1 // SPDX-License-Identifier: GPL-2.0+
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
7 * Copyright (c) 2023 ByteDance
12 * DOC: Interesting implementation details of the Maple Tree
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
25 * The following illustrates the layout of a range64 nodes slots and pivots.
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
67 #define MA_ROOT_PARENT 1
71 * * MA_STATE_BULK - Bulk insert mode
72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
75 #define MA_STATE_BULK 1
76 #define MA_STATE_REBALANCE 2
77 #define MA_STATE_PREALLOC 4
79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
81 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
82 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
83 static struct kmem_cache *maple_node_cache;
85 #ifdef CONFIG_DEBUG_MAPLE_TREE
86 static const unsigned long mt_max[] = {
87 [maple_dense] = MAPLE_NODE_SLOTS,
88 [maple_leaf_64] = ULONG_MAX,
89 [maple_range_64] = ULONG_MAX,
90 [maple_arange_64] = ULONG_MAX,
92 #define mt_node_max(x) mt_max[mte_node_type(x)]
95 static const unsigned char mt_slots[] = {
96 [maple_dense] = MAPLE_NODE_SLOTS,
97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
98 [maple_range_64] = MAPLE_RANGE64_SLOTS,
99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
101 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
103 static const unsigned char mt_pivots[] = {
105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
111 static const unsigned char mt_min_slots[] = {
112 [maple_dense] = MAPLE_NODE_SLOTS / 2,
113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
119 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
120 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
122 struct maple_big_node {
123 struct maple_pnode *parent;
124 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
126 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
128 unsigned long padding[MAPLE_BIG_NODE_GAPS];
129 unsigned long gap[MAPLE_BIG_NODE_GAPS];
133 enum maple_type type;
137 * The maple_subtree_state is used to build a tree to replace a segment of an
138 * existing tree in a more atomic way. Any walkers of the older tree will hit a
139 * dead node and restart on updates.
141 struct maple_subtree_state {
142 struct ma_state *orig_l; /* Original left side of subtree */
143 struct ma_state *orig_r; /* Original right side of subtree */
144 struct ma_state *l; /* New left side of subtree */
145 struct ma_state *m; /* New middle of subtree (rare) */
146 struct ma_state *r; /* New right side of subtree */
147 struct ma_topiary *free; /* nodes to be freed */
148 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
149 struct maple_big_node *bn;
152 #ifdef CONFIG_KASAN_STACK
153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
154 #define noinline_for_kasan noinline_for_stack
156 #define noinline_for_kasan inline
160 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
162 return kmem_cache_alloc(maple_node_cache, gfp);
165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
167 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
170 static inline void mt_free_one(struct maple_node *node)
172 kmem_cache_free(maple_node_cache, node);
175 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
177 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
180 static void mt_free_rcu(struct rcu_head *head)
182 struct maple_node *node = container_of(head, struct maple_node, rcu);
184 kmem_cache_free(maple_node_cache, node);
188 * ma_free_rcu() - Use rcu callback to free a maple node
189 * @node: The node to free
191 * The maple tree uses the parent pointer to indicate this node is no longer in
192 * use and will be freed.
194 static void ma_free_rcu(struct maple_node *node)
196 WARN_ON(node->parent != ma_parent_ptr(node));
197 call_rcu(&node->rcu, mt_free_rcu);
200 static void mas_set_height(struct ma_state *mas)
202 unsigned int new_flags = mas->tree->ma_flags;
204 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
205 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
206 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
207 mas->tree->ma_flags = new_flags;
210 static unsigned int mas_mt_height(struct ma_state *mas)
212 return mt_height(mas->tree);
215 static inline unsigned int mt_attr(struct maple_tree *mt)
217 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
220 static __always_inline enum maple_type mte_node_type(
221 const struct maple_enode *entry)
223 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
224 MAPLE_NODE_TYPE_MASK;
227 static __always_inline bool ma_is_dense(const enum maple_type type)
229 return type < maple_leaf_64;
232 static __always_inline bool ma_is_leaf(const enum maple_type type)
234 return type < maple_range_64;
237 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
239 return ma_is_leaf(mte_node_type(entry));
243 * We also reserve values with the bottom two bits set to '10' which are
246 static __always_inline bool mt_is_reserved(const void *entry)
248 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
249 xa_is_internal(entry);
252 static __always_inline void mas_set_err(struct ma_state *mas, long err)
254 mas->node = MA_ERROR(err);
255 mas->status = ma_error;
258 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
260 return mas->status == ma_root;
263 static __always_inline bool mas_is_start(const struct ma_state *mas)
265 return mas->status == ma_start;
268 static __always_inline bool mas_is_none(const struct ma_state *mas)
270 return mas->status == ma_none;
273 static __always_inline bool mas_is_paused(const struct ma_state *mas)
275 return mas->status == ma_pause;
278 static __always_inline bool mas_is_overflow(struct ma_state *mas)
280 return mas->status == ma_overflow;
283 static inline bool mas_is_underflow(struct ma_state *mas)
285 return mas->status == ma_underflow;
288 static __always_inline struct maple_node *mte_to_node(
289 const struct maple_enode *entry)
291 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
296 * @entry: The maple encoded node
298 * Return: a maple topiary pointer
300 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
302 return (struct maple_topiary *)
303 ((unsigned long)entry & ~MAPLE_NODE_MASK);
307 * mas_mn() - Get the maple state node.
308 * @mas: The maple state
310 * Return: the maple node (not encoded - bare pointer).
312 static inline struct maple_node *mas_mn(const struct ma_state *mas)
314 return mte_to_node(mas->node);
318 * mte_set_node_dead() - Set a maple encoded node as dead.
319 * @mn: The maple encoded node.
321 static inline void mte_set_node_dead(struct maple_enode *mn)
323 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
324 smp_wmb(); /* Needed for RCU */
327 /* Bit 1 indicates the root is a node */
328 #define MAPLE_ROOT_NODE 0x02
329 /* maple_type stored bit 3-6 */
330 #define MAPLE_ENODE_TYPE_SHIFT 0x03
331 /* Bit 2 means a NULL somewhere below */
332 #define MAPLE_ENODE_NULL 0x04
334 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
335 enum maple_type type)
337 return (void *)((unsigned long)node |
338 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
341 static inline void *mte_mk_root(const struct maple_enode *node)
343 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
346 static inline void *mte_safe_root(const struct maple_enode *node)
348 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
351 static inline void *mte_set_full(const struct maple_enode *node)
353 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
356 static inline void *mte_clear_full(const struct maple_enode *node)
358 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
361 static inline bool mte_has_null(const struct maple_enode *node)
363 return (unsigned long)node & MAPLE_ENODE_NULL;
366 static __always_inline bool ma_is_root(struct maple_node *node)
368 return ((unsigned long)node->parent & MA_ROOT_PARENT);
371 static __always_inline bool mte_is_root(const struct maple_enode *node)
373 return ma_is_root(mte_to_node(node));
376 static inline bool mas_is_root_limits(const struct ma_state *mas)
378 return !mas->min && mas->max == ULONG_MAX;
381 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
383 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
390 * bit values need an extra bit to store the offset. This extra bit comes from
391 * a reuse of the last bit in the node type. This is possible by using bit 1 to
392 * indicate if bit 2 is part of the type or the slot.
