2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
120 #include <asm/uaccess.h>
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
134 #include <linux/filter.h>
136 #include <trace/events/sock.h>
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
160 mutex_unlock(&proto_list_mutex);
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
199 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
200 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
201 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
202 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
203 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
204 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
205 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
206 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
207 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
208 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
209 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
210 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
211 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
215 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
216 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
217 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
218 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
219 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
220 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
221 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
222 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
223 "slock-27" , "slock-28" , "slock-AF_CAN" ,
224 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
225 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
226 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
227 "slock-AF_NFC" , "slock-AF_MAX"
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
231 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
232 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
233 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
234 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
235 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
236 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
237 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
238 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
239 "clock-27" , "clock-28" , "clock-AF_CAN" ,
240 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
241 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
242 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
243 "clock-AF_NFC" , "clock-AF_MAX"
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
250 static struct lock_class_key af_callback_keys[AF_MAX];
252 /* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms. This makes socket queueing behavior and performance
255 * not depend upon such differences.
257 #define _SK_MEM_PACKETS 256
258 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
274 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275 EXPORT_SYMBOL_GPL(memalloc_socks);
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
285 void sk_set_memalloc(struct sock *sk)
287 sock_set_flag(sk, SOCK_MEMALLOC);
288 sk->sk_allocation |= __GFP_MEMALLOC;
289 static_key_slow_inc(&memalloc_socks);
291 EXPORT_SYMBOL_GPL(sk_set_memalloc);
293 void sk_clear_memalloc(struct sock *sk)
295 sock_reset_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation &= ~__GFP_MEMALLOC;
297 static_key_slow_dec(&memalloc_socks);
300 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302 * it has rmem allocations there is a risk that the user of the
303 * socket cannot make forward progress due to exceeding the rmem
304 * limits. By rights, sk_clear_memalloc() should only be called
305 * on sockets being torn down but warn and reset the accounting if
306 * that assumption breaks.
308 if (WARN_ON(sk->sk_forward_alloc))
311 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
313 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316 unsigned long pflags = current->flags;
318 /* these should have been dropped before queueing */
319 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
321 current->flags |= PF_MEMALLOC;
322 ret = sk->sk_backlog_rcv(sk, skb);
323 tsk_restore_flags(current, pflags, PF_MEMALLOC);
327 EXPORT_SYMBOL(__sk_backlog_rcv);
329 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
333 if (optlen < sizeof(tv))
335 if (copy_from_user(&tv, optval, sizeof(tv)))
337 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
341 static int warned __read_mostly;
344 if (warned < 10 && net_ratelimit()) {
346 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
347 __func__, current->comm, task_pid_nr(current));
351 *timeo_p = MAX_SCHEDULE_TIMEOUT;
352 if (tv.tv_sec == 0 && tv.tv_usec == 0)
354 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
355 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
359 static void sock_warn_obsolete_bsdism(const char *name)
362 static char warncomm[TASK_COMM_LEN];
363 if (strcmp(warncomm, current->comm) && warned < 5) {
364 strcpy(warncomm, current->comm);
365 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
371 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
373 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
375 if (sk->sk_flags & flags) {
376 sk->sk_flags &= ~flags;
377 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
378 net_disable_timestamp();
383 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
388 struct sk_buff_head *list = &sk->sk_receive_queue;
390 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
391 atomic_inc(&sk->sk_drops);
392 trace_sock_rcvqueue_full(sk, skb);
396 err = sk_filter(sk, skb);
400 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
401 atomic_inc(&sk->sk_drops);
406 skb_set_owner_r(skb, sk);
408 /* Cache the SKB length before we tack it onto the receive
409 * queue. Once it is added it no longer belongs to us and
410 * may be freed by other threads of control pulling packets
415 /* we escape from rcu protected region, make sure we dont leak
420 spin_lock_irqsave(&list->lock, flags);
421 skb->dropcount = atomic_read(&sk->sk_drops);
422 __skb_queue_tail(list, skb);
423 spin_unlock_irqrestore(&list->lock, flags);
425 if (!sock_flag(sk, SOCK_DEAD))
426 sk->sk_data_ready(sk, skb_len);
429 EXPORT_SYMBOL(sock_queue_rcv_skb);
431 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
433 int rc = NET_RX_SUCCESS;
435 if (sk_filter(sk, skb))
436 goto discard_and_relse;
440 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
441 atomic_inc(&sk->sk_drops);
442 goto discard_and_relse;
445 bh_lock_sock_nested(sk);
448 if (!sock_owned_by_user(sk)) {
450 * trylock + unlock semantics:
452 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
454 rc = sk_backlog_rcv(sk, skb);
456 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
457 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
459 atomic_inc(&sk->sk_drops);
460 goto discard_and_relse;
471 EXPORT_SYMBOL(sk_receive_skb);
473 void sk_reset_txq(struct sock *sk)
475 sk_tx_queue_clear(sk);
477 EXPORT_SYMBOL(sk_reset_txq);
479 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
481 struct dst_entry *dst = __sk_dst_get(sk);
483 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
484 sk_tx_queue_clear(sk);
485 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
492 EXPORT_SYMBOL(__sk_dst_check);
494 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
496 struct dst_entry *dst = sk_dst_get(sk);
498 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
506 EXPORT_SYMBOL(sk_dst_check);
508 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
511 int ret = -ENOPROTOOPT;
512 #ifdef CONFIG_NETDEVICES
513 struct net *net = sock_net(sk);
514 char devname[IFNAMSIZ];
519 if (!ns_capable(net->user_ns, CAP_NET_RAW))
526 /* Bind this socket to a particular device like "eth0",
527 * as specified in the passed interface name. If the
528 * name is "" or the option length is zero the socket
531 if (optlen > IFNAMSIZ - 1)
532 optlen = IFNAMSIZ - 1;
533 memset(devname, 0, sizeof(devname));
536 if (copy_from_user(devname, optval, optlen))
540 if (devname[0] != '\0') {
541 struct net_device *dev;
544 dev = dev_get_by_name_rcu(net, devname);
546 index = dev->ifindex;
554 sk->sk_bound_dev_if = index;
566 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
567 int __user *optlen, int len)
569 int ret = -ENOPROTOOPT;
570 #ifdef CONFIG_NETDEVICES
571 struct net *net = sock_net(sk);
572 struct net_device *dev;
573 char devname[IFNAMSIZ];
576 if (sk->sk_bound_dev_if == 0) {
586 seq = read_seqbegin(&devnet_rename_seq);
588 dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
595 strcpy(devname, dev->name);
597 if (read_seqretry(&devnet_rename_seq, seq))
600 len = strlen(devname) + 1;
603 if (copy_to_user(optval, devname, len))
608 if (put_user(len, optlen))
619 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
622 sock_set_flag(sk, bit);
624 sock_reset_flag(sk, bit);
628 * This is meant for all protocols to use and covers goings on
629 * at the socket level. Everything here is generic.
