1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
23 #include <linux/msi.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
40 #include "irq-gic-common.h"
41 #include "irq-msi-lib.h"
43 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
45 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
46 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
48 #define RD_LOCAL_LPI_ENABLED BIT(0)
49 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
50 #define RD_LOCAL_MEMRESERVE_DONE BIT(2)
52 static u32 lpi_id_bits;
55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56 * deal with (one configuration byte per interrupt). PENDBASE has to
57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59 #define LPI_NRBITS lpi_id_bits
60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63 static u8 __ro_after_init lpi_prop_prio;
66 * Collection structure - just an ID, and a redistributor address to
67 * ping. We use one per CPU as a bag of interrupts assigned to this
70 struct its_collection {
76 * The ITS_BASER structure - contains memory information, cached
77 * value of BASER register configuration and ITS page size.
89 * The ITS structure - contains most of the infrastructure, with the
90 * top-level MSI domain, the command queue, the collections, and the
91 * list of devices writing to it.
93 * dev_alloc_lock has to be taken for device allocations, while the
94 * spinlock must be taken to parse data structures such as the device
99 struct mutex dev_alloc_lock;
100 struct list_head entry;
102 void __iomem *sgir_base;
103 phys_addr_t phys_base;
104 struct its_cmd_block *cmd_base;
105 struct its_cmd_block *cmd_write;
106 struct its_baser tables[GITS_BASER_NR_REGS];
107 struct its_collection *collections;
108 struct fwnode_handle *fwnode_handle;
109 u64 (*get_msi_base)(struct its_device *its_dev);
114 struct list_head its_device_list;
116 unsigned long list_nr;
118 unsigned int msi_domain_flags;
119 u32 pre_its_base; /* for Socionext Synquacer */
120 int vlpi_redist_offset;
123 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
124 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
125 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
127 #define ITS_ITT_ALIGN SZ_256
129 /* The maximum number of VPEID bits supported by VLPI commands */
130 #define ITS_MAX_VPEID_BITS \
133 if (gic_rdists->has_rvpeid && \
134 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
135 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
140 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
142 /* Convert page order to size in bytes */
143 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
145 struct event_lpi_map {
146 unsigned long *lpi_map;
148 irq_hw_number_t lpi_base;
150 raw_spinlock_t vlpi_lock;
152 struct its_vlpi_map *vlpi_maps;
157 * The ITS view of a device - belongs to an ITS, owns an interrupt
158 * translation table, and a list of interrupts. If it some of its
159 * LPIs are injected into a guest (GICv4), the event_map.vm field
160 * indicates which one.
163 struct list_head entry;
164 struct its_node *its;
165 struct event_lpi_map event_map;
174 struct its_device *dev;
175 struct its_vpe **vpes;
179 struct cpu_lpi_count {
184 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
186 static LIST_HEAD(its_nodes);
187 static DEFINE_RAW_SPINLOCK(its_lock);
188 static struct rdists *gic_rdists;
189 static struct irq_domain *its_parent;
191 static unsigned long its_list_map;
192 static u16 vmovp_seq_num;
193 static DEFINE_RAW_SPINLOCK(vmovp_lock);
195 static DEFINE_IDA(its_vpeid_ida);
197 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
198 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
199 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
200 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
203 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
204 * always have vSGIs mapped.
206 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
208 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
211 static bool rdists_support_shareable(void)
213 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
216 static u16 get_its_list(struct its_vm *vm)
218 struct its_node *its;
219 unsigned long its_list = 0;
221 list_for_each_entry(its, &its_nodes, entry) {
225 if (require_its_list_vmovp(vm, its))
226 __set_bit(its->list_nr, &its_list);
229 return (u16)its_list;
232 static inline u32 its_get_event_id(struct irq_data *d)
234 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
235 return d->hwirq - its_dev->event_map.lpi_base;
238 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
241 struct its_node *its = its_dev->its;
243 return its->collections + its_dev->event_map.col_map[event];
246 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
249 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
252 return &its_dev->event_map.vlpi_maps[event];
255 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
257 if (irqd_is_forwarded_to_vcpu(d)) {
258 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
259 u32 event = its_get_event_id(d);
261 return dev_event_to_vlpi_map(its_dev, event);
267 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
269 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
273 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
275 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
278 static struct irq_chip its_vpe_irq_chip;
280 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
282 struct its_vpe *vpe = NULL;
285 if (d->chip == &its_vpe_irq_chip) {
286 vpe = irq_data_get_irq_chip_data(d);
288 struct its_vlpi_map *map = get_vlpi_map(d);
294 cpu = vpe_to_cpuid_lock(vpe, flags);
296 /* Physical LPIs are already locked via the irq_desc lock */
297 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
298 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
299 /* Keep GCC quiet... */
306 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
308 struct its_vpe *vpe = NULL;
310 if (d->chip == &its_vpe_irq_chip) {
311 vpe = irq_data_get_irq_chip_data(d);
313 struct its_vlpi_map *map = get_vlpi_map(d);
319 vpe_to_cpuid_unlock(vpe, flags);
322 static struct its_collection *valid_col(struct its_collection *col)
324 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
330 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
332 if (valid_col(its->collections + vpe->col_idx))
339 * ITS command descriptors - parameters to be encoded in a command
342 struct its_cmd_desc {
345 struct its_device *dev;
350 struct its_device *dev;
355 struct its_device *dev;
360 struct its_device *dev;
365 struct its_collection *col;
370 struct its_device *dev;
376 struct its_device *dev;
377 struct its_collection *col;
382 struct its_device *dev;
387 struct its_collection *col;
396 struct its_collection *col;
402 struct its_device *dev;
410 struct its_device *dev;
417 struct its_collection *col;
438 * The ITS command block, which is what the ITS actually parses.
440 struct its_cmd_block {
443 __le64 raw_cmd_le[4];
447 #define ITS_CMD_QUEUE_SZ SZ_64K
448 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
450 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
451 struct its_cmd_block *,
452 struct its_cmd_desc *);
454 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
455 struct its_cmd_block *,
456 struct its_cmd_desc *);
458 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
460 u64 mask = GENMASK_ULL(h, l);
462 *raw_cmd |= (val << l) & mask;
465 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
467 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
470 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
472 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
475 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
477 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
480 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
482 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
485 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
487 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
490 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
492 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
495 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
497 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
500 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
502 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
505 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
507 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
510 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
512 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
515 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
517 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
520 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
522 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
525 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
527 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
530 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
532 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
535 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
537 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
540 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
542 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
545 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
547 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
550 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
552 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
555 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
557 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
560 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
562 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
565 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
568 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
571 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
574 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
577 static void its_encode_db(struct its_cmd_block *cmd, bool db)
579 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
582 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
584 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
587 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
589 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
592 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
594 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
597 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
599 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
602 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
604 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
607 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
609 /* Let's fixup BE commands */
610 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
611 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
612 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
613 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
616 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
617 struct its_cmd_block *cmd,
618 struct its_cmd_desc *desc)
620 unsigned long itt_addr;
621 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
623 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
624 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
626 its_encode_cmd(cmd, GITS_CMD_MAPD);
627 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
628 its_encode_size(cmd, size - 1);
629 its_encode_itt(cmd, itt_addr);
630 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
637 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
638 struct its_cmd_block *cmd,
639 struct its_cmd_desc *desc)
641 its_encode_cmd(cmd, GITS_CMD_MAPC);
642 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
643 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
644 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
648 return desc->its_mapc_cmd.col;
651 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
652 struct its_cmd_block *cmd,
653 struct its_cmd_desc *desc)
655 struct its_collection *col;
657 col = dev_event_to_col(desc->its_mapti_cmd.dev,
658 desc->its_mapti_cmd.event_id);
660 its_encode_cmd(cmd, GITS_CMD_MAPTI);
661 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
662 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
663 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
664 its_encode_collection(cmd, col->col_id);
668 return valid_col(col);
671 static struct its_collection *its_build_movi_cmd(struct its_node *its,
672 struct its_cmd_block *cmd,
673 struct its_cmd_desc *desc)
675 struct its_collection *col;
677 col = dev_event_to_col(desc->its_movi_cmd.dev,
678 desc->its_movi_cmd.event_id);
680 its_encode_cmd(cmd, GITS_CMD_MOVI);
681 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
682 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
683 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
687 return valid_col(col);
690 static struct its_collection *its_build_discard_cmd(struct its_node *its,
691 struct its_cmd_block *cmd,
692 struct its_cmd_desc *desc)
694 struct its_collection *col;
696 col = dev_event_to_col(desc->its_discard_cmd.dev,
697 desc->its_discard_cmd.event_id);
699 its_encode_cmd(cmd, GITS_CMD_DISCARD);
700 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
701 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
705 return valid_col(col);
708 static struct its_collection *its_build_inv_cmd(struct its_node *its,
709 struct its_cmd_block *cmd,
710 struct its_cmd_desc *desc)
712 struct its_collection *col;
714 col = dev_event_to_col(desc->its_inv_cmd.dev,
715 desc->its_inv_cmd.event_id);
717 its_encode_cmd(cmd, GITS_CMD_INV);
718 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
719 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
723 return valid_col(col);
726 static struct its_collection *its_build_int_cmd(struct its_node *its,
727 struct its_cmd_block *cmd,
728 struct its_cmd_desc *desc)
730 struct its_collection *col;
732 col = dev_event_to_col(desc->its_int_cmd.dev,
733 desc->its_int_cmd.event_id);
735 its_encode_cmd(cmd, GITS_CMD_INT);
736 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
737 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
741 return valid_col(col);
744 static struct its_collection *its_build_clear_cmd(struct its_node *its,
745 struct its_cmd_block *cmd,
746 struct its_cmd_desc *desc)
748 struct its_collection *col;
750 col = dev_event_to_col(desc->its_clear_cmd.dev,
751 desc->its_clear_cmd.event_id);
753 its_encode_cmd(cmd, GITS_CMD_CLEAR);
754 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
755 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
759 return valid_col(col);
762 static struct its_collection *its_build_invall_cmd(struct its_node *its,
763 struct its_cmd_block *cmd,
764 struct its_cmd_desc *desc)
766 its_encode_cmd(cmd, GITS_CMD_INVALL);
767 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
771 return desc->its_invall_cmd.col;
774 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
775 struct its_cmd_block *cmd,
776 struct its_cmd_desc *desc)
778 its_encode_cmd(cmd, GITS_CMD_VINVALL);
779 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
783 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
786 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
787 struct its_cmd_block *cmd,
788 struct its_cmd_desc *desc)
790 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
791 unsigned long vpt_addr, vconf_addr;
795 its_encode_cmd(cmd, GITS_CMD_VMAPP);
796 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
797 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
799 if (!desc->its_vmapp_cmd.valid) {
801 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
802 its_encode_alloc(cmd, alloc);
804 * Unmapping a VPE is self-synchronizing on GICv4.1,
805 * no need to issue a VSYNC.
813 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
814 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
816 its_encode_target(cmd, target);
817 its_encode_vpt_addr(cmd, vpt_addr);
818 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
823 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
825 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
827 its_encode_alloc(cmd, alloc);
830 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
831 * to be unmapped first, and in this case, we may remap the vPE
832 * back while the VPT is not empty. So we can't assume that the
833 * VPT is empty on map. This is why we never advertise PTZ.
