]> Git Repo - linux.git/blob - drivers/cpufreq/cpufreq.c
ACPI: CPPC: Adjust debug messages in amd_set_max_freq_ratio() to warn
[linux.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <[email protected]>
7  *            (C) 2013 Viresh Kumar <[email protected]>
8  *
9  *  Oct 2005 - Ashok Raj <[email protected]>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <[email protected]>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)                     \
38         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39                 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy)                \
42         for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)              \
44         for_each_suitable_policy(__policy, false)
45
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)                           \
49         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51 static char default_governor[CPUFREQ_NAME_LEN];
52
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65         return static_branch_likely(&cpufreq_freq_invariance);
66 }
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 bool has_target_index(void)
77 {
78         return !!cpufreq_driver->target_index;
79 }
80
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87                               struct cpufreq_governor *new_gov,
88                               unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90
91 /*
92  * Two notifier lists: the "policy" list is involved in the
93  * validation process for a new CPU frequency policy; the
94  * "transition" list for kernel code that needs to handle
95  * changes to devices when the CPU clock speed changes.
96  * The mutex locks both lists.
97  */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101 static int off __read_mostly;
102 static int cpufreq_disabled(void)
103 {
104         return off;
105 }
106 void disable_cpufreq(void)
107 {
108         off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112 bool have_governor_per_policy(void)
113 {
114         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118 static struct kobject *cpufreq_global_kobject;
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122         if (have_governor_per_policy())
123                 return &policy->kobj;
124         else
125                 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131         struct kernel_cpustat kcpustat;
132         u64 cur_wall_time;
133         u64 idle_time;
134         u64 busy_time;
135
136         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138         kcpustat_cpu_fetch(&kcpustat, cpu);
139
140         busy_time = kcpustat.cpustat[CPUTIME_USER];
141         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145         busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147         idle_time = cur_wall_time - busy_time;
148         if (wall)
149                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151         return div_u64(idle_time, NSEC_PER_USEC);
152 }
153
154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158         if (idle_time == -1ULL)
159                 return get_cpu_idle_time_jiffy(cpu, wall);
160         else if (!io_busy)
161                 idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163         return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167 /*
168  * This is a generic cpufreq init() routine which can be used by cpufreq
169  * drivers of SMP systems. It will do following:
170  * - validate & show freq table passed
171  * - set policies transition latency
172  * - policy->cpus with all possible CPUs
173  */
174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175                 struct cpufreq_frequency_table *table,
176                 unsigned int transition_latency)
177 {
178         policy->freq_table = table;
179         policy->cpuinfo.transition_latency = transition_latency;
180
181         /*
182          * The driver only supports the SMP configuration where all processors
183          * share the clock and voltage and clock.
184          */
185         cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201         if (!policy || IS_ERR(policy->clk)) {
202                 pr_err("%s: No %s associated to cpu: %d\n",
203                        __func__, policy ? "clk" : "policy", cpu);
204                 return 0;
205         }
206
207         return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211 /**
212  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213  * @cpu: CPU to find the policy for.
214  *
215  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216  * the kobject reference counter of that policy.  Return a valid policy on
217  * success or NULL on failure.
218  *
219  * The policy returned by this function has to be released with the help of
220  * cpufreq_cpu_put() to balance its kobject reference counter properly.
221  */
222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224         struct cpufreq_policy *policy = NULL;
225         unsigned long flags;
226
227         if (WARN_ON(cpu >= nr_cpu_ids))
228                 return NULL;
229
230         /* get the cpufreq driver */
231         read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233         if (cpufreq_driver) {
234                 /* get the CPU */
235                 policy = cpufreq_cpu_get_raw(cpu);
236                 if (policy)
237                         kobject_get(&policy->kobj);
238         }
239
240         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242         return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246 /**
247  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248  * @policy: cpufreq policy returned by cpufreq_cpu_get().
249  */
250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252         kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256 /**
257  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259  */
260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262         if (WARN_ON(!policy))
263                 return;
264
265         lockdep_assert_held(&policy->rwsem);
266
267         up_write(&policy->rwsem);
268
269         cpufreq_cpu_put(policy);
270 }
271
272 /**
273  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274  * @cpu: CPU to find the policy for.
275  *
276  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277  * if the policy returned by it is not NULL, acquire its rwsem for writing.
278  * Return the policy if it is active or release it and return NULL otherwise.
279  *
280  * The policy returned by this function has to be released with the help of
281  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282  * counter properly.
283  */
284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288         if (!policy)
289                 return NULL;
290
291         down_write(&policy->rwsem);
292
293         if (policy_is_inactive(policy)) {
294                 cpufreq_cpu_release(policy);
295                 return NULL;
296         }
297
298         return policy;
299 }
300
301 /*********************************************************************
302  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303  *********************************************************************/
304
305 /**
306  * adjust_jiffies - Adjust the system "loops_per_jiffy".
307  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308  * @ci: Frequency change information.
309  *
310  * This function alters the system "loops_per_jiffy" for the clock
311  * speed change. Note that loops_per_jiffy cannot be updated on SMP
312  * systems as each CPU might be scaled differently. So, use the arch
313  * per-CPU loops_per_jiffy value wherever possible.
314  */
315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318         static unsigned long l_p_j_ref;
319         static unsigned int l_p_j_ref_freq;
320
321         if (ci->flags & CPUFREQ_CONST_LOOPS)
322                 return;
323
324         if (!l_p_j_ref_freq) {
325                 l_p_j_ref = loops_per_jiffy;
326                 l_p_j_ref_freq = ci->old;
327                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328                          l_p_j_ref, l_p_j_ref_freq);
329         }
330         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332                                                                 ci->new);
333                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334                          loops_per_jiffy, ci->new);
335         }
336 #endif
337 }
338
339 /**
340  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341  * @policy: cpufreq policy to enable fast frequency switching for.
342  * @freqs: contain details of the frequency update.
343  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344  *
345  * This function calls the transition notifiers and adjust_jiffies().
346  *
347  * It is called twice on all CPU frequency changes that have external effects.
348  */
349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350                                       struct cpufreq_freqs *freqs,
351                                       unsigned int state)
352 {
353         int cpu;
354
355         BUG_ON(irqs_disabled());
356
357         if (cpufreq_disabled())
358                 return;
359
360         freqs->policy = policy;
361         freqs->flags = cpufreq_driver->flags;
362         pr_debug("notification %u of frequency transition to %u kHz\n",
363                  state, freqs->new);
364
365         switch (state) {
366         case CPUFREQ_PRECHANGE:
367                 /*
368                  * Detect if the driver reported a value as "old frequency"
369                  * which is not equal to what the cpufreq core thinks is
370                  * "old frequency".
371                  */
372                 if (policy->cur && policy->cur != freqs->old) {
373                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374                                  freqs->old, policy->cur);
375                         freqs->old = policy->cur;
376                 }
377
378                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379                                          CPUFREQ_PRECHANGE, freqs);
380
381                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382                 break;
383
384         case CPUFREQ_POSTCHANGE:
385                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387                          cpumask_pr_args(policy->cpus));
388
389                 for_each_cpu(cpu, policy->cpus)
390                         trace_cpu_frequency(freqs->new, cpu);
391
392                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393                                          CPUFREQ_POSTCHANGE, freqs);
394
395                 cpufreq_stats_record_transition(policy, freqs->new);
396                 policy->cur = freqs->new;
397         }
398 }
399
400 /* Do post notifications when there are chances that transition has failed */
401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402                 struct cpufreq_freqs *freqs, int transition_failed)
403 {
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405         if (!transition_failed)
406                 return;
407
408         swap(freqs->old, freqs->new);
409         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412
413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414                 struct cpufreq_freqs *freqs)
415 {
416
417         /*
418          * Catch double invocations of _begin() which lead to self-deadlock.
419          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420          * doesn't invoke _begin() on their behalf, and hence the chances of
421          * double invocations are very low. Moreover, there are scenarios
422          * where these checks can emit false-positive warnings in these
423          * drivers; so we avoid that by skipping them altogether.
424          */
425         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426                                 && current == policy->transition_task);
427
428 wait:
429         wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431         spin_lock(&policy->transition_lock);
432
433         if (unlikely(policy->transition_ongoing)) {
434                 spin_unlock(&policy->transition_lock);
435                 goto wait;
436         }
437
438         policy->transition_ongoing = true;
439         policy->transition_task = current;
440
441         spin_unlock(&policy->transition_lock);
442
443         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448                 struct cpufreq_freqs *freqs, int transition_failed)
449 {
450         if (WARN_ON(!policy->transition_ongoing))
451                 return;
452
453         cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455         arch_set_freq_scale(policy->related_cpus,
456                             policy->cur,
457                             arch_scale_freq_ref(policy->cpu));
458
459         spin_lock(&policy->transition_lock);
460         policy->transition_ongoing = false;
461         policy->transition_task = NULL;
462         spin_unlock(&policy->transition_lock);
463
464         wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468 /*
469  * Fast frequency switching status count.  Positive means "enabled", negative
470  * means "disabled" and 0 means "not decided yet".
471  */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475 static void cpufreq_list_transition_notifiers(void)
476 {
477         struct notifier_block *nb;
478
479         pr_info("Registered transition notifiers:\n");
480
481         mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484                 pr_info("%pS\n", nb->notifier_call);
485
486         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488
489 /**
490  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491  * @policy: cpufreq policy to enable fast frequency switching for.
492  *
493  * Try to enable fast frequency switching for @policy.
494  *
495  * The attempt will fail if there is at least one transition notifier registered
496  * at this point, as fast frequency switching is quite fundamentally at odds
497  * with transition notifiers.  Thus if successful, it will make registration of
498  * transition notifiers fail going forward.
499  */
500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502         lockdep_assert_held(&policy->rwsem);
503
504         if (!policy->fast_switch_possible)
505                 return;
506
507         mutex_lock(&cpufreq_fast_switch_lock);
508         if (cpufreq_fast_switch_count >= 0) {
509                 cpufreq_fast_switch_count++;
510                 policy->fast_switch_enabled = true;
511         } else {
512                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513                         policy->cpu);
514                 cpufreq_list_transition_notifiers();
515         }
516         mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520 /**
521  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522  * @policy: cpufreq policy to disable fast frequency switching for.
