3496         /*
3497          * We ignore "dev" entirely, and rely on the dev_id that has
3498          * been passed via the scratchpad. This limits this domain's
3499          * usefulness to upper layers that definitely know that they
3500          * are built on top of the ITS.
3501          */
3502         dev_id = info->scratchpad[0].ul;
3503
3504         msi_info = msi_get_domain_info(domain);
3505         its = msi_info->data;
3506
3507         if (!gic_rdists->has_direct_lpi &&
3508             vpe_proxy.dev &&
3509             vpe_proxy.dev->its == its &&
3510             dev_id == vpe_proxy.dev->device_id) {
3511                 /* Bad luck. Get yourself a better implementation */
3512                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3513                           dev_id);
3514                 return -EINVAL;
3515         }
3516
3517         mutex_lock(&its->dev_alloc_lock);
3518         its_dev = its_find_device(its, dev_id);
3519         if (its_dev) {
3520                 /*
3521                  * We already have seen this ID, probably through
3522                  * another alias (PCI bridge of some sort). No need to
3523                  * create the device.
3524                  */
3525                 its_dev->shared = true;
3526                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3527                 goto out;
3528         }
3529
3530         its_dev = its_create_device(its, dev_id, nvec, true);
3531         if (!its_dev) {
3532                 err = -ENOMEM;
3533                 goto out;
3534         }
3535
3536         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3537                 its_dev->shared = true;
3538
3539         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3540 out:
3541         mutex_unlock(&its->dev_alloc_lock);
3542         info->scratchpad[0].ptr = its_dev;
3543         return err;
3544 }
3545
3546 static struct msi_domain_ops its_msi_domain_ops = {
3547         .msi_prepare    = its_msi_prepare,
3548 };
3549
3550 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3551                                     unsigned int virq,
3552                                     irq_hw_number_t hwirq)
3553 {
3554         struct irq_fwspec fwspec;
3555
3556         if (irq_domain_get_of_node(domain->parent)) {
3557                 fwspec.fwnode = domain->parent->fwnode;
3558                 fwspec.param_count = 3;
3559                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3560                 fwspec.param[1] = hwirq;
3561                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3562         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3563                 fwspec.fwnode = domain->parent->fwnode;
3564                 fwspec.param_count = 2;
3565                 fwspec.param[0] = hwirq;
3566                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3567         } else {
3568                 return -EINVAL;
3569         }
3570
3571         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3572 }
3573
3574 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3575                                 unsigned int nr_irqs, void *args)
3576 {
3577         msi_alloc_info_t *info = args;
3578         struct its_device *its_dev = info->scratchpad[0].ptr;
3579         struct its_node *its = its_dev->its;
3580         struct irq_data *irqd;
3581         irq_hw_number_t hwirq;
3582         int err;
3583         int i;
3584
3585         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3586         if (err)
3587                 return err;
3588
3589         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3590         if (err)
3591                 return err;
3592
3593         for (i = 0; i < nr_irqs; i++) {
3594                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3595                 if (err)
3596                         return err;
3597
3598                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3599                                               hwirq + i, &its_irq_chip, its_dev);
3600                 irqd = irq_get_irq_data(virq + i);
3601                 irqd_set_single_target(irqd);
3602                 irqd_set_affinity_on_activate(irqd);
3603                 irqd_set_resend_when_in_progress(irqd);
3604                 pr_debug("ID:%d pID:%d vID:%d\n",
3605                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3606                          (int)(hwirq + i), virq + i);
3607         }
3608
3609         return 0;
3610 }
3611
3612 static int its_irq_domain_activate(struct irq_domain *domain,
3613                                    struct irq_data *d, bool reserve)
3614 {
3615         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3616         u32 event = its_get_event_id(d);
3617         int cpu;
3618
3619         cpu = its_select_cpu(d, cpu_online_mask);
3620         if (cpu < 0 || cpu >= nr_cpu_ids)
3621                 return -EINVAL;
3622
3623         its_inc_lpi_count(d, cpu);
3624         its_dev->event_map.col_map[event] = cpu;
3625         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3626
3627         /* Map the GIC IRQ and event to the device */
3628         its_send_mapti(its_dev, d->hwirq, event);
3629         return 0;
3630 }
3631
3632 static void its_irq_domain_deactivate(struct irq_domain *domain,
3633                                       struct irq_data *d)
3634 {
3635         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3636         u32 event = its_get_event_id(d);
3637
3638         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3639         /* Stop the delivery of interrupts */
3640         its_send_discard(its_dev, event);
3641 }
3642
3643 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3644                                 unsigned int nr_irqs)
3645 {
3646         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3647         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3648         struct its_node *its = its_dev->its;
3649         int i;
3650
3651         bitmap_release_region(its_dev->event_map.lpi_map,
3652                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3653                               get_count_order(nr_irqs));
3654
3655         for (i = 0; i < nr_irqs; i++) {
3656                 struct irq_data *data = irq_domain_get_irq_data(domain,
3657                                                                 virq + i);
3658                 /* Nuke the entry in the domain */
3659                 irq_domain_reset_irq_data(data);
3660         }
3661
3662         mutex_lock(&its->dev_alloc_lock);
3663
3664         /*
3665          * If all interrupts have been freed, start mopping the
3666          * floor. This is conditioned on the device not being shared.
3667          */
3668         if (!its_dev->shared &&
3669             bitmap_empty(its_dev->event_map.lpi_map,
3670                          its_dev->event_map.nr_lpis)) {
3671                 its_lpi_free(its_dev->event_map.lpi_map,
3672                              its_dev->event_map.lpi_base,
3673                              its_dev->event_map.nr_lpis);
3674
3675                 /* Unmap device/itt */
3676                 its_send_mapd(its_dev, 0);
3677                 its_free_device(its_dev);
3678         }
3679
3680         mutex_unlock(&its->dev_alloc_lock);
3681
3682         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3683 }
3684
3685 static const struct irq_domain_ops its_domain_ops = {
3686         .select                 = msi_lib_irq_domain_select,
3687         .alloc                  = its_irq_domain_alloc,
3688         .free                   = its_irq_domain_free,
3689         .activate               = its_irq_domain_activate,
3690         .deactivate             = its_irq_domain_deactivate,
3691 };
3692
3693 /*
3694  * This is insane.
3695  *
3696  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3697  * likely), the only way to perform an invalidate is to use a fake
3698  * device to issue an INV command, implying that the LPI has first
3699  * been mapped to some event on that device. Since this is not exactly
3700  * cheap, we try to keep that mapping around as long as possible, and
3701  * only issue an UNMAP if we're short on available slots.
3702  *
3703  * Broken by design(tm).
3704  *
3705  * GICv4.1, on the other hand, mandates that we're able to invalidate
3706  * by writing to a MMIO register. It doesn't implement the whole of
3707  * DirectLPI, but that's good enough. And most of the time, we don't
3708  * even have to invalidate anything, as the redistributor can be told
3709  * whether to generate a doorbell or not (we thus leave it enabled,
3710  * always).
3711  */
3712 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3713 {
3714         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3715         if (gic_rdists->has_rvpeid)
3716                 return;
3717
3718         /* Already unmapped? */
3719         if (vpe->vpe_proxy_event == -1)
3720                 return;
3721
3722         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3723         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3724
3725         /*
3726          * We don't track empty slots at all, so let's move the
3727          * next_victim pointer if we can quickly reuse that slot
3728          * instead of nuking an existing entry. Not clear that this is
3729          * always a win though, and this might just generate a ripple
3730          * effect... Let's just hope VPEs don't migrate too often.