835 its_encode_ptz(cmd, false);
836 its_encode_vconf_addr(cmd, vconf_addr);
837 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
845 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
846 struct its_cmd_block *cmd,
847 struct its_cmd_desc *desc)
851 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
852 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
856 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
857 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
858 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
859 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
860 its_encode_db_phys_id(cmd, db);
861 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
865 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
868 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
869 struct its_cmd_block *cmd,
870 struct its_cmd_desc *desc)
874 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
875 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
879 its_encode_cmd(cmd, GITS_CMD_VMOVI);
880 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
881 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
882 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
883 its_encode_db_phys_id(cmd, db);
884 its_encode_db_valid(cmd, true);
888 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
891 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
892 struct its_cmd_block *cmd,
893 struct its_cmd_desc *desc)
897 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
898 its_encode_cmd(cmd, GITS_CMD_VMOVP);
899 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
900 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
901 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
902 its_encode_target(cmd, target);
905 its_encode_db(cmd, true);
906 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
911 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
914 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
915 struct its_cmd_block *cmd,
916 struct its_cmd_desc *desc)
918 struct its_vlpi_map *map;
920 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
921 desc->its_inv_cmd.event_id);
923 its_encode_cmd(cmd, GITS_CMD_INV);
924 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
925 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
929 return valid_vpe(its, map->vpe);
932 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
933 struct its_cmd_block *cmd,
934 struct its_cmd_desc *desc)
936 struct its_vlpi_map *map;
938 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
939 desc->its_int_cmd.event_id);
941 its_encode_cmd(cmd, GITS_CMD_INT);
942 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
943 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
947 return valid_vpe(its, map->vpe);
950 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
951 struct its_cmd_block *cmd,
952 struct its_cmd_desc *desc)
954 struct its_vlpi_map *map;
956 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
957 desc->its_clear_cmd.event_id);
959 its_encode_cmd(cmd, GITS_CMD_CLEAR);
960 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
961 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
965 return valid_vpe(its, map->vpe);
968 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
969 struct its_cmd_block *cmd,
970 struct its_cmd_desc *desc)
972 if (WARN_ON(!is_v4_1(its)))
975 its_encode_cmd(cmd, GITS_CMD_INVDB);
976 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
980 return valid_vpe(its, desc->its_invdb_cmd.vpe);
983 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
984 struct its_cmd_block *cmd,
985 struct its_cmd_desc *desc)
987 if (WARN_ON(!is_v4_1(its)))
990 its_encode_cmd(cmd, GITS_CMD_VSGI);
991 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
992 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
993 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
994 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
995 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
996 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1000 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1003 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1004 struct its_cmd_block *ptr)
1006 return (ptr - its->cmd_base) * sizeof(*ptr);
1009 static int its_queue_full(struct its_node *its)
1014 widx = its->cmd_write - its->cmd_base;
1015 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1017 /* This is incredibly unlikely to happen, unless the ITS locks up. */
1018 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1024 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1026 struct its_cmd_block *cmd;
1027 u32 count = 1000000; /* 1s! */
1029 while (its_queue_full(its)) {
1032 pr_err_ratelimited("ITS queue not draining\n");
1039 cmd = its->cmd_write++;
1041 /* Handle queue wrapping */
1042 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1043 its->cmd_write = its->cmd_base;
1046 cmd->raw_cmd[0] = 0;
1047 cmd->raw_cmd[1] = 0;
1048 cmd->raw_cmd[2] = 0;
1049 cmd->raw_cmd[3] = 0;
1054 static struct its_cmd_block *its_post_commands(struct its_node *its)
1056 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1058 writel_relaxed(wr, its->base + GITS_CWRITER);
1060 return its->cmd_write;
1063 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1066 * Make sure the commands written to memory are observable by
1069 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1070 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1075 static int its_wait_for_range_completion(struct its_node *its,
1077 struct its_cmd_block *to)
1079 u64 rd_idx, to_idx, linear_idx;
1080 u32 count = 1000000; /* 1s! */
1082 /* Linearize to_idx if the command set has wrapped around */
1083 to_idx = its_cmd_ptr_to_offset(its, to);
1084 if (to_idx < prev_idx)
1085 to_idx += ITS_CMD_QUEUE_SZ;
1087 linear_idx = prev_idx;
1092 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1095 * Compute the read pointer progress, taking the
1096 * potential wrap-around into account.
1098 delta = rd_idx - prev_idx;
1099 if (rd_idx < prev_idx)
1100 delta += ITS_CMD_QUEUE_SZ;
1102 linear_idx += delta;
1103 if (linear_idx >= to_idx)
1108 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1109 to_idx, linear_idx);
1120 /* Warning, macro hell follows */
1121 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1122 void name(struct its_node *its, \
1123 buildtype builder, \
1124 struct its_cmd_desc *desc) \
1126 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1127 synctype *sync_obj; \
1128 unsigned long flags; \
1131 raw_spin_lock_irqsave(&its->lock, flags); \
1133 cmd = its_allocate_entry(its); \
1134 if (!cmd) { /* We're soooooo screewed... */ \
1135 raw_spin_unlock_irqrestore(&its->lock, flags); \
1138 sync_obj = builder(its, cmd, desc); \
1139 its_flush_cmd(its, cmd); \
1142 sync_cmd = its_allocate_entry(its); \
1146 buildfn(its, sync_cmd, sync_obj); \
1147 its_flush_cmd(its, sync_cmd); \
1151 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1152 next_cmd = its_post_commands(its); \
1153 raw_spin_unlock_irqrestore(&its->lock, flags); \
1155 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1156 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1159 static void its_build_sync_cmd(struct its_node *its,
1160 struct its_cmd_block *sync_cmd,
1161 struct its_collection *sync_col)
1163 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1164 its_encode_target(sync_cmd, sync_col->target_address);
1166 its_fixup_cmd(sync_cmd);
1169 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1170 struct its_collection, its_build_sync_cmd)
1172 static void its_build_vsync_cmd(struct its_node *its,
1173 struct its_cmd_block *sync_cmd,
1174 struct its_vpe *sync_vpe)
1176 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1177 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1179 its_fixup_cmd(sync_cmd);
1182 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1183 struct its_vpe, its_build_vsync_cmd)
1185 static void its_send_int(struct its_device *dev, u32 event_id)
1187 struct its_cmd_desc desc;
1189 desc.its_int_cmd.dev = dev;
1190 desc.its_int_cmd.event_id = event_id;
1192 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1195 static void its_send_clear(struct its_device *dev, u32 event_id)
1197 struct its_cmd_desc desc;
1199 desc.its_clear_cmd.dev = dev;
1200 desc.its_clear_cmd.event_id = event_id;
1202 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1205 static void its_send_inv(struct its_device *dev, u32 event_id)
1207 struct its_cmd_desc desc;
1209 desc.its_inv_cmd.dev = dev;
1210 desc.its_inv_cmd.event_id = event_id;
1212 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1215 static void its_send_mapd(struct its_device *dev, int valid)
1217 struct its_cmd_desc desc;
1219 desc.its_mapd_cmd.dev = dev;
1220 desc.its_mapd_cmd.valid = !!valid;
1222 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1225 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1228 struct its_cmd_desc desc;
1230 desc.its_mapc_cmd.col = col;
1231 desc.its_mapc_cmd.valid = !!valid;
1233 its_send_single_command(its, its_build_mapc_cmd, &desc);
1236 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1238 struct its_cmd_desc desc;
1240 desc.its_mapti_cmd.dev = dev;
1241 desc.its_mapti_cmd.phys_id = irq_id;
1242 desc.its_mapti_cmd.event_id = id;
1244 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1247 static void its_send_movi(struct its_device *dev,
1248 struct its_collection *col, u32 id)
1250 struct its_cmd_desc desc;
1252 desc.its_movi_cmd.dev = dev;
1253 desc.its_movi_cmd.col = col;
1254 desc.its_movi_cmd.event_id = id;
1256 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1259 static void its_send_discard(struct its_device *dev, u32 id)
1261 struct its_cmd_desc desc;
1263 desc.its_discard_cmd.dev = dev;
1264 desc.its_discard_cmd.event_id = id;
1266 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1269 static void its_send_invall(struct its_node *its, struct its_collection *col)
1271 struct its_cmd_desc desc;
1273 desc.its_invall_cmd.col = col;
1275 its_send_single_command(its, its_build_invall_cmd, &desc);
1278 static void its_send_vmapti(struct its_device *dev, u32 id)
1280 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1281 struct its_cmd_desc desc;
1283 desc.its_vmapti_cmd.vpe = map->vpe;
1284 desc.its_vmapti_cmd.dev = dev;
1285 desc.its_vmapti_cmd.virt_id = map->vintid;
1286 desc.its_vmapti_cmd.event_id = id;
1287 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1289 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1292 static void its_send_vmovi(struct its_device *dev, u32 id)
1294 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1295 struct its_cmd_desc desc;
1297 desc.its_vmovi_cmd.vpe = map->vpe;
1298 desc.its_vmovi_cmd.dev = dev;
1299 desc.its_vmovi_cmd.event_id = id;
1300 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1302 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1305 static void its_send_vmapp(struct its_node *its,
1306 struct its_vpe *vpe, bool valid)
1308 struct its_cmd_desc desc;
1310 desc.its_vmapp_cmd.vpe = vpe;
1311 desc.its_vmapp_cmd.valid = valid;
1312 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1314 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1317 static void its_send_vmovp(struct its_vpe *vpe)
1319 struct its_cmd_desc desc = {};
1320 struct its_node *its;
1321 int col_id = vpe->col_idx;
1323 desc.its_vmovp_cmd.vpe = vpe;
1325 if (!its_list_map) {
1326 its = list_first_entry(&its_nodes, struct its_node, entry);
1327 desc.its_vmovp_cmd.col = &its->collections[col_id];
1328 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1333 * Protect against concurrent updates of the mapping state on
1336 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
1339 * Yet another marvel of the architecture. If using the
1340 * its_list "feature", we need to make sure that all ITSs
1341 * receive all VMOVP commands in the same order. The only way
1342 * to guarantee this is to make vmovp a serialization point.
1346 guard(raw_spinlock)(&vmovp_lock);
1347 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1348 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1351 list_for_each_entry(its, &its_nodes, entry) {
1355 if (!require_its_list_vmovp(vpe->its_vm, its))
1358 desc.its_vmovp_cmd.col = &its->collections[col_id];
1359 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1363 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1365 struct its_cmd_desc desc;
1367 desc.its_vinvall_cmd.vpe = vpe;
1368 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1371 static void its_send_vinv(struct its_device *dev, u32 event_id)
1373 struct its_cmd_desc desc;
1376 * There is no real VINV command. This is just a normal INV,
1377 * with a VSYNC instead of a SYNC.
1379 desc.its_inv_cmd.dev = dev;
1380 desc.its_inv_cmd.event_id = event_id;
1382 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1385 static void its_send_vint(struct its_device *dev, u32 event_id)
1387 struct its_cmd_desc desc;
1390 * There is no real VINT command. This is just a normal INT,
1391 * with a VSYNC instead of a SYNC.
1393 desc.its_int_cmd.dev = dev;
1394 desc.its_int_cmd.event_id = event_id;
1396 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1399 static void its_send_vclear(struct its_device *dev, u32 event_id)
1401 struct its_cmd_desc desc;
1404 * There is no real VCLEAR command. This is just a normal CLEAR,
1405 * with a VSYNC instead of a SYNC.
1407 desc.its_clear_cmd.dev = dev;
1408 desc.its_clear_cmd.event_id = event_id;
1410 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1413 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1415 struct its_cmd_desc desc;
1417 desc.its_invdb_cmd.vpe = vpe;
1418 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1422 * irqchip functions - assumes MSI, mostly.
1424 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1426 struct its_vlpi_map *map = get_vlpi_map(d);
1427 irq_hw_number_t hwirq;
1432 va = page_address(map->vm->vprop_page);
1433 hwirq = map->vintid;
1435 /* Remember the updated property */
1436 map->properties &= ~clr;
1437 map->properties |= set | LPI_PROP_GROUP1;
1439 va = gic_rdists->prop_table_va;
1443 cfg = va + hwirq - 8192;
1445 *cfg |= set | LPI_PROP_GROUP1;
1448 * Make the above write visible to the redistributors.
1449 * And yes, we're flushing exactly: One. Single. Byte.
1452 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1453 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1458 static void wait_for_syncr(void __iomem *rdbase)
1460 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1464 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1466 void __iomem *rdbase;
1467 unsigned long flags;
1470 /* Target the redistributor this LPI is currently routed to */
1471 cpu = irq_to_cpuid_lock(d, &flags);
1472 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1474 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1475 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1476 wait_for_syncr(rdbase);
1478 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1479 irq_to_cpuid_unlock(d, flags);
1482 static void direct_lpi_inv(struct irq_data *d)
1484 struct its_vlpi_map *map = get_vlpi_map(d);
1488 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1490 WARN_ON(!is_v4_1(its_dev->its));
1492 val = GICR_INVLPIR_V;
1493 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1494 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1499 __direct_lpi_inv(d, val);
1502 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1504 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1506 lpi_write_config(d, clr, set);
1507 if (gic_rdists->has_direct_lpi &&
1508 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1510 else if (!irqd_is_forwarded_to_vcpu(d))
1511 its_send_inv(its_dev, its_get_event_id(d));
1513 its_send_vinv(its_dev, its_get_event_id(d));
1516 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1518 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1519 u32 event = its_get_event_id(d);
1520 struct its_vlpi_map *map;
1523 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1526 if (is_v4_1(its_dev->its))
1529 map = dev_event_to_vlpi_map(its_dev, event);
1531 if (map->db_enabled == enable)
1534 map->db_enabled = enable;
1537 * More fun with the architecture:
1539 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1540 * value or to 1023, depending on the enable bit. But that
1541 * would be issuing a mapping for an /existing/ DevID+EventID
1542 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1543 * to the /same/ vPE, using this opportunity to adjust the
1544 * doorbell. Mouahahahaha. We loves it, Precious.
1546 its_send_vmovi(its_dev, event);
1549 static void its_mask_irq(struct irq_data *d)
1551 if (irqd_is_forwarded_to_vcpu(d))
1552 its_vlpi_set_doorbell(d, false);
1554 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1557 static void its_unmask_irq(struct irq_data *d)
1559 if (irqd_is_forwarded_to_vcpu(d))
1560 its_vlpi_set_doorbell(d, true);
1562 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1565 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1567 if (irqd_affinity_is_managed(d))
1568 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1570 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1573 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1575 if (irqd_affinity_is_managed(d))
1576 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1578 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1581 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1583 if (irqd_affinity_is_managed(d))
1584 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1586 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1589 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1590 const struct cpumask *cpu_mask)
1592 unsigned int cpu = nr_cpu_ids, tmp;
1593 int count = S32_MAX;
1595 for_each_cpu(tmp, cpu_mask) {
1596 int this_count = its_read_lpi_count(d, tmp);
1597 if (this_count < count) {
1607 * As suggested by Thomas Gleixner in:
1610 static int its_select_cpu(struct irq_data *d,
1611 const struct cpumask *aff_mask)
1613 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1614 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1615 static struct cpumask __tmpmask;
1616 struct cpumask *tmpmask;
1617 unsigned long flags;
1619 node = its_dev->its->numa_node;
1620 tmpmask = &__tmpmask;
1622 raw_spin_lock_irqsave(&tmpmask_lock, flags);
1624 if (!irqd_affinity_is_managed(d)) {
1625 /* First try the NUMA node */
1626 if (node != NUMA_NO_NODE) {
1628 * Try the intersection of the affinity mask and the
1629 * node mask (and the online mask, just to be safe).