396 * 0x?00 = 16 bit nodes
397 * 0x010 = 32 bit nodes
398 * 0x110 = 64 bit nodes
400 * Slot size and alignment
402 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
403 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
404 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
407 #define MAPLE_PARENT_ROOT 0x01
409 #define MAPLE_PARENT_SLOT_SHIFT 0x03
410 #define MAPLE_PARENT_SLOT_MASK 0xF8
412 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
413 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
415 #define MAPLE_PARENT_RANGE64 0x06
416 #define MAPLE_PARENT_RANGE32 0x04
417 #define MAPLE_PARENT_NOT_RANGE16 0x02
420 * mte_parent_shift() - Get the parent shift for the slot storage.
421 * @parent: The parent pointer cast as an unsigned long
422 * Return: The shift into that pointer to the star to of the slot
424 static inline unsigned long mte_parent_shift(unsigned long parent)
426 /* Note bit 1 == 0 means 16B */
427 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
428 return MAPLE_PARENT_SLOT_SHIFT;
430 return MAPLE_PARENT_16B_SLOT_SHIFT;
434 * mte_parent_slot_mask() - Get the slot mask for the parent.
435 * @parent: The parent pointer cast as an unsigned long.
436 * Return: The slot mask for that parent.
438 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
440 /* Note bit 1 == 0 means 16B */
441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 return MAPLE_PARENT_SLOT_MASK;
444 return MAPLE_PARENT_16B_SLOT_MASK;
448 * mas_parent_type() - Return the maple_type of the parent from the stored
450 * @mas: The maple state
451 * @enode: The maple_enode to extract the parent's enum
452 * Return: The node->parent maple_type
455 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
457 unsigned long p_type;
459 p_type = (unsigned long)mte_to_node(enode)->parent;
460 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
463 p_type &= MAPLE_NODE_MASK;
464 p_type &= ~mte_parent_slot_mask(p_type);
466 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
467 if (mt_is_alloc(mas->tree))
468 return maple_arange_64;
469 return maple_range_64;
476 * mas_set_parent() - Set the parent node and encode the slot
477 * @enode: The encoded maple node.
478 * @parent: The encoded maple node that is the parent of @enode.
479 * @slot: The slot that @enode resides in @parent.
481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
485 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
486 const struct maple_enode *parent, unsigned char slot)
488 unsigned long val = (unsigned long)parent;
491 enum maple_type p_type = mte_node_type(parent);
493 MAS_BUG_ON(mas, p_type == maple_dense);
494 MAS_BUG_ON(mas, p_type == maple_leaf_64);
498 case maple_arange_64:
499 shift = MAPLE_PARENT_SLOT_SHIFT;
500 type = MAPLE_PARENT_RANGE64;
509 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
510 val |= (slot << shift) | type;
511 mte_to_node(enode)->parent = ma_parent_ptr(val);
515 * mte_parent_slot() - get the parent slot of @enode.
516 * @enode: The encoded maple node.
518 * Return: The slot in the parent node where @enode resides.
520 static __always_inline
521 unsigned int mte_parent_slot(const struct maple_enode *enode)
523 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
525 if (unlikely(val & MA_ROOT_PARENT))
529 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
530 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
532 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
536 * mte_parent() - Get the parent of @node.
537 * @node: The encoded maple node.
539 * Return: The parent maple node.
541 static __always_inline
542 struct maple_node *mte_parent(const struct maple_enode *enode)
544 return (void *)((unsigned long)
545 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
549 * ma_dead_node() - check if the @enode is dead.
550 * @enode: The encoded maple node
552 * Return: true if dead, false otherwise.
554 static __always_inline bool ma_dead_node(const struct maple_node *node)
556 struct maple_node *parent;
558 /* Do not reorder reads from the node prior to the parent check */
560 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
561 return (parent == node);
565 * mte_dead_node() - check if the @enode is dead.
566 * @enode: The encoded maple node
568 * Return: true if dead, false otherwise.
570 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
572 struct maple_node *parent, *node;
574 node = mte_to_node(enode);
575 /* Do not reorder reads from the node prior to the parent check */
577 parent = mte_parent(enode);
578 return (parent == node);
582 * mas_allocated() - Get the number of nodes allocated in a maple state.
583 * @mas: The maple state
585 * The ma_state alloc member is overloaded to hold a pointer to the first
586 * allocated node or to the number of requested nodes to allocate. If bit 0 is
587 * set, then the alloc contains the number of requested nodes. If there is an
588 * allocated node, then the total allocated nodes is in that node.
590 * Return: The total number of nodes allocated
592 static inline unsigned long mas_allocated(const struct ma_state *mas)
594 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
597 return mas->alloc->total;
601 * mas_set_alloc_req() - Set the requested number of allocations.
602 * @mas: the maple state
603 * @count: the number of allocations.
605 * The requested number of allocations is either in the first allocated node,
606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
607 * no allocated node. Set the request either in the node or do the necessary
608 * encoding to store in @mas->alloc directly.
610 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
612 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
616 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
620 mas->alloc->request_count = count;
624 * mas_alloc_req() - get the requested number of allocations.
625 * @mas: The maple state
627 * The alloc count is either stored directly in @mas, or in
628 * @mas->alloc->request_count if there is at least one node allocated. Decode
629 * the request count if it's stored directly in @mas->alloc.
631 * Return: The allocation request count.
633 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
635 if ((unsigned long)mas->alloc & 0x1)
636 return (unsigned long)(mas->alloc) >> 1;
638 return mas->alloc->request_count;
643 * ma_pivots() - Get a pointer to the maple node pivots.
644 * @node - the maple node
645 * @type - the node type
647 * In the event of a dead node, this array may be %NULL
649 * Return: A pointer to the maple node pivots
651 static inline unsigned long *ma_pivots(struct maple_node *node,
652 enum maple_type type)
655 case maple_arange_64:
656 return node->ma64.pivot;
659 return node->mr64.pivot;
667 * ma_gaps() - Get a pointer to the maple node gaps.
668 * @node - the maple node
669 * @type - the node type
671 * Return: A pointer to the maple node gaps
673 static inline unsigned long *ma_gaps(struct maple_node *node,
674 enum maple_type type)
677 case maple_arange_64:
678 return node->ma64.gap;
688 * mas_safe_pivot() - get the pivot at @piv or mas->max.