632 int sock_setsockopt(struct socket *sock, int level, int optname,
633 char __user *optval, unsigned int optlen)
635 struct sock *sk = sock->sk;
642 * Options without arguments
645 if (optname == SO_BINDTODEVICE)
646 return sock_setbindtodevice(sk, optval, optlen);
648 if (optlen < sizeof(int))
651 if (get_user(val, (int __user *)optval))
654 valbool = val ? 1 : 0;
660 if (val && !capable(CAP_NET_ADMIN))
663 sock_valbool_flag(sk, SOCK_DBG, valbool);
666 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
675 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
678 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
681 /* Don't error on this BSD doesn't and if you think
682 * about it this is right. Otherwise apps have to
683 * play 'guess the biggest size' games. RCVBUF/SNDBUF
684 * are treated in BSD as hints
686 val = min_t(u32, val, sysctl_wmem_max);
688 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
689 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
690 /* Wake up sending tasks if we upped the value. */
691 sk->sk_write_space(sk);
695 if (!capable(CAP_NET_ADMIN)) {
702 /* Don't error on this BSD doesn't and if you think
703 * about it this is right. Otherwise apps have to
704 * play 'guess the biggest size' games. RCVBUF/SNDBUF
705 * are treated in BSD as hints
707 val = min_t(u32, val, sysctl_rmem_max);
709 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
711 * We double it on the way in to account for
712 * "struct sk_buff" etc. overhead. Applications
713 * assume that the SO_RCVBUF setting they make will
714 * allow that much actual data to be received on that
717 * Applications are unaware that "struct sk_buff" and
718 * other overheads allocate from the receive buffer
719 * during socket buffer allocation.
721 * And after considering the possible alternatives,
722 * returning the value we actually used in getsockopt
723 * is the most desirable behavior.
725 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
729 if (!capable(CAP_NET_ADMIN)) {
737 if (sk->sk_protocol == IPPROTO_TCP &&
738 sk->sk_type == SOCK_STREAM)
739 tcp_set_keepalive(sk, valbool);
741 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
745 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
749 sk->sk_no_check = valbool;
753 if ((val >= 0 && val <= 6) ||
754 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
755 sk->sk_priority = val;
761 if (optlen < sizeof(ling)) {
762 ret = -EINVAL; /* 1003.1g */
765 if (copy_from_user(&ling, optval, sizeof(ling))) {
770 sock_reset_flag(sk, SOCK_LINGER);
772 #if (BITS_PER_LONG == 32)
773 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
774 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
777 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
778 sock_set_flag(sk, SOCK_LINGER);
783 sock_warn_obsolete_bsdism("setsockopt");
788 set_bit(SOCK_PASSCRED, &sock->flags);
790 clear_bit(SOCK_PASSCRED, &sock->flags);
796 if (optname == SO_TIMESTAMP)
797 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
799 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
800 sock_set_flag(sk, SOCK_RCVTSTAMP);
801 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
803 sock_reset_flag(sk, SOCK_RCVTSTAMP);
804 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
808 case SO_TIMESTAMPING:
809 if (val & ~SOF_TIMESTAMPING_MASK) {
813 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
814 val & SOF_TIMESTAMPING_TX_HARDWARE);
815 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
816 val & SOF_TIMESTAMPING_TX_SOFTWARE);
817 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
818 val & SOF_TIMESTAMPING_RX_HARDWARE);
819 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
820 sock_enable_timestamp(sk,
821 SOCK_TIMESTAMPING_RX_SOFTWARE);
823 sock_disable_timestamp(sk,
824 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
825 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
826 val & SOF_TIMESTAMPING_SOFTWARE);
827 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
828 val & SOF_TIMESTAMPING_SYS_HARDWARE);
829 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
830 val & SOF_TIMESTAMPING_RAW_HARDWARE);
836 sk->sk_rcvlowat = val ? : 1;
840 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
844 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
847 case SO_ATTACH_FILTER:
849 if (optlen == sizeof(struct sock_fprog)) {
850 struct sock_fprog fprog;
853 if (copy_from_user(&fprog, optval, sizeof(fprog)))
856 ret = sk_attach_filter(&fprog, sk);
860 case SO_DETACH_FILTER:
861 ret = sk_detach_filter(sk);
866 set_bit(SOCK_PASSSEC, &sock->flags);
868 clear_bit(SOCK_PASSSEC, &sock->flags);
871 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
877 /* We implement the SO_SNDLOWAT etc to
878 not be settable (1003.1g 5.3) */
880 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
884 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
888 if (sock->ops->set_peek_off)
889 sock->ops->set_peek_off(sk, val);
895 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
905 EXPORT_SYMBOL(sock_setsockopt);
908 void cred_to_ucred(struct pid *pid, const struct cred *cred,
911 ucred->pid = pid_vnr(pid);
912 ucred->uid = ucred->gid = -1;
914 struct user_namespace *current_ns = current_user_ns();
916 ucred->uid = from_kuid_munged(current_ns, cred->euid);
917 ucred->gid = from_kgid_munged(current_ns, cred->egid);
920 EXPORT_SYMBOL_GPL(cred_to_ucred);
922 int sock_getsockopt(struct socket *sock, int level, int optname,
923 char __user *optval, int __user *optlen)
925 struct sock *sk = sock->sk;
933 int lv = sizeof(int);
936 if (get_user(len, optlen))
941 memset(&v, 0, sizeof(v));
945 v.val = sock_flag(sk, SOCK_DBG);
949 v.val = sock_flag(sk, SOCK_LOCALROUTE);
953 v.val = sock_flag(sk, SOCK_BROADCAST);
957 v.val = sk->sk_sndbuf;
961 v.val = sk->sk_rcvbuf;
965 v.val = sk->sk_reuse;
969 v.val = sock_flag(sk, SOCK_KEEPOPEN);
977 v.val = sk->sk_protocol;
981 v.val = sk->sk_family;
985 v.val = -sock_error(sk);
987 v.val = xchg(&sk->sk_err_soft, 0);
991 v.val = sock_flag(sk, SOCK_URGINLINE);
995 v.val = sk->sk_no_check;
999 v.val = sk->sk_priority;
1003 lv = sizeof(v.ling);
1004 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1005 v.ling.l_linger = sk->sk_lingertime / HZ;
1009 sock_warn_obsolete_bsdism("getsockopt");
1013 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1014 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1017 case SO_TIMESTAMPNS:
1018 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1021 case SO_TIMESTAMPING:
1023 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1024 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1025 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1026 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1027 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1028 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1029 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1030 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1031 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1032 v.val |= SOF_TIMESTAMPING_SOFTWARE;
1033 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1034 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1035 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1036 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1040 lv = sizeof(struct timeval);
1041 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1045 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1046 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1051 lv = sizeof(struct timeval);
1052 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1056 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1057 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1062 v.val = sk->sk_rcvlowat;
1070 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1075 struct ucred peercred;
1076 if (len > sizeof(peercred))
1077 len = sizeof(peercred);
1078 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1079 if (copy_to_user(optval, &peercred, len))
1088 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1092 if (copy_to_user(optval, address, len))
1097 /* Dubious BSD thing... Probably nobody even uses it, but
1098 * the UNIX standard wants it for whatever reason... -DaveM
1101 v.val = sk->sk_state == TCP_LISTEN;
1105 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1109 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1112 v.val = sk->sk_mark;
1116 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1119 case SO_WIFI_STATUS:
1120 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1124 if (!sock->ops->set_peek_off)
1127 v.val = sk->sk_peek_off;
1130 v.val = sock_flag(sk, SOCK_NOFCS);
1133 case SO_BINDTODEVICE:
1134 return sock_getbindtodevice(sk, optval, optlen, len);
1137 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1144 return -ENOPROTOOPT;
1149 if (copy_to_user(optval, &v, len))
1152 if (put_user(len, optlen))
1158 * Initialize an sk_lock.