523  */
524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526         mutex_lock(&cpufreq_fast_switch_lock);
527         if (policy->fast_switch_enabled) {
528                 policy->fast_switch_enabled = false;
529                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530                         cpufreq_fast_switch_count--;
531         }
532         mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537                 unsigned int target_freq, unsigned int relation)
538 {
539         unsigned int idx;
540
541         target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543         if (!policy->freq_table)
544                 return target_freq;
545
546         idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547         policy->cached_resolved_idx = idx;
548         policy->cached_target_freq = target_freq;
549         return policy->freq_table[idx].frequency;
550 }
551
552 /**
553  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554  * one.
555  * @policy: associated policy to interrogate
556  * @target_freq: target frequency to resolve.
557  *
558  * The target to driver frequency mapping is cached in the policy.
559  *
560  * Return: Lowest driver-supported frequency greater than or equal to the
561  * given target_freq, subject to policy (min/max) and driver limitations.
562  */
563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564                                          unsigned int target_freq)
565 {
566         return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567 }
568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571 {
572         unsigned int latency;
573
574         if (policy->transition_delay_us)
575                 return policy->transition_delay_us;
576
577         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578         if (latency) {
579                 unsigned int max_delay_us = 2 * MSEC_PER_SEC;
580
581                 /*
582                  * If the platform already has high transition_latency, use it
583                  * as-is.
584                  */
585                 if (latency > max_delay_us)
586                         return latency;
587
588                 /*
589                  * For platforms that can change the frequency very fast (< 2
590                  * us), the above formula gives a decent transition delay. But
591                  * for platforms where transition_latency is in milliseconds, it
592                  * ends up giving unrealistic values.
593                  *
594                  * Cap the default transition delay to 2 ms, which seems to be
595                  * a reasonable amount of time after which we should reevaluate
596                  * the frequency.
597                  */
598                 return min(latency * LATENCY_MULTIPLIER, max_delay_us);
599         }
600
601         return LATENCY_MULTIPLIER;
602 }
603 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
604
605 /*********************************************************************
606  *                          SYSFS INTERFACE                          *
607  *********************************************************************/
608 static ssize_t show_boost(struct kobject *kobj,
609                           struct kobj_attribute *attr, char *buf)
610 {
611         return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
612 }
613
614 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
615                            const char *buf, size_t count)
616 {
617         bool enable;
618
619         if (kstrtobool(buf, &enable))
620                 return -EINVAL;
621
622         if (cpufreq_boost_trigger_state(enable)) {
623                 pr_err("%s: Cannot %s BOOST!\n",
624                        __func__, enable ? "enable" : "disable");
625                 return -EINVAL;
626         }
627
628         pr_debug("%s: cpufreq BOOST %s\n",
629                  __func__, enable ? "enabled" : "disabled");
630
631         return count;
632 }
633 define_one_global_rw(boost);
634
635 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
636 {
637         return sysfs_emit(buf, "%d\n", policy->boost_enabled);
638 }
639
640 static ssize_t store_local_boost(struct cpufreq_policy *policy,
641                                  const char *buf, size_t count)
642 {
643         int ret;
644         bool enable;
645
646         if (kstrtobool(buf, &enable))
647                 return -EINVAL;
648
649         if (!cpufreq_driver->boost_enabled)
650                 return -EINVAL;
651
652         if (policy->boost_enabled == enable)
653                 return count;
654
655         policy->boost_enabled = enable;
656
657         cpus_read_lock();
658         ret = cpufreq_driver->set_boost(policy, enable);
659         cpus_read_unlock();
660
661         if (ret) {
662                 policy->boost_enabled = !policy->boost_enabled;
663                 return ret;
664         }
665
666         return count;
667 }
668
669 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
670
671 static struct cpufreq_governor *find_governor(const char *str_governor)
672 {
673         struct cpufreq_governor *t;
674
675         for_each_governor(t)
676                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
677                         return t;
678
679         return NULL;
680 }
681
682 static struct cpufreq_governor *get_governor(const char *str_governor)
683 {
684         struct cpufreq_governor *t;
685
686         mutex_lock(&cpufreq_governor_mutex);
687         t = find_governor(str_governor);
688         if (!t)
689                 goto unlock;
690
691         if (!try_module_get(t->owner))
692                 t = NULL;
693
694 unlock:
695         mutex_unlock(&cpufreq_governor_mutex);
696
697         return t;
698 }
699
700 static unsigned int cpufreq_parse_policy(char *str_governor)
701 {
702         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
703                 return CPUFREQ_POLICY_PERFORMANCE;
704
705         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
706                 return CPUFREQ_POLICY_POWERSAVE;
707
708         return CPUFREQ_POLICY_UNKNOWN;
709 }
710
711 /**
712  * cpufreq_parse_governor - parse a governor string only for has_target()
713  * @str_governor: Governor name.
714  */
715 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
716 {
717         struct cpufreq_governor *t;
718
719         t = get_governor(str_governor);
720         if (t)
721                 return t;
722
723         if (request_module("cpufreq_%s", str_governor))
724                 return NULL;
725
726         return get_governor(str_governor);
727 }
728
729 /*
730  * cpufreq_per_cpu_attr_read() / show_##file_name() -
731  * print out cpufreq information
732  *
733  * Write out information from cpufreq_driver->policy[cpu]; object must be
734  * "unsigned int".
735  */
736
737 #define show_one(file_name, object)                     \
738 static ssize_t show_##file_name                         \
739 (struct cpufreq_policy *policy, char *buf)              \
740 {                                                       \
741         return sysfs_emit(buf, "%u\n", policy->object); \
742 }
743
744 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
745 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
746 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
747 show_one(scaling_min_freq, min);
748 show_one(scaling_max_freq, max);
749
750 __weak unsigned int arch_freq_get_on_cpu(int cpu)
751 {
752         return 0;
753 }
754
755 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
756 {
757         ssize_t ret;
758         unsigned int freq;
759
760         freq = arch_freq_get_on_cpu(policy->cpu);
761         if (freq)
762                 ret = sysfs_emit(buf, "%u\n", freq);
763         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
764                 ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
765         else
766                 ret = sysfs_emit(buf, "%u\n", policy->cur);
767         return ret;
768 }
769
770 /*
771  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
772  */
773 #define store_one(file_name, object)                    \
774 static ssize_t store_##file_name                                        \
775 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
776 {                                                                       \
777         unsigned long val;                                              \
778         int ret;                                                        \
779                                                                         \
780         ret = kstrtoul(buf, 0, &val);                                   \
781         if (ret)                                                        \
782                 return ret;                                             \
783                                                                         \
784         ret = freq_qos_update_request(policy->object##_freq_req, val);\
785         return ret >= 0 ? count : ret;                                  \
786 }
787
788 store_one(scaling_min_freq, min);
789 store_one(scaling_max_freq, max);
790
791 /*
792  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
793  */
794 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
795                                         char *buf)
796 {
797         unsigned int cur_freq = __cpufreq_get(policy);
798
799         if (cur_freq)
800                 return sysfs_emit(buf, "%u\n", cur_freq);
801
802         return sysfs_emit(buf, "<unknown>\n");
803 }
804
805 /*
806  * show_scaling_governor - show the current policy for the specified CPU
807  */
808 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
809 {
810         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
811                 return sysfs_emit(buf, "powersave\n");
812         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
813                 return sysfs_emit(buf, "performance\n");
814         else if (policy->governor)
815                 return sysfs_emit(buf, "%s\n", policy->governor->name);
816         return -EINVAL;
817 }
818
819 /*
820  * store_scaling_governor - store policy for the specified CPU
821  */
822 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
823                                         const char *buf, size_t count)
824 {
825         char str_governor[16];
826         int ret;
827
828         ret = sscanf(buf, "%15s", str_governor);
829         if (ret != 1)
830                 return -EINVAL;
831
832         if (cpufreq_driver->setpolicy) {
833                 unsigned int new_pol;
834
835                 new_pol = cpufreq_parse_policy(str_governor);
836                 if (!new_pol)
837                         return -EINVAL;
838
839                 ret = cpufreq_set_policy(policy, NULL, new_pol);
840         } else {
841                 struct cpufreq_governor *new_gov;
842
843                 new_gov = cpufreq_parse_governor(str_governor);
844                 if (!new_gov)
845                         return -EINVAL;
846
847                 ret = cpufreq_set_policy(policy, new_gov,
848                                          CPUFREQ_POLICY_UNKNOWN);
849
850                 module_put(new_gov->owner);
851         }
852
853         return ret ? ret : count;
854 }
855
856 /*
857  * show_scaling_driver - show the cpufreq driver currently loaded
858  */
859 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
860 {
861         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
862 }
863
864 /*
865  * show_scaling_available_governors - show the available CPUfreq governors
866  */
867 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
868                                                 char *buf)
869 {
870         ssize_t i = 0;
871         struct cpufreq_governor *t;
872
873         if (!has_target()) {
874                 i += sysfs_emit(buf, "performance powersave");
875                 goto out;
876         }
877
878         mutex_lock(&cpufreq_governor_mutex);
879         for_each_governor(t) {
880                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
881                     - (CPUFREQ_NAME_LEN + 2)))
882                         break;
883                 i += sysfs_emit_at(buf, i, "%s ", t->name);
884         }
885         mutex_unlock(&cpufreq_governor_mutex);
886 out:
887         i += sysfs_emit_at(buf, i, "\n");
888         return i;
889 }
890
891 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
892 {
893         ssize_t i = 0;
894         unsigned int cpu;
895
896         for_each_cpu(cpu, mask) {
897                 i += sysfs_emit_at(buf, i, "%u ", cpu);
898                 if (i >= (PAGE_SIZE - 5))
899                         break;
900         }
901
902         /* Remove the extra space at the end */
903         i--;
904
905         i += sysfs_emit_at(buf, i, "\n");
906         return i;
907 }
908 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
909
910 /*
911  * show_related_cpus - show the CPUs affected by each transition even if
912  * hw coordination is in use
913  */
914 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
915 {
916         return cpufreq_show_cpus(policy->related_cpus, buf);
917 }
918
919 /*
920  * show_affected_cpus - show the CPUs affected by each transition
921  */
922 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
923 {
924         return cpufreq_show_cpus(policy->cpus, buf);
925 }
926
927 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
928                                         const char *buf, size_t count)
929 {
930         unsigned int freq = 0;
931         unsigned int ret;
932
933         if (!policy->governor || !policy->governor->store_setspeed)
934                 return -EINVAL;
935
936         ret = sscanf(buf, "%u", &freq);
937         if (ret != 1)
938                 return -EINVAL;
939