1631 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1632 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1635 * Ideally, we would check if the mask is empty, and
1636 * try again on the full node here.
1638 * But it turns out that the way ACPI describes the
1639 * affinity for ITSs only deals about memory, and
1640 * not target CPUs, so it cannot describe a single
1641 * ITS placed next to two NUMA nodes.
1643 * Instead, just fallback on the online mask. This
1644 * diverges from Thomas' suggestion above.
1646 cpu = cpumask_pick_least_loaded(d, tmpmask);
1647 if (cpu < nr_cpu_ids)
1650 /* If we can't cross sockets, give up */
1651 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1654 /* If the above failed, expand the search */
1657 /* Try the intersection of the affinity and online masks */
1658 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1660 /* If that doesn't fly, the online mask is the last resort */
1661 if (cpumask_empty(tmpmask))
1662 cpumask_copy(tmpmask, cpu_online_mask);
1664 cpu = cpumask_pick_least_loaded(d, tmpmask);
1666 cpumask_copy(tmpmask, aff_mask);
1668 /* If we cannot cross sockets, limit the search to that node */
1669 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1670 node != NUMA_NO_NODE)
1671 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1673 cpu = cpumask_pick_least_loaded(d, tmpmask);
1676 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1678 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1682 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1685 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1686 struct its_collection *target_col;
1687 u32 id = its_get_event_id(d);
1690 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1691 if (irqd_is_forwarded_to_vcpu(d))
1694 prev_cpu = its_dev->event_map.col_map[id];
1695 its_dec_lpi_count(d, prev_cpu);
1698 cpu = its_select_cpu(d, mask_val);
1700 cpu = cpumask_pick_least_loaded(d, mask_val);
1702 if (cpu < 0 || cpu >= nr_cpu_ids)
1705 /* don't set the affinity when the target cpu is same as current one */
1706 if (cpu != prev_cpu) {
1707 target_col = &its_dev->its->collections[cpu];
1708 its_send_movi(its_dev, target_col, id);
1709 its_dev->event_map.col_map[id] = cpu;
1710 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1713 its_inc_lpi_count(d, cpu);
1715 return IRQ_SET_MASK_OK_DONE;
1718 its_inc_lpi_count(d, prev_cpu);
1722 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1724 struct its_node *its = its_dev->its;
1726 return its->phys_base + GITS_TRANSLATER;
1729 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1731 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1732 struct its_node *its;
1736 addr = its->get_msi_base(its_dev);
1738 msg->address_lo = lower_32_bits(addr);
1739 msg->address_hi = upper_32_bits(addr);
1740 msg->data = its_get_event_id(d);
1742 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1745 static int its_irq_set_irqchip_state(struct irq_data *d,
1746 enum irqchip_irq_state which,
1749 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1750 u32 event = its_get_event_id(d);
1752 if (which != IRQCHIP_STATE_PENDING)
1755 if (irqd_is_forwarded_to_vcpu(d)) {
1757 its_send_vint(its_dev, event);
1759 its_send_vclear(its_dev, event);
1762 its_send_int(its_dev, event);
1764 its_send_clear(its_dev, event);
1770 static int its_irq_retrigger(struct irq_data *d)
1772 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1776 * Two favourable cases:
1778 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1781 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1782 * and we're better off mapping all VPEs always
1784 * If neither (a) nor (b) is true, then we map vPEs on demand.
1787 static bool gic_requires_eager_mapping(void)
1789 if (!its_list_map || gic_rdists->has_rvpeid)
1795 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1797 if (gic_requires_eager_mapping())
1800 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1803 * If the VM wasn't mapped yet, iterate over the vpes and get
1806 vm->vlpi_count[its->list_nr]++;
1808 if (vm->vlpi_count[its->list_nr] == 1) {
1811 for (i = 0; i < vm->nr_vpes; i++) {
1812 struct its_vpe *vpe = vm->vpes[i];
1814 scoped_guard(raw_spinlock, &vpe->vpe_lock)
1815 its_send_vmapp(its, vpe, true);
1817 its_send_vinvall(its, vpe);
1822 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1824 /* Not using the ITS list? Everything is always mapped. */
1825 if (gic_requires_eager_mapping())
1828 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1830 if (!--vm->vlpi_count[its->list_nr]) {
1833 for (i = 0; i < vm->nr_vpes; i++) {
1834 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1835 its_send_vmapp(its, vm->vpes[i], false);
1840 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1842 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1843 u32 event = its_get_event_id(d);
1848 if (!its_dev->event_map.vm) {
1849 struct its_vlpi_map *maps;
1851 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1856 its_dev->event_map.vm = info->map->vm;
1857 its_dev->event_map.vlpi_maps = maps;
1858 } else if (its_dev->event_map.vm != info->map->vm) {
1862 /* Get our private copy of the mapping information */
1863 its_dev->event_map.vlpi_maps[event] = *info->map;
1865 if (irqd_is_forwarded_to_vcpu(d)) {
1866 /* Already mapped, move it around */
1867 its_send_vmovi(its_dev, event);
1869 /* Ensure all the VPEs are mapped on this ITS */
1870 its_map_vm(its_dev->its, info->map->vm);
1873 * Flag the interrupt as forwarded so that we can
1874 * start poking the virtual property table.
1876 irqd_set_forwarded_to_vcpu(d);
1878 /* Write out the property to the prop table */
1879 lpi_write_config(d, 0xff, info->map->properties);
1881 /* Drop the physical mapping */
1882 its_send_discard(its_dev, event);
1884 /* and install the virtual one */
1885 its_send_vmapti(its_dev, event);
1887 /* Increment the number of VLPIs */
1888 its_dev->event_map.nr_vlpis++;
1894 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1896 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1897 struct its_vlpi_map *map;
1899 map = get_vlpi_map(d);
1901 if (!its_dev->event_map.vm || !map)
1904 /* Copy our mapping information to the incoming request */
1910 static int its_vlpi_unmap(struct irq_data *d)
1912 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1913 u32 event = its_get_event_id(d);
1915 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1918 /* Drop the virtual mapping */
1919 its_send_discard(its_dev, event);
1921 /* and restore the physical one */
1922 irqd_clr_forwarded_to_vcpu(d);
1923 its_send_mapti(its_dev, d->hwirq, event);
1924 lpi_update_config(d, 0xff, (lpi_prop_prio |
1928 /* Potentially unmap the VM from this ITS */
1929 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1932 * Drop the refcount and make the device available again if
1933 * this was the last VLPI.
1935 if (!--its_dev->event_map.nr_vlpis) {
1936 its_dev->event_map.vm = NULL;
1937 kfree(its_dev->event_map.vlpi_maps);
1943 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1945 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1947 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1950 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1951 lpi_update_config(d, 0xff, info->config);
1953 lpi_write_config(d, 0xff, info->config);
1954 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1959 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1961 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1962 struct its_cmd_info *info = vcpu_info;
1965 if (!is_v4(its_dev->its))
1968 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
1970 /* Unmap request? */
1972 return its_vlpi_unmap(d);
1974 switch (info->cmd_type) {
1976 return its_vlpi_map(d, info);
1979 return its_vlpi_get(d, info);
1981 case PROP_UPDATE_VLPI:
1982 case PROP_UPDATE_AND_INV_VLPI:
1983 return its_vlpi_prop_update(d, info);
1990 static struct irq_chip its_irq_chip = {
1992 .irq_mask = its_mask_irq,
1993 .irq_unmask = its_unmask_irq,
1994 .irq_eoi = irq_chip_eoi_parent,
1995 .irq_set_affinity = its_set_affinity,
1996 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1997 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1998 .irq_retrigger = its_irq_retrigger,
1999 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
2004 * How we allocate LPIs:
2006 * lpi_range_list contains ranges of LPIs that are to available to
2007 * allocate from. To allocate LPIs, just pick the first range that
2008 * fits the required allocation, and reduce it by the required
2009 * amount. Once empty, remove the range from the list.
2011 * To free a range of LPIs, add a free range to the list, sort it and
2012 * merge the result if the new range happens to be adjacent to an
2013 * already free block.
2015 * The consequence of the above is that allocation is cost is low, but
2016 * freeing is expensive. We assumes that freeing rarely occurs.
2018 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2020 static DEFINE_MUTEX(lpi_range_lock);
2021 static LIST_HEAD(lpi_range_list);
2024 struct list_head entry;
2029 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2031 struct lpi_range *range;
2033 range = kmalloc(sizeof(*range), GFP_KERNEL);
2035 range->base_id = base;
2042 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2044 struct lpi_range *range, *tmp;
2047 mutex_lock(&lpi_range_lock);
2049 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2050 if (range->span >= nr_lpis) {
2051 *base = range->base_id;
2052 range->base_id += nr_lpis;
2053 range->span -= nr_lpis;
2055 if (range->span == 0) {
2056 list_del(&range->entry);
2065 mutex_unlock(&lpi_range_lock);
2067 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2071 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2073 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2075 if (a->base_id + a->span != b->base_id)
2077 b->base_id = a->base_id;
2079 list_del(&a->entry);
2083 static int free_lpi_range(u32 base, u32 nr_lpis)
2085 struct lpi_range *new, *old;
2087 new = mk_lpi_range(base, nr_lpis);
2091 mutex_lock(&lpi_range_lock);
2093 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2094 if (old->base_id < base)
2098 * old is the last element with ->base_id smaller than base,
2099 * so new goes right after it. If there are no elements with
2100 * ->base_id smaller than base, &old->entry ends up pointing
2101 * at the head of the list, and inserting new it the start of
2102 * the list is the right thing to do in that case as well.
2104 list_add(&new->entry, &old->entry);
2106 * Now check if we can merge with the preceding and/or
2109 merge_lpi_ranges(old, new);
2110 merge_lpi_ranges(new, list_next_entry(new, entry));
2112 mutex_unlock(&lpi_range_lock);
2116 static int __init its_lpi_init(u32 id_bits)
2118 u32 lpis = (1UL << id_bits) - 8192;
2122 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2124 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2126 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2131 * Initializing the allocator is just the same as freeing the
2132 * full range of LPIs.
2134 err = free_lpi_range(8192, lpis);
2135 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2139 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2141 unsigned long *bitmap = NULL;
2145 err = alloc_lpi_range(nr_irqs, base);
2150 } while (nr_irqs > 0);
2158 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2166 *base = *nr_ids = 0;
2171 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2173 WARN_ON(free_lpi_range(base, nr_ids));
2174 bitmap_free(bitmap);
2177 static void gic_reset_prop_table(void *va)
2179 /* Regular IRQ priority, Group-1, disabled */
2180 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2182 /* Make sure the GIC will observe the written configuration */
2183 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2186 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2188 struct page *prop_page;
2190 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2194 gic_reset_prop_table(page_address(prop_page));
2199 static void its_free_prop_table(struct page *prop_page)
2201 free_pages((unsigned long)page_address(prop_page),
2202 get_order(LPI_PROPBASE_SZ));
2205 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2207 phys_addr_t start, end, addr_end;
2211 * We don't bother checking for a kdump kernel as by
2212 * construction, the LPI tables are out of this kernel's
2215 if (is_kdump_kernel())
2218 addr_end = addr + size - 1;
2220 for_each_reserved_mem_range(i, &start, &end) {
2221 if (addr >= start && addr_end <= end)
2225 /* Not found, not a good sign... */
2226 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2228 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2232 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2234 if (efi_enabled(EFI_CONFIG_TABLES))
2235 return efi_mem_reserve_persistent(addr, size);
2240 static int __init its_setup_lpi_prop_table(void)
2242 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2245 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2246 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2248 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2249 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2252 gic_reset_prop_table(gic_rdists->prop_table_va);
2256 lpi_id_bits = min_t(u32,
2257 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2258 ITS_MAX_LPI_NRBITS);
2259 page = its_allocate_prop_table(GFP_NOWAIT);
2261 pr_err("Failed to allocate PROPBASE\n");
2265 gic_rdists->prop_table_pa = page_to_phys(page);
2266 gic_rdists->prop_table_va = page_address(page);
2267 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2271 pr_info("GICv3: using LPI property table @%pa\n",
2272 &gic_rdists->prop_table_pa);
2274 return its_lpi_init(lpi_id_bits);
2277 static const char *its_base_type_string[] = {
2278 [GITS_BASER_TYPE_DEVICE] = "Devices",
2279 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2280 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2281 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2282 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2283 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2284 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2287 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2289 u32 idx = baser - its->tables;
2291 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2294 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2297 u32 idx = baser - its->tables;
2299 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2300 baser->val = its_read_baser(its, baser);
2303 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2304 u64 cache, u64 shr, u32 order, bool indirect)
2306 u64 val = its_read_baser(its, baser);
2307 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2308 u64 type = GITS_BASER_TYPE(val);
2309 u64 baser_phys, tmp;
2310 u32 alloc_pages, psz;
2315 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2316 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2317 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2318 &its->phys_base, its_base_type_string[type],
2319 alloc_pages, GITS_BASER_PAGES_MAX);
2320 alloc_pages = GITS_BASER_PAGES_MAX;
2321 order = get_order(GITS_BASER_PAGES_MAX * psz);
2324 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2328 base = (void *)page_address(page);
2329 baser_phys = virt_to_phys(base);
2331 /* Check if the physical address of the memory is above 48bits */
2332 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2334 /* 52bit PA is supported only when PageSize=64K */
2335 if (psz != SZ_64K) {
2336 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2337 free_pages((unsigned long)base, order);
2341 /* Convert 52bit PA to 48bit field */
2342 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2347 (type << GITS_BASER_TYPE_SHIFT) |
2348 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2349 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2354 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2358 val |= GITS_BASER_PAGE_SIZE_4K;
2361 val |= GITS_BASER_PAGE_SIZE_16K;
2364 val |= GITS_BASER_PAGE_SIZE_64K;
2369 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2371 its_write_baser(its, baser, val);
2374 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2376 * Shareability didn't stick. Just use
2377 * whatever the read reported, which is likely
2378 * to be the only thing this redistributor
2379 * supports. If that's zero, make it
2380 * non-cacheable as well.