1160 * (We also register the sk_lock with the lock validator.)
1162 static inline void sock_lock_init(struct sock *sk)
1164 sock_lock_init_class_and_name(sk,
1165 af_family_slock_key_strings[sk->sk_family],
1166 af_family_slock_keys + sk->sk_family,
1167 af_family_key_strings[sk->sk_family],
1168 af_family_keys + sk->sk_family);
1172 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1173 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1174 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1176 static void sock_copy(struct sock *nsk, const struct sock *osk)
1178 #ifdef CONFIG_SECURITY_NETWORK
1179 void *sptr = nsk->sk_security;
1181 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1183 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1184 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1186 #ifdef CONFIG_SECURITY_NETWORK
1187 nsk->sk_security = sptr;
1188 security_sk_clone(osk, nsk);
1193 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1194 * un-modified. Special care is taken when initializing object to zero.
1196 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1198 if (offsetof(struct sock, sk_node.next) != 0)
1199 memset(sk, 0, offsetof(struct sock, sk_node.next));
1200 memset(&sk->sk_node.pprev, 0,
1201 size - offsetof(struct sock, sk_node.pprev));
1204 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1206 unsigned long nulls1, nulls2;
1208 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1209 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1210 if (nulls1 > nulls2)
1211 swap(nulls1, nulls2);
1214 memset((char *)sk, 0, nulls1);
1215 memset((char *)sk + nulls1 + sizeof(void *), 0,
1216 nulls2 - nulls1 - sizeof(void *));
1217 memset((char *)sk + nulls2 + sizeof(void *), 0,
1218 size - nulls2 - sizeof(void *));
1220 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1222 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1226 struct kmem_cache *slab;
1230 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1233 if (priority & __GFP_ZERO) {
1235 prot->clear_sk(sk, prot->obj_size);
1237 sk_prot_clear_nulls(sk, prot->obj_size);
1240 sk = kmalloc(prot->obj_size, priority);
1243 kmemcheck_annotate_bitfield(sk, flags);
1245 if (security_sk_alloc(sk, family, priority))
1248 if (!try_module_get(prot->owner))
1250 sk_tx_queue_clear(sk);
1256 security_sk_free(sk);
1259 kmem_cache_free(slab, sk);
1265 static void sk_prot_free(struct proto *prot, struct sock *sk)
1267 struct kmem_cache *slab;
1268 struct module *owner;
1270 owner = prot->owner;
1273 security_sk_free(sk);
1275 kmem_cache_free(slab, sk);
1281 #ifdef CONFIG_CGROUPS
1282 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1283 void sock_update_classid(struct sock *sk, struct task_struct *task)
1287 classid = task_cls_classid(task);
1288 if (classid != sk->sk_classid)
1289 sk->sk_classid = classid;
1291 EXPORT_SYMBOL(sock_update_classid);
1294 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1295 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1300 sk->sk_cgrp_prioidx = task_netprioidx(task);
1302 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1307 * sk_alloc - All socket objects are allocated here
1308 * @net: the applicable net namespace
1309 * @family: protocol family
1310 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1311 * @prot: struct proto associated with this new sock instance
1313 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1318 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1320 sk->sk_family = family;
1322 * See comment in struct sock definition to understand
1323 * why we need sk_prot_creator -acme
1325 sk->sk_prot = sk->sk_prot_creator = prot;
1327 sock_net_set(sk, get_net(net));
1328 atomic_set(&sk->sk_wmem_alloc, 1);
1330 sock_update_classid(sk, current);
1331 sock_update_netprioidx(sk, current);
1336 EXPORT_SYMBOL(sk_alloc);
1338 static void __sk_free(struct sock *sk)
1340 struct sk_filter *filter;
1342 if (sk->sk_destruct)
1343 sk->sk_destruct(sk);
1345 filter = rcu_dereference_check(sk->sk_filter,
1346 atomic_read(&sk->sk_wmem_alloc) == 0);
1348 sk_filter_uncharge(sk, filter);
1349 RCU_INIT_POINTER(sk->sk_filter, NULL);
1352 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1354 if (atomic_read(&sk->sk_omem_alloc))
1355 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1356 __func__, atomic_read(&sk->sk_omem_alloc));
1358 if (sk->sk_peer_cred)
1359 put_cred(sk->sk_peer_cred);
1360 put_pid(sk->sk_peer_pid);
1361 put_net(sock_net(sk));
1362 sk_prot_free(sk->sk_prot_creator, sk);
1365 void sk_free(struct sock *sk)
1368 * We subtract one from sk_wmem_alloc and can know if
1369 * some packets are still in some tx queue.
1370 * If not null, sock_wfree() will call __sk_free(sk) later
1372 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1375 EXPORT_SYMBOL(sk_free);
1378 * Last sock_put should drop reference to sk->sk_net. It has already
1379 * been dropped in sk_change_net. Taking reference to stopping namespace
1381 * Take reference to a socket to remove it from hash _alive_ and after that
1382 * destroy it in the context of init_net.