940         policy->governor->store_setspeed(policy, freq);
941
942         return count;
943 }
944
945 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
946 {
947         if (!policy->governor || !policy->governor->show_setspeed)
948                 return sysfs_emit(buf, "<unsupported>\n");
949
950         return policy->governor->show_setspeed(policy, buf);
951 }
952
953 /*
954  * show_bios_limit - show the current cpufreq HW/BIOS limitation
955  */
956 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
957 {
958         unsigned int limit;
959         int ret;
960         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
961         if (!ret)
962                 return sysfs_emit(buf, "%u\n", limit);
963         return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
964 }
965
966 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
967 cpufreq_freq_attr_ro(cpuinfo_min_freq);
968 cpufreq_freq_attr_ro(cpuinfo_max_freq);
969 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
970 cpufreq_freq_attr_ro(scaling_available_governors);
971 cpufreq_freq_attr_ro(scaling_driver);
972 cpufreq_freq_attr_ro(scaling_cur_freq);
973 cpufreq_freq_attr_ro(bios_limit);
974 cpufreq_freq_attr_ro(related_cpus);
975 cpufreq_freq_attr_ro(affected_cpus);
976 cpufreq_freq_attr_rw(scaling_min_freq);
977 cpufreq_freq_attr_rw(scaling_max_freq);
978 cpufreq_freq_attr_rw(scaling_governor);
979 cpufreq_freq_attr_rw(scaling_setspeed);
980
981 static struct attribute *cpufreq_attrs[] = {
982         &cpuinfo_min_freq.attr,
983         &cpuinfo_max_freq.attr,
984         &cpuinfo_transition_latency.attr,
985         &scaling_min_freq.attr,
986         &scaling_max_freq.attr,
987         &affected_cpus.attr,
988         &related_cpus.attr,
989         &scaling_governor.attr,
990         &scaling_driver.attr,
991         &scaling_available_governors.attr,
992         &scaling_setspeed.attr,
993         NULL
994 };
995 ATTRIBUTE_GROUPS(cpufreq);
996
997 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
998 #define to_attr(a) container_of(a, struct freq_attr, attr)
999
1000 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1001 {
1002         struct cpufreq_policy *policy = to_policy(kobj);
1003         struct freq_attr *fattr = to_attr(attr);
1004         ssize_t ret = -EBUSY;
1005
1006         if (!fattr->show)
1007                 return -EIO;
1008
1009         down_read(&policy->rwsem);
1010         if (likely(!policy_is_inactive(policy)))
1011                 ret = fattr->show(policy, buf);
1012         up_read(&policy->rwsem);
1013
1014         return ret;
1015 }
1016
1017 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1018                      const char *buf, size_t count)
1019 {
1020         struct cpufreq_policy *policy = to_policy(kobj);
1021         struct freq_attr *fattr = to_attr(attr);
1022         ssize_t ret = -EBUSY;
1023
1024         if (!fattr->store)
1025                 return -EIO;
1026
1027         down_write(&policy->rwsem);
1028         if (likely(!policy_is_inactive(policy)))
1029                 ret = fattr->store(policy, buf, count);
1030         up_write(&policy->rwsem);
1031
1032         return ret;
1033 }
1034
1035 static void cpufreq_sysfs_release(struct kobject *kobj)
1036 {
1037         struct cpufreq_policy *policy = to_policy(kobj);
1038         pr_debug("last reference is dropped\n");
1039         complete(&policy->kobj_unregister);
1040 }
1041
1042 static const struct sysfs_ops sysfs_ops = {
1043         .show   = show,
1044         .store  = store,
1045 };
1046
1047 static const struct kobj_type ktype_cpufreq = {
1048         .sysfs_ops      = &sysfs_ops,
1049         .default_groups = cpufreq_groups,
1050         .release        = cpufreq_sysfs_release,
1051 };
1052
1053 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1054                                 struct device *dev)
1055 {
1056         if (unlikely(!dev))
1057                 return;
1058
1059         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1060                 return;
1061
1062         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1063         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1064                 dev_err(dev, "cpufreq symlink creation failed\n");
1065 }
1066
1067 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1068                                    struct device *dev)
1069 {
1070         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1071         sysfs_remove_link(&dev->kobj, "cpufreq");
1072         cpumask_clear_cpu(cpu, policy->real_cpus);
1073 }
1074
1075 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1076 {
1077         struct freq_attr **drv_attr;
1078         int ret = 0;
1079
1080         /* set up files for this cpu device */
1081         drv_attr = cpufreq_driver->attr;
1082         while (drv_attr && *drv_attr) {
1083                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1084                 if (ret)
1085                         return ret;
1086                 drv_attr++;
1087         }
1088         if (cpufreq_driver->get) {
1089                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1090                 if (ret)
1091                         return ret;
1092         }
1093
1094         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1095         if (ret)
1096                 return ret;
1097
1098         if (cpufreq_driver->bios_limit) {
1099                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1100                 if (ret)
1101                         return ret;
1102         }
1103
1104         if (cpufreq_boost_supported()) {
1105                 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1106                 if (ret)
1107                         return ret;
1108         }
1109
1110         return 0;
1111 }
1112
1113 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1114 {
1115         struct cpufreq_governor *gov = NULL;
1116         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1117         int ret;
1118
1119         if (has_target()) {
1120                 /* Update policy governor to the one used before hotplug. */
1121                 gov = get_governor(policy->last_governor);
1122                 if (gov) {
1123                         pr_debug("Restoring governor %s for cpu %d\n",
1124                                  gov->name, policy->cpu);
1125                 } else {
1126                         gov = get_governor(default_governor);
1127                 }
1128
1129                 if (!gov) {
1130                         gov = cpufreq_default_governor();
1131                         __module_get(gov->owner);
1132                 }
1133
1134         } else {
1135
1136                 /* Use the default policy if there is no last_policy. */
1137                 if (policy->last_policy) {
1138                         pol = policy->last_policy;
1139                 } else {
1140                         pol = cpufreq_parse_policy(default_governor);
1141                         /*
1142                          * In case the default governor is neither "performance"
1143                          * nor "powersave", fall back to the initial policy
1144                          * value set by the driver.
1145                          */
1146                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1147                                 pol = policy->policy;
1148                 }
1149                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1150                     pol != CPUFREQ_POLICY_POWERSAVE)
1151                         return -ENODATA;
1152         }
1153
1154         ret = cpufreq_set_policy(policy, gov, pol);
1155         if (gov)
1156                 module_put(gov->owner);
1157
1158         return ret;
1159 }
1160
1161 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1162 {
1163         int ret = 0;
1164
1165         /* Has this CPU been taken care of already? */
1166         if (cpumask_test_cpu(cpu, policy->cpus))
1167                 return 0;
1168
1169         down_write(&policy->rwsem);
1170         if (has_target())
1171                 cpufreq_stop_governor(policy);
1172
1173         cpumask_set_cpu(cpu, policy->cpus);
1174
1175         if (has_target()) {
1176                 ret = cpufreq_start_governor(policy);
1177                 if (ret)
1178                         pr_err("%s: Failed to start governor\n", __func__);
1179         }
1180         up_write(&policy->rwsem);
1181         return ret;
1182 }
1183
1184 void refresh_frequency_limits(struct cpufreq_policy *policy)
1185 {
1186         if (!policy_is_inactive(policy)) {
1187                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1188
1189                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1190         }
1191 }
1192 EXPORT_SYMBOL(refresh_frequency_limits);
1193
1194 static void handle_update(struct work_struct *work)
1195 {
1196         struct cpufreq_policy *policy =
1197                 container_of(work, struct cpufreq_policy, update);
1198
1199         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1200         down_write(&policy->rwsem);
1201         refresh_frequency_limits(policy);
1202         up_write(&policy->rwsem);
1203 }
1204
1205 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1206                                 void *data)
1207 {
1208         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1209
1210         schedule_work(&policy->update);
1211         return 0;
1212 }
1213
1214 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1215                                 void *data)
1216 {
1217         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1218
1219         schedule_work(&policy->update);
1220         return 0;
1221 }
1222
1223 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1224 {
1225         struct kobject *kobj;
1226         struct completion *cmp;
1227
1228         down_write(&policy->rwsem);
1229         cpufreq_stats_free_table(policy);
1230         kobj = &policy->kobj;
1231         cmp = &policy->kobj_unregister;
1232         up_write(&policy->rwsem);
1233         kobject_put(kobj);
1234
1235         /*
1236          * We need to make sure that the underlying kobj is
1237          * actually not referenced anymore by anybody before we
1238          * proceed with unloading.
1239          */
1240         pr_debug("waiting for dropping of refcount\n");
1241         wait_for_completion(cmp);
1242         pr_debug("wait complete\n");
1243 }
1244
1245 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1246 {
1247         struct cpufreq_policy *policy;
1248         struct device *dev = get_cpu_device(cpu);
1249         int ret;
1250
1251         if (!dev)
1252                 return NULL;
1253
1254         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1255         if (!policy)
1256                 return NULL;
1257
1258         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1259                 goto err_free_policy;
1260
1261         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1262                 goto err_free_cpumask;
1263
1264         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1265                 goto err_free_rcpumask;
1266
1267         init_completion(&policy->kobj_unregister);
1268         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1269                                    cpufreq_global_kobject, "policy%u", cpu);
1270         if (ret) {
1271                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1272                 /*
1273                  * The entire policy object will be freed below, but the extra
1274                  * memory allocated for the kobject name needs to be freed by
1275                  * releasing the kobject.
1276                  */
1277                 kobject_put(&policy->kobj);
1278                 goto err_free_real_cpus;
1279         }
1280
1281         freq_constraints_init(&policy->constraints);
1282
1283         policy->nb_min.notifier_call = cpufreq_notifier_min;
1284         policy->nb_max.notifier_call = cpufreq_notifier_max;
1285
1286         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1287                                     &policy->nb_min);
1288         if (ret) {
1289                 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1290                         ret, cpu);
1291                 goto err_kobj_remove;
1292         }
1293
1294         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1295                                     &policy->nb_max);
1296         if (ret) {
1297                 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1298                         ret, cpu);
1299                 goto err_min_qos_notifier;
1300         }
1301
1302         INIT_LIST_HEAD(&policy->policy_list);
1303         init_rwsem(&policy->rwsem);
1304         spin_lock_init(&policy->transition_lock);
1305         init_waitqueue_head(&policy->transition_wait);
1306         INIT_WORK(&policy->update, handle_update);
1307
1308         policy->cpu = cpu;
1309         return policy;
1310
1311 err_min_qos_notifier:
1312         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1313                                  &policy->nb_min);
1314 err_kobj_remove:
1315         cpufreq_policy_put_kobj(policy);
1316 err_free_real_cpus:
1317         free_cpumask_var(policy->real_cpus);
1318 err_free_rcpumask:
1319         free_cpumask_var(policy->related_cpus);
1320 err_free_cpumask:
1321         free_cpumask_var(policy->cpus);
1322 err_free_policy:
1323         kfree(policy);
1324
1325         return NULL;
1326 }
1327
1328 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1329 {
1330         unsigned long flags;
1331         int cpu;
1332
1333         /*
1334          * The callers must ensure the policy is inactive by now, to avoid any
1335          * races with show()/store() callbacks.