2382 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2384 cache = GITS_BASER_nC;
2390 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2391 &its->phys_base, its_base_type_string[type],
2393 free_pages((unsigned long)base, order);
2397 baser->order = order;
2400 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2402 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2403 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2404 its_base_type_string[type],
2405 (unsigned long)virt_to_phys(base),
2406 indirect ? "indirect" : "flat", (int)esz,
2407 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2412 static bool its_parse_indirect_baser(struct its_node *its,
2413 struct its_baser *baser,
2414 u32 *order, u32 ids)
2416 u64 tmp = its_read_baser(its, baser);
2417 u64 type = GITS_BASER_TYPE(tmp);
2418 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2419 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2420 u32 new_order = *order;
2421 u32 psz = baser->psz;
2422 bool indirect = false;
2424 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2425 if ((esz << ids) > (psz * 2)) {
2427 * Find out whether hw supports a single or two-level table by
2428 * table by reading bit at offset '62' after writing '1' to it.
2430 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2431 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2435 * The size of the lvl2 table is equal to ITS page size
2436 * which is 'psz'. For computing lvl1 table size,
2437 * subtract ID bits that sparse lvl2 table from 'ids'
2438 * which is reported by ITS hardware times lvl1 table
2441 ids -= ilog2(psz / (int)esz);
2442 esz = GITS_LVL1_ENTRY_SIZE;
2447 * Allocate as many entries as required to fit the
2448 * range of device IDs that the ITS can grok... The ID
2449 * space being incredibly sparse, this results in a
2450 * massive waste of memory if two-level device table
2451 * feature is not supported by hardware.
2453 new_order = max_t(u32, get_order(esz << ids), new_order);
2454 if (new_order > MAX_PAGE_ORDER) {
2455 new_order = MAX_PAGE_ORDER;
2456 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2457 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2458 &its->phys_base, its_base_type_string[type],
2459 device_ids(its), ids);
2467 static u32 compute_common_aff(u64 val)
2471 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2472 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2474 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2477 static u32 compute_its_aff(struct its_node *its)
2483 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2484 * the resulting affinity. We then use that to see if this match
2487 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2488 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2489 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2490 return compute_common_aff(val);
2493 static struct its_node *find_sibling_its(struct its_node *cur_its)
2495 struct its_node *its;
2498 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2501 aff = compute_its_aff(cur_its);
2503 list_for_each_entry(its, &its_nodes, entry) {
2506 if (!is_v4_1(its) || its == cur_its)
2509 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2512 if (aff != compute_its_aff(its))
2515 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2516 baser = its->tables[2].val;
2517 if (!(baser & GITS_BASER_VALID))
2526 static void its_free_tables(struct its_node *its)
2530 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2531 if (its->tables[i].base) {
2532 free_pages((unsigned long)its->tables[i].base,
2533 its->tables[i].order);
2534 its->tables[i].base = NULL;
2539 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2546 val = its_read_baser(its, baser);
2547 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2551 gpsz = GITS_BASER_PAGE_SIZE_64K;
2554 gpsz = GITS_BASER_PAGE_SIZE_16K;
2558 gpsz = GITS_BASER_PAGE_SIZE_4K;
2562 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2564 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2565 its_write_baser(its, baser, val);
2567 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587 static int its_alloc_tables(struct its_node *its)
2589 u64 shr = GITS_BASER_InnerShareable;
2590 u64 cache = GITS_BASER_RaWaWb;
2593 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2594 /* erratum 24313: ignore memory access type */
2595 cache = GITS_BASER_nCnB;
2597 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2598 cache = GITS_BASER_nC;
2602 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2603 struct its_baser *baser = its->tables + i;
2604 u64 val = its_read_baser(its, baser);
2605 u64 type = GITS_BASER_TYPE(val);
2606 bool indirect = false;
2609 if (type == GITS_BASER_TYPE_NONE)
2612 if (its_probe_baser_psz(its, baser)) {
2613 its_free_tables(its);
2617 order = get_order(baser->psz);
2620 case GITS_BASER_TYPE_DEVICE:
2621 indirect = its_parse_indirect_baser(its, baser, &order,
2625 case GITS_BASER_TYPE_VCPU:
2627 struct its_node *sibling;
2630 if ((sibling = find_sibling_its(its))) {
2631 *baser = sibling->tables[2];
2632 its_write_baser(its, baser, baser->val);
2637 indirect = its_parse_indirect_baser(its, baser, &order,
2638 ITS_MAX_VPEID_BITS);
2642 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2644 its_free_tables(its);
2648 /* Update settings which will be used for next BASERn */
2649 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2650 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2656 static u64 inherit_vpe_l1_table_from_its(void)
2658 struct its_node *its;
2662 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2663 aff = compute_common_aff(val);
2665 list_for_each_entry(its, &its_nodes, entry) {
2671 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2674 if (aff != compute_its_aff(its))
2677 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2678 baser = its->tables[2].val;
2679 if (!(baser & GITS_BASER_VALID))
2682 /* We have a winner! */
2683 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2685 val = GICR_VPROPBASER_4_1_VALID;
2686 if (baser & GITS_BASER_INDIRECT)
2687 val |= GICR_VPROPBASER_4_1_INDIRECT;
2688 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2689 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2690 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2691 case GIC_PAGE_SIZE_64K:
2692 addr = GITS_BASER_ADDR_48_to_52(baser);
2695 addr = baser & GENMASK_ULL(47, 12);
2698 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2699 if (rdists_support_shareable()) {
2700 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2701 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2702 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2703 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2705 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2713 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2719 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2720 aff = compute_common_aff(val);
2722 for_each_possible_cpu(cpu) {
2723 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2725 if (!base || cpu == smp_processor_id())
2728 val = gic_read_typer(base + GICR_TYPER);
2729 if (aff != compute_common_aff(val))
2733 * At this point, we have a victim. This particular CPU
2734 * has already booted, and has an affinity that matches
2735 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2736 * Make sure we don't write the Z bit in that case.
2738 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2739 val &= ~GICR_VPROPBASER_4_1_Z;
2741 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2742 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2750 static bool allocate_vpe_l2_table(int cpu, u32 id)
2752 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2753 unsigned int psz, esz, idx, npg, gpsz;
2758 if (!gic_rdists->has_rvpeid)
2761 /* Skip non-present CPUs */
2765 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2767 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2768 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2769 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2775 case GIC_PAGE_SIZE_4K:
2778 case GIC_PAGE_SIZE_16K:
2781 case GIC_PAGE_SIZE_64K:
2786 /* Don't allow vpe_id that exceeds single, flat table limit */
2787 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2788 return (id < (npg * psz / (esz * SZ_8)));
2790 /* Compute 1st level table index & check if that exceeds table limit */
2791 idx = id >> ilog2(psz / (esz * SZ_8));
2792 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2795 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2797 /* Allocate memory for 2nd level table */
2799 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2803 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2804 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2805 gic_flush_dcache_to_poc(page_address(page), psz);
2807 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2809 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2810 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2811 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2813 /* Ensure updated table contents are visible to RD hardware */
2820 static int allocate_vpe_l1_table(void)
2822 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2823 u64 val, gpsz, npg, pa;
2824 unsigned int psz = SZ_64K;
2825 unsigned int np, epp, esz;
2828 if (!gic_rdists->has_rvpeid)
2832 * if VPENDBASER.Valid is set, disable any previously programmed
2833 * VPE by setting PendingLast while clearing Valid. This has the
2834 * effect of making sure no doorbell will be generated and we can
2835 * then safely clear VPROPBASER.Valid.
2837 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2838 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2839 vlpi_base + GICR_VPENDBASER);
2842 * If we can inherit the configuration from another RD, let's do
2843 * so. Otherwise, we have to go through the allocation process. We
2844 * assume that all RDs have the exact same requirements, as
2845 * nothing will work otherwise.
2847 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2848 if (val & GICR_VPROPBASER_4_1_VALID)
2851 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2852 if (!gic_data_rdist()->vpe_table_mask)
2855 val = inherit_vpe_l1_table_from_its();
2856 if (val & GICR_VPROPBASER_4_1_VALID)
2859 /* First probe the page size */
2860 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2861 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2862 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2863 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2864 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2868 gpsz = GIC_PAGE_SIZE_4K;
2870 case GIC_PAGE_SIZE_4K:
2873 case GIC_PAGE_SIZE_16K:
2876 case GIC_PAGE_SIZE_64K:
2882 * Start populating the register from scratch, including RO fields
2883 * (which we want to print in debug cases...)
2886 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2887 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2889 /* How many entries per GIC page? */
2891 epp = psz / (esz * SZ_8);
2894 * If we need more than just a single L1 page, flag the table
2895 * as indirect and compute the number of required L1 pages.
2897 if (epp < ITS_MAX_VPEID) {
2900 val |= GICR_VPROPBASER_4_1_INDIRECT;
2902 /* Number of L2 pages required to cover the VPEID space */
2903 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2905 /* Number of L1 pages to point to the L2 pages */
2906 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2911 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2913 /* Right, that's the number of CPU pages we need for L1 */
2914 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2916 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2917 np, npg, psz, epp, esz);
2918 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2922 gic_data_rdist()->vpe_l1_base = page_address(page);
2923 pa = virt_to_phys(page_address(page));
2924 WARN_ON(!IS_ALIGNED(pa, psz));
2926 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2927 if (rdists_support_shareable()) {
2928 val |= GICR_VPROPBASER_RaWb;
2929 val |= GICR_VPROPBASER_InnerShareable;
2931 val |= GICR_VPROPBASER_4_1_Z;
2932 val |= GICR_VPROPBASER_4_1_VALID;
2935 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2936 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2938 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2939 smp_processor_id(), val,
2940 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2945 static int its_alloc_collections(struct its_node *its)
2949 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2951 if (!its->collections)
2954 for (i = 0; i < nr_cpu_ids; i++)
2955 its->collections[i].target_address = ~0ULL;
2960 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2962 struct page *pend_page;
2964 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2965 get_order(LPI_PENDBASE_SZ));
2969 /* Make sure the GIC will observe the zero-ed page */
2970 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2975 static void its_free_pending_table(struct page *pt)
2977 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2981 * Booting with kdump and LPIs enabled is generally fine. Any other
2982 * case is wrong in the absence of firmware/EFI support.
2984 static bool enabled_lpis_allowed(void)
2989 /* Check whether the property table is in a reserved region */
2990 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2991 addr = val & GENMASK_ULL(51, 12);
2993 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2996 static int __init allocate_lpi_tables(void)
3002 * If LPIs are enabled while we run this from the boot CPU,
3003 * flag the RD tables as pre-allocated if the stars do align.
3005 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3006 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3007 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3008 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3009 pr_info("GICv3: Using preallocated redistributor tables\n");
3012 err = its_setup_lpi_prop_table();
3017 * We allocate all the pending tables anyway, as we may have a
3018 * mix of RDs that have had LPIs enabled, and some that
3019 * don't. We'll free the unused ones as each CPU comes online.
3021 for_each_possible_cpu(cpu) {
3022 struct page *pend_page;
3024 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3026 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3030 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3036 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3038 u32 count = 1000000; /* 1s! */
3043 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3044 clean = !(val & GICR_VPENDBASER_Dirty);
3050 } while (!clean && count);
3052 if (unlikely(!clean))
3053 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3058 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3062 /* Make sure we wait until the RD is done with the initial scan */
3063 val = read_vpend_dirty_clear(vlpi_base);
3064 val &= ~GICR_VPENDBASER_Valid;
3067 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3069 val = read_vpend_dirty_clear(vlpi_base);
3070 if (unlikely(val & GICR_VPENDBASER_Dirty))
3071 val |= GICR_VPENDBASER_PendingLast;
3076 static void its_cpu_init_lpis(void)
3078 void __iomem *rbase = gic_data_rdist_rd_base();
3079 struct page *pend_page;
3083 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3086 val = readl_relaxed(rbase + GICR_CTLR);
3087 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3088 (val & GICR_CTLR_ENABLE_LPIS)) {
3090 * Check that we get the same property table on all
3091 * RDs. If we don't, this is hopeless.