3731          */
3732         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3733                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3734
3735         vpe->vpe_proxy_event = -1;
3736 }
3737
3738 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3739 {
3740         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3741         if (gic_rdists->has_rvpeid)
3742                 return;
3743
3744         if (!gic_rdists->has_direct_lpi) {
3745                 unsigned long flags;
3746
3747                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3748                 its_vpe_db_proxy_unmap_locked(vpe);
3749                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3750         }
3751 }
3752
3753 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3754 {
3755         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3756         if (gic_rdists->has_rvpeid)
3757                 return;
3758
3759         /* Already mapped? */
3760         if (vpe->vpe_proxy_event != -1)
3761                 return;
3762
3763         /* This slot was already allocated. Kick the other VPE out. */
3764         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3765                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3766
3767         /* Map the new VPE instead */
3768         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3769         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3770         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3771
3772         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3773         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3774 }
3775
3776 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3777 {
3778         unsigned long flags;
3779         struct its_collection *target_col;
3780
3781         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3782         if (gic_rdists->has_rvpeid)
3783                 return;
3784
3785         if (gic_rdists->has_direct_lpi) {
3786                 void __iomem *rdbase;
3787
3788                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3789                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3790                 wait_for_syncr(rdbase);
3791
3792                 return;
3793         }
3794
3795         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3796
3797         its_vpe_db_proxy_map_locked(vpe);
3798
3799         target_col = &vpe_proxy.dev->its->collections[to];
3800         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3801         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3802
3803         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3804 }
3805
3806 static int its_vpe_set_affinity(struct irq_data *d,
3807                                 const struct cpumask *mask_val,
3808                                 bool force)
3809 {
3810         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3811         unsigned int from, cpu = nr_cpu_ids;
3812         struct cpumask *table_mask;
3813         unsigned long flags;
3814
3815         /*
3816          * Changing affinity is mega expensive, so let's be as lazy as
3817          * we can and only do it if we really have to. Also, if mapped
3818          * into the proxy device, we need to move the doorbell
3819          * interrupt to its new location.
3820          *
3821          * Another thing is that changing the affinity of a vPE affects
3822          * *other interrupts* such as all the vLPIs that are routed to
3823          * this vPE. This means that the irq_desc lock is not enough to
3824          * protect us, and that we must ensure nobody samples vpe->col_idx
3825          * during the update, hence the lock below which must also be
3826          * taken on any vLPI handling path that evaluates vpe->col_idx.
3827          */
3828         from = vpe_to_cpuid_lock(vpe, &flags);
3829         table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3830
3831         /*
3832          * If we are offered another CPU in the same GICv4.1 ITS
3833          * affinity, pick this one. Otherwise, any CPU will do.
3834          */
3835         if (table_mask)
3836                 cpu = cpumask_any_and(mask_val, table_mask);
3837         if (cpu < nr_cpu_ids) {
3838                 if (cpumask_test_cpu(from, mask_val) &&
3839                     cpumask_test_cpu(from, table_mask))
3840                         cpu = from;
3841         } else {
3842                 cpu = cpumask_first(mask_val);
3843         }
3844
3845         if (from == cpu)
3846                 goto out;
3847
3848         vpe->col_idx = cpu;
3849
3850         its_send_vmovp(vpe);
3851         its_vpe_db_proxy_move(vpe, from, cpu);
3852
3853 out:
3854         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3855         vpe_to_cpuid_unlock(vpe, flags);
3856
3857         return IRQ_SET_MASK_OK_DONE;
3858 }
3859
3860 static void its_wait_vpt_parse_complete(void)
3861 {
3862         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3863         u64 val;
3864
3865         if (!gic_rdists->has_vpend_valid_dirty)
3866                 return;
3867
3868         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3869                                                        val,
3870                                                        !(val & GICR_VPENDBASER_Dirty),
3871                                                        1, 500));
3872 }
3873
3874 static void its_vpe_schedule(struct its_vpe *vpe)
3875 {
3876         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3877         u64 val;
3878
3879         /* Schedule the VPE */
3880         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3881                 GENMASK_ULL(51, 12);
3882         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3883         if (rdists_support_shareable()) {
3884                 val |= GICR_VPROPBASER_RaWb;
3885                 val |= GICR_VPROPBASER_InnerShareable;
3886         }
3887         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3888
3889         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3890                 GENMASK_ULL(51, 16);
3891         if (rdists_support_shareable()) {
3892                 val |= GICR_VPENDBASER_RaWaWb;
3893                 val |= GICR_VPENDBASER_InnerShareable;
3894         }
3895         /*
3896          * There is no good way of finding out if the pending table is
3897          * empty as we can race against the doorbell interrupt very
3898          * easily. So in the end, vpe->pending_last is only an
3899          * indication that the vcpu has something pending, not one
3900          * that the pending table is empty. A good implementation
3901          * would be able to read its coarse map pretty quickly anyway,
3902          * making this a tolerable issue.
3903          */
3904         val |= GICR_VPENDBASER_PendingLast;
3905         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3906         val |= GICR_VPENDBASER_Valid;
3907         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3908 }
3909
3910 static void its_vpe_deschedule(struct its_vpe *vpe)
3911 {
3912         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3913         u64 val;
3914
3915         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3916
3917         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3918         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3919 }
3920
3921 static void its_vpe_invall(struct its_vpe *vpe)
3922 {
3923         struct its_node *its;
3924
3925         guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
3926
3927         list_for_each_entry(its, &its_nodes, entry) {
3928                 if (!is_v4(its))
3929                         continue;
3930
3931                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3932                         continue;
3933
3934                 /*
3935                  * Sending a VINVALL to a single ITS is enough, as all
3936                  * we need is to reach the redistributors.
3937                  */
3938                 its_send_vinvall(its, vpe);
3939                 return;
3940         }
3941 }
3942
3943 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3944 {
3945         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3946         struct its_cmd_info *info = vcpu_info;
3947
3948         switch (info->cmd_type) {
3949         case SCHEDULE_VPE:
3950                 its_vpe_schedule(vpe);
3951                 return 0;
3952
3953         case DESCHEDULE_VPE:
3954                 its_vpe_deschedule(vpe);
3955                 return 0;
3956
3957         case COMMIT_VPE:
3958                 its_wait_vpt_parse_complete();
3959                 return 0;
3960
3961         case INVALL_VPE:
3962                 its_vpe_invall(vpe);
3963                 return 0;
3964
3965         default:
3966                 return -EINVAL;
3967         }
3968 }
3969
3970 static void its_vpe_send_cmd(struct its_vpe *vpe,
3971                              void (*cmd)(struct its_device *, u32))
3972 {
3973         unsigned long flags;
3974
3975         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3976
3977         its_vpe_db_proxy_map_locked(vpe);
3978         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3979
3980         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3981 }
3982
3983 static void its_vpe_send_inv(struct irq_data *d)
3984 {
3985         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3986
3987         if (gic_rdists->has_direct_lpi)
3988                 __direct_lpi_inv(d, d->parent_data->hwirq);
3989         else
3990                 its_vpe_send_cmd(vpe, its_send_inv);
3991 }
3992
3993 static void its_vpe_mask_irq(struct irq_data *d)
3994 {
3995         /*
3996          * We need to unmask the LPI, which is described by the parent
3997          * irq_data. Instead of calling into the parent (which won't
3998          * exactly do the right thing, let's simply use the
3999          * parent_data pointer. Yes, I'm naughty.