689 * @mas: The maple state
690 * @pivots: The pointer to the maple node pivots
691 * @piv: The pivot to fetch
692 * @type: The maple node type
694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
697 static __always_inline unsigned long
698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
699 unsigned char piv, enum maple_type type)
701 if (piv >= mt_pivots[type])
708 * mas_safe_min() - Return the minimum for a given offset.
709 * @mas: The maple state
710 * @pivots: The pointer to the maple node pivots
711 * @offset: The offset into the pivot array
713 * Return: The minimum range value that is contained in @offset.
715 static inline unsigned long
716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
719 return pivots[offset - 1] + 1;
725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
726 * @mn: The encoded maple node
727 * @piv: The pivot offset
728 * @val: The value of the pivot
730 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
733 struct maple_node *node = mte_to_node(mn);
734 enum maple_type type = mte_node_type(mn);
736 BUG_ON(piv >= mt_pivots[type]);
740 node->mr64.pivot[piv] = val;
742 case maple_arange_64:
743 node->ma64.pivot[piv] = val;
752 * ma_slots() - Get a pointer to the maple node slots.
753 * @mn: The maple node
754 * @mt: The maple node type
756 * Return: A pointer to the maple node slots
758 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
761 case maple_arange_64:
762 return mn->ma64.slot;
765 return mn->mr64.slot;
773 static inline bool mt_write_locked(const struct maple_tree *mt)
775 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
776 lockdep_is_held(&mt->ma_lock);
779 static __always_inline bool mt_locked(const struct maple_tree *mt)
781 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
782 lockdep_is_held(&mt->ma_lock);
785 static __always_inline void *mt_slot(const struct maple_tree *mt,
786 void __rcu **slots, unsigned char offset)
788 return rcu_dereference_check(slots[offset], mt_locked(mt));
791 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
792 void __rcu **slots, unsigned char offset)
794 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
797 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
798 * @mas: The maple state
799 * @slots: The pointer to the slots
800 * @offset: The offset into the slots array to fetch
802 * Return: The entry stored in @slots at the @offset.
804 static __always_inline void *mas_slot_locked(struct ma_state *mas,
805 void __rcu **slots, unsigned char offset)
807 return mt_slot_locked(mas->tree, slots, offset);
811 * mas_slot() - Get the slot value when not holding the maple tree lock.
812 * @mas: The maple state
813 * @slots: The pointer to the slots
814 * @offset: The offset into the slots array to fetch
816 * Return: The entry stored in @slots at the @offset
818 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
819 unsigned char offset)
821 return mt_slot(mas->tree, slots, offset);
825 * mas_root() - Get the maple tree root.
826 * @mas: The maple state.
828 * Return: The pointer to the root of the tree
830 static __always_inline void *mas_root(struct ma_state *mas)
832 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
835 static inline void *mt_root_locked(struct maple_tree *mt)
837 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
842 * @mas: The maple state.
844 * Return: The pointer to the root of the tree
846 static inline void *mas_root_locked(struct ma_state *mas)
848 return mt_root_locked(mas->tree);
851 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
855 case maple_arange_64:
856 return &mn->ma64.meta;
858 return &mn->mr64.meta;
863 * ma_set_meta() - Set the metadata information of a node.
864 * @mn: The maple node
865 * @mt: The maple node type
866 * @offset: The offset of the highest sub-gap in this node.
867 * @end: The end of the data in this node.
869 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
870 unsigned char offset, unsigned char end)
872 struct maple_metadata *meta = ma_meta(mn, mt);
879 * mt_clear_meta() - clear the metadata information of a node, if it exists
880 * @mt: The maple tree
881 * @mn: The maple node
882 * @type: The maple node type
883 * @offset: The offset of the highest sub-gap in this node.
884 * @end: The end of the data in this node.
886 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
887 enum maple_type type)
889 struct maple_metadata *meta;
890 unsigned long *pivots;
896 pivots = mn->mr64.pivot;
897 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
898 slots = mn->mr64.slot;
899 next = mt_slot_locked(mt, slots,
900 MAPLE_RANGE64_SLOTS - 1);
901 if (unlikely((mte_to_node(next) &&
902 mte_node_type(next))))
903 return; /* no metadata, could be node */
906 case maple_arange_64:
907 meta = ma_meta(mn, type);
918 * ma_meta_end() - Get the data end of a node from the metadata
919 * @mn: The maple node
920 * @mt: The maple node type
922 static inline unsigned char ma_meta_end(struct maple_node *mn,
925 struct maple_metadata *meta = ma_meta(mn, mt);
931 * ma_meta_gap() - Get the largest gap location of a node from the metadata
932 * @mn: The maple node
934 static inline unsigned char ma_meta_gap(struct maple_node *mn)
936 return mn->ma64.meta.gap;
940 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
941 * @mn: The maple node
942 * @mn: The maple node type
943 * @offset: The location of the largest gap.
945 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
946 unsigned char offset)
949 struct maple_metadata *meta = ma_meta(mn, mt);
955 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
956 * @mat - the ma_topiary, a linked list of dead nodes.
957 * @dead_enode - the node to be marked as dead and added to the tail of the list
959 * Add the @dead_enode to the linked list in @mat.
961 static inline void mat_add(struct ma_topiary *mat,
962 struct maple_enode *dead_enode)
964 mte_set_node_dead(dead_enode);
965 mte_to_mat(dead_enode)->next = NULL;
967 mat->tail = mat->head = dead_enode;
971 mte_to_mat(mat->tail)->next = dead_enode;
972 mat->tail = dead_enode;
975 static void mt_free_walk(struct rcu_head *head);
976 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
980 * @mas - the maple state
981 * @mat - the ma_topiary linked list of dead nodes to free.
983 * Destroy walk a dead list.
985 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
987 struct maple_enode *next;
988 struct maple_node *node;
989 bool in_rcu = mt_in_rcu(mas->tree);
992 next = mte_to_mat(mat->head)->next;
993 node = mte_to_node(mat->head);
994 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
996 call_rcu(&node->rcu, mt_free_walk);
1001 * mas_descend() - Descend into the slot stored in the ma_state.
1002 * @mas - the maple state.
1004 * Note: Not RCU safe, only use in write side or debug code.
1006 static inline void mas_descend(struct ma_state *mas)
1008 enum maple_type type;
1009 unsigned long *pivots;
1010 struct maple_node *node;
1014 type = mte_node_type(mas->node);
1015 pivots = ma_pivots(node, type);
1016 slots = ma_slots(node, type);
1019 mas->min = pivots[mas->offset - 1] + 1;
1020 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1021 mas->node = mas_slot(mas, slots, mas->offset);
1025 * mte_set_gap() - Set a maple node gap.