1384 void sk_release_kernel(struct sock *sk)
1386 if (sk == NULL || sk->sk_socket == NULL)
1390 sock_release(sk->sk_socket);
1391 release_net(sock_net(sk));
1392 sock_net_set(sk, get_net(&init_net));
1395 EXPORT_SYMBOL(sk_release_kernel);
1397 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1399 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1400 sock_update_memcg(newsk);
1404 * sk_clone_lock - clone a socket, and lock its clone
1405 * @sk: the socket to clone
1406 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1408 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1410 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1414 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1415 if (newsk != NULL) {
1416 struct sk_filter *filter;
1418 sock_copy(newsk, sk);
1421 get_net(sock_net(newsk));
1422 sk_node_init(&newsk->sk_node);
1423 sock_lock_init(newsk);
1424 bh_lock_sock(newsk);
1425 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1426 newsk->sk_backlog.len = 0;
1428 atomic_set(&newsk->sk_rmem_alloc, 0);
1430 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1432 atomic_set(&newsk->sk_wmem_alloc, 1);
1433 atomic_set(&newsk->sk_omem_alloc, 0);
1434 skb_queue_head_init(&newsk->sk_receive_queue);
1435 skb_queue_head_init(&newsk->sk_write_queue);
1436 #ifdef CONFIG_NET_DMA
1437 skb_queue_head_init(&newsk->sk_async_wait_queue);
1440 spin_lock_init(&newsk->sk_dst_lock);
1441 rwlock_init(&newsk->sk_callback_lock);
1442 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1443 af_callback_keys + newsk->sk_family,
1444 af_family_clock_key_strings[newsk->sk_family]);
1446 newsk->sk_dst_cache = NULL;
1447 newsk->sk_wmem_queued = 0;
1448 newsk->sk_forward_alloc = 0;
1449 newsk->sk_send_head = NULL;
1450 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1452 sock_reset_flag(newsk, SOCK_DONE);
1453 skb_queue_head_init(&newsk->sk_error_queue);
1455 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1457 sk_filter_charge(newsk, filter);
1459 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1460 /* It is still raw copy of parent, so invalidate
1461 * destructor and make plain sk_free() */
1462 newsk->sk_destruct = NULL;
1463 bh_unlock_sock(newsk);
1470 newsk->sk_priority = 0;
1472 * Before updating sk_refcnt, we must commit prior changes to memory
1473 * (Documentation/RCU/rculist_nulls.txt for details)
1476 atomic_set(&newsk->sk_refcnt, 2);
1479 * Increment the counter in the same struct proto as the master
1480 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1481 * is the same as sk->sk_prot->socks, as this field was copied
1484 * This _changes_ the previous behaviour, where
1485 * tcp_create_openreq_child always was incrementing the
1486 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1487 * to be taken into account in all callers. -acme
1489 sk_refcnt_debug_inc(newsk);
1490 sk_set_socket(newsk, NULL);
1491 newsk->sk_wq = NULL;
1493 sk_update_clone(sk, newsk);
1495 if (newsk->sk_prot->sockets_allocated)
1496 sk_sockets_allocated_inc(newsk);
1498 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1499 net_enable_timestamp();
1504 EXPORT_SYMBOL_GPL(sk_clone_lock);
1506 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1508 __sk_dst_set(sk, dst);
1509 sk->sk_route_caps = dst->dev->features;
1510 if (sk->sk_route_caps & NETIF_F_GSO)
1511 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1512 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1513 if (sk_can_gso(sk)) {
1514 if (dst->header_len) {
1515 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1517 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1518 sk->sk_gso_max_size = dst->dev->gso_max_size;
1519 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1523 EXPORT_SYMBOL_GPL(sk_setup_caps);
1526 * Simple resource managers for sockets.
1531 * Write buffer destructor automatically called from kfree_skb.
1533 void sock_wfree(struct sk_buff *skb)
1535 struct sock *sk = skb->sk;
1536 unsigned int len = skb->truesize;
1538 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1540 * Keep a reference on sk_wmem_alloc, this will be released
1541 * after sk_write_space() call
1543 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1544 sk->sk_write_space(sk);
1548 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1549 * could not do because of in-flight packets
1551 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1554 EXPORT_SYMBOL(sock_wfree);
1557 * Read buffer destructor automatically called from kfree_skb.
1559 void sock_rfree(struct sk_buff *skb)
1561 struct sock *sk = skb->sk;
1562 unsigned int len = skb->truesize;
1564 atomic_sub(len, &sk->sk_rmem_alloc);
1565 sk_mem_uncharge(sk, len);
1567 EXPORT_SYMBOL(sock_rfree);
1569 void sock_edemux(struct sk_buff *skb)
1571 struct sock *sk = skb->sk;
1574 if (sk->sk_state == TCP_TIME_WAIT)
1575 inet_twsk_put(inet_twsk(sk));
1580 EXPORT_SYMBOL(sock_edemux);
1582 kuid_t sock_i_uid(struct sock *sk)
1586 read_lock_bh(&sk->sk_callback_lock);
1587 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1588 read_unlock_bh(&sk->sk_callback_lock);
1591 EXPORT_SYMBOL(sock_i_uid);
1593 unsigned long sock_i_ino(struct sock *sk)
1597 read_lock_bh(&sk->sk_callback_lock);
1598 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1599 read_unlock_bh(&sk->sk_callback_lock);
1602 EXPORT_SYMBOL(sock_i_ino);
1605 * Allocate a skb from the socket's send buffer.
1607 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1610 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1611 struct sk_buff *skb = alloc_skb(size, priority);
1613 skb_set_owner_w(skb, sk);
1619 EXPORT_SYMBOL(sock_wmalloc);
1622 * Allocate a skb from the socket's receive buffer.
1624 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1627 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1628 struct sk_buff *skb = alloc_skb(size, priority);
1630 skb_set_owner_r(skb, sk);
1638 * Allocate a memory block from the socket's option memory buffer.
1640 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1642 if ((unsigned int)size <= sysctl_optmem_max &&
1643 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1645 /* First do the add, to avoid the race if kmalloc
1648 atomic_add(size, &sk->sk_omem_alloc);
1649 mem = kmalloc(size, priority);
1652 atomic_sub(size, &sk->sk_omem_alloc);
1656 EXPORT_SYMBOL(sock_kmalloc);
1659 * Free an option memory block.
1661 void sock_kfree_s(struct sock *sk, void *mem, int size)
1664 atomic_sub(size, &sk->sk_omem_alloc);
1666 EXPORT_SYMBOL(sock_kfree_s);
1668 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1669 I think, these locks should be removed for datagram sockets.