4000          */
4001         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4002         its_vpe_send_inv(d);
4003 }
4004
4005 static void its_vpe_unmask_irq(struct irq_data *d)
4006 {
4007         /* Same hack as above... */
4008         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4009         its_vpe_send_inv(d);
4010 }
4011
4012 static int its_vpe_set_irqchip_state(struct irq_data *d,
4013                                      enum irqchip_irq_state which,
4014                                      bool state)
4015 {
4016         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4017
4018         if (which != IRQCHIP_STATE_PENDING)
4019                 return -EINVAL;
4020
4021         if (gic_rdists->has_direct_lpi) {
4022                 void __iomem *rdbase;
4023
4024                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4025                 if (state) {
4026                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4027                 } else {
4028                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4029                         wait_for_syncr(rdbase);
4030                 }
4031         } else {
4032                 if (state)
4033                         its_vpe_send_cmd(vpe, its_send_int);
4034                 else
4035                         its_vpe_send_cmd(vpe, its_send_clear);
4036         }
4037
4038         return 0;
4039 }
4040
4041 static int its_vpe_retrigger(struct irq_data *d)
4042 {
4043         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4044 }
4045
4046 static struct irq_chip its_vpe_irq_chip = {
4047         .name                   = "GICv4-vpe",
4048         .irq_mask               = its_vpe_mask_irq,
4049         .irq_unmask             = its_vpe_unmask_irq,
4050         .irq_eoi                = irq_chip_eoi_parent,
4051         .irq_set_affinity       = its_vpe_set_affinity,
4052         .irq_retrigger          = its_vpe_retrigger,
4053         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4054         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4055 };
4056
4057 static struct its_node *find_4_1_its(void)
4058 {
4059         static struct its_node *its = NULL;
4060
4061         if (!its) {
4062                 list_for_each_entry(its, &its_nodes, entry) {
4063                         if (is_v4_1(its))
4064                                 return its;
4065                 }
4066
4067                 /* Oops? */
4068                 its = NULL;
4069         }
4070
4071         return its;
4072 }
4073
4074 static void its_vpe_4_1_send_inv(struct irq_data *d)
4075 {
4076         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4077         struct its_node *its;
4078
4079         /*
4080          * GICv4.1 wants doorbells to be invalidated using the
4081          * INVDB command in order to be broadcast to all RDs. Send
4082          * it to the first valid ITS, and let the HW do its magic.
4083          */
4084         its = find_4_1_its();
4085         if (its)
4086                 its_send_invdb(its, vpe);
4087 }
4088
4089 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4090 {
4091         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4092         its_vpe_4_1_send_inv(d);
4093 }
4094
4095 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4096 {
4097         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4098         its_vpe_4_1_send_inv(d);
4099 }
4100
4101 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4102                                  struct its_cmd_info *info)
4103 {
4104         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4105         u64 val = 0;
4106
4107         /* Schedule the VPE */
4108         val |= GICR_VPENDBASER_Valid;
4109         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4110         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4111         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4112
4113         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4114 }
4115
4116 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4117                                    struct its_cmd_info *info)
4118 {
4119         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4120         u64 val;
4121
4122         if (info->req_db) {
4123                 unsigned long flags;
4124
4125                 /*
4126                  * vPE is going to block: make the vPE non-resident with
4127                  * PendingLast clear and DB set. The GIC guarantees that if
4128                  * we read-back PendingLast clear, then a doorbell will be
4129                  * delivered when an interrupt comes.
4130                  *
4131                  * Note the locking to deal with the concurrent update of
4132                  * pending_last from the doorbell interrupt handler that can
4133                  * run concurrently.
4134                  */
4135                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4136                 val = its_clear_vpend_valid(vlpi_base,
4137                                             GICR_VPENDBASER_PendingLast,
4138                                             GICR_VPENDBASER_4_1_DB);
4139                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4140                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4141         } else {
4142                 /*
4143                  * We're not blocking, so just make the vPE non-resident
4144                  * with PendingLast set, indicating that we'll be back.
4145                  */
4146                 val = its_clear_vpend_valid(vlpi_base,
4147                                             0,
4148                                             GICR_VPENDBASER_PendingLast);
4149                 vpe->pending_last = true;
4150         }
4151 }
4152
4153 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4154 {
4155         void __iomem *rdbase;
4156         unsigned long flags;
4157         u64 val;
4158         int cpu;
4159
4160         val  = GICR_INVALLR_V;
4161         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4162
4163         /* Target the redistributor this vPE is currently known on */
4164         cpu = vpe_to_cpuid_lock(vpe, &flags);
4165         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4166         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4167         gic_write_lpir(val, rdbase + GICR_INVALLR);
4168
4169         wait_for_syncr(rdbase);
4170         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4171         vpe_to_cpuid_unlock(vpe, flags);
4172 }
4173
4174 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4175 {
4176         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4177         struct its_cmd_info *info = vcpu_info;
4178
4179         switch (info->cmd_type) {
4180         case SCHEDULE_VPE:
4181                 its_vpe_4_1_schedule(vpe, info);
4182                 return 0;
4183
4184         case DESCHEDULE_VPE:
4185                 its_vpe_4_1_deschedule(vpe, info);
4186                 return 0;
4187
4188         case COMMIT_VPE:
4189                 its_wait_vpt_parse_complete();
4190                 return 0;
4191
4192         case INVALL_VPE:
4193                 its_vpe_4_1_invall(vpe);
4194                 return 0;
4195
4196         default:
4197                 return -EINVAL;
4198         }
4199 }
4200
4201 static struct irq_chip its_vpe_4_1_irq_chip = {
4202         .name                   = "GICv4.1-vpe",
4203         .irq_mask               = its_vpe_4_1_mask_irq,
4204         .irq_unmask             = its_vpe_4_1_unmask_irq,
4205         .irq_eoi                = irq_chip_eoi_parent,
4206         .irq_set_affinity       = its_vpe_set_affinity,
4207         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4208 };
4209
4210 static void its_configure_sgi(struct irq_data *d, bool clear)
4211 {
4212         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4213         struct its_cmd_desc desc;
4214
4215         desc.its_vsgi_cmd.vpe = vpe;
4216         desc.its_vsgi_cmd.sgi = d->hwirq;
4217         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4218         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4219         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4220         desc.its_vsgi_cmd.clear = clear;
4221
4222         /*
4223          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4224          * destination VPE is mapped there. Since we map them eagerly at
4225          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4226          */
4227         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4228 }
4229
4230 static void its_sgi_mask_irq(struct irq_data *d)
4231 {
4232         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4233
4234         vpe->sgi_config[d->hwirq].enabled = false;
4235         its_configure_sgi(d, false);
4236 }
4237
4238 static void its_sgi_unmask_irq(struct irq_data *d)
4239 {
4240         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4241
4242         vpe->sgi_config[d->hwirq].enabled = true;
4243         its_configure_sgi(d, false);
4244 }
4245
4246 static int its_sgi_set_affinity(struct irq_data *d,
4247                                 const struct cpumask *mask_val,
4248                                 bool force)
4249 {
4250         /*
4251          * There is no notion of affinity for virtual SGIs, at least
4252          * not on the host (since they can only be targeting a vPE).
4253          * Tell the kernel we've done whatever it asked for.
4254          */
4255         irq_data_update_effective_affinity(d, mask_val);
4256         return IRQ_SET_MASK_OK;
4257 }
4258
4259 static int its_sgi_set_irqchip_state(struct irq_data *d,
4260                                      enum irqchip_irq_state which,
4261                                      bool state)
4262 {
4263         if (which != IRQCHIP_STATE_PENDING)
4264                 return -EINVAL;
4265
4266         if (state) {
4267                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4268                 struct its_node *its = find_4_1_its();
4269                 u64 val;
4270
4271                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4272                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4273                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4274         } else {
4275                 its_configure_sgi(d, true);
4276         }
4277
4278         return 0;
4279 }
4280
4281 static int its_sgi_get_irqchip_state(struct irq_data *d,
4282                                      enum irqchip_irq_state which, bool *val)
4283 {
4284         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4285         void __iomem *base;
4286         unsigned long flags;
4287         u32 count = 1000000;    /* 1s! */
4288         u32 status;
4289         int cpu;
4290
4291         if (which != IRQCHIP_STATE_PENDING)
4292                 return -EINVAL;
4293
4294         /*
4295          * Locking galore! We can race against two different events:
4296          *
4297          * - Concurrent vPE affinity change: we must make sure it cannot
4298          *   happen, or we'll talk to the wrong redistributor. This is
4299          *   identical to what happens with vLPIs.
4300          *
4301          * - Concurrent VSGIPENDR access: As it involves accessing two
4302          *   MMIO registers, this must be made atomic one way or another.