1026 * @mn: The encoded maple node
1027 * @gap: The offset of the gap to set
1028 * @val: The gap value
1030 static inline void mte_set_gap(const struct maple_enode *mn,
1031 unsigned char gap, unsigned long val)
1033 switch (mte_node_type(mn)) {
1036 case maple_arange_64:
1037 mte_to_node(mn)->ma64.gap[gap] = val;
1043 * mas_ascend() - Walk up a level of the tree.
1044 * @mas: The maple state
1046 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1047 * may cause several levels of walking up to find the correct min and max.
1048 * May find a dead node which will cause a premature return.
1049 * Return: 1 on dead node, 0 otherwise
1051 static int mas_ascend(struct ma_state *mas)
1053 struct maple_enode *p_enode; /* parent enode. */
1054 struct maple_enode *a_enode; /* ancestor enode. */
1055 struct maple_node *a_node; /* ancestor node. */
1056 struct maple_node *p_node; /* parent node. */
1057 unsigned char a_slot;
1058 enum maple_type a_type;
1059 unsigned long min, max;
1060 unsigned long *pivots;
1061 bool set_max = false, set_min = false;
1063 a_node = mas_mn(mas);
1064 if (ma_is_root(a_node)) {
1069 p_node = mte_parent(mas->node);
1070 if (unlikely(a_node == p_node))
1073 a_type = mas_parent_type(mas, mas->node);
1074 mas->offset = mte_parent_slot(mas->node);
1075 a_enode = mt_mk_node(p_node, a_type);
1077 /* Check to make sure all parent information is still accurate */
1078 if (p_node != mte_parent(mas->node))
1081 mas->node = a_enode;
1083 if (mte_is_root(a_enode)) {
1084 mas->max = ULONG_MAX;
1096 if (mas->max == ULONG_MAX)
1101 a_type = mas_parent_type(mas, p_enode);
1102 a_node = mte_parent(p_enode);
1103 a_slot = mte_parent_slot(p_enode);
1104 a_enode = mt_mk_node(a_node, a_type);
1105 pivots = ma_pivots(a_node, a_type);
1107 if (unlikely(ma_dead_node(a_node)))
1110 if (!set_min && a_slot) {
1112 min = pivots[a_slot - 1] + 1;
1115 if (!set_max && a_slot < mt_pivots[a_type]) {
1117 max = pivots[a_slot];
1120 if (unlikely(ma_dead_node(a_node)))
1123 if (unlikely(ma_is_root(a_node)))
1126 } while (!set_min || !set_max);
1134 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1135 * @mas: The maple state
1137 * Return: A pointer to a maple node.
1139 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1141 struct maple_alloc *ret, *node = mas->alloc;
1142 unsigned long total = mas_allocated(mas);
1143 unsigned int req = mas_alloc_req(mas);
1145 /* nothing or a request pending. */
1146 if (WARN_ON(!total))
1150 /* single allocation in this ma_state */
1156 if (node->node_count == 1) {
1157 /* Single allocation in this node. */
1158 mas->alloc = node->slot[0];
1159 mas->alloc->total = node->total - 1;
1164 ret = node->slot[--node->node_count];
1165 node->slot[node->node_count] = NULL;
1171 mas_set_alloc_req(mas, req);
1174 memset(ret, 0, sizeof(*ret));
1175 return (struct maple_node *)ret;
1179 * mas_push_node() - Push a node back on the maple state allocation.
1180 * @mas: The maple state
1181 * @used: The used maple node
1183 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1184 * requested node count as necessary.
1186 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1188 struct maple_alloc *reuse = (struct maple_alloc *)used;
1189 struct maple_alloc *head = mas->alloc;
1190 unsigned long count;
1191 unsigned int requested = mas_alloc_req(mas);
1193 count = mas_allocated(mas);
1195 reuse->request_count = 0;
1196 reuse->node_count = 0;
1197 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1198 head->slot[head->node_count++] = reuse;
1204 if ((head) && !((unsigned long)head & 0x1)) {
1205 reuse->slot[0] = head;
1206 reuse->node_count = 1;
1207 reuse->total += head->total;
1213 mas_set_alloc_req(mas, requested - 1);
1217 * mas_alloc_nodes() - Allocate nodes into a maple state
1218 * @mas: The maple state
1219 * @gfp: The GFP Flags
1221 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1223 struct maple_alloc *node;
1224 unsigned long allocated = mas_allocated(mas);
1225 unsigned int requested = mas_alloc_req(mas);
1227 void **slots = NULL;
1228 unsigned int max_req = 0;
1233 mas_set_alloc_req(mas, 0);
1234 if (mas->mas_flags & MA_STATE_PREALLOC) {
1238 WARN_ON(!allocated);
1241 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1242 node = (struct maple_alloc *)mt_alloc_one(gfp);
1247 node->slot[0] = mas->alloc;
1248 node->node_count = 1;
1250 node->node_count = 0;
1254 node->total = ++allocated;
1259 node->request_count = 0;
1261 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1262 slots = (void **)&node->slot[node->node_count];
1263 max_req = min(requested, max_req);
1264 count = mt_alloc_bulk(gfp, max_req, slots);
1268 if (node->node_count == 0) {
1269 node->slot[0]->node_count = 0;
1270 node->slot[0]->request_count = 0;
1273 node->node_count += count;
1275 node = node->slot[0];
1278 mas->alloc->total = allocated;
1282 /* Clean up potential freed allocations on bulk failure */
1283 memset(slots, 0, max_req * sizeof(unsigned long));
1285 mas_set_alloc_req(mas, requested);
1286 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1287 mas->alloc->total = allocated;
1288 mas_set_err(mas, -ENOMEM);
1292 * mas_free() - Free an encoded maple node
1293 * @mas: The maple state
1294 * @used: The encoded maple node to free.
1296 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1299 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1301 struct maple_node *tmp = mte_to_node(used);
1303 if (mt_in_rcu(mas->tree))
1306 mas_push_node(mas, tmp);
1310 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1311 * if there is not enough nodes.
1312 * @mas: The maple state
1313 * @count: The number of nodes needed
1314 * @gfp: the gfp flags
1316 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1318 unsigned long allocated = mas_allocated(mas);
1320 if (allocated < count) {
1321 mas_set_alloc_req(mas, count - allocated);
1322 mas_alloc_nodes(mas, gfp);
1327 * mas_node_count() - Check if enough nodes are allocated and request more if
1328 * there is not enough nodes.
1329 * @mas: The maple state
1330 * @count: The number of nodes needed
1332 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1334 static void mas_node_count(struct ma_state *mas, int count)
1336 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1340 * mas_start() - Sets up maple state for operations.
1341 * @mas: The maple state.
1343 * If mas->status == mas_start, then set the min, max and depth to
1347 * - If mas->node is an error or not mas_start, return NULL.
1348 * - If it's an empty tree: NULL & mas->status == ma_none
1349 * - If it's a single entry: The entry & mas->status == mas_root
1350 * - If it's a tree: NULL & mas->status == safe root node.