3093 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3094 paddr &= GENMASK_ULL(51, 12);
3095 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3096 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3098 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3099 paddr &= GENMASK_ULL(51, 16);
3101 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3102 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3107 pend_page = gic_data_rdist()->pend_page;
3108 paddr = page_to_phys(pend_page);
3111 val = (gic_rdists->prop_table_pa |
3112 GICR_PROPBASER_InnerShareable |
3113 GICR_PROPBASER_RaWaWb |
3114 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3116 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3117 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3119 if (!rdists_support_shareable())
3120 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3122 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3123 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3125 * The HW reports non-shareable, we must
3126 * remove the cacheability attributes as
3129 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3130 GICR_PROPBASER_CACHEABILITY_MASK);
3131 val |= GICR_PROPBASER_nC;
3132 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3134 pr_info_once("GIC: using cache flushing for LPI property table\n");
3135 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3139 val = (page_to_phys(pend_page) |
3140 GICR_PENDBASER_InnerShareable |
3141 GICR_PENDBASER_RaWaWb);
3143 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3144 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3146 if (!rdists_support_shareable())
3147 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3149 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3151 * The HW reports non-shareable, we must remove the
3152 * cacheability attributes as well.
3154 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3155 GICR_PENDBASER_CACHEABILITY_MASK);
3156 val |= GICR_PENDBASER_nC;
3157 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3161 val = readl_relaxed(rbase + GICR_CTLR);
3162 val |= GICR_CTLR_ENABLE_LPIS;
3163 writel_relaxed(val, rbase + GICR_CTLR);
3166 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3167 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3170 * It's possible for CPU to receive VLPIs before it is
3171 * scheduled as a vPE, especially for the first CPU, and the
3172 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3173 * as out of range and dropped by GIC.
3174 * So we initialize IDbits to known value to avoid VLPI drop.
3176 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3177 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3178 smp_processor_id(), val);
3179 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3182 * Also clear Valid bit of GICR_VPENDBASER, in case some
3183 * ancient programming gets left in and has possibility of
3184 * corrupting memory.
3186 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3189 if (allocate_vpe_l1_table()) {
3191 * If the allocation has failed, we're in massive trouble.
3192 * Disable direct injection, and pray that no VM was
3193 * already running...
3195 gic_rdists->has_rvpeid = false;
3196 gic_rdists->has_vlpis = false;
3199 /* Make sure the GIC has seen the above */
3201 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3202 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3204 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3205 "reserved" : "allocated",
3209 static void its_cpu_init_collection(struct its_node *its)
3211 int cpu = smp_processor_id();
3214 /* avoid cross node collections and its mapping */
3215 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3216 struct device_node *cpu_node;
3218 cpu_node = of_get_cpu_node(cpu, NULL);
3219 if (its->numa_node != NUMA_NO_NODE &&
3220 its->numa_node != of_node_to_nid(cpu_node))
3225 * We now have to bind each collection to its target
3228 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3230 * This ITS wants the physical address of the
3233 target = gic_data_rdist()->phys_base;
3235 /* This ITS wants a linear CPU number. */
3236 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3237 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3240 /* Perform collection mapping */
3241 its->collections[cpu].target_address = target;
3242 its->collections[cpu].col_id = cpu;
3244 its_send_mapc(its, &its->collections[cpu], 1);
3245 its_send_invall(its, &its->collections[cpu]);
3248 static void its_cpu_init_collections(void)
3250 struct its_node *its;
3252 raw_spin_lock(&its_lock);
3254 list_for_each_entry(its, &its_nodes, entry)
3255 its_cpu_init_collection(its);
3257 raw_spin_unlock(&its_lock);
3260 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3262 struct its_device *its_dev = NULL, *tmp;
3263 unsigned long flags;
3265 raw_spin_lock_irqsave(&its->lock, flags);
3267 list_for_each_entry(tmp, &its->its_device_list, entry) {
3268 if (tmp->device_id == dev_id) {
3274 raw_spin_unlock_irqrestore(&its->lock, flags);
3279 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3283 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3284 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3285 return &its->tables[i];
3291 static bool its_alloc_table_entry(struct its_node *its,
3292 struct its_baser *baser, u32 id)
3298 /* Don't allow device id that exceeds single, flat table limit */
3299 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3300 if (!(baser->val & GITS_BASER_INDIRECT))
3301 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3303 /* Compute 1st level table index & check if that exceeds table limit */
3304 idx = id >> ilog2(baser->psz / esz);
3305 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3308 table = baser->base;
3310 /* Allocate memory for 2nd level table */
3312 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3313 get_order(baser->psz));
3317 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3318 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3319 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3321 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3323 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3324 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3325 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3327 /* Ensure updated table contents are visible to ITS hardware */
3334 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3336 struct its_baser *baser;
3338 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3340 /* Don't allow device id that exceeds ITS hardware limit */
3342 return (ilog2(dev_id) < device_ids(its));
3344 return its_alloc_table_entry(its, baser, dev_id);
3347 static bool its_alloc_vpe_table(u32 vpe_id)
3349 struct its_node *its;
3353 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3354 * could try and only do it on ITSs corresponding to devices
3355 * that have interrupts targeted at this VPE, but the
3356 * complexity becomes crazy (and you have tons of memory
3359 list_for_each_entry(its, &its_nodes, entry) {
3360 struct its_baser *baser;
3365 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3369 if (!its_alloc_table_entry(its, baser, vpe_id))
3373 /* Non v4.1? No need to iterate RDs and go back early. */
3374 if (!gic_rdists->has_rvpeid)
3378 * Make sure the L2 tables are allocated for all copies of
3379 * the L1 table on *all* v4.1 RDs.
3381 for_each_possible_cpu(cpu) {
3382 if (!allocate_vpe_l2_table(cpu, vpe_id))
3389 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3390 int nvecs, bool alloc_lpis)
3392 struct its_device *dev;
3393 unsigned long *lpi_map = NULL;
3394 unsigned long flags;
3395 u16 *col_map = NULL;
3402 if (!its_alloc_device_table(its, dev_id))
3405 if (WARN_ON(!is_power_of_2(nvecs)))
3406 nvecs = roundup_pow_of_two(nvecs);
3408 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3410 * Even if the device wants a single LPI, the ITT must be
3411 * sized as a power of two (and you need at least one bit...).
3413 nr_ites = max(2, nvecs);
3414 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3415 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3416 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3418 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3420 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3423 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3428 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3431 bitmap_free(lpi_map);
3436 gic_flush_dcache_to_poc(itt, sz);
3440 dev->nr_ites = nr_ites;
3441 dev->event_map.lpi_map = lpi_map;
3442 dev->event_map.col_map = col_map;
3443 dev->event_map.lpi_base = lpi_base;
3444 dev->event_map.nr_lpis = nr_lpis;
3445 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3446 dev->device_id = dev_id;
3447 INIT_LIST_HEAD(&dev->entry);
3449 raw_spin_lock_irqsave(&its->lock, flags);
3450 list_add(&dev->entry, &its->its_device_list);
3451 raw_spin_unlock_irqrestore(&its->lock, flags);
3453 /* Map device to its ITT */
3454 its_send_mapd(dev, 1);
3459 static void its_free_device(struct its_device *its_dev)
3461 unsigned long flags;
3463 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3464 list_del(&its_dev->entry);
3465 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3466 kfree(its_dev->event_map.col_map);
3467 kfree(its_dev->itt);
3471 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3475 /* Find a free LPI region in lpi_map and allocate them. */
3476 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3477 dev->event_map.nr_lpis,
3478 get_count_order(nvecs));
3482 *hwirq = dev->event_map.lpi_base + idx;
3487 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3488 int nvec, msi_alloc_info_t *info)
3490 struct its_node *its;
3491 struct its_device *its_dev;
3492 struct msi_domain_info *msi_info;
3497 * We ignore "dev" entirely, and rely on the dev_id that has
3498 * been passed via the scratchpad. This limits this domain's
3499 * usefulness to upper layers that definitely know that they
3500 * are built on top of the ITS.
3502 dev_id = info->scratchpad[0].ul;
3504 msi_info = msi_get_domain_info(domain);
3505 its = msi_info->data;
3507 if (!gic_rdists->has_direct_lpi &&
3509 vpe_proxy.dev->its == its &&
3510 dev_id == vpe_proxy.dev->device_id) {
3511 /* Bad luck. Get yourself a better implementation */
3512 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3517 mutex_lock(&its->dev_alloc_lock);
3518 its_dev = its_find_device(its, dev_id);
3521 * We already have seen this ID, probably through
3522 * another alias (PCI bridge of some sort). No need to
3523 * create the device.
3525 its_dev->shared = true;
3526 pr_debug("Reusing ITT for devID %x\n", dev_id);
3530 its_dev = its_create_device(its, dev_id, nvec, true);
3536 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3537 its_dev->shared = true;
3539 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3541 mutex_unlock(&its->dev_alloc_lock);
3542 info->scratchpad[0].ptr = its_dev;
3546 static struct msi_domain_ops its_msi_domain_ops = {
3547 .msi_prepare = its_msi_prepare,
3550 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3552 irq_hw_number_t hwirq)
3554 struct irq_fwspec fwspec;
3556 if (irq_domain_get_of_node(domain->parent)) {
3557 fwspec.fwnode = domain->parent->fwnode;
3558 fwspec.param_count = 3;
3559 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3560 fwspec.param[1] = hwirq;
3561 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3562 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3563 fwspec.fwnode = domain->parent->fwnode;
3564 fwspec.param_count = 2;
3565 fwspec.param[0] = hwirq;
3566 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3571 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3574 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3575 unsigned int nr_irqs, void *args)
3577 msi_alloc_info_t *info = args;
3578 struct its_device *its_dev = info->scratchpad[0].ptr;
3579 struct its_node *its = its_dev->its;
3580 struct irq_data *irqd;
3581 irq_hw_number_t hwirq;
3585 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3589 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3593 for (i = 0; i < nr_irqs; i++) {
3594 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3598 irq_domain_set_hwirq_and_chip(domain, virq + i,
3599 hwirq + i, &its_irq_chip, its_dev);
3600 irqd = irq_get_irq_data(virq + i);
3601 irqd_set_single_target(irqd);
3602 irqd_set_affinity_on_activate(irqd);
3603 irqd_set_resend_when_in_progress(irqd);
3604 pr_debug("ID:%d pID:%d vID:%d\n",
3605 (int)(hwirq + i - its_dev->event_map.lpi_base),
3606 (int)(hwirq + i), virq + i);
3612 static int its_irq_domain_activate(struct irq_domain *domain,
3613 struct irq_data *d, bool reserve)
3615 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3616 u32 event = its_get_event_id(d);
3619 cpu = its_select_cpu(d, cpu_online_mask);
3620 if (cpu < 0 || cpu >= nr_cpu_ids)
3623 its_inc_lpi_count(d, cpu);
3624 its_dev->event_map.col_map[event] = cpu;
3625 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3627 /* Map the GIC IRQ and event to the device */
3628 its_send_mapti(its_dev, d->hwirq, event);
3632 static void its_irq_domain_deactivate(struct irq_domain *domain,
3635 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3636 u32 event = its_get_event_id(d);
3638 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3639 /* Stop the delivery of interrupts */
3640 its_send_discard(its_dev, event);
3643 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3644 unsigned int nr_irqs)
3646 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3647 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3648 struct its_node *its = its_dev->its;
3651 bitmap_release_region(its_dev->event_map.lpi_map,
3652 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3653 get_count_order(nr_irqs));
3655 for (i = 0; i < nr_irqs; i++) {
3656 struct irq_data *data = irq_domain_get_irq_data(domain,
3658 /* Nuke the entry in the domain */
3659 irq_domain_reset_irq_data(data);
3662 mutex_lock(&its->dev_alloc_lock);
3665 * If all interrupts have been freed, start mopping the
3666 * floor. This is conditioned on the device not being shared.
3668 if (!its_dev->shared &&
3669 bitmap_empty(its_dev->event_map.lpi_map,
3670 its_dev->event_map.nr_lpis)) {
3671 its_lpi_free(its_dev->event_map.lpi_map,
3672 its_dev->event_map.lpi_base,
3673 its_dev->event_map.nr_lpis);
3675 /* Unmap device/itt */
3676 its_send_mapd(its_dev, 0);
3677 its_free_device(its_dev);
3680 mutex_unlock(&its->dev_alloc_lock);
3682 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3685 static const struct irq_domain_ops its_domain_ops = {
3686 .select = msi_lib_irq_domain_select,
3687 .alloc = its_irq_domain_alloc,
3688 .free = its_irq_domain_free,
3689 .activate = its_irq_domain_activate,
3690 .deactivate = its_irq_domain_deactivate,
3696 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3697 * likely), the only way to perform an invalidate is to use a fake
3698 * device to issue an INV command, implying that the LPI has first
3699 * been mapped to some event on that device. Since this is not exactly
3700 * cheap, we try to keep that mapping around as long as possible, and
3701 * only issue an UNMAP if we're short on available slots.
3703 * Broken by design(tm).