4303          */
4304         cpu = vpe_to_cpuid_lock(vpe, &flags);
4305         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4306         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4307         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4308         do {
4309                 status = readl_relaxed(base + GICR_VSGIPENDR);
4310                 if (!(status & GICR_VSGIPENDR_BUSY))
4311                         goto out;
4312
4313                 count--;
4314                 if (!count) {
4315                         pr_err_ratelimited("Unable to get SGI status\n");
4316                         goto out;
4317                 }
4318                 cpu_relax();
4319                 udelay(1);
4320         } while (count);
4321
4322 out:
4323         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4324         vpe_to_cpuid_unlock(vpe, flags);
4325
4326         if (!count)
4327                 return -ENXIO;
4328
4329         *val = !!(status & (1 << d->hwirq));
4330
4331         return 0;
4332 }
4333
4334 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4335 {
4336         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4337         struct its_cmd_info *info = vcpu_info;
4338
4339         switch (info->cmd_type) {
4340         case PROP_UPDATE_VSGI:
4341                 vpe->sgi_config[d->hwirq].priority = info->priority;
4342                 vpe->sgi_config[d->hwirq].group = info->group;
4343                 its_configure_sgi(d, false);
4344                 return 0;
4345
4346         default:
4347                 return -EINVAL;
4348         }
4349 }
4350
4351 static struct irq_chip its_sgi_irq_chip = {
4352         .name                   = "GICv4.1-sgi",
4353         .irq_mask               = its_sgi_mask_irq,
4354         .irq_unmask             = its_sgi_unmask_irq,
4355         .irq_set_affinity       = its_sgi_set_affinity,
4356         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4357         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4358         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4359 };
4360
4361 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4362                                     unsigned int virq, unsigned int nr_irqs,
4363                                     void *args)
4364 {
4365         struct its_vpe *vpe = args;
4366         int i;
4367
4368         /* Yes, we do want 16 SGIs */
4369         WARN_ON(nr_irqs != 16);
4370
4371         for (i = 0; i < 16; i++) {
4372                 vpe->sgi_config[i].priority = 0;
4373                 vpe->sgi_config[i].enabled = false;
4374                 vpe->sgi_config[i].group = false;
4375
4376                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4377                                               &its_sgi_irq_chip, vpe);
4378                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4379         }
4380
4381         return 0;
4382 }
4383
4384 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4385                                     unsigned int virq,
4386                                     unsigned int nr_irqs)
4387 {
4388         /* Nothing to do */
4389 }
4390
4391 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4392                                        struct irq_data *d, bool reserve)
4393 {
4394         /* Write out the initial SGI configuration */
4395         its_configure_sgi(d, false);
4396         return 0;
4397 }
4398
4399 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4400                                           struct irq_data *d)
4401 {
4402         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4403
4404         /*
4405          * The VSGI command is awkward:
4406          *
4407          * - To change the configuration, CLEAR must be set to false,
4408          *   leaving the pending bit unchanged.
4409          * - To clear the pending bit, CLEAR must be set to true, leaving
4410          *   the configuration unchanged.
4411          *
4412          * You just can't do both at once, hence the two commands below.
4413          */
4414         vpe->sgi_config[d->hwirq].enabled = false;
4415         its_configure_sgi(d, false);
4416         its_configure_sgi(d, true);
4417 }
4418
4419 static const struct irq_domain_ops its_sgi_domain_ops = {
4420         .alloc          = its_sgi_irq_domain_alloc,
4421         .free           = its_sgi_irq_domain_free,
4422         .activate       = its_sgi_irq_domain_activate,
4423         .deactivate     = its_sgi_irq_domain_deactivate,
4424 };
4425
4426 static int its_vpe_id_alloc(void)
4427 {
4428         return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4429 }
4430
4431 static void its_vpe_id_free(u16 id)
4432 {
4433         ida_free(&its_vpeid_ida, id);
4434 }
4435
4436 static int its_vpe_init(struct its_vpe *vpe)
4437 {
4438         struct page *vpt_page;
4439         int vpe_id;
4440
4441         /* Allocate vpe_id */
4442         vpe_id = its_vpe_id_alloc();
4443         if (vpe_id < 0)
4444                 return vpe_id;
4445
4446         /* Allocate VPT */
4447         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4448         if (!vpt_page) {
4449                 its_vpe_id_free(vpe_id);
4450                 return -ENOMEM;
4451         }
4452
4453         if (!its_alloc_vpe_table(vpe_id)) {
4454                 its_vpe_id_free(vpe_id);
4455                 its_free_pending_table(vpt_page);
4456                 return -ENOMEM;
4457         }
4458
4459         raw_spin_lock_init(&vpe->vpe_lock);
4460         vpe->vpe_id = vpe_id;
4461         vpe->vpt_page = vpt_page;
4462         if (gic_rdists->has_rvpeid)
4463                 atomic_set(&vpe->vmapp_count, 0);
4464         else
4465                 vpe->vpe_proxy_event = -1;
4466
4467         return 0;
4468 }
4469
4470 static void its_vpe_teardown(struct its_vpe *vpe)
4471 {
4472         its_vpe_db_proxy_unmap(vpe);
4473         its_vpe_id_free(vpe->vpe_id);
4474         its_free_pending_table(vpe->vpt_page);
4475 }
4476
4477 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4478                                     unsigned int virq,
4479                                     unsigned int nr_irqs)
4480 {
4481         struct its_vm *vm = domain->host_data;
4482         int i;
4483
4484         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4485
4486         for (i = 0; i < nr_irqs; i++) {
4487                 struct irq_data *data = irq_domain_get_irq_data(domain,
4488                                                                 virq + i);
4489                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4490
4491                 BUG_ON(vm != vpe->its_vm);
4492
4493                 clear_bit(data->hwirq, vm->db_bitmap);
4494                 its_vpe_teardown(vpe);
4495                 irq_domain_reset_irq_data(data);
4496         }
4497
4498         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4499                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4500                 its_free_prop_table(vm->vprop_page);
4501         }
4502 }
4503
4504 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4505                                     unsigned int nr_irqs, void *args)
4506 {
4507         struct irq_chip *irqchip = &its_vpe_irq_chip;
4508         struct its_vm *vm = args;
4509         unsigned long *bitmap;
4510         struct page *vprop_page;
4511         int base, nr_ids, i, err = 0;
4512
4513         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4514         if (!bitmap)
4515                 return -ENOMEM;
4516
4517         if (nr_ids < nr_irqs) {
4518                 its_lpi_free(bitmap, base, nr_ids);
4519                 return -ENOMEM;
4520         }
4521
4522         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4523         if (!vprop_page) {
4524                 its_lpi_free(bitmap, base, nr_ids);
4525                 return -ENOMEM;
4526         }
4527
4528         vm->db_bitmap = bitmap;
4529         vm->db_lpi_base = base;
4530         vm->nr_db_lpis = nr_ids;
4531         vm->vprop_page = vprop_page;
4532         raw_spin_lock_init(&vm->vmapp_lock);
4533
4534         if (gic_rdists->has_rvpeid)
4535                 irqchip = &its_vpe_4_1_irq_chip;
4536
4537         for (i = 0; i < nr_irqs; i++) {
4538                 vm->vpes[i]->vpe_db_lpi = base + i;
4539                 err = its_vpe_init(vm->vpes[i]);
4540                 if (err)
4541                         break;
4542                 err = its_irq_gic_domain_alloc(domain, virq + i,
4543                                                vm->vpes[i]->vpe_db_lpi);
4544                 if (err)
4545                         break;
4546                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4547                                               irqchip, vm->vpes[i]);
4548                 set_bit(i, bitmap);
4549                 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4550         }
4551
4552         if (err)
4553                 its_vpe_irq_domain_free(domain, virq, i);
4554
4555         return err;
4556 }
4557
4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4559                                        struct irq_data *d, bool reserve)
4560 {
4561         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562         struct its_node *its;
4563
4564         /* Map the VPE to the first possible CPU */
4565         vpe->col_idx = cpumask_first(cpu_online_mask);
4566         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4567
4568         /*
4569          * If we use the list map, we issue VMAPP on demand... Unless
4570          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4571          * so that VSGIs can work.