1671 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1675 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1679 if (signal_pending(current))
1681 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1682 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1683 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1685 if (sk->sk_shutdown & SEND_SHUTDOWN)
1689 timeo = schedule_timeout(timeo);
1691 finish_wait(sk_sleep(sk), &wait);
1697 * Generic send/receive buffer handlers
1700 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1701 unsigned long data_len, int noblock,
1704 struct sk_buff *skb;
1708 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1711 if (npages > MAX_SKB_FRAGS)
1714 gfp_mask = sk->sk_allocation;
1715 if (gfp_mask & __GFP_WAIT)
1716 gfp_mask |= __GFP_REPEAT;
1718 timeo = sock_sndtimeo(sk, noblock);
1720 err = sock_error(sk);
1725 if (sk->sk_shutdown & SEND_SHUTDOWN)
1728 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1729 skb = alloc_skb(header_len, gfp_mask);
1733 /* No pages, we're done... */
1737 skb->truesize += data_len;
1738 skb_shinfo(skb)->nr_frags = npages;
1739 for (i = 0; i < npages; i++) {
1742 page = alloc_pages(sk->sk_allocation, 0);
1745 skb_shinfo(skb)->nr_frags = i;
1750 __skb_fill_page_desc(skb, i,
1752 (data_len >= PAGE_SIZE ?
1755 data_len -= PAGE_SIZE;
1758 /* Full success... */
1764 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1765 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1769 if (signal_pending(current))
1771 timeo = sock_wait_for_wmem(sk, timeo);
1774 skb_set_owner_w(skb, sk);
1778 err = sock_intr_errno(timeo);
1783 EXPORT_SYMBOL(sock_alloc_send_pskb);
1785 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1786 int noblock, int *errcode)
1788 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1790 EXPORT_SYMBOL(sock_alloc_send_skb);
1792 /* On 32bit arches, an skb frag is limited to 2^15 */
1793 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1795 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1800 if (atomic_read(&pfrag->page->_count) == 1) {
1804 if (pfrag->offset < pfrag->size)
1806 put_page(pfrag->page);
1809 /* We restrict high order allocations to users that can afford to wait */
1810 order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1813 gfp_t gfp = sk->sk_allocation;
1816 gfp |= __GFP_COMP | __GFP_NOWARN;
1817 pfrag->page = alloc_pages(gfp, order);
1818 if (likely(pfrag->page)) {
1820 pfrag->size = PAGE_SIZE << order;
1823 } while (--order >= 0);
1825 sk_enter_memory_pressure(sk);
1826 sk_stream_moderate_sndbuf(sk);
1829 EXPORT_SYMBOL(sk_page_frag_refill);
1831 static void __lock_sock(struct sock *sk)
1832 __releases(&sk->sk_lock.slock)
1833 __acquires(&sk->sk_lock.slock)
1838 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1839 TASK_UNINTERRUPTIBLE);
1840 spin_unlock_bh(&sk->sk_lock.slock);
1842 spin_lock_bh(&sk->sk_lock.slock);
1843 if (!sock_owned_by_user(sk))
1846 finish_wait(&sk->sk_lock.wq, &wait);
1849 static void __release_sock(struct sock *sk)
1850 __releases(&sk->sk_lock.slock)
1851 __acquires(&sk->sk_lock.slock)
1853 struct sk_buff *skb = sk->sk_backlog.head;
1856 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1860 struct sk_buff *next = skb->next;
1863 WARN_ON_ONCE(skb_dst_is_noref(skb));
1865 sk_backlog_rcv(sk, skb);
1868 * We are in process context here with softirqs
1869 * disabled, use cond_resched_softirq() to preempt.
1870 * This is safe to do because we've taken the backlog
1873 cond_resched_softirq();
1876 } while (skb != NULL);
1879 } while ((skb = sk->sk_backlog.head) != NULL);
1882 * Doing the zeroing here guarantee we can not loop forever
1883 * while a wild producer attempts to flood us.
1885 sk->sk_backlog.len = 0;
1889 * sk_wait_data - wait for data to arrive at sk_receive_queue
1890 * @sk: sock to wait on
1891 * @timeo: for how long
1893 * Now socket state including sk->sk_err is changed only under lock,
1894 * hence we may omit checks after joining wait queue.
1895 * We check receive queue before schedule() only as optimization;
1896 * it is very likely that release_sock() added new data.
1898 int sk_wait_data(struct sock *sk, long *timeo)
1903 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1904 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1905 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1906 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1907 finish_wait(sk_sleep(sk), &wait);
1910 EXPORT_SYMBOL(sk_wait_data);
1913 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1915 * @size: memory size to allocate
1916 * @kind: allocation type
1918 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1919 * rmem allocation. This function assumes that protocols which have
1920 * memory_pressure use sk_wmem_queued as write buffer accounting.
1922 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1924 struct proto *prot = sk->sk_prot;
1925 int amt = sk_mem_pages(size);
1927 int parent_status = UNDER_LIMIT;
1929 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1931 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1934 if (parent_status == UNDER_LIMIT &&
1935 allocated <= sk_prot_mem_limits(sk, 0)) {
1936 sk_leave_memory_pressure(sk);
1940 /* Under pressure. (we or our parents) */
1941 if ((parent_status > SOFT_LIMIT) ||
1942 allocated > sk_prot_mem_limits(sk, 1))
1943 sk_enter_memory_pressure(sk);
1945 /* Over hard limit (we or our parents) */
1946 if ((parent_status == OVER_LIMIT) ||
1947 (allocated > sk_prot_mem_limits(sk, 2)))
1948 goto suppress_allocation;
1950 /* guarantee minimum buffer size under pressure */
1951 if (kind == SK_MEM_RECV) {
1952 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1955 } else { /* SK_MEM_SEND */
1956 if (sk->sk_type == SOCK_STREAM) {
1957 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1959 } else if (atomic_read(&sk->sk_wmem_alloc) <
1960 prot->sysctl_wmem[0])
1964 if (sk_has_memory_pressure(sk)) {
1967 if (!sk_under_memory_pressure(sk))
1969 alloc = sk_sockets_allocated_read_positive(sk);
1970 if (sk_prot_mem_limits(sk, 2) > alloc *
1971 sk_mem_pages(sk->sk_wmem_queued +
1972 atomic_read(&sk->sk_rmem_alloc) +
1973 sk->sk_forward_alloc))
1977 suppress_allocation:
1979 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1980 sk_stream_moderate_sndbuf(sk);
1982 /* Fail only if socket is _under_ its sndbuf.
1983 * In this case we cannot block, so that we have to fail.