1352 static inline struct maple_enode *mas_start(struct ma_state *mas)
1354 if (likely(mas_is_start(mas))) {
1355 struct maple_enode *root;
1358 mas->max = ULONG_MAX;
1362 root = mas_root(mas);
1363 /* Tree with nodes */
1364 if (likely(xa_is_node(root))) {
1366 mas->status = ma_active;
1367 mas->node = mte_safe_root(root);
1369 if (mte_dead_node(mas->node))
1376 if (unlikely(!root)) {
1378 mas->status = ma_none;
1379 mas->offset = MAPLE_NODE_SLOTS;
1383 /* Single entry tree */
1384 mas->status = ma_root;
1385 mas->offset = MAPLE_NODE_SLOTS;
1387 /* Single entry tree. */
1398 * ma_data_end() - Find the end of the data in a node.
1399 * @node: The maple node
1400 * @type: The maple node type
1401 * @pivots: The array of pivots in the node
1402 * @max: The maximum value in the node
1404 * Uses metadata to find the end of the data when possible.
1405 * Return: The zero indexed last slot with data (may be null).
1407 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1408 enum maple_type type, unsigned long *pivots, unsigned long max)
1410 unsigned char offset;
1415 if (type == maple_arange_64)
1416 return ma_meta_end(node, type);
1418 offset = mt_pivots[type] - 1;
1419 if (likely(!pivots[offset]))
1420 return ma_meta_end(node, type);
1422 if (likely(pivots[offset] == max))
1425 return mt_pivots[type];
1429 * mas_data_end() - Find the end of the data (slot).
1430 * @mas: the maple state
1432 * This method is optimized to check the metadata of a node if the node type
1433 * supports data end metadata.
1435 * Return: The zero indexed last slot with data (may be null).
1437 static inline unsigned char mas_data_end(struct ma_state *mas)
1439 enum maple_type type;
1440 struct maple_node *node;
1441 unsigned char offset;
1442 unsigned long *pivots;
1444 type = mte_node_type(mas->node);
1446 if (type == maple_arange_64)
1447 return ma_meta_end(node, type);
1449 pivots = ma_pivots(node, type);
1450 if (unlikely(ma_dead_node(node)))
1453 offset = mt_pivots[type] - 1;
1454 if (likely(!pivots[offset]))
1455 return ma_meta_end(node, type);
1457 if (likely(pivots[offset] == mas->max))
1460 return mt_pivots[type];
1464 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1465 * @mas - the maple state
1467 * Return: The maximum gap in the leaf.
1469 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1472 unsigned long pstart, gap, max_gap;
1473 struct maple_node *mn;
1474 unsigned long *pivots;
1477 unsigned char max_piv;
1479 mt = mte_node_type(mas->node);
1481 slots = ma_slots(mn, mt);
1483 if (unlikely(ma_is_dense(mt))) {
1485 for (i = 0; i < mt_slots[mt]; i++) {
1500 * Check the first implied pivot optimizes the loop below and slot 1 may
1501 * be skipped if there is a gap in slot 0.
1503 pivots = ma_pivots(mn, mt);
1504 if (likely(!slots[0])) {
1505 max_gap = pivots[0] - mas->min + 1;
1511 /* reduce max_piv as the special case is checked before the loop */
1512 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1514 * Check end implied pivot which can only be a gap on the right most
1517 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1518 gap = ULONG_MAX - pivots[max_piv];
1522 if (max_gap > pivots[max_piv] - mas->min)
1526 for (; i <= max_piv; i++) {
1527 /* data == no gap. */
1528 if (likely(slots[i]))
1531 pstart = pivots[i - 1];
1532 gap = pivots[i] - pstart;
1536 /* There cannot be two gaps in a row. */
1543 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1544 * @node: The maple node
1545 * @gaps: The pointer to the gaps
1546 * @mt: The maple node type
1547 * @*off: Pointer to store the offset location of the gap.
1549 * Uses the metadata data end to scan backwards across set gaps.
1551 * Return: The maximum gap value
1553 static inline unsigned long
1554 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1557 unsigned char offset, i;
1558 unsigned long max_gap = 0;
1560 i = offset = ma_meta_end(node, mt);
1562 if (gaps[i] > max_gap) {
1573 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1574 * @mas: The maple state.
1576 * Return: The gap value.
1578 static inline unsigned long mas_max_gap(struct ma_state *mas)
1580 unsigned long *gaps;
1581 unsigned char offset;
1583 struct maple_node *node;
1585 mt = mte_node_type(mas->node);
1587 return mas_leaf_max_gap(mas);
1590 MAS_BUG_ON(mas, mt != maple_arange_64);
1591 offset = ma_meta_gap(node);
1592 gaps = ma_gaps(node, mt);
1593 return gaps[offset];
1597 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1598 * @mas: The maple state
1599 * @offset: The gap offset in the parent to set
1600 * @new: The new gap value.
1602 * Set the parent gap then continue to set the gap upwards, using the metadata
1603 * of the parent to see if it is necessary to check the node above.
1605 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1608 unsigned long meta_gap = 0;
1609 struct maple_node *pnode;
1610 struct maple_enode *penode;
1611 unsigned long *pgaps;
1612 unsigned char meta_offset;
1613 enum maple_type pmt;
1615 pnode = mte_parent(mas->node);
1616 pmt = mas_parent_type(mas, mas->node);
1617 penode = mt_mk_node(pnode, pmt);
1618 pgaps = ma_gaps(pnode, pmt);
1621 MAS_BUG_ON(mas, pmt != maple_arange_64);
1622 meta_offset = ma_meta_gap(pnode);
1623 meta_gap = pgaps[meta_offset];
1625 pgaps[offset] = new;
1627 if (meta_gap == new)
1630 if (offset != meta_offset) {
1634 ma_set_meta_gap(pnode, pmt, offset);
1635 } else if (new < meta_gap) {
1636 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1637 ma_set_meta_gap(pnode, pmt, meta_offset);
1640 if (ma_is_root(pnode))
1643 /* Go to the parent node. */
1644 pnode = mte_parent(penode);
1645 pmt = mas_parent_type(mas, penode);
1646 pgaps = ma_gaps(pnode, pmt);
1647 offset = mte_parent_slot(penode);
1648 penode = mt_mk_node(pnode, pmt);
1653 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1654 * @mas - the maple state.
1656 static inline void mas_update_gap(struct ma_state *mas)
1658 unsigned char pslot;
1659 unsigned long p_gap;
1660 unsigned long max_gap;
1662 if (!mt_is_alloc(mas->tree))
1665 if (mte_is_root(mas->node))
1668 max_gap = mas_max_gap(mas);
1670 pslot = mte_parent_slot(mas->node);
1671 p_gap = ma_gaps(mte_parent(mas->node),
1672 mas_parent_type(mas, mas->node))[pslot];
1674 if (p_gap != max_gap)
1675 mas_parent_gap(mas, pslot, max_gap);
1679 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1680 * @parent with the slot encoded.
