1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * MTD device concatenation layer
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
16 #include <linux/backing-dev.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/concat.h>
21 #include <asm/div64.h>
24 * Our storage structure:
25 * Subdev points to an array of pointers to struct mtd_info objects
26 * which is allocated along with this structure
32 struct mtd_info **subdev;
36 * how to calculate the size required for the above structure,
37 * including the pointer array subdev points to:
39 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
40 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
43 * Given a pointer to the MTD object in the mtd_concat structure,
44 * we can retrieve the pointer to that structure with this macro.
46 #define CONCAT(x) ((struct mtd_concat *)(x))
49 * MTD methods which look up the relevant subdevice, translate the
50 * effective address and pass through to the subdevice.
54 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
55 size_t * retlen, u_char * buf)
57 struct mtd_concat *concat = CONCAT(mtd);
61 for (i = 0; i < concat->num_subdev; i++) {
62 struct mtd_info *subdev = concat->subdev[i];
65 if (from >= subdev->size) {
66 /* Not destined for this subdev */
71 if (from + len > subdev->size)
72 /* First part goes into this subdev */
73 size = subdev->size - from;
75 /* Entire transaction goes into this subdev */
78 err = mtd_read(subdev, from, size, &retsize, buf);
80 /* Save information about bitflips! */
82 if (mtd_is_eccerr(err)) {
83 mtd->ecc_stats.failed++;
85 } else if (mtd_is_bitflip(err)) {
86 mtd->ecc_stats.corrected++;
87 /* Do not overwrite -EBADMSG !! */
106 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
107 size_t * retlen, const u_char * buf)
109 struct mtd_concat *concat = CONCAT(mtd);
113 for (i = 0; i < concat->num_subdev; i++) {
114 struct mtd_info *subdev = concat->subdev[i];
115 size_t size, retsize;
117 if (to >= subdev->size) {
122 if (to + len > subdev->size)
123 size = subdev->size - to;
127 err = mtd_write(subdev, to, size, &retsize, buf);
144 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
145 unsigned long count, loff_t to, size_t * retlen)
147 struct mtd_concat *concat = CONCAT(mtd);
148 struct kvec *vecs_copy;
149 unsigned long entry_low, entry_high;
150 size_t total_len = 0;
154 /* Calculate total length of data */
155 for (i = 0; i < count; i++)
156 total_len += vecs[i].iov_len;
158 /* Check alignment */
159 if (mtd->writesize > 1) {
161 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
165 /* make a copy of vecs */
166 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
171 for (i = 0; i < concat->num_subdev; i++) {
172 struct mtd_info *subdev = concat->subdev[i];
173 size_t size, wsize, retsize, old_iov_len;
175 if (to >= subdev->size) {
180 size = min_t(uint64_t, total_len, subdev->size - to);
181 wsize = size; /* store for future use */
183 entry_high = entry_low;
184 while (entry_high < count) {
185 if (size <= vecs_copy[entry_high].iov_len)
187 size -= vecs_copy[entry_high++].iov_len;
190 old_iov_len = vecs_copy[entry_high].iov_len;
191 vecs_copy[entry_high].iov_len = size;
193 err = mtd_writev(subdev, &vecs_copy[entry_low],
194 entry_high - entry_low + 1, to, &retsize);
196 vecs_copy[entry_high].iov_len = old_iov_len - size;
197 vecs_copy[entry_high].iov_base += size;
199 entry_low = entry_high;
219 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
221 struct mtd_concat *concat = CONCAT(mtd);
222 struct mtd_oob_ops devops = *ops;
225 ops->retlen = ops->oobretlen = 0;
227 for (i = 0; i < concat->num_subdev; i++) {
228 struct mtd_info *subdev = concat->subdev[i];
230 if (from >= subdev->size) {
231 from -= subdev->size;
236 if (from + devops.len > subdev->size)
237 devops.len = subdev->size - from;
239 err = mtd_read_oob(subdev, from, &devops);
240 ops->retlen += devops.retlen;
241 ops->oobretlen += devops.oobretlen;
243 /* Save information about bitflips! */
245 if (mtd_is_eccerr(err)) {
246 mtd->ecc_stats.failed++;
248 } else if (mtd_is_bitflip(err)) {
249 mtd->ecc_stats.corrected++;
250 /* Do not overwrite -EBADMSG !! */
258 devops.len = ops->len - ops->retlen;
261 devops.datbuf += devops.retlen;
264 devops.ooblen = ops->ooblen - ops->oobretlen;
267 devops.oobbuf += ops->oobretlen;
276 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
278 struct mtd_concat *concat = CONCAT(mtd);
279 struct mtd_oob_ops devops = *ops;
282 if (!(mtd->flags & MTD_WRITEABLE))
285 ops->retlen = ops->oobretlen = 0;
287 for (i = 0; i < concat->num_subdev; i++) {
288 struct mtd_info *subdev = concat->subdev[i];
290 if (to >= subdev->size) {
295 /* partial write ? */
296 if (to + devops.len > subdev->size)
297 devops.len = subdev->size - to;
299 err = mtd_write_oob(subdev, to, &devops);
300 ops->retlen += devops.retlen;
301 ops->oobretlen += devops.oobretlen;
306 devops.len = ops->len - ops->retlen;
309 devops.datbuf += devops.retlen;
312 devops.ooblen = ops->ooblen - ops->oobretlen;
315 devops.oobbuf += devops.oobretlen;
322 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
324 struct mtd_concat *concat = CONCAT(mtd);
325 struct mtd_info *subdev;
327 uint64_t length, offset = 0;
328 struct erase_info *erase;
331 * Check for proper erase block alignment of the to-be-erased area.