4572          */
4573         if (!gic_requires_eager_mapping())
4574                 return 0;
4575
4576         list_for_each_entry(its, &its_nodes, entry) {
4577                 if (!is_v4(its))
4578                         continue;
4579
4580                 its_send_vmapp(its, vpe, true);
4581                 its_send_vinvall(its, vpe);
4582         }
4583
4584         return 0;
4585 }
4586
4587 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4588                                           struct irq_data *d)
4589 {
4590         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4591         struct its_node *its;
4592
4593         /*
4594          * If we use the list map on GICv4.0, we unmap the VPE once no
4595          * VLPIs are associated with the VM.
4596          */
4597         if (!gic_requires_eager_mapping())
4598                 return;
4599
4600         list_for_each_entry(its, &its_nodes, entry) {
4601                 if (!is_v4(its))
4602                         continue;
4603
4604                 its_send_vmapp(its, vpe, false);
4605         }
4606
4607         /*
4608          * There may be a direct read to the VPT after unmapping the
4609          * vPE, to guarantee the validity of this, we make the VPT
4610          * memory coherent with the CPU caches here.
4611          */
4612         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4613                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4614                                         LPI_PENDBASE_SZ);
4615 }
4616
4617 static const struct irq_domain_ops its_vpe_domain_ops = {
4618         .alloc                  = its_vpe_irq_domain_alloc,
4619         .free                   = its_vpe_irq_domain_free,
4620         .activate               = its_vpe_irq_domain_activate,
4621         .deactivate             = its_vpe_irq_domain_deactivate,
4622 };
4623
4624 static int its_force_quiescent(void __iomem *base)
4625 {
4626         u32 count = 1000000;    /* 1s */
4627         u32 val;
4628
4629         val = readl_relaxed(base + GITS_CTLR);
4630         /*
4631          * GIC architecture specification requires the ITS to be both
4632          * disabled and quiescent for writes to GITS_BASER<n> or
4633          * GITS_CBASER to not have UNPREDICTABLE results.
4634          */
4635         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4636                 return 0;
4637
4638         /* Disable the generation of all interrupts to this ITS */
4639         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4640         writel_relaxed(val, base + GITS_CTLR);
4641
4642         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4643         while (1) {
4644                 val = readl_relaxed(base + GITS_CTLR);
4645                 if (val & GITS_CTLR_QUIESCENT)
4646                         return 0;
4647
4648                 count--;
4649                 if (!count)
4650                         return -EBUSY;
4651
4652                 cpu_relax();
4653                 udelay(1);
4654         }
4655 }
4656
4657 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4658 {
4659         struct its_node *its = data;
4660
4661         /* erratum 22375: only alloc 8MB table size (20 bits) */
4662         its->typer &= ~GITS_TYPER_DEVBITS;
4663         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4664         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4665
4666         return true;
4667 }
4668
4669 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4670 {
4671         struct its_node *its = data;
4672
4673         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4674
4675         return true;
4676 }
4677
4678 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4679 {
4680         struct its_node *its = data;
4681
4682         /* On QDF2400, the size of the ITE is 16Bytes */
4683         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4684         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4685
4686         return true;
4687 }
4688
4689 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4690 {
4691         struct its_node *its = its_dev->its;
4692
4693         /*
4694          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4695          * which maps 32-bit writes targeted at a separate window of
4696          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4697          * with device ID taken from bits [device_id_bits + 1:2] of
4698          * the window offset.
4699          */
4700         return its->pre_its_base + (its_dev->device_id << 2);
4701 }
4702
4703 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4704 {
4705         struct its_node *its = data;
4706         u32 pre_its_window[2];
4707         u32 ids;
4708
4709         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4710                                            "socionext,synquacer-pre-its",
4711                                            pre_its_window,
4712                                            ARRAY_SIZE(pre_its_window))) {
4713
4714                 its->pre_its_base = pre_its_window[0];
4715                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4716
4717                 ids = ilog2(pre_its_window[1]) - 2;
4718                 if (device_ids(its) > ids) {
4719                         its->typer &= ~GITS_TYPER_DEVBITS;
4720                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4721                 }
4722
4723                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4724                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4725                 return true;
4726         }
4727         return false;
4728 }
4729
4730 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4731 {
4732         struct its_node *its = data;
4733
4734         /*
4735          * Hip07 insists on using the wrong address for the VLPI
4736          * page. Trick it into doing the right thing...
4737          */
4738         its->vlpi_redist_offset = SZ_128K;
4739         return true;
4740 }
4741
4742 static bool __maybe_unused its_enable_rk3588001(void *data)
4743 {
4744         struct its_node *its = data;
4745
4746         if (!of_machine_is_compatible("rockchip,rk3588") &&
4747             !of_machine_is_compatible("rockchip,rk3588s"))
4748                 return false;
4749
4750         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4751         gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4752
4753         return true;
4754 }
4755
4756 static bool its_set_non_coherent(void *data)
4757 {
4758         struct its_node *its = data;
4759
4760         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4761         return true;
4762 }
4763
4764 static const struct gic_quirk its_quirks[] = {
4765 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4766         {
4767                 .desc   = "ITS: Cavium errata 22375, 24313",
4768                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4769                 .mask   = 0xffff0fff,
4770                 .init   = its_enable_quirk_cavium_22375,
4771         },
4772 #endif
4773 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4774         {
4775                 .desc   = "ITS: Cavium erratum 23144",
4776                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4777                 .mask   = 0xffff0fff,
4778                 .init   = its_enable_quirk_cavium_23144,
4779         },
4780 #endif
4781 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4782         {
4783                 .desc   = "ITS: QDF2400 erratum 0065",
4784                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4785                 .mask   = 0xffffffff,
4786                 .init   = its_enable_quirk_qdf2400_e0065,
4787         },
4788 #endif
4789 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4790         {
4791                 /*
4792                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4793                  * implementation, but with a 'pre-ITS' added that requires
4794                  * special handling in software.
4795                  */
4796                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4797                 .iidr   = 0x0001143b,
4798                 .mask   = 0xffffffff,
4799                 .init   = its_enable_quirk_socionext_synquacer,
4800         },
4801 #endif
4802 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4803         {
4804                 .desc   = "ITS: Hip07 erratum 161600802",
4805                 .iidr   = 0x00000004,
4806                 .mask   = 0xffffffff,
4807                 .init   = its_enable_quirk_hip07_161600802,
4808         },
4809 #endif
4810 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4811         {
4812                 .desc   = "ITS: Rockchip erratum RK3588001",
4813                 .iidr   = 0x0201743b,
4814                 .mask   = 0xffffffff,
4815                 .init   = its_enable_rk3588001,
4816         },
4817 #endif
4818         {
4819                 .desc   = "ITS: non-coherent attribute",
4820                 .property = "dma-noncoherent",
4821                 .init   = its_set_non_coherent,
4822         },
4823         {
4824         }
4825 };
4826
4827 static void its_enable_quirks(struct its_node *its)
4828 {
4829         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4830
4831         gic_enable_quirks(iidr, its_quirks, its);
4832
4833         if (is_of_node(its->fwnode_handle))
4834                 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4835                                      its_quirks, its);
4836 }
4837
4838 static int its_save_disable(void)
4839 {
4840         struct its_node *its;
4841         int err = 0;
4842
4843         raw_spin_lock(&its_lock);
4844         list_for_each_entry(its, &its_nodes, entry) {
4845                 void __iomem *base;
4846
4847                 base = its->base;
4848                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4849                 err = its_force_quiescent(base);
4850                 if (err) {
4851                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4852                                &its->phys_base, err);
4853                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4854                         goto err;
4855                 }
4856
4857                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4858         }
4859
4860 err:
4861         if (err) {
4862                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4863                         void __iomem *base;
4864
4865                         base = its->base;
4866                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4867                 }
4868         }
4869         raw_spin_unlock(&its_lock);
4870
4871         return err;
4872 }
4873
4874 static void its_restore_enable(void)
4875 {
4876         struct its_node *its;
4877         int ret;
4878
4879         raw_spin_lock(&its_lock);
4880         list_for_each_entry(its, &its_nodes, entry) {
4881                 void __iomem *base;
4882                 int i;
4883
4884                 base = its->base;
4885
4886                 /*
4887                  * Make sure that the ITS is disabled. If it fails to quiesce,
4888                  * don't restore it since writing to CBASER or BASER<n>
4889                  * registers is undefined according to the GIC v3 ITS
4890                  * Specification.