3705 * GICv4.1, on the other hand, mandates that we're able to invalidate
3706 * by writing to a MMIO register. It doesn't implement the whole of
3707 * DirectLPI, but that's good enough. And most of the time, we don't
3708 * even have to invalidate anything, as the redistributor can be told
3709 * whether to generate a doorbell or not (we thus leave it enabled,
3712 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3714 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3715 if (gic_rdists->has_rvpeid)
3718 /* Already unmapped? */
3719 if (vpe->vpe_proxy_event == -1)
3722 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3723 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3726 * We don't track empty slots at all, so let's move the
3727 * next_victim pointer if we can quickly reuse that slot
3728 * instead of nuking an existing entry. Not clear that this is
3729 * always a win though, and this might just generate a ripple
3730 * effect... Let's just hope VPEs don't migrate too often.
3732 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3733 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3735 vpe->vpe_proxy_event = -1;
3738 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3740 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3741 if (gic_rdists->has_rvpeid)
3744 if (!gic_rdists->has_direct_lpi) {
3745 unsigned long flags;
3747 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3748 its_vpe_db_proxy_unmap_locked(vpe);
3749 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3753 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3755 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3756 if (gic_rdists->has_rvpeid)
3759 /* Already mapped? */
3760 if (vpe->vpe_proxy_event != -1)
3763 /* This slot was already allocated. Kick the other VPE out. */
3764 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3765 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3767 /* Map the new VPE instead */
3768 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3769 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3770 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3772 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3773 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3776 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3778 unsigned long flags;
3779 struct its_collection *target_col;
3781 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3782 if (gic_rdists->has_rvpeid)
3785 if (gic_rdists->has_direct_lpi) {
3786 void __iomem *rdbase;
3788 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3789 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3790 wait_for_syncr(rdbase);
3795 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3797 its_vpe_db_proxy_map_locked(vpe);
3799 target_col = &vpe_proxy.dev->its->collections[to];
3800 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3801 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3803 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3806 static int its_vpe_set_affinity(struct irq_data *d,
3807 const struct cpumask *mask_val,
3810 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3811 unsigned int from, cpu = nr_cpu_ids;
3812 struct cpumask *table_mask;
3813 unsigned long flags;
3816 * Changing affinity is mega expensive, so let's be as lazy as
3817 * we can and only do it if we really have to. Also, if mapped
3818 * into the proxy device, we need to move the doorbell
3819 * interrupt to its new location.
3821 * Another thing is that changing the affinity of a vPE affects
3822 * *other interrupts* such as all the vLPIs that are routed to
3823 * this vPE. This means that the irq_desc lock is not enough to
3824 * protect us, and that we must ensure nobody samples vpe->col_idx
3825 * during the update, hence the lock below which must also be
3826 * taken on any vLPI handling path that evaluates vpe->col_idx.
3828 from = vpe_to_cpuid_lock(vpe, &flags);
3829 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3832 * If we are offered another CPU in the same GICv4.1 ITS
3833 * affinity, pick this one. Otherwise, any CPU will do.
3836 cpu = cpumask_any_and(mask_val, table_mask);
3837 if (cpu < nr_cpu_ids) {
3838 if (cpumask_test_cpu(from, mask_val) &&
3839 cpumask_test_cpu(from, table_mask))
3842 cpu = cpumask_first(mask_val);
3850 its_send_vmovp(vpe);
3851 its_vpe_db_proxy_move(vpe, from, cpu);
3854 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3855 vpe_to_cpuid_unlock(vpe, flags);
3857 return IRQ_SET_MASK_OK_DONE;
3860 static void its_wait_vpt_parse_complete(void)
3862 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3865 if (!gic_rdists->has_vpend_valid_dirty)
3868 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3870 !(val & GICR_VPENDBASER_Dirty),
3874 static void its_vpe_schedule(struct its_vpe *vpe)
3876 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3879 /* Schedule the VPE */
3880 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3881 GENMASK_ULL(51, 12);
3882 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3883 if (rdists_support_shareable()) {
3884 val |= GICR_VPROPBASER_RaWb;
3885 val |= GICR_VPROPBASER_InnerShareable;
3887 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3889 val = virt_to_phys(page_address(vpe->vpt_page)) &
3890 GENMASK_ULL(51, 16);
3891 if (rdists_support_shareable()) {
3892 val |= GICR_VPENDBASER_RaWaWb;
3893 val |= GICR_VPENDBASER_InnerShareable;
3896 * There is no good way of finding out if the pending table is
3897 * empty as we can race against the doorbell interrupt very
3898 * easily. So in the end, vpe->pending_last is only an
3899 * indication that the vcpu has something pending, not one
3900 * that the pending table is empty. A good implementation
3901 * would be able to read its coarse map pretty quickly anyway,
3902 * making this a tolerable issue.
3904 val |= GICR_VPENDBASER_PendingLast;
3905 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3906 val |= GICR_VPENDBASER_Valid;
3907 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3910 static void its_vpe_deschedule(struct its_vpe *vpe)
3912 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3915 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3917 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3918 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3921 static void its_vpe_invall(struct its_vpe *vpe)
3923 struct its_node *its;
3925 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
3927 list_for_each_entry(its, &its_nodes, entry) {
3931 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3935 * Sending a VINVALL to a single ITS is enough, as all
3936 * we need is to reach the redistributors.
3938 its_send_vinvall(its, vpe);
3943 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3945 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3946 struct its_cmd_info *info = vcpu_info;
3948 switch (info->cmd_type) {
3950 its_vpe_schedule(vpe);
3953 case DESCHEDULE_VPE:
3954 its_vpe_deschedule(vpe);
3958 its_wait_vpt_parse_complete();
3962 its_vpe_invall(vpe);
3970 static void its_vpe_send_cmd(struct its_vpe *vpe,
3971 void (*cmd)(struct its_device *, u32))
3973 unsigned long flags;
3975 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3977 its_vpe_db_proxy_map_locked(vpe);
3978 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3980 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3983 static void its_vpe_send_inv(struct irq_data *d)
3985 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3987 if (gic_rdists->has_direct_lpi)
3988 __direct_lpi_inv(d, d->parent_data->hwirq);
3990 its_vpe_send_cmd(vpe, its_send_inv);
3993 static void its_vpe_mask_irq(struct irq_data *d)
3996 * We need to unmask the LPI, which is described by the parent
3997 * irq_data. Instead of calling into the parent (which won't
3998 * exactly do the right thing, let's simply use the
3999 * parent_data pointer. Yes, I'm naughty.
4001 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4002 its_vpe_send_inv(d);
4005 static void its_vpe_unmask_irq(struct irq_data *d)
4007 /* Same hack as above... */
4008 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4009 its_vpe_send_inv(d);
4012 static int its_vpe_set_irqchip_state(struct irq_data *d,
4013 enum irqchip_irq_state which,
4016 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4018 if (which != IRQCHIP_STATE_PENDING)
4021 if (gic_rdists->has_direct_lpi) {
4022 void __iomem *rdbase;
4024 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4026 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4028 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4029 wait_for_syncr(rdbase);
4033 its_vpe_send_cmd(vpe, its_send_int);
4035 its_vpe_send_cmd(vpe, its_send_clear);
4041 static int its_vpe_retrigger(struct irq_data *d)
4043 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4046 static struct irq_chip its_vpe_irq_chip = {
4047 .name = "GICv4-vpe",
4048 .irq_mask = its_vpe_mask_irq,
4049 .irq_unmask = its_vpe_unmask_irq,
4050 .irq_eoi = irq_chip_eoi_parent,
4051 .irq_set_affinity = its_vpe_set_affinity,
4052 .irq_retrigger = its_vpe_retrigger,
4053 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4054 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4057 static struct its_node *find_4_1_its(void)
4059 static struct its_node *its = NULL;
4062 list_for_each_entry(its, &its_nodes, entry) {
4074 static void its_vpe_4_1_send_inv(struct irq_data *d)
4076 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4077 struct its_node *its;
4080 * GICv4.1 wants doorbells to be invalidated using the
4081 * INVDB command in order to be broadcast to all RDs. Send
4082 * it to the first valid ITS, and let the HW do its magic.
4084 its = find_4_1_its();
4086 its_send_invdb(its, vpe);
4089 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4091 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4092 its_vpe_4_1_send_inv(d);
4095 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4097 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4098 its_vpe_4_1_send_inv(d);
4101 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4102 struct its_cmd_info *info)
4104 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4107 /* Schedule the VPE */
4108 val |= GICR_VPENDBASER_Valid;
4109 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4110 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4111 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4113 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4116 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4117 struct its_cmd_info *info)
4119 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4123 unsigned long flags;
4126 * vPE is going to block: make the vPE non-resident with
4127 * PendingLast clear and DB set. The GIC guarantees that if
4128 * we read-back PendingLast clear, then a doorbell will be
4129 * delivered when an interrupt comes.
4131 * Note the locking to deal with the concurrent update of
4132 * pending_last from the doorbell interrupt handler that can
4135 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4136 val = its_clear_vpend_valid(vlpi_base,
4137 GICR_VPENDBASER_PendingLast,
4138 GICR_VPENDBASER_4_1_DB);
4139 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4140 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4143 * We're not blocking, so just make the vPE non-resident
4144 * with PendingLast set, indicating that we'll be back.
4146 val = its_clear_vpend_valid(vlpi_base,
4148 GICR_VPENDBASER_PendingLast);
4149 vpe->pending_last = true;
4153 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4155 void __iomem *rdbase;
4156 unsigned long flags;
4160 val = GICR_INVALLR_V;
4161 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4163 /* Target the redistributor this vPE is currently known on */
4164 cpu = vpe_to_cpuid_lock(vpe, &flags);
4165 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4166 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4167 gic_write_lpir(val, rdbase + GICR_INVALLR);
4169 wait_for_syncr(rdbase);
4170 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4171 vpe_to_cpuid_unlock(vpe, flags);
4174 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4176 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4177 struct its_cmd_info *info = vcpu_info;
4179 switch (info->cmd_type) {
4181 its_vpe_4_1_schedule(vpe, info);
4184 case DESCHEDULE_VPE:
4185 its_vpe_4_1_deschedule(vpe, info);
4189 its_wait_vpt_parse_complete();
4193 its_vpe_4_1_invall(vpe);
4201 static struct irq_chip its_vpe_4_1_irq_chip = {
4202 .name = "GICv4.1-vpe",
4203 .irq_mask = its_vpe_4_1_mask_irq,
4204 .irq_unmask = its_vpe_4_1_unmask_irq,
4205 .irq_eoi = irq_chip_eoi_parent,
4206 .irq_set_affinity = its_vpe_set_affinity,
4207 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4210 static void its_configure_sgi(struct irq_data *d, bool clear)
4212 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4213 struct its_cmd_desc desc;
4215 desc.its_vsgi_cmd.vpe = vpe;
4216 desc.its_vsgi_cmd.sgi = d->hwirq;
4217 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4218 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4219 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4220 desc.its_vsgi_cmd.clear = clear;
4223 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4224 * destination VPE is mapped there. Since we map them eagerly at
4225 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4227 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4230 static void its_sgi_mask_irq(struct irq_data *d)
4232 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4234 vpe->sgi_config[d->hwirq].enabled = false;
4235 its_configure_sgi(d, false);
4238 static void its_sgi_unmask_irq(struct irq_data *d)
4240 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4242 vpe->sgi_config[d->hwirq].enabled = true;
4243 its_configure_sgi(d, false);
4246 static int its_sgi_set_affinity(struct irq_data *d,
4247 const struct cpumask *mask_val,
4251 * There is no notion of affinity for virtual SGIs, at least
4252 * not on the host (since they can only be targeting a vPE).
4253 * Tell the kernel we've done whatever it asked for.
4255 irq_data_update_effective_affinity(d, mask_val);
4256 return IRQ_SET_MASK_OK;
4259 static int its_sgi_set_irqchip_state(struct irq_data *d,
4260 enum irqchip_irq_state which,
4263 if (which != IRQCHIP_STATE_PENDING)
4267 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4268 struct its_node *its = find_4_1_its();
4271 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4272 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4273 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4275 its_configure_sgi(d, true);
4281 static int its_sgi_get_irqchip_state(struct irq_data *d,
4282 enum irqchip_irq_state which, bool *val)
4284 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4286 unsigned long flags;
4287 u32 count = 1000000; /* 1s! */
4291 if (which != IRQCHIP_STATE_PENDING)
4295 * Locking galore! We can race against two different events:
4297 * - Concurrent vPE affinity change: we must make sure it cannot
4298 * happen, or we'll talk to the wrong redistributor. This is
4299 * identical to what happens with vLPIs.
4301 * - Concurrent VSGIPENDR access: As it involves accessing two
4302 * MMIO registers, this must be made atomic one way or another.