1985 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1989 trace_sock_exceed_buf_limit(sk, prot, allocated);
1991 /* Alas. Undo changes. */
1992 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1994 sk_memory_allocated_sub(sk, amt);
1998 EXPORT_SYMBOL(__sk_mem_schedule);
2001 * __sk_reclaim - reclaim memory_allocated
2004 void __sk_mem_reclaim(struct sock *sk)
2006 sk_memory_allocated_sub(sk,
2007 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2008 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2010 if (sk_under_memory_pressure(sk) &&
2011 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2012 sk_leave_memory_pressure(sk);
2014 EXPORT_SYMBOL(__sk_mem_reclaim);
2018 * Set of default routines for initialising struct proto_ops when
2019 * the protocol does not support a particular function. In certain
2020 * cases where it makes no sense for a protocol to have a "do nothing"
2021 * function, some default processing is provided.
2024 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2028 EXPORT_SYMBOL(sock_no_bind);
2030 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2035 EXPORT_SYMBOL(sock_no_connect);
2037 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2041 EXPORT_SYMBOL(sock_no_socketpair);
2043 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2047 EXPORT_SYMBOL(sock_no_accept);
2049 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2054 EXPORT_SYMBOL(sock_no_getname);
2056 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2060 EXPORT_SYMBOL(sock_no_poll);
2062 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2066 EXPORT_SYMBOL(sock_no_ioctl);
2068 int sock_no_listen(struct socket *sock, int backlog)
2072 EXPORT_SYMBOL(sock_no_listen);
2074 int sock_no_shutdown(struct socket *sock, int how)
2078 EXPORT_SYMBOL(sock_no_shutdown);
2080 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2081 char __user *optval, unsigned int optlen)
2085 EXPORT_SYMBOL(sock_no_setsockopt);
2087 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2088 char __user *optval, int __user *optlen)
2092 EXPORT_SYMBOL(sock_no_getsockopt);
2094 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2099 EXPORT_SYMBOL(sock_no_sendmsg);
2101 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2102 size_t len, int flags)
2106 EXPORT_SYMBOL(sock_no_recvmsg);
2108 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2110 /* Mirror missing mmap method error code */
2113 EXPORT_SYMBOL(sock_no_mmap);
2115 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2118 struct msghdr msg = {.msg_flags = flags};
2120 char *kaddr = kmap(page);
2121 iov.iov_base = kaddr + offset;
2123 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2127 EXPORT_SYMBOL(sock_no_sendpage);
2130 * Default Socket Callbacks
2133 static void sock_def_wakeup(struct sock *sk)
2135 struct socket_wq *wq;
2138 wq = rcu_dereference(sk->sk_wq);
2139 if (wq_has_sleeper(wq))
2140 wake_up_interruptible_all(&wq->wait);
2144 static void sock_def_error_report(struct sock *sk)
2146 struct socket_wq *wq;
2149 wq = rcu_dereference(sk->sk_wq);
2150 if (wq_has_sleeper(wq))
2151 wake_up_interruptible_poll(&wq->wait, POLLERR);
2152 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2156 static void sock_def_readable(struct sock *sk, int len)
2158 struct socket_wq *wq;
2161 wq = rcu_dereference(sk->sk_wq);
2162 if (wq_has_sleeper(wq))
2163 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2164 POLLRDNORM | POLLRDBAND);
2165 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2169 static void sock_def_write_space(struct sock *sk)
2171 struct socket_wq *wq;
2175 /* Do not wake up a writer until he can make "significant"
2178 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2179 wq = rcu_dereference(sk->sk_wq);
2180 if (wq_has_sleeper(wq))
2181 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2182 POLLWRNORM | POLLWRBAND);
2184 /* Should agree with poll, otherwise some programs break */
2185 if (sock_writeable(sk))
2186 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2192 static void sock_def_destruct(struct sock *sk)
2194 kfree(sk->sk_protinfo);
2197 void sk_send_sigurg(struct sock *sk)
2199 if (sk->sk_socket && sk->sk_socket->file)
2200 if (send_sigurg(&sk->sk_socket->file->f_owner))
2201 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2203 EXPORT_SYMBOL(sk_send_sigurg);
2205 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2206 unsigned long expires)
2208 if (!mod_timer(timer, expires))
2211 EXPORT_SYMBOL(sk_reset_timer);
2213 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2215 if (timer_pending(timer) && del_timer(timer))
2218 EXPORT_SYMBOL(sk_stop_timer);
2220 void sock_init_data(struct socket *sock, struct sock *sk)
2222 skb_queue_head_init(&sk->sk_receive_queue);
2223 skb_queue_head_init(&sk->sk_write_queue);
2224 skb_queue_head_init(&sk->sk_error_queue);
2225 #ifdef CONFIG_NET_DMA
2226 skb_queue_head_init(&sk->sk_async_wait_queue);
2229 sk->sk_send_head = NULL;
2231 init_timer(&sk->sk_timer);
2233 sk->sk_allocation = GFP_KERNEL;
2234 sk->sk_rcvbuf = sysctl_rmem_default;
2235 sk->sk_sndbuf = sysctl_wmem_default;
2236 sk->sk_state = TCP_CLOSE;
2237 sk_set_socket(sk, sock);
2239 sock_set_flag(sk, SOCK_ZAPPED);
2242 sk->sk_type = sock->type;
2243 sk->sk_wq = sock->wq;
2248 spin_lock_init(&sk->sk_dst_lock);
2249 rwlock_init(&sk->sk_callback_lock);
2250 lockdep_set_class_and_name(&sk->sk_callback_lock,
2251 af_callback_keys + sk->sk_family,
2252 af_family_clock_key_strings[sk->sk_family]);
2254 sk->sk_state_change = sock_def_wakeup;
2255 sk->sk_data_ready = sock_def_readable;
2256 sk->sk_write_space = sock_def_write_space;
2257 sk->sk_error_report = sock_def_error_report;
2258 sk->sk_destruct = sock_def_destruct;
2260 sk->sk_frag.page = NULL;
2261 sk->sk_frag.offset = 0;
2262 sk->sk_peek_off = -1;
2264 sk->sk_peer_pid = NULL;
2265 sk->sk_peer_cred = NULL;
2266 sk->sk_write_pending = 0;
2267 sk->sk_rcvlowat = 1;