1336          */
1337         if (unlikely(!policy_is_inactive(policy)))
1338                 pr_warn("%s: Freeing active policy\n", __func__);
1339
1340         /* Remove policy from list */
1341         write_lock_irqsave(&cpufreq_driver_lock, flags);
1342         list_del(&policy->policy_list);
1343
1344         for_each_cpu(cpu, policy->related_cpus)
1345                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1346         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1347
1348         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1349                                  &policy->nb_max);
1350         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1351                                  &policy->nb_min);
1352
1353         /* Cancel any pending policy->update work before freeing the policy. */
1354         cancel_work_sync(&policy->update);
1355
1356         if (policy->max_freq_req) {
1357                 /*
1358                  * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1359                  * notification, since CPUFREQ_CREATE_POLICY notification was
1360                  * sent after adding max_freq_req earlier.
1361                  */
1362                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1363                                              CPUFREQ_REMOVE_POLICY, policy);
1364                 freq_qos_remove_request(policy->max_freq_req);
1365         }
1366
1367         freq_qos_remove_request(policy->min_freq_req);
1368         kfree(policy->min_freq_req);
1369
1370         cpufreq_policy_put_kobj(policy);
1371         free_cpumask_var(policy->real_cpus);
1372         free_cpumask_var(policy->related_cpus);
1373         free_cpumask_var(policy->cpus);
1374         kfree(policy);
1375 }
1376
1377 static int cpufreq_online(unsigned int cpu)
1378 {
1379         struct cpufreq_policy *policy;
1380         bool new_policy;
1381         unsigned long flags;
1382         unsigned int j;
1383         int ret;
1384
1385         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1386
1387         /* Check if this CPU already has a policy to manage it */
1388         policy = per_cpu(cpufreq_cpu_data, cpu);
1389         if (policy) {
1390                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1391                 if (!policy_is_inactive(policy))
1392                         return cpufreq_add_policy_cpu(policy, cpu);
1393
1394                 /* This is the only online CPU for the policy.  Start over. */
1395                 new_policy = false;
1396                 down_write(&policy->rwsem);
1397                 policy->cpu = cpu;
1398                 policy->governor = NULL;
1399         } else {
1400                 new_policy = true;
1401                 policy = cpufreq_policy_alloc(cpu);
1402                 if (!policy)
1403                         return -ENOMEM;
1404                 down_write(&policy->rwsem);
1405         }
1406
1407         if (!new_policy && cpufreq_driver->online) {
1408                 /* Recover policy->cpus using related_cpus */
1409                 cpumask_copy(policy->cpus, policy->related_cpus);
1410
1411                 ret = cpufreq_driver->online(policy);
1412                 if (ret) {
1413                         pr_debug("%s: %d: initialization failed\n", __func__,
1414                                  __LINE__);
1415                         goto out_exit_policy;
1416                 }
1417         } else {
1418                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1419
1420                 /*
1421                  * Call driver. From then on the cpufreq must be able
1422                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1423                  */
1424                 ret = cpufreq_driver->init(policy);
1425                 if (ret) {
1426                         pr_debug("%s: %d: initialization failed\n", __func__,
1427                                  __LINE__);
1428                         goto out_free_policy;
1429                 }
1430
1431                 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1432                 if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1433                         policy->boost_enabled = true;
1434
1435                 /*
1436                  * The initialization has succeeded and the policy is online.
1437                  * If there is a problem with its frequency table, take it
1438                  * offline and drop it.
1439                  */
1440                 ret = cpufreq_table_validate_and_sort(policy);
1441                 if (ret)
1442                         goto out_offline_policy;
1443
1444                 /* related_cpus should at least include policy->cpus. */
1445                 cpumask_copy(policy->related_cpus, policy->cpus);
1446         }
1447
1448         /*
1449          * affected cpus must always be the one, which are online. We aren't
1450          * managing offline cpus here.
1451          */
1452         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1453
1454         if (new_policy) {
1455                 for_each_cpu(j, policy->related_cpus) {
1456                         per_cpu(cpufreq_cpu_data, j) = policy;
1457                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1458                 }
1459
1460                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1461                                                GFP_KERNEL);
1462                 if (!policy->min_freq_req) {
1463                         ret = -ENOMEM;
1464                         goto out_destroy_policy;
1465                 }
1466
1467                 ret = freq_qos_add_request(&policy->constraints,
1468                                            policy->min_freq_req, FREQ_QOS_MIN,
1469                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1470                 if (ret < 0) {
1471                         /*
1472                          * So we don't call freq_qos_remove_request() for an
1473                          * uninitialized request.
1474                          */
1475                         kfree(policy->min_freq_req);
1476                         policy->min_freq_req = NULL;
1477                         goto out_destroy_policy;
1478                 }
1479
1480                 /*
1481                  * This must be initialized right here to avoid calling
1482                  * freq_qos_remove_request() on uninitialized request in case
1483                  * of errors.
1484                  */
1485                 policy->max_freq_req = policy->min_freq_req + 1;
1486
1487                 ret = freq_qos_add_request(&policy->constraints,
1488                                            policy->max_freq_req, FREQ_QOS_MAX,
1489                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1490                 if (ret < 0) {
1491                         policy->max_freq_req = NULL;
1492                         goto out_destroy_policy;
1493                 }
1494
1495                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1496                                 CPUFREQ_CREATE_POLICY, policy);
1497         }
1498
1499         if (cpufreq_driver->get && has_target()) {
1500                 policy->cur = cpufreq_driver->get(policy->cpu);
1501                 if (!policy->cur) {
1502                         ret = -EIO;
1503                         pr_err("%s: ->get() failed\n", __func__);
1504                         goto out_destroy_policy;
1505                 }
1506         }
1507
1508         /*
1509          * Sometimes boot loaders set CPU frequency to a value outside of
1510          * frequency table present with cpufreq core. In such cases CPU might be
1511          * unstable if it has to run on that frequency for long duration of time
1512          * and so its better to set it to a frequency which is specified in
1513          * freq-table. This also makes cpufreq stats inconsistent as
1514          * cpufreq-stats would fail to register because current frequency of CPU
1515          * isn't found in freq-table.
1516          *
1517          * Because we don't want this change to effect boot process badly, we go
1518          * for the next freq which is >= policy->cur ('cur' must be set by now,
1519          * otherwise we will end up setting freq to lowest of the table as 'cur'
1520          * is initialized to zero).
1521          *
1522          * We are passing target-freq as "policy->cur - 1" otherwise
1523          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1524          * equal to target-freq.
1525          */
1526         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1527             && has_target()) {
1528                 unsigned int old_freq = policy->cur;
1529
1530                 /* Are we running at unknown frequency ? */
1531                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1532                 if (ret == -EINVAL) {
1533                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1534                                                       CPUFREQ_RELATION_L);
1535
1536                         /*
1537                          * Reaching here after boot in a few seconds may not
1538                          * mean that system will remain stable at "unknown"
1539                          * frequency for longer duration. Hence, a BUG_ON().
1540                          */
1541                         BUG_ON(ret);
1542                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1543                                 __func__, policy->cpu, old_freq, policy->cur);
1544                 }
1545         }
1546
1547         if (new_policy) {
1548                 ret = cpufreq_add_dev_interface(policy);
1549                 if (ret)
1550                         goto out_destroy_policy;
1551
1552                 cpufreq_stats_create_table(policy);
1553
1554                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1555                 list_add(&policy->policy_list, &cpufreq_policy_list);
1556                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1557
1558                 /*
1559                  * Register with the energy model before
1560                  * sugov_eas_rebuild_sd() is called, which will result
1561                  * in rebuilding of the sched domains, which should only be done
1562                  * once the energy model is properly initialized for the policy
1563                  * first.
1564                  *
1565                  * Also, this should be called before the policy is registered
1566                  * with cooling framework.
1567                  */
1568                 if (cpufreq_driver->register_em)
1569                         cpufreq_driver->register_em(policy);
1570         }
1571
1572         ret = cpufreq_init_policy(policy);
1573         if (ret) {
1574                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1575                        __func__, cpu, ret);
1576                 goto out_destroy_policy;
1577         }
1578
1579         up_write(&policy->rwsem);
1580
1581         kobject_uevent(&policy->kobj, KOBJ_ADD);
1582
1583         /* Callback for handling stuff after policy is ready */
1584         if (cpufreq_driver->ready)
1585                 cpufreq_driver->ready(policy);
1586
1587         /* Register cpufreq cooling only for a new policy */
1588         if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1589                 policy->cdev = of_cpufreq_cooling_register(policy);
1590
1591         pr_debug("initialization complete\n");
1592
1593         return 0;
1594
1595 out_destroy_policy:
1596         for_each_cpu(j, policy->real_cpus)
1597                 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1598
1599 out_offline_policy:
1600         if (cpufreq_driver->offline)
1601                 cpufreq_driver->offline(policy);
1602
1603 out_exit_policy:
1604         if (cpufreq_driver->exit)
1605                 cpufreq_driver->exit(policy);
1606
1607 out_free_policy:
1608         cpumask_clear(policy->cpus);
1609         up_write(&policy->rwsem);
1610
1611         cpufreq_policy_free(policy);
1612         return ret;
1613 }
1614
1615 /**
1616  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1617  * @dev: CPU device.