4304 cpu = vpe_to_cpuid_lock(vpe, &flags);
4305 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4306 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4307 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4309 status = readl_relaxed(base + GICR_VSGIPENDR);
4310 if (!(status & GICR_VSGIPENDR_BUSY))
4315 pr_err_ratelimited("Unable to get SGI status\n");
4323 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4324 vpe_to_cpuid_unlock(vpe, flags);
4329 *val = !!(status & (1 << d->hwirq));
4334 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4336 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4337 struct its_cmd_info *info = vcpu_info;
4339 switch (info->cmd_type) {
4340 case PROP_UPDATE_VSGI:
4341 vpe->sgi_config[d->hwirq].priority = info->priority;
4342 vpe->sgi_config[d->hwirq].group = info->group;
4343 its_configure_sgi(d, false);
4351 static struct irq_chip its_sgi_irq_chip = {
4352 .name = "GICv4.1-sgi",
4353 .irq_mask = its_sgi_mask_irq,
4354 .irq_unmask = its_sgi_unmask_irq,
4355 .irq_set_affinity = its_sgi_set_affinity,
4356 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4357 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4358 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4361 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4362 unsigned int virq, unsigned int nr_irqs,
4365 struct its_vpe *vpe = args;
4368 /* Yes, we do want 16 SGIs */
4369 WARN_ON(nr_irqs != 16);
4371 for (i = 0; i < 16; i++) {
4372 vpe->sgi_config[i].priority = 0;
4373 vpe->sgi_config[i].enabled = false;
4374 vpe->sgi_config[i].group = false;
4376 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4377 &its_sgi_irq_chip, vpe);
4378 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4384 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4386 unsigned int nr_irqs)
4391 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4392 struct irq_data *d, bool reserve)
4394 /* Write out the initial SGI configuration */
4395 its_configure_sgi(d, false);
4399 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4402 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4405 * The VSGI command is awkward:
4407 * - To change the configuration, CLEAR must be set to false,
4408 * leaving the pending bit unchanged.
4409 * - To clear the pending bit, CLEAR must be set to true, leaving
4410 * the configuration unchanged.
4412 * You just can't do both at once, hence the two commands below.
4414 vpe->sgi_config[d->hwirq].enabled = false;
4415 its_configure_sgi(d, false);
4416 its_configure_sgi(d, true);
4419 static const struct irq_domain_ops its_sgi_domain_ops = {
4420 .alloc = its_sgi_irq_domain_alloc,
4421 .free = its_sgi_irq_domain_free,
4422 .activate = its_sgi_irq_domain_activate,
4423 .deactivate = its_sgi_irq_domain_deactivate,
4426 static int its_vpe_id_alloc(void)
4428 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4431 static void its_vpe_id_free(u16 id)
4433 ida_free(&its_vpeid_ida, id);
4436 static int its_vpe_init(struct its_vpe *vpe)
4438 struct page *vpt_page;
4441 /* Allocate vpe_id */
4442 vpe_id = its_vpe_id_alloc();
4447 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4449 its_vpe_id_free(vpe_id);
4453 if (!its_alloc_vpe_table(vpe_id)) {
4454 its_vpe_id_free(vpe_id);
4455 its_free_pending_table(vpt_page);
4459 raw_spin_lock_init(&vpe->vpe_lock);
4460 vpe->vpe_id = vpe_id;
4461 vpe->vpt_page = vpt_page;
4462 if (gic_rdists->has_rvpeid)
4463 atomic_set(&vpe->vmapp_count, 0);
4465 vpe->vpe_proxy_event = -1;
4470 static void its_vpe_teardown(struct its_vpe *vpe)
4472 its_vpe_db_proxy_unmap(vpe);
4473 its_vpe_id_free(vpe->vpe_id);
4474 its_free_pending_table(vpe->vpt_page);
4477 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4479 unsigned int nr_irqs)
4481 struct its_vm *vm = domain->host_data;
4484 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4486 for (i = 0; i < nr_irqs; i++) {
4487 struct irq_data *data = irq_domain_get_irq_data(domain,
4489 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4491 BUG_ON(vm != vpe->its_vm);
4493 clear_bit(data->hwirq, vm->db_bitmap);
4494 its_vpe_teardown(vpe);
4495 irq_domain_reset_irq_data(data);
4498 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4499 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4500 its_free_prop_table(vm->vprop_page);
4504 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4505 unsigned int nr_irqs, void *args)
4507 struct irq_chip *irqchip = &its_vpe_irq_chip;
4508 struct its_vm *vm = args;
4509 unsigned long *bitmap;
4510 struct page *vprop_page;
4511 int base, nr_ids, i, err = 0;
4513 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4517 if (nr_ids < nr_irqs) {
4518 its_lpi_free(bitmap, base, nr_ids);
4522 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4524 its_lpi_free(bitmap, base, nr_ids);
4528 vm->db_bitmap = bitmap;
4529 vm->db_lpi_base = base;
4530 vm->nr_db_lpis = nr_ids;
4531 vm->vprop_page = vprop_page;
4532 raw_spin_lock_init(&vm->vmapp_lock);
4534 if (gic_rdists->has_rvpeid)
4535 irqchip = &its_vpe_4_1_irq_chip;
4537 for (i = 0; i < nr_irqs; i++) {
4538 vm->vpes[i]->vpe_db_lpi = base + i;
4539 err = its_vpe_init(vm->vpes[i]);
4542 err = its_irq_gic_domain_alloc(domain, virq + i,
4543 vm->vpes[i]->vpe_db_lpi);
4546 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4547 irqchip, vm->vpes[i]);
4549 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4553 its_vpe_irq_domain_free(domain, virq, i);
4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4559 struct irq_data *d, bool reserve)
4561 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562 struct its_node *its;
4564 /* Map the VPE to the first possible CPU */
4565 vpe->col_idx = cpumask_first(cpu_online_mask);
4566 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4569 * If we use the list map, we issue VMAPP on demand... Unless
4570 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4571 * so that VSGIs can work.
4573 if (!gic_requires_eager_mapping())
4576 list_for_each_entry(its, &its_nodes, entry) {
4580 its_send_vmapp(its, vpe, true);
4581 its_send_vinvall(its, vpe);
4587 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4590 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4591 struct its_node *its;
4594 * If we use the list map on GICv4.0, we unmap the VPE once no
4595 * VLPIs are associated with the VM.
4597 if (!gic_requires_eager_mapping())
4600 list_for_each_entry(its, &its_nodes, entry) {
4604 its_send_vmapp(its, vpe, false);
4608 * There may be a direct read to the VPT after unmapping the
4609 * vPE, to guarantee the validity of this, we make the VPT
4610 * memory coherent with the CPU caches here.
4612 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4613 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4617 static const struct irq_domain_ops its_vpe_domain_ops = {
4618 .alloc = its_vpe_irq_domain_alloc,
4619 .free = its_vpe_irq_domain_free,
4620 .activate = its_vpe_irq_domain_activate,
4621 .deactivate = its_vpe_irq_domain_deactivate,
4624 static int its_force_quiescent(void __iomem *base)
4626 u32 count = 1000000; /* 1s */
4629 val = readl_relaxed(base + GITS_CTLR);
4631 * GIC architecture specification requires the ITS to be both
4632 * disabled and quiescent for writes to GITS_BASER<n> or
4633 * GITS_CBASER to not have UNPREDICTABLE results.
4635 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4638 /* Disable the generation of all interrupts to this ITS */
4639 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4640 writel_relaxed(val, base + GITS_CTLR);
4642 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4644 val = readl_relaxed(base + GITS_CTLR);
4645 if (val & GITS_CTLR_QUIESCENT)
4657 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4659 struct its_node *its = data;
4661 /* erratum 22375: only alloc 8MB table size (20 bits) */
4662 its->typer &= ~GITS_TYPER_DEVBITS;
4663 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4664 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4669 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4671 struct its_node *its = data;
4673 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4678 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4680 struct its_node *its = data;
4682 /* On QDF2400, the size of the ITE is 16Bytes */
4683 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4684 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4689 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4691 struct its_node *its = its_dev->its;
4694 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4695 * which maps 32-bit writes targeted at a separate window of
4696 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4697 * with device ID taken from bits [device_id_bits + 1:2] of
4698 * the window offset.
4700 return its->pre_its_base + (its_dev->device_id << 2);
4703 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4705 struct its_node *its = data;
4706 u32 pre_its_window[2];
4709 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4710 "socionext,synquacer-pre-its",
4712 ARRAY_SIZE(pre_its_window))) {
4714 its->pre_its_base = pre_its_window[0];
4715 its->get_msi_base = its_irq_get_msi_base_pre_its;
4717 ids = ilog2(pre_its_window[1]) - 2;
4718 if (device_ids(its) > ids) {
4719 its->typer &= ~GITS_TYPER_DEVBITS;
4720 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4723 /* the pre-ITS breaks isolation, so disable MSI remapping */
4724 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4730 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4732 struct its_node *its = data;
4735 * Hip07 insists on using the wrong address for the VLPI
4736 * page. Trick it into doing the right thing...
4738 its->vlpi_redist_offset = SZ_128K;
4742 static bool __maybe_unused its_enable_rk3588001(void *data)
4744 struct its_node *its = data;
4746 if (!of_machine_is_compatible("rockchip,rk3588") &&
4747 !of_machine_is_compatible("rockchip,rk3588s"))
4750 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4751 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4756 static bool its_set_non_coherent(void *data)
4758 struct its_node *its = data;
4760 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4764 static const struct gic_quirk its_quirks[] = {
4765 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4767 .desc = "ITS: Cavium errata 22375, 24313",
4768 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4770 .init = its_enable_quirk_cavium_22375,
4773 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4775 .desc = "ITS: Cavium erratum 23144",
4776 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4778 .init = its_enable_quirk_cavium_23144,
4781 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4783 .desc = "ITS: QDF2400 erratum 0065",
4784 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4786 .init = its_enable_quirk_qdf2400_e0065,
4789 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4792 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4793 * implementation, but with a 'pre-ITS' added that requires
4794 * special handling in software.
4796 .desc = "ITS: Socionext Synquacer pre-ITS",
4799 .init = its_enable_quirk_socionext_synquacer,
4802 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4804 .desc = "ITS: Hip07 erratum 161600802",
4807 .init = its_enable_quirk_hip07_161600802,
4810 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4812 .desc = "ITS: Rockchip erratum RK3588001",
4815 .init = its_enable_rk3588001,
4819 .desc = "ITS: non-coherent attribute",
4820 .property = "dma-noncoherent",
4821 .init = its_set_non_coherent,
4827 static void its_enable_quirks(struct its_node *its)
4829 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4831 gic_enable_quirks(iidr, its_quirks, its);
4833 if (is_of_node(its->fwnode_handle))
4834 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4838 static int its_save_disable(void)
4840 struct its_node *its;
4843 raw_spin_lock(&its_lock);
4844 list_for_each_entry(its, &its_nodes, entry) {
4848 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4849 err = its_force_quiescent(base);
4851 pr_err("ITS@%pa: failed to quiesce: %d\n",
4852 &its->phys_base, err);
4853 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4857 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4862 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4866 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4869 raw_spin_unlock(&its_lock);
4874 static void its_restore_enable(void)
4876 struct its_node *its;
4879 raw_spin_lock(&its_lock);
4880 list_for_each_entry(its, &its_nodes, entry) {
4887 * Make sure that the ITS is disabled. If it fails to quiesce,
4888 * don't restore it since writing to CBASER or BASER<n>
4889 * registers is undefined according to the GIC v3 ITS
4892 * Firmware resuming with the ITS enabled is terminally broken.
4894 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4895 ret = its_force_quiescent(base);
4897 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4898 &its->phys_base, ret);
4902 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4905 * Writing CBASER resets CREADR to 0, so make CWRITER and
4906 * cmd_write line up with it.
4908 its->cmd_write = its->cmd_base;
4909 gits_write_cwriter(0, base + GITS_CWRITER);
4911 /* Restore GITS_BASER from the value cache. */
4912 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4913 struct its_baser *baser = &its->tables[i];
4915 if (!(baser->val & GITS_BASER_VALID))
4918 its_write_baser(its, baser, baser->val);
4920 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4923 * Reinit the collection if it's stored in the ITS. This is
4924 * indicated by the col_id being less than the HCC field.
4925 * CID < HCC as specified in the GIC v3 Documentation.