332 * It is easier to do this based on the super device's erase
333 * region info rather than looking at each particular sub-device
336 if (!concat->mtd.numeraseregions) {
337 /* the easy case: device has uniform erase block size */
338 if (instr->addr & (concat->mtd.erasesize - 1))
340 if (instr->len & (concat->mtd.erasesize - 1))
343 /* device has variable erase size */
344 struct mtd_erase_region_info *erase_regions =
345 concat->mtd.eraseregions;
348 * Find the erase region where the to-be-erased area begins:
350 for (i = 0; i < concat->mtd.numeraseregions &&
351 instr->addr >= erase_regions[i].offset; i++) ;
355 * Now erase_regions[i] is the region in which the
356 * to-be-erased area begins. Verify that the starting
357 * offset is aligned to this region's erase size:
359 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
363 * now find the erase region where the to-be-erased area ends:
365 for (; i < concat->mtd.numeraseregions &&
366 (instr->addr + instr->len) >= erase_regions[i].offset;
370 * check if the ending offset is aligned to this region's erase size
372 if (i < 0 || ((instr->addr + instr->len) &
373 (erase_regions[i].erasesize - 1)))
377 /* make a local copy of instr to avoid modifying the caller's struct */
378 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
387 * find the subdevice where the to-be-erased area begins, adjust
388 * starting offset to be relative to the subdevice start
390 for (i = 0; i < concat->num_subdev; i++) {
391 subdev = concat->subdev[i];
392 if (subdev->size <= erase->addr) {
393 erase->addr -= subdev->size;
394 offset += subdev->size;
400 /* must never happen since size limit has been verified above */
401 BUG_ON(i >= concat->num_subdev);
403 /* now do the erase: */
405 for (; length > 0; i++) {
406 /* loop for all subdevices affected by this request */
407 subdev = concat->subdev[i]; /* get current subdevice */
409 /* limit length to subdevice's size: */
410 if (erase->addr + length > subdev->size)
411 erase->len = subdev->size - erase->addr;
415 length -= erase->len;
416 if ((err = mtd_erase(subdev, erase))) {
417 /* sanity check: should never happen since
418 * block alignment has been checked above */
419 BUG_ON(err == -EINVAL);
420 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
421 instr->fail_addr = erase->fail_addr + offset;
425 * erase->addr specifies the offset of the area to be
426 * erased *within the current subdevice*. It can be
427 * non-zero only the first time through this loop, i.e.
428 * for the first subdevice where blocks need to be erased.
429 * All the following erases must begin at the start of the
430 * current subdevice, i.e. at offset zero.