4891                  *
4892                  * Firmware resuming with the ITS enabled is terminally broken.
4893                  */
4894                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4895                 ret = its_force_quiescent(base);
4896                 if (ret) {
4897                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4898                                &its->phys_base, ret);
4899                         continue;
4900                 }
4901
4902                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4903
4904                 /*
4905                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4906                  * cmd_write line up with it.
4907                  */
4908                 its->cmd_write = its->cmd_base;
4909                 gits_write_cwriter(0, base + GITS_CWRITER);
4910
4911                 /* Restore GITS_BASER from the value cache. */
4912                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4913                         struct its_baser *baser = &its->tables[i];
4914
4915                         if (!(baser->val & GITS_BASER_VALID))
4916                                 continue;
4917
4918                         its_write_baser(its, baser, baser->val);
4919                 }
4920                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4921
4922                 /*
4923                  * Reinit the collection if it's stored in the ITS. This is
4924                  * indicated by the col_id being less than the HCC field.
4925                  * CID < HCC as specified in the GIC v3 Documentation.
4926                  */
4927                 if (its->collections[smp_processor_id()].col_id <
4928                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4929                         its_cpu_init_collection(its);
4930         }
4931         raw_spin_unlock(&its_lock);
4932 }
4933
4934 static struct syscore_ops its_syscore_ops = {
4935         .suspend = its_save_disable,
4936         .resume = its_restore_enable,
4937 };
4938
4939 static void __init __iomem *its_map_one(struct resource *res, int *err)
4940 {
4941         void __iomem *its_base;
4942         u32 val;
4943
4944         its_base = ioremap(res->start, SZ_64K);
4945         if (!its_base) {
4946                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4947                 *err = -ENOMEM;
4948                 return NULL;
4949         }
4950
4951         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4952         if (val != 0x30 && val != 0x40) {
4953                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4954                 *err = -ENODEV;
4955                 goto out_unmap;
4956         }
4957
4958         *err = its_force_quiescent(its_base);
4959         if (*err) {
4960                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4961                 goto out_unmap;
4962         }
4963
4964         return its_base;
4965
4966 out_unmap:
4967         iounmap(its_base);
4968         return NULL;
4969 }
4970
4971 static int its_init_domain(struct its_node *its)
4972 {
4973         struct irq_domain *inner_domain;
4974         struct msi_domain_info *info;
4975
4976         info = kzalloc(sizeof(*info), GFP_KERNEL);
4977         if (!info)
4978                 return -ENOMEM;
4979
4980         info->ops = &its_msi_domain_ops;
4981         info->data = its;
4982
4983         inner_domain = irq_domain_create_hierarchy(its_parent,
4984                                                    its->msi_domain_flags, 0,
4985                                                    its->fwnode_handle, &its_domain_ops,
4986                                                    info);
4987         if (!inner_domain) {
4988                 kfree(info);
4989                 return -ENOMEM;
4990         }
4991
4992         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4993
4994         inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
4995         inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
4996
4997         return 0;
4998 }
4999
5000 static int its_init_vpe_domain(void)
5001 {
5002         struct its_node *its;
5003         u32 devid;
5004         int entries;
5005
5006         if (gic_rdists->has_direct_lpi) {
5007                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5008                 return 0;
5009         }
5010
5011         /* Any ITS will do, even if not v4 */
5012         its = list_first_entry(&its_nodes, struct its_node, entry);
5013
5014         entries = roundup_pow_of_two(nr_cpu_ids);
5015         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5016                                  GFP_KERNEL);
5017         if (!vpe_proxy.vpes)
5018                 return -ENOMEM;
5019
5020         /* Use the last possible DevID */
5021         devid = GENMASK(device_ids(its) - 1, 0);
5022         vpe_proxy.dev = its_create_device(its, devid, entries, false);
5023         if (!vpe_proxy.dev) {
5024                 kfree(vpe_proxy.vpes);
5025                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5026                 return -ENOMEM;
5027         }
5028
5029         BUG_ON(entries > vpe_proxy.dev->nr_ites);
5030
5031         raw_spin_lock_init(&vpe_proxy.lock);
5032         vpe_proxy.next_victim = 0;
5033         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5034                 devid, vpe_proxy.dev->nr_ites);
5035
5036         return 0;
5037 }
5038
5039 static int __init its_compute_its_list_map(struct its_node *its)
5040 {
5041         int its_number;
5042         u32 ctlr;
5043
5044         /*
5045          * This is assumed to be done early enough that we're
5046          * guaranteed to be single-threaded, hence no
5047          * locking. Should this change, we should address
5048          * this.
5049          */
5050         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5051         if (its_number >= GICv4_ITS_LIST_MAX) {
5052                 pr_err("ITS@%pa: No ITSList entry available!\n",
5053                        &its->phys_base);
5054                 return -EINVAL;
5055         }
5056
5057         ctlr = readl_relaxed(its->base + GITS_CTLR);
5058         ctlr &= ~GITS_CTLR_ITS_NUMBER;
5059         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5060         writel_relaxed(ctlr, its->base + GITS_CTLR);
5061         ctlr = readl_relaxed(its->base + GITS_CTLR);
5062         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5063                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5064                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5065         }
5066
5067         if (test_and_set_bit(its_number, &its_list_map)) {
5068                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5069                        &its->phys_base, its_number);
5070                 return -EINVAL;
5071         }
5072
5073         return its_number;
5074 }
5075
5076 static int __init its_probe_one(struct its_node *its)
5077 {
5078         u64 baser, tmp;
5079         struct page *page;
5080         u32 ctlr;
5081         int err;
5082
5083         its_enable_quirks(its);
5084
5085         if (is_v4(its)) {
5086                 if (!(its->typer & GITS_TYPER_VMOVP)) {
5087                         err = its_compute_its_list_map(its);
5088                         if (err < 0)
5089                                 goto out;
5090
5091                         its->list_nr = err;
5092
5093                         pr_info("ITS@%pa: Using ITS number %d\n",
5094                                 &its->phys_base, err);
5095                 } else {
5096                         pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5097                 }
5098
5099                 if (is_v4_1(its)) {
5100                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5101
5102                         its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5103                         if (!its->sgir_base) {
5104                                 err = -ENOMEM;
5105                                 goto out;
5106                         }
5107
5108                         its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5109
5110                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5111                                 &its->phys_base, its->mpidr, svpet);
5112                 }
5113         }
5114
5115         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5116                                 get_order(ITS_CMD_QUEUE_SZ));
5117         if (!page) {
5118                 err = -ENOMEM;
5119                 goto out_unmap_sgir;
5120         }
5121         its->cmd_base = (void *)page_address(page);
5122         its->cmd_write = its->cmd_base;
5123
5124         err = its_alloc_tables(its);
5125         if (err)
5126                 goto out_free_cmd;
5127
5128         err = its_alloc_collections(its);
5129         if (err)
5130                 goto out_free_tables;
5131
5132         baser = (virt_to_phys(its->cmd_base)    |
5133                  GITS_CBASER_RaWaWb             |
5134                  GITS_CBASER_InnerShareable     |
5135                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5136                  GITS_CBASER_VALID);
5137
5138         gits_write_cbaser(baser, its->base + GITS_CBASER);
5139         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5140
5141         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5142                 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5143
5144         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5145                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5146                         /*
5147                          * The HW reports non-shareable, we must
5148                          * remove the cacheability attributes as
5149                          * well.