1681 * @mas - the maple state (for the tree)
1682 * @parent - the maple encoded node containing the children.
1684 static inline void mas_adopt_children(struct ma_state *mas,
1685 struct maple_enode *parent)
1687 enum maple_type type = mte_node_type(parent);
1688 struct maple_node *node = mte_to_node(parent);
1689 void __rcu **slots = ma_slots(node, type);
1690 unsigned long *pivots = ma_pivots(node, type);
1691 struct maple_enode *child;
1692 unsigned char offset;
1694 offset = ma_data_end(node, type, pivots, mas->max);
1696 child = mas_slot_locked(mas, slots, offset);
1697 mas_set_parent(mas, child, parent, offset);
1702 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1704 * @mas - the maple state with the new node
1705 * @old_enode - The old maple encoded node to replace.
1707 static inline void mas_put_in_tree(struct ma_state *mas,
1708 struct maple_enode *old_enode)
1709 __must_hold(mas->tree->ma_lock)
1711 unsigned char offset;
1714 if (mte_is_root(mas->node)) {
1715 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1716 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1717 mas_set_height(mas);
1720 offset = mte_parent_slot(mas->node);
1721 slots = ma_slots(mte_parent(mas->node),
1722 mas_parent_type(mas, mas->node));
1723 rcu_assign_pointer(slots[offset], mas->node);
1726 mte_set_node_dead(old_enode);
1730 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1731 * dead, and freeing it.
1732 * the parent encoding to locate the maple node in the tree.
1733 * @mas - the ma_state with @mas->node pointing to the new node.
1734 * @old_enode - The old maple encoded node.
1736 static inline void mas_replace_node(struct ma_state *mas,
1737 struct maple_enode *old_enode)
1738 __must_hold(mas->tree->ma_lock)
1740 mas_put_in_tree(mas, old_enode);
1741 mas_free(mas, old_enode);
1745 * mas_find_child() - Find a child who has the parent @mas->node.
1746 * @mas: the maple state with the parent.
1747 * @child: the maple state to store the child.
1749 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1750 __must_hold(mas->tree->ma_lock)
1753 unsigned char offset;
1755 unsigned long *pivots;
1756 struct maple_enode *entry;
1757 struct maple_node *node;
1760 mt = mte_node_type(mas->node);
1762 slots = ma_slots(node, mt);
1763 pivots = ma_pivots(node, mt);
1764 end = ma_data_end(node, mt, pivots, mas->max);
1765 for (offset = mas->offset; offset <= end; offset++) {
1766 entry = mas_slot_locked(mas, slots, offset);
1767 if (mte_parent(entry) == node) {
1769 mas->offset = offset + 1;
1770 child->offset = offset;
1780 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1781 * old data or set b_node->b_end.
1782 * @b_node: the maple_big_node
1783 * @shift: the shift count
1785 static inline void mab_shift_right(struct maple_big_node *b_node,
1786 unsigned char shift)
1788 unsigned long size = b_node->b_end * sizeof(unsigned long);
1790 memmove(b_node->pivot + shift, b_node->pivot, size);
1791 memmove(b_node->slot + shift, b_node->slot, size);
1792 if (b_node->type == maple_arange_64)
1793 memmove(b_node->gap + shift, b_node->gap, size);
1797 * mab_middle_node() - Check if a middle node is needed (unlikely)
1798 * @b_node: the maple_big_node that contains the data.
1799 * @size: the amount of data in the b_node
1800 * @split: the potential split location
1801 * @slot_count: the size that can be stored in a single node being considered.
1803 * Return: true if a middle node is required.
1805 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1806 unsigned char slot_count)
1808 unsigned char size = b_node->b_end;
1810 if (size >= 2 * slot_count)
1813 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1820 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1821 * @b_node: the maple_big_node with the data
1822 * @split: the suggested split location
1823 * @slot_count: the number of slots in the node being considered.
1825 * Return: the split location.
1827 static inline int mab_no_null_split(struct maple_big_node *b_node,
1828 unsigned char split, unsigned char slot_count)
1830 if (!b_node->slot[split]) {
1832 * If the split is less than the max slot && the right side will
1833 * still be sufficient, then increment the split on NULL.
1835 if ((split < slot_count - 1) &&
1836 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1845 * mab_calc_split() - Calculate the split location and if there needs to be two
1847 * @bn: The maple_big_node with the data
1848 * @mid_split: The second split, if required. 0 otherwise.
1850 * Return: The first split location. The middle split is set in @mid_split.
1852 static inline int mab_calc_split(struct ma_state *mas,
1853 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1855 unsigned char b_end = bn->b_end;
1856 int split = b_end / 2; /* Assume equal split. */
1857 unsigned char slot_min, slot_count = mt_slots[bn->type];
1860 * To support gap tracking, all NULL entries are kept together and a node cannot
1861 * end on a NULL entry, with the exception of the left-most leaf. The
1862 * limitation means that the split of a node must be checked for this condition
1863 * and be able to put more data in one direction or the other.
1865 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1867 split = b_end - mt_min_slots[bn->type];
1869 if (!ma_is_leaf(bn->type))
1872 mas->mas_flags |= MA_STATE_REBALANCE;
1873 if (!bn->slot[split])
1879 * Although extremely rare, it is possible to enter what is known as the 3-way
1880 * split scenario. The 3-way split comes about by means of a store of a range
1881 * that overwrites the end and beginning of two full nodes. The result is a set
1882 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1883 * also be located in different parent nodes which are also full. This can
1884 * carry upwards all the way to the root in the worst case.
1886 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1888 *mid_split = split * 2;
1890 slot_min = mt_min_slots[bn->type];
1894 * Avoid having a range less than the slot count unless it
1895 * causes one node to be deficient.
1896 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1898 while ((split < slot_count - 1) &&
1899 ((bn->pivot[split] - min) < slot_count - 1) &&
1900 (b_end - split > slot_min))
1904 /* Avoid ending a node on a NULL entry */
1905 split = mab_no_null_split(bn, split, slot_count);
1907 if (unlikely(*mid_split))
1908 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1915 * and set @b_node->b_end to the next free slot.
1916 * @mas: The maple state
1917 * @mas_start: The starting slot to copy
1918 * @mas_end: The end slot to copy (inclusively)
1919 * @b_node: The maple_big_node to place the data
1920 * @mab_start: The starting location in maple_big_node to store the data.