433 offset += subdev->size;
440 static int concat_xxlock(struct mtd_info *mtd, loff_t ofs, uint64_t len,
443 struct mtd_concat *concat = CONCAT(mtd);
444 int i, err = -EINVAL;
446 for (i = 0; i < concat->num_subdev; i++) {
447 struct mtd_info *subdev = concat->subdev[i];
450 if (ofs >= subdev->size) {
455 if (ofs + len > subdev->size)
456 size = subdev->size - ofs;
461 err = mtd_lock(subdev, ofs, size);
463 err = mtd_unlock(subdev, ofs, size);
478 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
480 return concat_xxlock(mtd, ofs, len, true);
483 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
485 return concat_xxlock(mtd, ofs, len, false);
488 static int concat_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
490 struct mtd_concat *concat = CONCAT(mtd);
491 int i, err = -EINVAL;
493 for (i = 0; i < concat->num_subdev; i++) {
494 struct mtd_info *subdev = concat->subdev[i];
496 if (ofs >= subdev->size) {
501 if (ofs + len > subdev->size)
504 return mtd_is_locked(subdev, ofs, len);
510 static void concat_sync(struct mtd_info *mtd)
512 struct mtd_concat *concat = CONCAT(mtd);
515 for (i = 0; i < concat->num_subdev; i++) {
516 struct mtd_info *subdev = concat->subdev[i];
521 static int concat_suspend(struct mtd_info *mtd)
523 struct mtd_concat *concat = CONCAT(mtd);
526 for (i = 0; i < concat->num_subdev; i++) {
527 struct mtd_info *subdev = concat->subdev[i];
528 if ((rc = mtd_suspend(subdev)) < 0)
534 static void concat_resume(struct mtd_info *mtd)
536 struct mtd_concat *concat = CONCAT(mtd);
539 for (i = 0; i < concat->num_subdev; i++) {
540 struct mtd_info *subdev = concat->subdev[i];
545 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
547 struct mtd_concat *concat = CONCAT(mtd);
550 if (!mtd_can_have_bb(concat->subdev[0]))
553 for (i = 0; i < concat->num_subdev; i++) {
554 struct mtd_info *subdev = concat->subdev[i];
556 if (ofs >= subdev->size) {
561 res = mtd_block_isbad(subdev, ofs);
568 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
570 struct mtd_concat *concat = CONCAT(mtd);
571 int i, err = -EINVAL;
573 for (i = 0; i < concat->num_subdev; i++) {
574 struct mtd_info *subdev = concat->subdev[i];
576 if (ofs >= subdev->size) {
581 err = mtd_block_markbad(subdev, ofs);
583 mtd->ecc_stats.badblocks++;
591 * This function constructs a virtual MTD device by concatenating
592 * num_devs MTD devices. A pointer to the new device object is
593 * stored to *new_dev upon success. This function does _not_
594 * register any devices: this is the caller's responsibility.
596 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
597 int num_devs, /* number of subdevices */
599 { /* name for the new device */
602 struct mtd_concat *concat;
603 uint32_t max_erasesize, curr_erasesize;
604 int num_erase_region;
605 int max_writebufsize = 0;
607 printk(KERN_NOTICE "Concatenating MTD devices:\n");
608 for (i = 0; i < num_devs; i++)
609 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
610 printk(KERN_NOTICE "into device \"%s\"\n", name);
612 /* allocate the device structure */
613 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
614 concat = kzalloc(size, GFP_KERNEL);
617 ("memory allocation error while creating concatenated device \"%s\"\n",
621 concat->subdev = (struct mtd_info **) (concat + 1);
624 * Set up the new "super" device's MTD object structure, check for
625 * incompatibilities between the subdevices.
627 concat->mtd.type = subdev[0]->type;
628 concat->mtd.flags = subdev[0]->flags;
629 concat->mtd.size = subdev[0]->size;
630 concat->mtd.erasesize = subdev[0]->erasesize;
631 concat->mtd.writesize = subdev[0]->writesize;
633 for (i = 0; i < num_devs; i++)
634 if (max_writebufsize < subdev[i]->writebufsize)
635 max_writebufsize = subdev[i]->writebufsize;
636 concat->mtd.writebufsize = max_writebufsize;
638 concat->mtd.subpage_sft = subdev[0]->subpage_sft;
639 concat->mtd.oobsize = subdev[0]->oobsize;
640 concat->mtd.oobavail = subdev[0]->oobavail;
641 if (subdev[0]->_writev)
642 concat->mtd._writev = concat_writev;
643 if (subdev[0]->_read_oob)
644 concat->mtd._read_oob = concat_read_oob;
645 if (subdev[0]->_write_oob)
646 concat->mtd._write_oob = concat_write_oob;
647 if (subdev[0]->_block_isbad)
648 concat->mtd._block_isbad = concat_block_isbad;
649 if (subdev[0]->_block_markbad)
650 concat->mtd._block_markbad = concat_block_markbad;
652 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
654 concat->subdev[0] = subdev[0];
656 for (i = 1; i < num_devs; i++) {
657 if (concat->mtd.type != subdev[i]->type) {
659 printk("Incompatible device type on \"%s\"\n",
663 if (concat->mtd.flags != subdev[i]->flags) {
665 * Expect all flags except MTD_WRITEABLE to be
666 * equal on all subdevices.