5150                          */
5151                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5152                                    GITS_CBASER_CACHEABILITY_MASK);
5153                         baser |= GITS_CBASER_nC;
5154                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5155                 }
5156                 pr_info("ITS: using cache flushing for cmd queue\n");
5157                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5158         }
5159
5160         gits_write_cwriter(0, its->base + GITS_CWRITER);
5161         ctlr = readl_relaxed(its->base + GITS_CTLR);
5162         ctlr |= GITS_CTLR_ENABLE;
5163         if (is_v4(its))
5164                 ctlr |= GITS_CTLR_ImDe;
5165         writel_relaxed(ctlr, its->base + GITS_CTLR);
5166
5167         err = its_init_domain(its);
5168         if (err)
5169                 goto out_free_tables;
5170
5171         raw_spin_lock(&its_lock);
5172         list_add(&its->entry, &its_nodes);
5173         raw_spin_unlock(&its_lock);
5174
5175         return 0;
5176
5177 out_free_tables:
5178         its_free_tables(its);
5179 out_free_cmd:
5180         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5181 out_unmap_sgir:
5182         if (its->sgir_base)
5183                 iounmap(its->sgir_base);
5184 out:
5185         pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5186         return err;
5187 }
5188
5189 static bool gic_rdists_supports_plpis(void)
5190 {
5191         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5192 }
5193
5194 static int redist_disable_lpis(void)
5195 {
5196         void __iomem *rbase = gic_data_rdist_rd_base();
5197         u64 timeout = USEC_PER_SEC;
5198         u64 val;
5199
5200         if (!gic_rdists_supports_plpis()) {
5201                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5202                 return -ENXIO;
5203         }
5204
5205         val = readl_relaxed(rbase + GICR_CTLR);
5206         if (!(val & GICR_CTLR_ENABLE_LPIS))
5207                 return 0;
5208
5209         /*
5210          * If coming via a CPU hotplug event, we don't need to disable
5211          * LPIs before trying to re-enable them. They are already
5212          * configured and all is well in the world.
5213          *
5214          * If running with preallocated tables, there is nothing to do.
5215          */
5216         if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5217             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5218                 return 0;
5219
5220         /*
5221          * From that point on, we only try to do some damage control.
5222          */
5223         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5224                 smp_processor_id());
5225         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5226
5227         /* Disable LPIs */
5228         val &= ~GICR_CTLR_ENABLE_LPIS;
5229         writel_relaxed(val, rbase + GICR_CTLR);
5230
5231         /* Make sure any change to GICR_CTLR is observable by the GIC */
5232         dsb(sy);
5233
5234         /*
5235          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5236          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5237          * Error out if we time out waiting for RWP to clear.
5238          */
5239         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5240                 if (!timeout) {
5241                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5242                                smp_processor_id());
5243                         return -ETIMEDOUT;
5244                 }
5245                 udelay(1);
5246                 timeout--;
5247         }
5248
5249         /*
5250          * After it has been written to 1, it is IMPLEMENTATION
5251          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5252          * cleared to 0. Error out if clearing the bit failed.
5253          */
5254         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5255                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5256                 return -EBUSY;
5257         }
5258
5259         return 0;
5260 }
5261
5262 int its_cpu_init(void)
5263 {
5264         if (!list_empty(&its_nodes)) {
5265                 int ret;
5266
5267                 ret = redist_disable_lpis();
5268                 if (ret)
5269                         return ret;
5270
5271                 its_cpu_init_lpis();
5272                 its_cpu_init_collections();
5273         }
5274
5275         return 0;
5276 }
5277
5278 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5279 {
5280         cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5281         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5282 }
5283
5284 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5285                     rdist_memreserve_cpuhp_cleanup_workfn);
5286
5287 static int its_cpu_memreserve_lpi(unsigned int cpu)
5288 {
5289         struct page *pend_page;
5290         int ret = 0;
5291
5292         /* This gets to run exactly once per CPU */
5293         if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5294                 return 0;
5295
5296         pend_page = gic_data_rdist()->pend_page;
5297         if (WARN_ON(!pend_page)) {
5298                 ret = -ENOMEM;
5299                 goto out;
5300         }
5301         /*
5302          * If the pending table was pre-programmed, free the memory we
5303          * preemptively allocated. Otherwise, reserve that memory for
5304          * later kexecs.
5305          */
5306         if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5307                 its_free_pending_table(pend_page);
5308                 gic_data_rdist()->pend_page = NULL;
5309         } else {
5310                 phys_addr_t paddr = page_to_phys(pend_page);
5311                 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5312         }
5313
5314 out:
5315         /* Last CPU being brought up gets to issue the cleanup */
5316         if (!IS_ENABLED(CONFIG_SMP) ||
5317             cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5318                 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5319
5320         gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5321         return ret;
5322 }
5323
5324 /* Mark all the BASER registers as invalid before they get reprogrammed */
5325 static int __init its_reset_one(struct resource *res)
5326 {
5327         void __iomem *its_base;
5328         int err, i;
5329
5330         its_base = its_map_one(res, &err);
5331         if (!its_base)
5332                 return err;
5333
5334         for (i = 0; i < GITS_BASER_NR_REGS; i++)
5335                 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5336
5337         iounmap(its_base);
5338         return 0;
5339 }
5340
5341 static const struct of_device_id its_device_id[] = {
5342         {       .compatible     = "arm,gic-v3-its",     },
5343         {},
5344 };
5345
5346 static struct its_node __init *its_node_init(struct resource *res,
5347                                              struct fwnode_handle *handle, int numa_node)
5348 {
5349         void __iomem *its_base;
5350         struct its_node *its;
5351         int err;
5352
5353         its_base = its_map_one(res, &err);
5354         if (!its_base)
5355                 return NULL;
5356
5357         pr_info("ITS %pR\n", res);
5358
5359         its = kzalloc(sizeof(*its), GFP_KERNEL);
5360         if (!its)
5361                 goto out_unmap;
5362
5363         raw_spin_lock_init(&its->lock);
5364         mutex_init(&its->dev_alloc_lock);
5365         INIT_LIST_HEAD(&its->entry);
5366         INIT_LIST_HEAD(&its->its_device_list);
5367
5368         its->typer = gic_read_typer(its_base + GITS_TYPER);
5369         its->base = its_base;
5370         its->phys_base = res->start;
5371         its->get_msi_base = its_irq_get_msi_base;
5372         its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5373
5374         its->numa_node = numa_node;
5375         its->fwnode_handle = handle;
5376
5377         return its;
5378
5379 out_unmap:
5380         iounmap(its_base);
5381         return NULL;
5382 }
5383
5384 static void its_node_destroy(struct its_node *its)
5385 {
5386         iounmap(its->base);
5387         kfree(its);
5388 }
5389
5390 static int __init its_of_probe(struct device_node *node)
5391 {
5392         struct device_node *np;
5393         struct resource res;
5394         int err;
5395
5396         /*
5397          * Make sure *all* the ITS are reset before we probe any, as
5398          * they may be sharing memory. If any of the ITS fails to
5399          * reset, don't even try to go any further, as this could
5400          * result in something even worse.