1618  * @sif: Subsystem interface structure pointer (not used)
1619  */
1620 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1621 {
1622         struct cpufreq_policy *policy;
1623         unsigned cpu = dev->id;
1624         int ret;
1625
1626         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1627
1628         if (cpu_online(cpu)) {
1629                 ret = cpufreq_online(cpu);
1630                 if (ret)
1631                         return ret;
1632         }
1633
1634         /* Create sysfs link on CPU registration */
1635         policy = per_cpu(cpufreq_cpu_data, cpu);
1636         if (policy)
1637                 add_cpu_dev_symlink(policy, cpu, dev);
1638
1639         return 0;
1640 }
1641
1642 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1643 {
1644         int ret;
1645
1646         if (has_target())
1647                 cpufreq_stop_governor(policy);
1648
1649         cpumask_clear_cpu(cpu, policy->cpus);
1650
1651         if (!policy_is_inactive(policy)) {
1652                 /* Nominate a new CPU if necessary. */
1653                 if (cpu == policy->cpu)
1654                         policy->cpu = cpumask_any(policy->cpus);
1655
1656                 /* Start the governor again for the active policy. */
1657                 if (has_target()) {
1658                         ret = cpufreq_start_governor(policy);
1659                         if (ret)
1660                                 pr_err("%s: Failed to start governor\n", __func__);
1661                 }
1662
1663                 return;
1664         }
1665
1666         if (has_target())
1667                 strscpy(policy->last_governor, policy->governor->name,
1668                         CPUFREQ_NAME_LEN);
1669         else
1670                 policy->last_policy = policy->policy;
1671
1672         if (has_target())
1673                 cpufreq_exit_governor(policy);
1674
1675         /*
1676          * Perform the ->offline() during light-weight tear-down, as
1677          * that allows fast recovery when the CPU comes back.
1678          */
1679         if (cpufreq_driver->offline) {
1680                 cpufreq_driver->offline(policy);
1681                 return;
1682         }
1683
1684         if (cpufreq_driver->exit)
1685                 cpufreq_driver->exit(policy);
1686
1687         policy->freq_table = NULL;
1688 }
1689
1690 static int cpufreq_offline(unsigned int cpu)
1691 {
1692         struct cpufreq_policy *policy;
1693
1694         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1695
1696         policy = cpufreq_cpu_get_raw(cpu);
1697         if (!policy) {
1698                 pr_debug("%s: No cpu_data found\n", __func__);
1699                 return 0;
1700         }
1701
1702         down_write(&policy->rwsem);
1703
1704         __cpufreq_offline(cpu, policy);
1705
1706         up_write(&policy->rwsem);
1707         return 0;
1708 }
1709
1710 /*
1711  * cpufreq_remove_dev - remove a CPU device
1712  *
1713  * Removes the cpufreq interface for a CPU device.
1714  */
1715 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1716 {
1717         unsigned int cpu = dev->id;
1718         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1719
1720         if (!policy)
1721                 return;
1722
1723         down_write(&policy->rwsem);
1724
1725         if (cpu_online(cpu))
1726                 __cpufreq_offline(cpu, policy);
1727
1728         remove_cpu_dev_symlink(policy, cpu, dev);
1729
1730         if (!cpumask_empty(policy->real_cpus)) {
1731                 up_write(&policy->rwsem);
1732                 return;
1733         }
1734
1735         /*
1736          * Unregister cpufreq cooling once all the CPUs of the policy are
1737          * removed.
1738          */
1739         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1740                 cpufreq_cooling_unregister(policy->cdev);
1741                 policy->cdev = NULL;
1742         }
1743
1744         /* We did light-weight exit earlier, do full tear down now */
1745         if (cpufreq_driver->offline && cpufreq_driver->exit)
1746                 cpufreq_driver->exit(policy);
1747
1748         up_write(&policy->rwsem);
1749
1750         cpufreq_policy_free(policy);
1751 }
1752
1753 /**
1754  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1755  * @policy: Policy managing CPUs.
1756  * @new_freq: New CPU frequency.
1757  *
1758  * Adjust to the current frequency first and clean up later by either calling
1759  * cpufreq_update_policy(), or scheduling handle_update().
1760  */
1761 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1762                                 unsigned int new_freq)
1763 {
1764         struct cpufreq_freqs freqs;
1765
1766         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1767                  policy->cur, new_freq);
1768
1769         freqs.old = policy->cur;
1770         freqs.new = new_freq;
1771
1772         cpufreq_freq_transition_begin(policy, &freqs);
1773         cpufreq_freq_transition_end(policy, &freqs, 0);
1774 }
1775
1776 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1777 {
1778         unsigned int new_freq;
1779
1780         new_freq = cpufreq_driver->get(policy->cpu);
1781         if (!new_freq)
1782                 return 0;
1783
1784         /*
1785          * If fast frequency switching is used with the given policy, the check
1786          * against policy->cur is pointless, so skip it in that case.
1787          */
1788         if (policy->fast_switch_enabled || !has_target())
1789                 return new_freq;
1790
1791         if (policy->cur != new_freq) {
1792                 /*
1793                  * For some platforms, the frequency returned by hardware may be
1794                  * slightly different from what is provided in the frequency
1795                  * table, for example hardware may return 499 MHz instead of 500
1796                  * MHz. In such cases it is better to avoid getting into
1797                  * unnecessary frequency updates.
1798                  */
1799                 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1800                         return policy->cur;
1801
1802                 cpufreq_out_of_sync(policy, new_freq);
1803                 if (update)
1804                         schedule_work(&policy->update);
1805         }
1806
1807         return new_freq;
1808 }
1809
1810 /**
1811  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1812  * @cpu: CPU number
1813  *
1814  * This is the last known freq, without actually getting it from the driver.
1815  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1816  */
1817 unsigned int cpufreq_quick_get(unsigned int cpu)
1818 {
1819         struct cpufreq_policy *policy;
1820         unsigned int ret_freq = 0;
1821         unsigned long flags;
1822
1823         read_lock_irqsave(&cpufreq_driver_lock, flags);
1824
1825         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1826                 ret_freq = cpufreq_driver->get(cpu);
1827                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828                 return ret_freq;
1829         }
1830
1831         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833         policy = cpufreq_cpu_get(cpu);
1834         if (policy) {
1835                 ret_freq = policy->cur;
1836                 cpufreq_cpu_put(policy);
1837         }
1838
1839         return ret_freq;
1840 }
1841 EXPORT_SYMBOL(cpufreq_quick_get);
1842
1843 /**
1844  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1845  * @cpu: CPU number
1846  *
1847  * Just return the max possible frequency for a given CPU.
1848  */
1849 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1850 {
1851         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1852         unsigned int ret_freq = 0;
1853
1854         if (policy) {
1855                 ret_freq = policy->max;
1856                 cpufreq_cpu_put(policy);
1857         }
1858
1859         return ret_freq;
1860 }
1861 EXPORT_SYMBOL(cpufreq_quick_get_max);
1862
1863 /**
1864  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1865  * @cpu: CPU number
1866  *
1867  * The default return value is the max_freq field of cpuinfo.
1868  */
1869 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1870 {
1871         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1872         unsigned int ret_freq = 0;
1873
1874         if (policy) {
1875                 ret_freq = policy->cpuinfo.max_freq;
1876                 cpufreq_cpu_put(policy);
1877         }
1878
1879         return ret_freq;
1880 }
1881 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1882
1883 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1884 {
1885         if (unlikely(policy_is_inactive(policy)))
1886                 return 0;
1887
1888         return cpufreq_verify_current_freq(policy, true);
1889 }
1890
1891 /**
1892  * cpufreq_get - get the current CPU frequency (in kHz)
1893  * @cpu: CPU number
1894  *
1895  * Get the CPU current (static) CPU frequency
1896  */
1897 unsigned int cpufreq_get(unsigned int cpu)
1898 {
1899         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1900         unsigned int ret_freq = 0;
1901
1902         if (policy) {
1903                 down_read(&policy->rwsem);
1904                 if (cpufreq_driver->get)
1905                         ret_freq = __cpufreq_get(policy);
1906                 up_read(&policy->rwsem);
1907
1908                 cpufreq_cpu_put(policy);
1909         }
1910
1911         return ret_freq;
1912 }
1913 EXPORT_SYMBOL(cpufreq_get);
1914
1915 static struct subsys_interface cpufreq_interface = {
1916         .name           = "cpufreq",
1917         .subsys         = &cpu_subsys,
1918         .add_dev        = cpufreq_add_dev,
1919         .remove_dev     = cpufreq_remove_dev,
1920 };
1921
1922 /*
1923  * In case platform wants some specific frequency to be configured
1924  * during suspend..
1925  */
1926 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1927 {
1928         int ret;
1929
1930         if (!policy->suspend_freq) {
1931                 pr_debug("%s: suspend_freq not defined\n", __func__);
1932                 return 0;
1933         }
1934
1935         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1936                         policy->suspend_freq);
1937
1938         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1939                         CPUFREQ_RELATION_H);
1940         if (ret)
1941                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1942                                 __func__, policy->suspend_freq, ret);
1943
1944         return ret;
1945 }
1946 EXPORT_SYMBOL(cpufreq_generic_suspend);
1947
1948 /**
1949  * cpufreq_suspend() - Suspend CPUFreq governors.
1950  *
1951  * Called during system wide Suspend/Hibernate cycles for suspending governors
1952  * as some platforms can't change frequency after this point in suspend cycle.
1953  * Because some of the devices (like: i2c, regulators, etc) they use for
1954  * changing frequency are suspended quickly after this point.
1955  */
1956 void cpufreq_suspend(void)
1957 {
1958         struct cpufreq_policy *policy;
1959
1960         if (!cpufreq_driver)
1961                 return;
1962
1963         if (!has_target() && !cpufreq_driver->suspend)
1964                 goto suspend;
1965
1966         pr_debug("%s: Suspending Governors\n", __func__);
1967
1968         for_each_active_policy(policy) {
1969                 if (has_target()) {
1970                         down_write(&policy->rwsem);
1971                         cpufreq_stop_governor(policy);
1972                         up_write(&policy->rwsem);
1973                 }
1974
1975                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1976                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1977                                 cpufreq_driver->name);
1978         }
1979
1980 suspend:
1981         cpufreq_suspended = true;
1982 }
1983
1984 /**
1985  * cpufreq_resume() - Resume CPUFreq governors.
1986  *
1987  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1988  * are suspended with cpufreq_suspend().