2268 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2269 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2271 sk->sk_stamp = ktime_set(-1L, 0);
2274 * Before updating sk_refcnt, we must commit prior changes to memory
2275 * (Documentation/RCU/rculist_nulls.txt for details)
2278 atomic_set(&sk->sk_refcnt, 1);
2279 atomic_set(&sk->sk_drops, 0);
2281 EXPORT_SYMBOL(sock_init_data);
2283 void lock_sock_nested(struct sock *sk, int subclass)
2286 spin_lock_bh(&sk->sk_lock.slock);
2287 if (sk->sk_lock.owned)
2289 sk->sk_lock.owned = 1;
2290 spin_unlock(&sk->sk_lock.slock);
2292 * The sk_lock has mutex_lock() semantics here:
2294 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2297 EXPORT_SYMBOL(lock_sock_nested);
2299 void release_sock(struct sock *sk)
2302 * The sk_lock has mutex_unlock() semantics:
2304 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2306 spin_lock_bh(&sk->sk_lock.slock);
2307 if (sk->sk_backlog.tail)
2310 if (sk->sk_prot->release_cb)
2311 sk->sk_prot->release_cb(sk);
2313 sk->sk_lock.owned = 0;
2314 if (waitqueue_active(&sk->sk_lock.wq))
2315 wake_up(&sk->sk_lock.wq);
2316 spin_unlock_bh(&sk->sk_lock.slock);
2318 EXPORT_SYMBOL(release_sock);
2321 * lock_sock_fast - fast version of lock_sock
2324 * This version should be used for very small section, where process wont block
2325 * return false if fast path is taken
2326 * sk_lock.slock locked, owned = 0, BH disabled
2327 * return true if slow path is taken
2328 * sk_lock.slock unlocked, owned = 1, BH enabled
2330 bool lock_sock_fast(struct sock *sk)
2333 spin_lock_bh(&sk->sk_lock.slock);
2335 if (!sk->sk_lock.owned)
2337 * Note : We must disable BH
2342 sk->sk_lock.owned = 1;
2343 spin_unlock(&sk->sk_lock.slock);
2345 * The sk_lock has mutex_lock() semantics here:
2347 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2351 EXPORT_SYMBOL(lock_sock_fast);
2353 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2356 if (!sock_flag(sk, SOCK_TIMESTAMP))
2357 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2358 tv = ktime_to_timeval(sk->sk_stamp);
2359 if (tv.tv_sec == -1)
2361 if (tv.tv_sec == 0) {
2362 sk->sk_stamp = ktime_get_real();
2363 tv = ktime_to_timeval(sk->sk_stamp);
2365 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2367 EXPORT_SYMBOL(sock_get_timestamp);
2369 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2372 if (!sock_flag(sk, SOCK_TIMESTAMP))
2373 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2374 ts = ktime_to_timespec(sk->sk_stamp);
2375 if (ts.tv_sec == -1)
2377 if (ts.tv_sec == 0) {
2378 sk->sk_stamp = ktime_get_real();
2379 ts = ktime_to_timespec(sk->sk_stamp);
2381 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2383 EXPORT_SYMBOL(sock_get_timestampns);
2385 void sock_enable_timestamp(struct sock *sk, int flag)
2387 if (!sock_flag(sk, flag)) {
2388 unsigned long previous_flags = sk->sk_flags;
2390 sock_set_flag(sk, flag);
2392 * we just set one of the two flags which require net
2393 * time stamping, but time stamping might have been on
2394 * already because of the other one
2396 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2397 net_enable_timestamp();
2402 * Get a socket option on an socket.
2404 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2405 * asynchronous errors should be reported by getsockopt. We assume
2406 * this means if you specify SO_ERROR (otherwise whats the point of it).
2408 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2409 char __user *optval, int __user *optlen)
2411 struct sock *sk = sock->sk;
2413 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2415 EXPORT_SYMBOL(sock_common_getsockopt);
2417 #ifdef CONFIG_COMPAT
2418 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2419 char __user *optval, int __user *optlen)
2421 struct sock *sk = sock->sk;
2423 if (sk->sk_prot->compat_getsockopt != NULL)
2424 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2426 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2428 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2431 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2432 struct msghdr *msg, size_t size, int flags)
2434 struct sock *sk = sock->sk;
2438 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2439 flags & ~MSG_DONTWAIT, &addr_len);
2441 msg->msg_namelen = addr_len;
2444 EXPORT_SYMBOL(sock_common_recvmsg);
2447 * Set socket options on an inet socket.
2449 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2450 char __user *optval, unsigned int optlen)
2452 struct sock *sk = sock->sk;
2454 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2456 EXPORT_SYMBOL(sock_common_setsockopt);
2458 #ifdef CONFIG_COMPAT
2459 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2460 char __user *optval, unsigned int optlen)
2462 struct sock *sk = sock->sk;
2464 if (sk->sk_prot->compat_setsockopt != NULL)
2465 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2467 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2469 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2472 void sk_common_release(struct sock *sk)
2474 if (sk->sk_prot->destroy)
2475 sk->sk_prot->destroy(sk);
2478 * Observation: when sock_common_release is called, processes have
2479 * no access to socket. But net still has.
2480 * Step one, detach it from networking:
2482 * A. Remove from hash tables.
2485 sk->sk_prot->unhash(sk);
2488 * In this point socket cannot receive new packets, but it is possible
2489 * that some packets are in flight because some CPU runs receiver and
2490 * did hash table lookup before we unhashed socket. They will achieve
2491 * receive queue and will be purged by socket destructor.
2493 * Also we still have packets pending on receive queue and probably,
2494 * our own packets waiting in device queues. sock_destroy will drain
2495 * receive queue, but transmitted packets will delay socket destruction
2496 * until the last reference will be released.