1922 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1923 unsigned char mas_end, struct maple_big_node *b_node,
1924 unsigned char mab_start)
1927 struct maple_node *node;
1929 unsigned long *pivots, *gaps;
1930 int i = mas_start, j = mab_start;
1931 unsigned char piv_end;
1934 mt = mte_node_type(mas->node);
1935 pivots = ma_pivots(node, mt);
1937 b_node->pivot[j] = pivots[i++];
1938 if (unlikely(i > mas_end))
1943 piv_end = min(mas_end, mt_pivots[mt]);
1944 for (; i < piv_end; i++, j++) {
1945 b_node->pivot[j] = pivots[i];
1946 if (unlikely(!b_node->pivot[j]))
1949 if (unlikely(mas->max == b_node->pivot[j]))
1953 if (likely(i <= mas_end))
1954 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1957 b_node->b_end = ++j;
1959 slots = ma_slots(node, mt);
1960 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1961 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1962 gaps = ma_gaps(node, mt);
1963 memcpy(b_node->gap + mab_start, gaps + mas_start,
1964 sizeof(unsigned long) * j);
1969 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1970 * @node: The maple node
1971 * @mt: The maple type
1972 * @end: The node end
1974 static inline void mas_leaf_set_meta(struct maple_node *node,
1975 enum maple_type mt, unsigned char end)
1977 if (end < mt_slots[mt] - 1)
1978 ma_set_meta(node, mt, 0, end);
1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1983 * @b_node: the maple_big_node that has the data
1984 * @mab_start: the start location in @b_node.
1985 * @mab_end: The end location in @b_node (inclusively)
1986 * @mas: The maple state with the maple encoded node.
1988 static inline void mab_mas_cp(struct maple_big_node *b_node,
1989 unsigned char mab_start, unsigned char mab_end,
1990 struct ma_state *mas, bool new_max)
1993 enum maple_type mt = mte_node_type(mas->node);
1994 struct maple_node *node = mte_to_node(mas->node);
1995 void __rcu **slots = ma_slots(node, mt);
1996 unsigned long *pivots = ma_pivots(node, mt);
1997 unsigned long *gaps = NULL;
2000 if (mab_end - mab_start > mt_pivots[mt])
2003 if (!pivots[mt_pivots[mt] - 1])
2004 slots[mt_pivots[mt]] = NULL;
2008 pivots[j++] = b_node->pivot[i++];
2009 } while (i <= mab_end && likely(b_node->pivot[i]));
2011 memcpy(slots, b_node->slot + mab_start,
2012 sizeof(void *) * (i - mab_start));
2015 mas->max = b_node->pivot[i - 1];
2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2019 unsigned long max_gap = 0;
2020 unsigned char offset = 0;
2022 gaps = ma_gaps(node, mt);
2024 gaps[--j] = b_node->gap[--i];
2025 if (gaps[j] > max_gap) {
2031 ma_set_meta(node, mt, offset, end);
2033 mas_leaf_set_meta(node, mt, end);
2038 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2039 * @mas: The maple state
2040 * @end: The maple node end
2041 * @mt: The maple node type
2043 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2046 if (!(mas->mas_flags & MA_STATE_BULK))
2049 if (mte_is_root(mas->node))
2052 if (end > mt_min_slots[mt]) {
2053 mas->mas_flags &= ~MA_STATE_REBALANCE;
2059 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2060 * data from a maple encoded node.
2061 * @wr_mas: the maple write state
2062 * @b_node: the maple_big_node to fill with data
2063 * @offset_end: the offset to end copying
2065 * Return: The actual end of the data stored in @b_node
2067 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2068 struct maple_big_node *b_node, unsigned char offset_end)
2071 unsigned char b_end;
2072 /* Possible underflow of piv will wrap back to 0 before use. */
2074 struct ma_state *mas = wr_mas->mas;
2076 b_node->type = wr_mas->type;
2080 /* Copy start data up to insert. */
2081 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2082 b_end = b_node->b_end;
2083 piv = b_node->pivot[b_end - 1];
2087 if (piv + 1 < mas->index) {
2088 /* Handle range starting after old range */
2089 b_node->slot[b_end] = wr_mas->content;
2090 if (!wr_mas->content)
2091 b_node->gap[b_end] = mas->index - 1 - piv;
2092 b_node->pivot[b_end++] = mas->index - 1;
2095 /* Store the new entry. */
2096 mas->offset = b_end;
2097 b_node->slot[b_end] = wr_mas->entry;
2098 b_node->pivot[b_end] = mas->last;
2101 if (mas->last >= mas->max)
2104 /* Handle new range ending before old range ends */
2105 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2106 if (piv > mas->last) {
2107 if (piv == ULONG_MAX)
2108 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2110 if (offset_end != slot)
2111 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2114 b_node->slot[++b_end] = wr_mas->content;
2115 if (!wr_mas->content)
2116 b_node->gap[b_end] = piv - mas->last + 1;
2117 b_node->pivot[b_end] = piv;
2120 slot = offset_end + 1;
2121 if (slot > mas->end)
2124 /* Copy end data to the end of the node. */
2125 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2130 b_node->b_end = b_end;
2134 * mas_prev_sibling() - Find the previous node with the same parent.
2135 * @mas: the maple state
2137 * Return: True if there is a previous sibling, false otherwise.
2139 static inline bool mas_prev_sibling(struct ma_state *mas)
2141 unsigned int p_slot = mte_parent_slot(mas->node);
2143 if (mte_is_root(mas->node))
2150 mas->offset = p_slot - 1;
2156 * mas_next_sibling() - Find the next node with the same parent.
2157 * @mas: the maple state
2159 * Return: true if there is a next sibling, false otherwise.
2161 static inline bool mas_next_sibling(struct ma_state *mas)
2163 MA_STATE(parent, mas->tree, mas->index, mas->last);
2165 if (mte_is_root(mas->node))
2169 mas_ascend(&parent);
2170 parent.offset = mte_parent_slot(mas->node) + 1;
2171 if (parent.offset > mas_data_end(&parent))
2180 * mte_node_or_none() - Set the enode and state.
2181 * @enode: The encoded maple node.
2183 * Set the node to the enode and the status.
2185 static inline void mas_node_or_none(struct ma_state *mas,
2186 struct maple_enode *enode)
2190 mas->status = ma_active;
2193 mas->status = ma_none;
2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2199 * @wr_mas: The maple write state
2201 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2203 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2205 struct ma_state *mas = wr_mas->mas;
2206 unsigned char count, offset;
2208 if (unlikely(ma_is_dense(wr_mas->type))) {
2209 wr_mas->r_max = wr_mas->r_min = mas->index;
2210 mas->offset = mas->index = mas->min;
2214 wr_mas->node = mas_mn(wr_mas->mas);
2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2217 wr_mas->pivots, mas->max);
2218 offset = mas->offset;
2220 while (offset < count && mas->index > wr_mas->pivots[offset])
2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2225 wr_mas->offset_end = mas->offset = offset;
2229 * mast_rebalance_next() - Rebalance against the next node
2230 * @mast: The maple subtree state
2231 * @old_r: The encoded maple node to the right (next node).