1989  */
1990 void cpufreq_resume(void)
1991 {
1992         struct cpufreq_policy *policy;
1993         int ret;
1994
1995         if (!cpufreq_driver)
1996                 return;
1997
1998         if (unlikely(!cpufreq_suspended))
1999                 return;
2000
2001         cpufreq_suspended = false;
2002
2003         if (!has_target() && !cpufreq_driver->resume)
2004                 return;
2005
2006         pr_debug("%s: Resuming Governors\n", __func__);
2007
2008         for_each_active_policy(policy) {
2009                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2010                         pr_err("%s: Failed to resume driver: %s\n", __func__,
2011                                 cpufreq_driver->name);
2012                 } else if (has_target()) {
2013                         down_write(&policy->rwsem);
2014                         ret = cpufreq_start_governor(policy);
2015                         up_write(&policy->rwsem);
2016
2017                         if (ret)
2018                                 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2019                                        __func__, policy->cpu);
2020                 }
2021         }
2022 }
2023
2024 /**
2025  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2026  * @flags: Flags to test against the current cpufreq driver's flags.
2027  *
2028  * Assumes that the driver is there, so callers must ensure that this is the
2029  * case.
2030  */
2031 bool cpufreq_driver_test_flags(u16 flags)
2032 {
2033         return !!(cpufreq_driver->flags & flags);
2034 }
2035
2036 /**
2037  * cpufreq_get_current_driver - Return the current driver's name.
2038  *
2039  * Return the name string of the currently registered cpufreq driver or NULL if
2040  * none.
2041  */
2042 const char *cpufreq_get_current_driver(void)
2043 {
2044         if (cpufreq_driver)
2045                 return cpufreq_driver->name;
2046
2047         return NULL;
2048 }
2049 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2050
2051 /**
2052  * cpufreq_get_driver_data - Return current driver data.
2053  *
2054  * Return the private data of the currently registered cpufreq driver, or NULL
2055  * if no cpufreq driver has been registered.
2056  */
2057 void *cpufreq_get_driver_data(void)
2058 {
2059         if (cpufreq_driver)
2060                 return cpufreq_driver->driver_data;
2061
2062         return NULL;
2063 }
2064 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2065
2066 /*********************************************************************
2067  *                     NOTIFIER LISTS INTERFACE                      *
2068  *********************************************************************/
2069
2070 /**
2071  * cpufreq_register_notifier - Register a notifier with cpufreq.
2072  * @nb: notifier function to register.
2073  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2074  *
2075  * Add a notifier to one of two lists: either a list of notifiers that run on
2076  * clock rate changes (once before and once after every transition), or a list
2077  * of notifiers that ron on cpufreq policy changes.
2078  *
2079  * This function may sleep and it has the same return values as
2080  * blocking_notifier_chain_register().
2081  */
2082 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2083 {
2084         int ret;
2085
2086         if (cpufreq_disabled())
2087                 return -EINVAL;
2088
2089         switch (list) {
2090         case CPUFREQ_TRANSITION_NOTIFIER:
2091                 mutex_lock(&cpufreq_fast_switch_lock);
2092
2093                 if (cpufreq_fast_switch_count > 0) {
2094                         mutex_unlock(&cpufreq_fast_switch_lock);
2095                         return -EBUSY;
2096                 }
2097                 ret = srcu_notifier_chain_register(
2098                                 &cpufreq_transition_notifier_list, nb);
2099                 if (!ret)
2100                         cpufreq_fast_switch_count--;
2101
2102                 mutex_unlock(&cpufreq_fast_switch_lock);
2103                 break;
2104         case CPUFREQ_POLICY_NOTIFIER:
2105                 ret = blocking_notifier_chain_register(
2106                                 &cpufreq_policy_notifier_list, nb);
2107                 break;
2108         default:
2109                 ret = -EINVAL;
2110         }
2111
2112         return ret;
2113 }
2114 EXPORT_SYMBOL(cpufreq_register_notifier);
2115
2116 /**
2117  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2118  * @nb: notifier block to be unregistered.
2119  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2120  *
2121  * Remove a notifier from one of the cpufreq notifier lists.
2122  *
2123  * This function may sleep and it has the same return values as
2124  * blocking_notifier_chain_unregister().
2125  */
2126 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2127 {
2128         int ret;
2129
2130         if (cpufreq_disabled())
2131                 return -EINVAL;
2132
2133         switch (list) {
2134         case CPUFREQ_TRANSITION_NOTIFIER:
2135                 mutex_lock(&cpufreq_fast_switch_lock);
2136
2137                 ret = srcu_notifier_chain_unregister(
2138                                 &cpufreq_transition_notifier_list, nb);
2139                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2140                         cpufreq_fast_switch_count++;
2141
2142                 mutex_unlock(&cpufreq_fast_switch_lock);
2143                 break;
2144         case CPUFREQ_POLICY_NOTIFIER:
2145                 ret = blocking_notifier_chain_unregister(
2146                                 &cpufreq_policy_notifier_list, nb);
2147                 break;
2148         default:
2149                 ret = -EINVAL;
2150         }
2151
2152         return ret;
2153 }
2154 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2155
2156
2157 /*********************************************************************
2158  *                              GOVERNORS                            *
2159  *********************************************************************/
2160
2161 /**
2162  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2163  * @policy: cpufreq policy to switch the frequency for.
2164  * @target_freq: New frequency to set (may be approximate).
2165  *
2166  * Carry out a fast frequency switch without sleeping.
2167  *
2168  * The driver's ->fast_switch() callback invoked by this function must be
2169  * suitable for being called from within RCU-sched read-side critical sections
2170  * and it is expected to select the minimum available frequency greater than or
2171  * equal to @target_freq (CPUFREQ_RELATION_L).
2172  *
2173  * This function must not be called if policy->fast_switch_enabled is unset.
2174  *
2175  * Governors calling this function must guarantee that it will never be invoked
2176  * twice in parallel for the same policy and that it will never be called in
2177  * parallel with either ->target() or ->target_index() for the same policy.
2178  *
2179  * Returns the actual frequency set for the CPU.
2180  *
2181  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2182  * error condition, the hardware configuration must be preserved.
2183  */
2184 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2185                                         unsigned int target_freq)
2186 {
2187         unsigned int freq;
2188         int cpu;
2189
2190         target_freq = clamp_val(target_freq, policy->min, policy->max);
2191         freq = cpufreq_driver->fast_switch(policy, target_freq);
2192
2193         if (!freq)
2194                 return 0;
2195
2196         policy->cur = freq;
2197         arch_set_freq_scale(policy->related_cpus, freq,
2198                             arch_scale_freq_ref(policy->cpu));
2199         cpufreq_stats_record_transition(policy, freq);
2200
2201         if (trace_cpu_frequency_enabled()) {
2202                 for_each_cpu(cpu, policy->cpus)
2203                         trace_cpu_frequency(freq, cpu);
2204         }
2205
2206         return freq;
2207 }
2208 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2209
2210 /**
2211  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2212  * @cpu: Target CPU.
2213  * @min_perf: Minimum (required) performance level (units of @capacity).
2214  * @target_perf: Target (desired) performance level (units of @capacity).
2215  * @capacity: Capacity of the target CPU.
2216  *
2217  * Carry out a fast performance level switch of @cpu without sleeping.
2218  *
2219  * The driver's ->adjust_perf() callback invoked by this function must be
2220  * suitable for being called from within RCU-sched read-side critical sections
2221  * and it is expected to select a suitable performance level equal to or above
2222  * @min_perf and preferably equal to or below @target_perf.
2223  *
2224  * This function must not be called if policy->fast_switch_enabled is unset.
2225  *
2226  * Governors calling this function must guarantee that it will never be invoked
2227  * twice in parallel for the same CPU and that it will never be called in
2228  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2229  * the same CPU.
2230  */
2231 void cpufreq_driver_adjust_perf(unsigned int cpu,
2232                                  unsigned long min_perf,
2233                                  unsigned long target_perf,
2234                                  unsigned long capacity)
2235 {
2236         cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2237 }
2238
2239 /**
2240  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2241  *
2242  * Return 'true' if the ->adjust_perf callback is present for the
2243  * current driver or 'false' otherwise.
2244  */
2245 bool cpufreq_driver_has_adjust_perf(void)
2246 {
2247         return !!cpufreq_driver->adjust_perf;
2248 }
2249
2250 /* Must set freqs->new to intermediate frequency */
2251 static int __target_intermediate(struct cpufreq_policy *policy,
2252                                  struct cpufreq_freqs *freqs, int index)
2253 {
2254         int ret;
2255
2256         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2257
2258         /* We don't need to switch to intermediate freq */
2259         if (!freqs->new)
2260                 return 0;
2261
2262         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2263                  __func__, policy->cpu, freqs->old, freqs->new);
2264
2265         cpufreq_freq_transition_begin(policy, freqs);
2266         ret = cpufreq_driver->target_intermediate(policy, index);
2267         cpufreq_freq_transition_end(policy, freqs, ret);
2268
2269         if (ret)
2270                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2271                        __func__, ret);
2272
2273         return ret;
2274 }
2275
2276 static int __target_index(struct cpufreq_policy *policy, int index)
2277 {
2278         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2279         unsigned int restore_freq, intermediate_freq = 0;
2280         unsigned int newfreq = policy->freq_table[index].frequency;
2281         int retval = -EINVAL;
2282         bool notify;
2283
2284         if (newfreq == policy->cur)
2285                 return 0;
2286
2287         /* Save last value to restore later on errors */
2288         restore_freq = policy->cur;
2289
2290         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2291         if (notify) {
2292                 /* Handle switching to intermediate frequency */
2293                 if (cpufreq_driver->get_intermediate) {
2294                         retval = __target_intermediate(policy, &freqs, index);
2295                         if (retval)
2296                                 return retval;
2297
2298                         intermediate_freq = freqs.new;
2299                         /* Set old freq to intermediate */
2300                         if (intermediate_freq)
2301                                 freqs.old = freqs.new;
2302                 }
2303
2304                 freqs.new = newfreq;
2305                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2306                          __func__, policy->cpu, freqs.old, freqs.new);
2307
2308                 cpufreq_freq_transition_begin(policy, &freqs);
2309         }
2310
2311         retval = cpufreq_driver->target_index(policy, index);
2312         if (retval)
2313                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2314                        retval);
2315
2316         if (notify) {
2317                 cpufreq_freq_transition_end(policy, &freqs, retval);
2318
2319                 /*
2320                  * Failed after setting to intermediate freq? Driver should have
2321                  * reverted back to initial frequency and so should we. Check
2322                  * here for intermediate_freq instead of get_intermediate, in
2323                  * case we haven't switched to intermediate freq at all.