668 if ((concat->mtd.flags ^ subdev[i]->
669 flags) & ~MTD_WRITEABLE) {
671 printk("Incompatible device flags on \"%s\"\n",
675 /* if writeable attribute differs,
676 make super device writeable */
678 subdev[i]->flags & MTD_WRITEABLE;
681 concat->mtd.size += subdev[i]->size;
682 concat->mtd.ecc_stats.badblocks +=
683 subdev[i]->ecc_stats.badblocks;
684 if (concat->mtd.writesize != subdev[i]->writesize ||
685 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
686 concat->mtd.oobsize != subdev[i]->oobsize ||
687 !concat->mtd._read_oob != !subdev[i]->_read_oob ||
688 !concat->mtd._write_oob != !subdev[i]->_write_oob) {
690 printk("Incompatible OOB or ECC data on \"%s\"\n",
694 concat->subdev[i] = subdev[i];
698 mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
700 concat->num_subdev = num_devs;
701 concat->mtd.name = name;
703 concat->mtd._erase = concat_erase;
704 concat->mtd._read = concat_read;
705 concat->mtd._write = concat_write;
706 concat->mtd._sync = concat_sync;
707 concat->mtd._lock = concat_lock;
708 concat->mtd._unlock = concat_unlock;
709 concat->mtd._is_locked = concat_is_locked;
710 concat->mtd._suspend = concat_suspend;
711 concat->mtd._resume = concat_resume;
714 * Combine the erase block size info of the subdevices:
716 * first, walk the map of the new device and see how
717 * many changes in erase size we have
719 max_erasesize = curr_erasesize = subdev[0]->erasesize;
720 num_erase_region = 1;
721 for (i = 0; i < num_devs; i++) {
722 if (subdev[i]->numeraseregions == 0) {
723 /* current subdevice has uniform erase size */
724 if (subdev[i]->erasesize != curr_erasesize) {
725 /* if it differs from the last subdevice's erase size, count it */
727 curr_erasesize = subdev[i]->erasesize;
728 if (curr_erasesize > max_erasesize)
729 max_erasesize = curr_erasesize;
732 /* current subdevice has variable erase size */
734 for (j = 0; j < subdev[i]->numeraseregions; j++) {
736 /* walk the list of erase regions, count any changes */
737 if (subdev[i]->eraseregions[j].erasesize !=
741 subdev[i]->eraseregions[j].
743 if (curr_erasesize > max_erasesize)
744 max_erasesize = curr_erasesize;
750 if (num_erase_region == 1) {
752 * All subdevices have the same uniform erase size.
755 concat->mtd.erasesize = curr_erasesize;
756 concat->mtd.numeraseregions = 0;
761 * erase block size varies across the subdevices: allocate
762 * space to store the data describing the variable erase regions
764 struct mtd_erase_region_info *erase_region_p;
765 uint64_t begin, position;
767 concat->mtd.erasesize = max_erasesize;
768 concat->mtd.numeraseregions = num_erase_region;
769 concat->mtd.eraseregions = erase_region_p =
770 kmalloc_array(num_erase_region,
771 sizeof(struct mtd_erase_region_info),
773 if (!erase_region_p) {
776 ("memory allocation error while creating erase region list"
777 " for device \"%s\"\n", name);
782 * walk the map of the new device once more and fill in
783 * in erase region info:
785 curr_erasesize = subdev[0]->erasesize;
786 begin = position = 0;
787 for (i = 0; i < num_devs; i++) {
788 if (subdev[i]->numeraseregions == 0) {
789 /* current subdevice has uniform erase size */
790 if (subdev[i]->erasesize != curr_erasesize) {
792 * fill in an mtd_erase_region_info structure for the area
793 * we have walked so far:
795 erase_region_p->offset = begin;
796 erase_region_p->erasesize =
798 tmp64 = position - begin;
799 do_div(tmp64, curr_erasesize);
800 erase_region_p->numblocks = tmp64;
803 curr_erasesize = subdev[i]->erasesize;
806 position += subdev[i]->size;
808 /* current subdevice has variable erase size */
810 for (j = 0; j < subdev[i]->numeraseregions; j++) {
811 /* walk the list of erase regions, count any changes */
812 if (subdev[i]->eraseregions[j].
813 erasesize != curr_erasesize) {
814 erase_region_p->offset = begin;
815 erase_region_p->erasesize =
817 tmp64 = position - begin;
818 do_div(tmp64, curr_erasesize);
819 erase_region_p->numblocks = tmp64;
823 subdev[i]->eraseregions[j].
828 subdev[i]->eraseregions[j].
829 numblocks * (uint64_t)curr_erasesize;
833 /* Now write the final entry */
834 erase_region_p->offset = begin;
835 erase_region_p->erasesize = curr_erasesize;
836 tmp64 = position - begin;
837 do_div(tmp64, curr_erasesize);
838 erase_region_p->numblocks = tmp64;
845 * This function destroys an MTD object obtained from concat_mtd_devs()
848 void mtd_concat_destroy(struct mtd_info *mtd)
850 struct mtd_concat *concat = CONCAT(mtd);
851 if (concat->mtd.numeraseregions)
852 kfree(concat->mtd.eraseregions);
856 EXPORT_SYMBOL(mtd_concat_create);
857 EXPORT_SYMBOL(mtd_concat_destroy);
859 MODULE_LICENSE("GPL");
861 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");