5401          */
5402         for (np = of_find_matching_node(node, its_device_id); np;
5403              np = of_find_matching_node(np, its_device_id)) {
5404                 if (!of_device_is_available(np) ||
5405                     !of_property_read_bool(np, "msi-controller") ||
5406                     of_address_to_resource(np, 0, &res))
5407                         continue;
5408
5409                 err = its_reset_one(&res);
5410                 if (err)
5411                         return err;
5412         }
5413
5414         for (np = of_find_matching_node(node, its_device_id); np;
5415              np = of_find_matching_node(np, its_device_id)) {
5416                 struct its_node *its;
5417
5418                 if (!of_device_is_available(np))
5419                         continue;
5420                 if (!of_property_read_bool(np, "msi-controller")) {
5421                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5422                                 np);
5423                         continue;
5424                 }
5425
5426                 if (of_address_to_resource(np, 0, &res)) {
5427                         pr_warn("%pOF: no regs?\n", np);
5428                         continue;
5429                 }
5430
5431
5432                 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5433                 if (!its)
5434                         return -ENOMEM;
5435
5436                 err = its_probe_one(its);
5437                 if (err)  {
5438                         its_node_destroy(its);
5439                         return err;
5440                 }
5441         }
5442         return 0;
5443 }
5444
5445 #ifdef CONFIG_ACPI
5446
5447 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5448
5449 #ifdef CONFIG_ACPI_NUMA
5450 struct its_srat_map {
5451         /* numa node id */
5452         u32     numa_node;
5453         /* GIC ITS ID */
5454         u32     its_id;
5455 };
5456
5457 static struct its_srat_map *its_srat_maps __initdata;
5458 static int its_in_srat __initdata;
5459
5460 static int __init acpi_get_its_numa_node(u32 its_id)
5461 {
5462         int i;
5463
5464         for (i = 0; i < its_in_srat; i++) {
5465                 if (its_id == its_srat_maps[i].its_id)
5466                         return its_srat_maps[i].numa_node;
5467         }
5468         return NUMA_NO_NODE;
5469 }
5470
5471 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5472                                           const unsigned long end)
5473 {
5474         return 0;
5475 }
5476
5477 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5478                          const unsigned long end)
5479 {
5480         int node;
5481         struct acpi_srat_gic_its_affinity *its_affinity;
5482
5483         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5484         if (!its_affinity)
5485                 return -EINVAL;
5486
5487         if (its_affinity->header.length < sizeof(*its_affinity)) {
5488                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5489                         its_affinity->header.length);
5490                 return -EINVAL;
5491         }
5492
5493         /*
5494          * Note that in theory a new proximity node could be created by this
5495          * entry as it is an SRAT resource allocation structure.
5496          * We do not currently support doing so.
5497          */
5498         node = pxm_to_node(its_affinity->proximity_domain);
5499
5500         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5501                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5502                 return 0;
5503         }
5504
5505         its_srat_maps[its_in_srat].numa_node = node;
5506         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5507         its_in_srat++;
5508         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5509                 its_affinity->proximity_domain, its_affinity->its_id, node);
5510
5511         return 0;
5512 }
5513
5514 static void __init acpi_table_parse_srat_its(void)
5515 {
5516         int count;
5517
5518         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5519                         sizeof(struct acpi_table_srat),
5520                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5521                         gic_acpi_match_srat_its, 0);
5522         if (count <= 0)
5523                 return;
5524
5525         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5526                                       GFP_KERNEL);
5527         if (!its_srat_maps)
5528                 return;
5529
5530         acpi_table_parse_entries(ACPI_SIG_SRAT,
5531                         sizeof(struct acpi_table_srat),
5532                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5533                         gic_acpi_parse_srat_its, 0);
5534 }
5535
5536 /* free the its_srat_maps after ITS probing */
5537 static void __init acpi_its_srat_maps_free(void)
5538 {
5539         kfree(its_srat_maps);
5540 }
5541 #else
5542 static void __init acpi_table_parse_srat_its(void)      { }
5543 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5544 static void __init acpi_its_srat_maps_free(void) { }
5545 #endif
5546
5547 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5548                                           const unsigned long end)
5549 {
5550         struct acpi_madt_generic_translator *its_entry;
5551         struct fwnode_handle *dom_handle;
5552         struct its_node *its;
5553         struct resource res;
5554         int err;
5555
5556         its_entry = (struct acpi_madt_generic_translator *)header;
5557         memset(&res, 0, sizeof(res));
5558         res.start = its_entry->base_address;
5559         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5560         res.flags = IORESOURCE_MEM;
5561
5562         dom_handle = irq_domain_alloc_fwnode(&res.start);
5563         if (!dom_handle) {
5564                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5565                        &res.start);
5566                 return -ENOMEM;
5567         }
5568
5569         err = iort_register_domain_token(its_entry->translation_id, res.start,
5570                                          dom_handle);
5571         if (err) {
5572                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5573                        &res.start, its_entry->translation_id);
5574                 goto dom_err;
5575         }
5576
5577         its = its_node_init(&res, dom_handle,
5578                             acpi_get_its_numa_node(its_entry->translation_id));
5579         if (!its) {
5580                 err = -ENOMEM;
5581                 goto node_err;
5582         }
5583
5584         if (acpi_get_madt_revision() >= 7 &&
5585             (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5586                 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5587
5588         err = its_probe_one(its);
5589         if (!err)
5590                 return 0;
5591
5592 node_err:
5593         iort_deregister_domain_token(its_entry->translation_id);
5594 dom_err:
5595         irq_domain_free_fwnode(dom_handle);
5596         return err;
5597 }
5598
5599 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5600                                  const unsigned long end)
5601 {
5602         struct acpi_madt_generic_translator *its_entry;
5603         struct resource res;
5604
5605         its_entry = (struct acpi_madt_generic_translator *)header;
5606         res = (struct resource) {
5607                 .start  = its_entry->base_address,
5608                 .end    = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5609                 .flags  = IORESOURCE_MEM,
5610         };
5611
5612         return its_reset_one(&res);
5613 }
5614
5615 static void __init its_acpi_probe(void)
5616 {
5617         acpi_table_parse_srat_its();
5618         /*
5619          * Make sure *all* the ITS are reset before we probe any, as
5620          * they may be sharing memory. If any of the ITS fails to
5621          * reset, don't even try to go any further, as this could
5622          * result in something even worse.
5623          */
5624         if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5625                                   its_acpi_reset, 0) > 0)
5626                 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5627                                       gic_acpi_parse_madt_its, 0);
5628         acpi_its_srat_maps_free();
5629 }
5630 #else
5631 static void __init its_acpi_probe(void) { }
5632 #endif
5633
5634 int __init its_lpi_memreserve_init(void)
5635 {
5636         int state;
5637
5638         if (!efi_enabled(EFI_CONFIG_TABLES))
5639                 return 0;
5640
5641         if (list_empty(&its_nodes))
5642                 return 0;
5643
5644         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5645         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5646                                   "irqchip/arm/gicv3/memreserve:online",
5647                                   its_cpu_memreserve_lpi,
5648                                   NULL);
5649         if (state < 0)
5650                 return state;
5651
5652         gic_rdists->cpuhp_memreserve_state = state;
5653
5654         return 0;
5655 }
5656
5657 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5658                     struct irq_domain *parent_domain, u8 irq_prio)
5659 {
5660         struct device_node *of_node;
5661         struct its_node *its;
5662         bool has_v4 = false;
5663         bool has_v4_1 = false;
5664         int err;
5665
5666         gic_rdists = rdists;
5667
5668         lpi_prop_prio = irq_prio;
5669         its_parent = parent_domain;
5670         of_node = to_of_node(handle);
5671         if (of_node)
5672                 its_of_probe(of_node);
5673         else
5674                 its_acpi_probe();
5675
5676         if (list_empty(&its_nodes)) {
5677                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5678                 return -ENXIO;
5679         }
5680
5681         err = allocate_lpi_tables();
5682         if (err)
5683                 return err;
5684
5685         list_for_each_entry(its, &its_nodes, entry) {
5686                 has_v4 |= is_v4(its);
5687                 has_v4_1 |= is_v4_1(its);
5688         }
5689
5690         /* Don't bother with inconsistent systems */
5691         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5692                 rdists->has_rvpeid = false;
5693
5694         if (has_v4 & rdists->has_vlpis) {
5695                 const struct irq_domain_ops *sgi_ops;
5696
5697                 if (has_v4_1)
5698                         sgi_ops = &its_sgi_domain_ops;
5699                 else
5700                         sgi_ops = NULL;
5701
5702                 if (its_init_vpe_domain() ||
5703                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5704                         rdists->has_vlpis = false;
5705                         pr_err("ITS: Disabling GICv4 support\n");
5706                 }
5707         }
5708
5709         register_syscore_ops(&its_syscore_ops);
5710
5711         return 0;
5712 }
This page took 0.3607 seconds and 4 git commands to generate.