2324                  */
2325                 if (unlikely(retval && intermediate_freq)) {
2326                         freqs.old = intermediate_freq;
2327                         freqs.new = restore_freq;
2328                         cpufreq_freq_transition_begin(policy, &freqs);
2329                         cpufreq_freq_transition_end(policy, &freqs, 0);
2330                 }
2331         }
2332
2333         return retval;
2334 }
2335
2336 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2337                             unsigned int target_freq,
2338                             unsigned int relation)
2339 {
2340         unsigned int old_target_freq = target_freq;
2341
2342         if (cpufreq_disabled())
2343                 return -ENODEV;
2344
2345         target_freq = __resolve_freq(policy, target_freq, relation);
2346
2347         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2348                  policy->cpu, target_freq, relation, old_target_freq);
2349
2350         /*
2351          * This might look like a redundant call as we are checking it again
2352          * after finding index. But it is left intentionally for cases where
2353          * exactly same freq is called again and so we can save on few function
2354          * calls.
2355          */
2356         if (target_freq == policy->cur &&
2357             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2358                 return 0;
2359
2360         if (cpufreq_driver->target) {
2361                 /*
2362                  * If the driver hasn't setup a single inefficient frequency,
2363                  * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2364                  */
2365                 if (!policy->efficiencies_available)
2366                         relation &= ~CPUFREQ_RELATION_E;
2367
2368                 return cpufreq_driver->target(policy, target_freq, relation);
2369         }
2370
2371         if (!cpufreq_driver->target_index)
2372                 return -EINVAL;
2373
2374         return __target_index(policy, policy->cached_resolved_idx);
2375 }
2376 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2377
2378 int cpufreq_driver_target(struct cpufreq_policy *policy,
2379                           unsigned int target_freq,
2380                           unsigned int relation)
2381 {
2382         int ret;
2383
2384         down_write(&policy->rwsem);
2385
2386         ret = __cpufreq_driver_target(policy, target_freq, relation);
2387
2388         up_write(&policy->rwsem);
2389
2390         return ret;
2391 }
2392 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2393
2394 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2395 {
2396         return NULL;
2397 }
2398
2399 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2400 {
2401         int ret;
2402
2403         /* Don't start any governor operations if we are entering suspend */
2404         if (cpufreq_suspended)
2405                 return 0;
2406         /*
2407          * Governor might not be initiated here if ACPI _PPC changed
2408          * notification happened, so check it.
2409          */
2410         if (!policy->governor)
2411                 return -EINVAL;
2412
2413         /* Platform doesn't want dynamic frequency switching ? */
2414         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2415             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2416                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2417
2418                 if (gov) {
2419                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2420                                 policy->governor->name, gov->name);
2421                         policy->governor = gov;
2422                 } else {
2423                         return -EINVAL;
2424                 }
2425         }
2426
2427         if (!try_module_get(policy->governor->owner))
2428                 return -EINVAL;
2429
2430         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2431
2432         if (policy->governor->init) {
2433                 ret = policy->governor->init(policy);
2434                 if (ret) {
2435                         module_put(policy->governor->owner);
2436                         return ret;
2437                 }
2438         }
2439
2440         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2441
2442         return 0;
2443 }
2444
2445 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2446 {
2447         if (cpufreq_suspended || !policy->governor)
2448                 return;
2449
2450         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2451
2452         if (policy->governor->exit)
2453                 policy->governor->exit(policy);
2454
2455         module_put(policy->governor->owner);
2456 }
2457
2458 int cpufreq_start_governor(struct cpufreq_policy *policy)
2459 {
2460         int ret;
2461
2462         if (cpufreq_suspended)
2463                 return 0;
2464
2465         if (!policy->governor)
2466                 return -EINVAL;
2467
2468         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2469
2470         if (cpufreq_driver->get)
2471                 cpufreq_verify_current_freq(policy, false);
2472
2473         if (policy->governor->start) {
2474                 ret = policy->governor->start(policy);
2475                 if (ret)
2476                         return ret;
2477         }
2478
2479         if (policy->governor->limits)
2480                 policy->governor->limits(policy);
2481
2482         return 0;
2483 }
2484
2485 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2486 {
2487         if (cpufreq_suspended || !policy->governor)
2488                 return;
2489
2490         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2491
2492         if (policy->governor->stop)
2493                 policy->governor->stop(policy);
2494 }
2495
2496 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2497 {
2498         if (cpufreq_suspended || !policy->governor)
2499                 return;
2500
2501         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2502
2503         if (policy->governor->limits)
2504                 policy->governor->limits(policy);
2505 }
2506
2507 int cpufreq_register_governor(struct cpufreq_governor *governor)
2508 {
2509         int err;
2510
2511         if (!governor)
2512                 return -EINVAL;
2513
2514         if (cpufreq_disabled())
2515                 return -ENODEV;
2516
2517         mutex_lock(&cpufreq_governor_mutex);
2518
2519         err = -EBUSY;
2520         if (!find_governor(governor->name)) {
2521                 err = 0;
2522                 list_add(&governor->governor_list, &cpufreq_governor_list);
2523         }
2524
2525         mutex_unlock(&cpufreq_governor_mutex);
2526         return err;
2527 }
2528 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2529
2530 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2531 {
2532         struct cpufreq_policy *policy;
2533         unsigned long flags;
2534
2535         if (!governor)
2536                 return;
2537
2538         if (cpufreq_disabled())
2539                 return;
2540
2541         /* clear last_governor for all inactive policies */
2542         read_lock_irqsave(&cpufreq_driver_lock, flags);
2543         for_each_inactive_policy(policy) {
2544                 if (!strcmp(policy->last_governor, governor->name)) {
2545                         policy->governor = NULL;
2546                         strcpy(policy->last_governor, "\0");
2547                 }
2548         }
2549         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2550
2551         mutex_lock(&cpufreq_governor_mutex);
2552         list_del(&governor->governor_list);
2553         mutex_unlock(&cpufreq_governor_mutex);
2554 }
2555 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2556
2557
2558 /*********************************************************************
2559  *                          POLICY INTERFACE                         *
2560  *********************************************************************/
2561
2562 /**
2563  * cpufreq_get_policy - get the current cpufreq_policy
2564  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2565  *      is written
2566  * @cpu: CPU to find the policy for
2567  *
2568  * Reads the current cpufreq policy.
2569  */
2570 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2571 {
2572         struct cpufreq_policy *cpu_policy;
2573         if (!policy)
2574                 return -EINVAL;
2575
2576         cpu_policy = cpufreq_cpu_get(cpu);
2577         if (!cpu_policy)
2578                 return -EINVAL;
2579
2580         memcpy(policy, cpu_policy, sizeof(*policy));
2581
2582         cpufreq_cpu_put(cpu_policy);
2583         return 0;
2584 }
2585 EXPORT_SYMBOL(cpufreq_get_policy);
2586
2587 DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2588
2589 /**
2590  * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2591  * @policy: cpufreq policy of the CPUs.
2592  *
2593  * Update the value of cpufreq pressure for all @cpus in the policy.
2594  */
2595 static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2596 {
2597         unsigned long max_capacity, capped_freq, pressure;
2598         u32 max_freq;
2599         int cpu;
2600
2601         cpu = cpumask_first(policy->related_cpus);
2602         max_freq = arch_scale_freq_ref(cpu);
2603         capped_freq = policy->max;
2604
2605         /*
2606          * Handle properly the boost frequencies, which should simply clean
2607          * the cpufreq pressure value.
2608          */
2609         if (max_freq <= capped_freq) {
2610                 pressure = 0;
2611         } else {
2612                 max_capacity = arch_scale_cpu_capacity(cpu);
2613                 pressure = max_capacity -
2614                            mult_frac(max_capacity, capped_freq, max_freq);
2615         }
2616
2617         for_each_cpu(cpu, policy->related_cpus)
2618                 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2619 }
2620
2621 /**
2622  * cpufreq_set_policy - Modify cpufreq policy parameters.
2623  * @policy: Policy object to modify.
2624  * @new_gov: Policy governor pointer.
2625  * @new_pol: Policy value (for drivers with built-in governors).
2626  *
2627  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2628  * limits to be set for the policy, update @policy with the verified limits
2629  * values and either invoke the driver's ->setpolicy() callback (if present) or
2630  * carry out a governor update for @policy.  That is, run the current governor's
2631  * ->limits() callback (if @new_gov points to the same object as the one in
2632  * @policy) or replace the governor for @policy with @new_gov.
2633  *
2634  * The cpuinfo part of @policy is not updated by this function.
2635  */
2636 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2637                               struct cpufreq_governor *new_gov,
2638                               unsigned int new_pol)
2639 {
2640         struct cpufreq_policy_data new_data;
2641         struct cpufreq_governor *old_gov;
2642         int ret;
2643
2644         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2645         new_data.freq_table = policy->freq_table;
2646         new_data.cpu = policy->cpu;
2647         /*
2648          * PM QoS framework collects all the requests from users and provide us
2649          * the final aggregated value here.
2650          */
2651         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2652         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2653
2654         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2655                  new_data.cpu, new_data.min, new_data.max);
2656
2657         /*
2658          * Verify that the CPU speed can be set within these limits and make sure
2659          * that min <= max.
2660          */
2661         ret = cpufreq_driver->verify(&new_data);
2662         if (ret)
2663                 return ret;
2664
2665         /*
2666          * Resolve policy min/max to available frequencies. It ensures
2667          * no frequency resolution will neither overshoot the requested maximum
2668          * nor undershoot the requested minimum.
2669          */
2670         policy->min = new_data.min;
2671         policy->max = new_data.max;
2672         policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2673         policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2674         trace_cpu_frequency_limits(policy);
2675
2676         cpufreq_update_pressure(policy);
2677
2678         policy->cached_target_freq = UINT_MAX;
2679
2680         pr_debug("new min and max freqs are %u - %u kHz\n",
2681                  policy->min, policy->max);
2682
2683         if (cpufreq_driver->setpolicy) {
2684                 policy->policy = new_pol;
2685                 pr_debug("setting range\n");
2686                 return cpufreq_driver->setpolicy(policy);
2687         }
2688
2689         if (new_gov == policy->governor) {
2690                 pr_debug("governor limits update\n");
2691                 cpufreq_governor_limits(policy);
2692                 return 0;
2693         }
2694
2695         pr_debug("governor switch\n");
2696
2697         /* save old, working values */
2698         old_gov = policy->governor;
2699         /* end old governor */
2700         if (old_gov) {
2701                 cpufreq_stop_governor(policy);
2702                 cpufreq_exit_governor(policy);
2703         }
2704
2705         /* start new governor */
2706         policy->governor = new_gov;
2707         ret = cpufreq_init_governor(policy);
2708         if (!ret) {
2709                 ret = cpufreq_start_governor(policy);
2710                 if (!ret) {
2711                         pr_debug("governor change\n");
2712                         return 0;
2713                 }
2714                 cpufreq_exit_governor(policy);
2715         }
2716
2717         /* new governor failed, so re-start old one */
2718         pr_debug("starting governor %s failed\n", policy->governor->name);
2719         if (old_gov) {
2720                 policy->governor = old_gov;
2721                 if (cpufreq_init_governor(policy))
2722                         policy->governor = NULL;
2723                 else
2724                         cpufreq_start_governor(policy);
2725         }
2726
2727         return ret;
2728 }
2729
2730 /**
2731  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2732  * @cpu: CPU to re-evaluate the policy for.