2501 xfrm_sk_free_policy(sk);
2503 sk_refcnt_debug_release(sk);
2505 if (sk->sk_frag.page) {
2506 put_page(sk->sk_frag.page);
2507 sk->sk_frag.page = NULL;
2512 EXPORT_SYMBOL(sk_common_release);
2514 #ifdef CONFIG_PROC_FS
2515 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2517 int val[PROTO_INUSE_NR];
2520 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2522 #ifdef CONFIG_NET_NS
2523 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2525 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2527 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2529 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2531 int cpu, idx = prot->inuse_idx;
2534 for_each_possible_cpu(cpu)
2535 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2537 return res >= 0 ? res : 0;
2539 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2541 static int __net_init sock_inuse_init_net(struct net *net)
2543 net->core.inuse = alloc_percpu(struct prot_inuse);
2544 return net->core.inuse ? 0 : -ENOMEM;
2547 static void __net_exit sock_inuse_exit_net(struct net *net)
2549 free_percpu(net->core.inuse);
2552 static struct pernet_operations net_inuse_ops = {
2553 .init = sock_inuse_init_net,
2554 .exit = sock_inuse_exit_net,
2557 static __init int net_inuse_init(void)
2559 if (register_pernet_subsys(&net_inuse_ops))
2560 panic("Cannot initialize net inuse counters");
2565 core_initcall(net_inuse_init);
2567 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2569 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2571 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2573 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2575 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2577 int cpu, idx = prot->inuse_idx;
2580 for_each_possible_cpu(cpu)
2581 res += per_cpu(prot_inuse, cpu).val[idx];
2583 return res >= 0 ? res : 0;
2585 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2588 static void assign_proto_idx(struct proto *prot)
2590 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2592 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2593 pr_err("PROTO_INUSE_NR exhausted\n");
2597 set_bit(prot->inuse_idx, proto_inuse_idx);
2600 static void release_proto_idx(struct proto *prot)
2602 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2603 clear_bit(prot->inuse_idx, proto_inuse_idx);
2606 static inline void assign_proto_idx(struct proto *prot)
2610 static inline void release_proto_idx(struct proto *prot)
2615 int proto_register(struct proto *prot, int alloc_slab)
2618 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2619 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2622 if (prot->slab == NULL) {
2623 pr_crit("%s: Can't create sock SLAB cache!\n",
2628 if (prot->rsk_prot != NULL) {
2629 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2630 if (prot->rsk_prot->slab_name == NULL)
2631 goto out_free_sock_slab;
2633 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2634 prot->rsk_prot->obj_size, 0,
2635 SLAB_HWCACHE_ALIGN, NULL);
2637 if (prot->rsk_prot->slab == NULL) {
2638 pr_crit("%s: Can't create request sock SLAB cache!\n",
2640 goto out_free_request_sock_slab_name;
2644 if (prot->twsk_prot != NULL) {
2645 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2647 if (prot->twsk_prot->twsk_slab_name == NULL)
2648 goto out_free_request_sock_slab;
2650 prot->twsk_prot->twsk_slab =
2651 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2652 prot->twsk_prot->twsk_obj_size,
2654 SLAB_HWCACHE_ALIGN |
2657 if (prot->twsk_prot->twsk_slab == NULL)
2658 goto out_free_timewait_sock_slab_name;
2662 mutex_lock(&proto_list_mutex);
2663 list_add(&prot->node, &proto_list);
2664 assign_proto_idx(prot);
2665 mutex_unlock(&proto_list_mutex);
2668 out_free_timewait_sock_slab_name:
2669 kfree(prot->twsk_prot->twsk_slab_name);
2670 out_free_request_sock_slab:
2671 if (prot->rsk_prot && prot->rsk_prot->slab) {
2672 kmem_cache_destroy(prot->rsk_prot->slab);
2673 prot->rsk_prot->slab = NULL;
2675 out_free_request_sock_slab_name:
2677 kfree(prot->rsk_prot->slab_name);
2679 kmem_cache_destroy(prot->slab);
2684 EXPORT_SYMBOL(proto_register);
2686 void proto_unregister(struct proto *prot)
2688 mutex_lock(&proto_list_mutex);
2689 release_proto_idx(prot);
2690 list_del(&prot->node);
2691 mutex_unlock(&proto_list_mutex);
2693 if (prot->slab != NULL) {
2694 kmem_cache_destroy(prot->slab);
2698 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2699 kmem_cache_destroy(prot->rsk_prot->slab);
2700 kfree(prot->rsk_prot->slab_name);
2701 prot->rsk_prot->slab = NULL;
2704 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2705 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2706 kfree(prot->twsk_prot->twsk_slab_name);
2707 prot->twsk_prot->twsk_slab = NULL;
2710 EXPORT_SYMBOL(proto_unregister);
2712 #ifdef CONFIG_PROC_FS
2713 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2714 __acquires(proto_list_mutex)
2716 mutex_lock(&proto_list_mutex);
2717 return seq_list_start_head(&proto_list, *pos);
2720 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2722 return seq_list_next(v, &proto_list, pos);
2725 static void proto_seq_stop(struct seq_file *seq, void *v)
2726 __releases(proto_list_mutex)
2728 mutex_unlock(&proto_list_mutex);
2731 static char proto_method_implemented(const void *method)
2733 return method == NULL ? 'n' : 'y';
2735 static long sock_prot_memory_allocated(struct proto *proto)
2737 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2740 static char *sock_prot_memory_pressure(struct proto *proto)
2742 return proto->memory_pressure != NULL ?
2743 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2746 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2749 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2750 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2753 sock_prot_inuse_get(seq_file_net(seq), proto),
2754 sock_prot_memory_allocated(proto),
2755 sock_prot_memory_pressure(proto),
2757 proto->slab == NULL ? "no" : "yes",
2758 module_name(proto->owner),
2759 proto_method_implemented(proto->close),
2760 proto_method_implemented(proto->connect),
2761 proto_method_implemented(proto->disconnect),
2762 proto_method_implemented(proto->accept),
2763 proto_method_implemented(proto->ioctl),
2764 proto_method_implemented(proto->init),
2765 proto_method_implemented(proto->destroy),
2766 proto_method_implemented(proto->shutdown),
2767 proto_method_implemented(proto->setsockopt),
2768 proto_method_implemented(proto->getsockopt),
2769 proto_method_implemented(proto->sendmsg),
2770 proto_method_implemented(proto->recvmsg),
2771 proto_method_implemented(proto->sendpage),
2772 proto_method_implemented(proto->bind),
2773 proto_method_implemented(proto->backlog_rcv),
2774 proto_method_implemented(proto->hash),
2775 proto_method_implemented(proto->unhash),
2776 proto_method_implemented(proto->get_port),
2777 proto_method_implemented(proto->enter_memory_pressure));
2780 static int proto_seq_show(struct seq_file *seq, void *v)
2782 if (v == &proto_list)
2783 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2792 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2794 proto_seq_printf(seq, list_entry(v, struct proto, node));
2798 static const struct seq_operations proto_seq_ops = {
2799 .start = proto_seq_start,
2800 .next = proto_seq_next,
2801 .stop = proto_seq_stop,
2802 .show = proto_seq_show,
2805 static int proto_seq_open(struct inode *inode, struct file *file)
2807 return seq_open_net(inode, file, &proto_seq_ops,
2808 sizeof(struct seq_net_private));
2811 static const struct file_operations proto_seq_fops = {
2812 .owner = THIS_MODULE,
2813 .open = proto_seq_open,
2815 .llseek = seq_lseek,
2816 .release = seq_release_net,
2819 static __net_init int proto_init_net(struct net *net)
2821 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2827 static __net_exit void proto_exit_net(struct net *net)
2829 proc_net_remove(net, "protocols");
2833 static __net_initdata struct pernet_operations proto_net_ops = {
2834 .init = proto_init_net,
2835 .exit = proto_exit_net,
2838 static int __init proto_init(void)
2840 return register_pernet_subsys(&proto_net_ops);
2843 subsys_initcall(proto_init);
2845 #endif /* PROC_FS */