4927 if (its->collections[smp_processor_id()].col_id <
4928 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4929 its_cpu_init_collection(its);
4931 raw_spin_unlock(&its_lock);
4934 static struct syscore_ops its_syscore_ops = {
4935 .suspend = its_save_disable,
4936 .resume = its_restore_enable,
4939 static void __init __iomem *its_map_one(struct resource *res, int *err)
4941 void __iomem *its_base;
4944 its_base = ioremap(res->start, SZ_64K);
4946 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4951 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4952 if (val != 0x30 && val != 0x40) {
4953 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4958 *err = its_force_quiescent(its_base);
4960 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4971 static int its_init_domain(struct its_node *its)
4973 struct irq_domain *inner_domain;
4974 struct msi_domain_info *info;
4976 info = kzalloc(sizeof(*info), GFP_KERNEL);
4980 info->ops = &its_msi_domain_ops;
4983 inner_domain = irq_domain_create_hierarchy(its_parent,
4984 its->msi_domain_flags, 0,
4985 its->fwnode_handle, &its_domain_ops,
4987 if (!inner_domain) {
4992 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4994 inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
4995 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5000 static int its_init_vpe_domain(void)
5002 struct its_node *its;
5006 if (gic_rdists->has_direct_lpi) {
5007 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5011 /* Any ITS will do, even if not v4 */
5012 its = list_first_entry(&its_nodes, struct its_node, entry);
5014 entries = roundup_pow_of_two(nr_cpu_ids);
5015 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5017 if (!vpe_proxy.vpes)
5020 /* Use the last possible DevID */
5021 devid = GENMASK(device_ids(its) - 1, 0);
5022 vpe_proxy.dev = its_create_device(its, devid, entries, false);
5023 if (!vpe_proxy.dev) {
5024 kfree(vpe_proxy.vpes);
5025 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5029 BUG_ON(entries > vpe_proxy.dev->nr_ites);
5031 raw_spin_lock_init(&vpe_proxy.lock);
5032 vpe_proxy.next_victim = 0;
5033 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5034 devid, vpe_proxy.dev->nr_ites);
5039 static int __init its_compute_its_list_map(struct its_node *its)
5045 * This is assumed to be done early enough that we're
5046 * guaranteed to be single-threaded, hence no
5047 * locking. Should this change, we should address
5050 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5051 if (its_number >= GICv4_ITS_LIST_MAX) {
5052 pr_err("ITS@%pa: No ITSList entry available!\n",
5057 ctlr = readl_relaxed(its->base + GITS_CTLR);
5058 ctlr &= ~GITS_CTLR_ITS_NUMBER;
5059 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5060 writel_relaxed(ctlr, its->base + GITS_CTLR);
5061 ctlr = readl_relaxed(its->base + GITS_CTLR);
5062 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5063 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5064 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5067 if (test_and_set_bit(its_number, &its_list_map)) {
5068 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5069 &its->phys_base, its_number);
5076 static int __init its_probe_one(struct its_node *its)
5083 its_enable_quirks(its);
5086 if (!(its->typer & GITS_TYPER_VMOVP)) {
5087 err = its_compute_its_list_map(its);
5093 pr_info("ITS@%pa: Using ITS number %d\n",
5094 &its->phys_base, err);
5096 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5100 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5102 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5103 if (!its->sgir_base) {
5108 its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5110 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5111 &its->phys_base, its->mpidr, svpet);
5115 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5116 get_order(ITS_CMD_QUEUE_SZ));
5119 goto out_unmap_sgir;
5121 its->cmd_base = (void *)page_address(page);
5122 its->cmd_write = its->cmd_base;
5124 err = its_alloc_tables(its);
5128 err = its_alloc_collections(its);
5130 goto out_free_tables;
5132 baser = (virt_to_phys(its->cmd_base) |
5133 GITS_CBASER_RaWaWb |
5134 GITS_CBASER_InnerShareable |
5135 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5138 gits_write_cbaser(baser, its->base + GITS_CBASER);
5139 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5141 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5142 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5144 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5145 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5147 * The HW reports non-shareable, we must
5148 * remove the cacheability attributes as
5151 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5152 GITS_CBASER_CACHEABILITY_MASK);
5153 baser |= GITS_CBASER_nC;
5154 gits_write_cbaser(baser, its->base + GITS_CBASER);
5156 pr_info("ITS: using cache flushing for cmd queue\n");
5157 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5160 gits_write_cwriter(0, its->base + GITS_CWRITER);
5161 ctlr = readl_relaxed(its->base + GITS_CTLR);
5162 ctlr |= GITS_CTLR_ENABLE;
5164 ctlr |= GITS_CTLR_ImDe;
5165 writel_relaxed(ctlr, its->base + GITS_CTLR);
5167 err = its_init_domain(its);
5169 goto out_free_tables;
5171 raw_spin_lock(&its_lock);
5172 list_add(&its->entry, &its_nodes);
5173 raw_spin_unlock(&its_lock);
5178 its_free_tables(its);
5180 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5183 iounmap(its->sgir_base);
5185 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5189 static bool gic_rdists_supports_plpis(void)
5191 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5194 static int redist_disable_lpis(void)
5196 void __iomem *rbase = gic_data_rdist_rd_base();
5197 u64 timeout = USEC_PER_SEC;
5200 if (!gic_rdists_supports_plpis()) {
5201 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5205 val = readl_relaxed(rbase + GICR_CTLR);
5206 if (!(val & GICR_CTLR_ENABLE_LPIS))
5210 * If coming via a CPU hotplug event, we don't need to disable
5211 * LPIs before trying to re-enable them. They are already
5212 * configured and all is well in the world.
5214 * If running with preallocated tables, there is nothing to do.
5216 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5217 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5221 * From that point on, we only try to do some damage control.
5223 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5224 smp_processor_id());
5225 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5228 val &= ~GICR_CTLR_ENABLE_LPIS;
5229 writel_relaxed(val, rbase + GICR_CTLR);
5231 /* Make sure any change to GICR_CTLR is observable by the GIC */
5235 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5236 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5237 * Error out if we time out waiting for RWP to clear.
5239 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5241 pr_err("CPU%d: Timeout while disabling LPIs\n",
5242 smp_processor_id());
5250 * After it has been written to 1, it is IMPLEMENTATION
5251 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5252 * cleared to 0. Error out if clearing the bit failed.
5254 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5255 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5262 int its_cpu_init(void)
5264 if (!list_empty(&its_nodes)) {
5267 ret = redist_disable_lpis();
5271 its_cpu_init_lpis();
5272 its_cpu_init_collections();
5278 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5280 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5281 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5284 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5285 rdist_memreserve_cpuhp_cleanup_workfn);
5287 static int its_cpu_memreserve_lpi(unsigned int cpu)
5289 struct page *pend_page;
5292 /* This gets to run exactly once per CPU */
5293 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5296 pend_page = gic_data_rdist()->pend_page;
5297 if (WARN_ON(!pend_page)) {
5302 * If the pending table was pre-programmed, free the memory we
5303 * preemptively allocated. Otherwise, reserve that memory for
5306 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5307 its_free_pending_table(pend_page);
5308 gic_data_rdist()->pend_page = NULL;
5310 phys_addr_t paddr = page_to_phys(pend_page);
5311 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5315 /* Last CPU being brought up gets to issue the cleanup */
5316 if (!IS_ENABLED(CONFIG_SMP) ||
5317 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5318 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5320 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5324 /* Mark all the BASER registers as invalid before they get reprogrammed */
5325 static int __init its_reset_one(struct resource *res)
5327 void __iomem *its_base;
5330 its_base = its_map_one(res, &err);
5334 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5335 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5341 static const struct of_device_id its_device_id[] = {
5342 { .compatible = "arm,gic-v3-its", },
5346 static struct its_node __init *its_node_init(struct resource *res,
5347 struct fwnode_handle *handle, int numa_node)
5349 void __iomem *its_base;
5350 struct its_node *its;
5353 its_base = its_map_one(res, &err);
5357 pr_info("ITS %pR\n", res);
5359 its = kzalloc(sizeof(*its), GFP_KERNEL);
5363 raw_spin_lock_init(&its->lock);
5364 mutex_init(&its->dev_alloc_lock);
5365 INIT_LIST_HEAD(&its->entry);
5366 INIT_LIST_HEAD(&its->its_device_list);
5368 its->typer = gic_read_typer(its_base + GITS_TYPER);
5369 its->base = its_base;
5370 its->phys_base = res->start;
5371 its->get_msi_base = its_irq_get_msi_base;
5372 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5374 its->numa_node = numa_node;
5375 its->fwnode_handle = handle;
5384 static void its_node_destroy(struct its_node *its)
5390 static int __init its_of_probe(struct device_node *node)
5392 struct device_node *np;
5393 struct resource res;
5397 * Make sure *all* the ITS are reset before we probe any, as
5398 * they may be sharing memory. If any of the ITS fails to
5399 * reset, don't even try to go any further, as this could
5400 * result in something even worse.
5402 for (np = of_find_matching_node(node, its_device_id); np;
5403 np = of_find_matching_node(np, its_device_id)) {
5404 if (!of_device_is_available(np) ||
5405 !of_property_read_bool(np, "msi-controller") ||
5406 of_address_to_resource(np, 0, &res))
5409 err = its_reset_one(&res);
5414 for (np = of_find_matching_node(node, its_device_id); np;
5415 np = of_find_matching_node(np, its_device_id)) {
5416 struct its_node *its;
5418 if (!of_device_is_available(np))
5420 if (!of_property_read_bool(np, "msi-controller")) {
5421 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5426 if (of_address_to_resource(np, 0, &res)) {
5427 pr_warn("%pOF: no regs?\n", np);
5432 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5436 err = its_probe_one(its);
5438 its_node_destroy(its);
5447 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5449 #ifdef CONFIG_ACPI_NUMA
5450 struct its_srat_map {
5457 static struct its_srat_map *its_srat_maps __initdata;
5458 static int its_in_srat __initdata;
5460 static int __init acpi_get_its_numa_node(u32 its_id)
5464 for (i = 0; i < its_in_srat; i++) {
5465 if (its_id == its_srat_maps[i].its_id)
5466 return its_srat_maps[i].numa_node;
5468 return NUMA_NO_NODE;
5471 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5472 const unsigned long end)
5477 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5478 const unsigned long end)
5481 struct acpi_srat_gic_its_affinity *its_affinity;
5483 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5487 if (its_affinity->header.length < sizeof(*its_affinity)) {
5488 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5489 its_affinity->header.length);
5494 * Note that in theory a new proximity node could be created by this
5495 * entry as it is an SRAT resource allocation structure.
5496 * We do not currently support doing so.
5498 node = pxm_to_node(its_affinity->proximity_domain);
5500 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5501 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5505 its_srat_maps[its_in_srat].numa_node = node;
5506 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5508 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5509 its_affinity->proximity_domain, its_affinity->its_id, node);
5514 static void __init acpi_table_parse_srat_its(void)
5518 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5519 sizeof(struct acpi_table_srat),
5520 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5521 gic_acpi_match_srat_its, 0);
5525 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5530 acpi_table_parse_entries(ACPI_SIG_SRAT,
5531 sizeof(struct acpi_table_srat),
5532 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5533 gic_acpi_parse_srat_its, 0);
5536 /* free the its_srat_maps after ITS probing */
5537 static void __init acpi_its_srat_maps_free(void)
5539 kfree(its_srat_maps);
5542 static void __init acpi_table_parse_srat_its(void) { }
5543 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5544 static void __init acpi_its_srat_maps_free(void) { }
5547 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5548 const unsigned long end)
5550 struct acpi_madt_generic_translator *its_entry;
5551 struct fwnode_handle *dom_handle;
5552 struct its_node *its;
5553 struct resource res;
5556 its_entry = (struct acpi_madt_generic_translator *)header;
5557 memset(&res, 0, sizeof(res));
5558 res.start = its_entry->base_address;
5559 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5560 res.flags = IORESOURCE_MEM;
5562 dom_handle = irq_domain_alloc_fwnode(&res.start);
5564 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5569 err = iort_register_domain_token(its_entry->translation_id, res.start,
5572 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5573 &res.start, its_entry->translation_id);
5577 its = its_node_init(&res, dom_handle,
5578 acpi_get_its_numa_node(its_entry->translation_id));
5584 if (acpi_get_madt_revision() >= 7 &&
5585 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5586 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5588 err = its_probe_one(its);
5593 iort_deregister_domain_token(its_entry->translation_id);
5595 irq_domain_free_fwnode(dom_handle);
5599 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5600 const unsigned long end)
5602 struct acpi_madt_generic_translator *its_entry;
5603 struct resource res;
5605 its_entry = (struct acpi_madt_generic_translator *)header;
5606 res = (struct resource) {
5607 .start = its_entry->base_address,
5608 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5609 .flags = IORESOURCE_MEM,
5612 return its_reset_one(&res);
5615 static void __init its_acpi_probe(void)
5617 acpi_table_parse_srat_its();
5619 * Make sure *all* the ITS are reset before we probe any, as
5620 * they may be sharing memory. If any of the ITS fails to
5621 * reset, don't even try to go any further, as this could
5622 * result in something even worse.
5624 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5625 its_acpi_reset, 0) > 0)
5626 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5627 gic_acpi_parse_madt_its, 0);
5628 acpi_its_srat_maps_free();
5631 static void __init its_acpi_probe(void) { }
5634 int __init its_lpi_memreserve_init(void)
5638 if (!efi_enabled(EFI_CONFIG_TABLES))
5641 if (list_empty(&its_nodes))
5644 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5645 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5646 "irqchip/arm/gicv3/memreserve:online",
5647 its_cpu_memreserve_lpi,
5652 gic_rdists->cpuhp_memreserve_state = state;
5657 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5658 struct irq_domain *parent_domain, u8 irq_prio)
5660 struct device_node *of_node;
5661 struct its_node *its;
5662 bool has_v4 = false;
5663 bool has_v4_1 = false;
5666 gic_rdists = rdists;
5668 lpi_prop_prio = irq_prio;
5669 its_parent = parent_domain;
5670 of_node = to_of_node(handle);
5672 its_of_probe(of_node);
5676 if (list_empty(&its_nodes)) {
5677 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5681 err = allocate_lpi_tables();
5685 list_for_each_entry(its, &its_nodes, entry) {
5686 has_v4 |= is_v4(its);
5687 has_v4_1 |= is_v4_1(its);
5690 /* Don't bother with inconsistent systems */
5691 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5692 rdists->has_rvpeid = false;
5694 if (has_v4 & rdists->has_vlpis) {
5695 const struct irq_domain_ops *sgi_ops;
5698 sgi_ops = &its_sgi_domain_ops;
5702 if (its_init_vpe_domain() ||
5703 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5704 rdists->has_vlpis = false;
5705 pr_err("ITS: Disabling GICv4 support\n");
5709 register_syscore_ops(&its_syscore_ops);