2733  *
2734  * Update the current frequency for the cpufreq policy of @cpu and use
2735  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2736  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2737  * for the policy in question, among other things.
2738  */
2739 void cpufreq_update_policy(unsigned int cpu)
2740 {
2741         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2742
2743         if (!policy)
2744                 return;
2745
2746         /*
2747          * BIOS might change freq behind our back
2748          * -> ask driver for current freq and notify governors about a change
2749          */
2750         if (cpufreq_driver->get && has_target() &&
2751             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2752                 goto unlock;
2753
2754         refresh_frequency_limits(policy);
2755
2756 unlock:
2757         cpufreq_cpu_release(policy);
2758 }
2759 EXPORT_SYMBOL(cpufreq_update_policy);
2760
2761 /**
2762  * cpufreq_update_limits - Update policy limits for a given CPU.
2763  * @cpu: CPU to update the policy limits for.
2764  *
2765  * Invoke the driver's ->update_limits callback if present or call
2766  * cpufreq_update_policy() for @cpu.
2767  */
2768 void cpufreq_update_limits(unsigned int cpu)
2769 {
2770         if (cpufreq_driver->update_limits)
2771                 cpufreq_driver->update_limits(cpu);
2772         else
2773                 cpufreq_update_policy(cpu);
2774 }
2775 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2776
2777 /*********************************************************************
2778  *               BOOST                                               *
2779  *********************************************************************/
2780 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2781 {
2782         int ret;
2783
2784         if (!policy->freq_table)
2785                 return -ENXIO;
2786
2787         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2788         if (ret) {
2789                 pr_err("%s: Policy frequency update failed\n", __func__);
2790                 return ret;
2791         }
2792
2793         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2794         if (ret < 0)
2795                 return ret;
2796
2797         return 0;
2798 }
2799
2800 int cpufreq_boost_trigger_state(int state)
2801 {
2802         struct cpufreq_policy *policy;
2803         unsigned long flags;
2804         int ret = 0;
2805
2806         if (cpufreq_driver->boost_enabled == state)
2807                 return 0;
2808
2809         write_lock_irqsave(&cpufreq_driver_lock, flags);
2810         cpufreq_driver->boost_enabled = state;
2811         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2812
2813         cpus_read_lock();
2814         for_each_active_policy(policy) {
2815                 policy->boost_enabled = state;
2816                 ret = cpufreq_driver->set_boost(policy, state);
2817                 if (ret) {
2818                         policy->boost_enabled = !policy->boost_enabled;
2819                         goto err_reset_state;
2820                 }
2821         }
2822         cpus_read_unlock();
2823
2824         return 0;
2825
2826 err_reset_state:
2827         cpus_read_unlock();
2828
2829         write_lock_irqsave(&cpufreq_driver_lock, flags);
2830         cpufreq_driver->boost_enabled = !state;
2831         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2832
2833         pr_err("%s: Cannot %s BOOST\n",
2834                __func__, state ? "enable" : "disable");
2835
2836         return ret;
2837 }
2838
2839 static bool cpufreq_boost_supported(void)
2840 {
2841         return cpufreq_driver->set_boost;
2842 }
2843
2844 static int create_boost_sysfs_file(void)
2845 {
2846         int ret;
2847
2848         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2849         if (ret)
2850                 pr_err("%s: cannot register global BOOST sysfs file\n",
2851                        __func__);
2852
2853         return ret;
2854 }
2855
2856 static void remove_boost_sysfs_file(void)
2857 {
2858         if (cpufreq_boost_supported())
2859                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2860 }
2861
2862 int cpufreq_enable_boost_support(void)
2863 {
2864         if (!cpufreq_driver)
2865                 return -EINVAL;
2866
2867         if (cpufreq_boost_supported())
2868                 return 0;
2869
2870         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2871
2872         /* This will get removed on driver unregister */
2873         return create_boost_sysfs_file();
2874 }
2875 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2876
2877 bool cpufreq_boost_enabled(void)
2878 {
2879         return cpufreq_driver->boost_enabled;
2880 }
2881 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2882
2883 /*********************************************************************
2884  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2885  *********************************************************************/
2886 static enum cpuhp_state hp_online;
2887
2888 static int cpuhp_cpufreq_online(unsigned int cpu)
2889 {
2890         cpufreq_online(cpu);
2891
2892         return 0;
2893 }
2894
2895 static int cpuhp_cpufreq_offline(unsigned int cpu)
2896 {
2897         cpufreq_offline(cpu);
2898
2899         return 0;
2900 }
2901
2902 /**
2903  * cpufreq_register_driver - register a CPU Frequency driver
2904  * @driver_data: A struct cpufreq_driver containing the values#
2905  * submitted by the CPU Frequency driver.
2906  *
2907  * Registers a CPU Frequency driver to this core code. This code
2908  * returns zero on success, -EEXIST when another driver got here first
2909  * (and isn't unregistered in the meantime).
2910  *
2911  */
2912 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2913 {
2914         unsigned long flags;
2915         int ret;
2916
2917         if (cpufreq_disabled())
2918                 return -ENODEV;
2919
2920         /*
2921          * The cpufreq core depends heavily on the availability of device
2922          * structure, make sure they are available before proceeding further.
2923          */
2924         if (!get_cpu_device(0))
2925                 return -EPROBE_DEFER;
2926
2927         if (!driver_data || !driver_data->verify || !driver_data->init ||
2928             !(driver_data->setpolicy || driver_data->target_index ||
2929                     driver_data->target) ||
2930              (driver_data->setpolicy && (driver_data->target_index ||
2931                     driver_data->target)) ||
2932              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2933              (!driver_data->online != !driver_data->offline) ||
2934                  (driver_data->adjust_perf && !driver_data->fast_switch))
2935                 return -EINVAL;
2936
2937         pr_debug("trying to register driver %s\n", driver_data->name);
2938
2939         /* Protect against concurrent CPU online/offline. */
2940         cpus_read_lock();
2941
2942         write_lock_irqsave(&cpufreq_driver_lock, flags);
2943         if (cpufreq_driver) {
2944                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2945                 ret = -EEXIST;
2946                 goto out;
2947         }
2948         cpufreq_driver = driver_data;
2949         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2950
2951         /*
2952          * Mark support for the scheduler's frequency invariance engine for
2953          * drivers that implement target(), target_index() or fast_switch().
2954          */
2955         if (!cpufreq_driver->setpolicy) {
2956                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2957                 pr_debug("supports frequency invariance");
2958         }
2959
2960         if (driver_data->setpolicy)
2961                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2962
2963         if (cpufreq_boost_supported()) {
2964                 ret = create_boost_sysfs_file();
2965                 if (ret)
2966                         goto err_null_driver;
2967         }
2968
2969         ret = subsys_interface_register(&cpufreq_interface);
2970         if (ret)
2971                 goto err_boost_unreg;
2972
2973         if (unlikely(list_empty(&cpufreq_policy_list))) {
2974                 /* if all ->init() calls failed, unregister */
2975                 ret = -ENODEV;
2976                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2977                          driver_data->name);
2978                 goto err_if_unreg;
2979         }
2980
2981         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2982                                                    "cpufreq:online",
2983                                                    cpuhp_cpufreq_online,
2984                                                    cpuhp_cpufreq_offline);
2985         if (ret < 0)
2986                 goto err_if_unreg;
2987         hp_online = ret;
2988         ret = 0;
2989
2990         pr_debug("driver %s up and running\n", driver_data->name);
2991         goto out;
2992
2993 err_if_unreg:
2994         subsys_interface_unregister(&cpufreq_interface);
2995 err_boost_unreg:
2996         remove_boost_sysfs_file();
2997 err_null_driver:
2998         write_lock_irqsave(&cpufreq_driver_lock, flags);
2999         cpufreq_driver = NULL;
3000         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3001 out:
3002         cpus_read_unlock();
3003         return ret;
3004 }
3005 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
3006
3007 /*
3008  * cpufreq_unregister_driver - unregister the current CPUFreq driver
3009  *
3010  * Unregister the current CPUFreq driver. Only call this if you have
3011  * the right to do so, i.e. if you have succeeded in initialising before!
3012  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3013  * currently not initialised.
3014  */
3015 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3016 {
3017         unsigned long flags;
3018
3019         if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3020                 return;
3021
3022         pr_debug("unregistering driver %s\n", driver->name);
3023
3024         /* Protect against concurrent cpu hotplug */
3025         cpus_read_lock();
3026         subsys_interface_unregister(&cpufreq_interface);
3027         remove_boost_sysfs_file();
3028         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3029         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3030
3031         write_lock_irqsave(&cpufreq_driver_lock, flags);
3032
3033         cpufreq_driver = NULL;
3034
3035         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3036         cpus_read_unlock();
3037 }
3038 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3039
3040 static int __init cpufreq_core_init(void)
3041 {
3042         struct cpufreq_governor *gov = cpufreq_default_governor();
3043         struct device *dev_root;
3044
3045         if (cpufreq_disabled())
3046                 return -ENODEV;
3047
3048         dev_root = bus_get_dev_root(&cpu_subsys);
3049         if (dev_root) {
3050                 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3051                 put_device(dev_root);
3052         }
3053         BUG_ON(!cpufreq_global_kobject);
3054
3055         if (!strlen(default_governor))
3056                 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3057
3058         return 0;
3059 }
3060 module_param(off, int, 0444);
3061 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3062 core_initcall(cpufreq_core_init);
This page took 0.201222 seconds and 4 git commands to generate.