2233 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2235 unsigned char b_end = mast->bn->b_end;
2237 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2239 mast->orig_r->last = mast->orig_r->max;
2243 * mast_rebalance_prev() - Rebalance against the previous node
2244 * @mast: The maple subtree state
2245 * @old_l: The encoded maple node to the left (previous node)
2247 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2249 unsigned char end = mas_data_end(mast->orig_l) + 1;
2250 unsigned char b_end = mast->bn->b_end;
2252 mab_shift_right(mast->bn, end);
2253 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2254 mast->l->min = mast->orig_l->min;
2255 mast->orig_l->index = mast->orig_l->min;
2256 mast->bn->b_end = end + b_end;
2257 mast->l->offset += end;
2261 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2262 * the node to the right. Checking the nodes to the right then the left at each
2263 * level upwards until root is reached.
2264 * Data is copied into the @mast->bn.
2265 * @mast: The maple_subtree_state.
2268 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2270 struct ma_state r_tmp = *mast->orig_r;
2271 struct ma_state l_tmp = *mast->orig_l;
2272 unsigned char depth = 0;
2275 mas_ascend(mast->orig_r);
2276 mas_ascend(mast->orig_l);
2278 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2279 mast->orig_r->offset++;
2281 mas_descend(mast->orig_r);
2282 mast->orig_r->offset = 0;
2285 mast_rebalance_next(mast);
2286 *mast->orig_l = l_tmp;
2288 } else if (mast->orig_l->offset != 0) {
2289 mast->orig_l->offset--;
2291 mas_descend(mast->orig_l);
2292 mast->orig_l->offset =
2293 mas_data_end(mast->orig_l);
2296 mast_rebalance_prev(mast);
2297 *mast->orig_r = r_tmp;
2300 } while (!mte_is_root(mast->orig_r->node));
2302 *mast->orig_r = r_tmp;
2303 *mast->orig_l = l_tmp;
2308 * mast_ascend() - Ascend the original left and right maple states.
2309 * @mast: the maple subtree state.
2311 * Ascend the original left and right sides. Set the offsets to point to the
2312 * data already in the new tree (@mast->l and @mast->r).
2314 static inline void mast_ascend(struct maple_subtree_state *mast)
2316 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2317 mas_ascend(mast->orig_l);
2318 mas_ascend(mast->orig_r);
2320 mast->orig_r->offset = 0;
2321 mast->orig_r->index = mast->r->max;
2322 /* last should be larger than or equal to index */
2323 if (mast->orig_r->last < mast->orig_r->index)
2324 mast->orig_r->last = mast->orig_r->index;
2326 wr_mas.type = mte_node_type(mast->orig_r->node);
2327 mas_wr_node_walk(&wr_mas);
2328 /* Set up the left side of things */
2329 mast->orig_l->offset = 0;
2330 mast->orig_l->index = mast->l->min;
2331 wr_mas.mas = mast->orig_l;
2332 wr_mas.type = mte_node_type(mast->orig_l->node);
2333 mas_wr_node_walk(&wr_mas);
2335 mast->bn->type = wr_mas.type;
2339 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2340 * @mas: the maple state with the allocations.
2341 * @b_node: the maple_big_node with the type encoding.
2343 * Use the node type from the maple_big_node to allocate a new node from the
2344 * ma_state. This function exists mainly for code readability.
2346 * Return: A new maple encoded node
2348 static inline struct maple_enode
2349 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2351 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2355 * mas_mab_to_node() - Set up right and middle nodes
2357 * @mas: the maple state that contains the allocations.
2358 * @b_node: the node which contains the data.
2359 * @left: The pointer which will have the left node
2360 * @right: The pointer which may have the right node
2361 * @middle: the pointer which may have the middle node (rare)
2362 * @mid_split: the split location for the middle node
2364 * Return: the split of left.
2366 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2367 struct maple_big_node *b_node, struct maple_enode **left,
2368 struct maple_enode **right, struct maple_enode **middle,
2369 unsigned char *mid_split, unsigned long min)
2371 unsigned char split = 0;
2372 unsigned char slot_count = mt_slots[b_node->type];
2374 *left = mas_new_ma_node(mas, b_node);
2379 if (b_node->b_end < slot_count) {
2380 split = b_node->b_end;
2382 split = mab_calc_split(mas, b_node, mid_split, min);
2383 *right = mas_new_ma_node(mas, b_node);
2387 *middle = mas_new_ma_node(mas, b_node);
2394 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2396 * @b_node - the big node to add the entry
2397 * @mas - the maple state to get the pivot (mas->max)
2398 * @entry - the entry to add, if NULL nothing happens.
2400 static inline void mab_set_b_end(struct maple_big_node *b_node,
2401 struct ma_state *mas,
2407 b_node->slot[b_node->b_end] = entry;
2408 if (mt_is_alloc(mas->tree))
2409 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2410 b_node->pivot[b_node->b_end++] = mas->max;
2414 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2415 * of @mas->node to either @left or @right, depending on @slot and @split
2417 * @mas - the maple state with the node that needs a parent
2418 * @left - possible parent 1
2419 * @right - possible parent 2
2420 * @slot - the slot the mas->node was placed
2421 * @split - the split location between @left and @right
2423 static inline void mas_set_split_parent(struct ma_state *mas,
2424 struct maple_enode *left,
2425 struct maple_enode *right,
2426 unsigned char *slot, unsigned char split)
2428 if (mas_is_none(mas))
2431 if ((*slot) <= split)
2432 mas_set_parent(mas, mas->node, left, *slot);
2434 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2440 * mte_mid_split_check() - Check if the next node passes the mid-split
2441 * @**l: Pointer to left encoded maple node.
2442 * @**m: Pointer to middle encoded maple node.
2443 * @**r: Pointer to right encoded maple node.
2445 * @*split: The split location.
2446 * @mid_split: The middle split.
2448 static inline void mte_mid_split_check(struct maple_enode **l,
2449 struct maple_enode **r,
2450 struct maple_enode *right,
2452 unsigned char *split,
2453 unsigned char mid_split)
2458 if (slot < mid_split)
2467 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2468 * is taken from @mast->l.
2469 * @mast - the maple subtree state
2470 * @left - the left node
2471 * @right - the right node
2472 * @split - the split location.
2474 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2475 struct maple_enode *left,
2476 struct maple_enode *middle,
2477 struct maple_enode *right,
2478 unsigned char split,
2479 unsigned char mid_split)
2482 struct maple_enode *l = left;
2483 struct maple_enode *r = right;
2485 if (mas_is_none(mast->l))
2491 slot = mast->l->offset;
2493 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2494 mas_set_split_parent(mast->l, l, r, &slot, split);
2496 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2497 mas_set_split_parent(mast->m, l, r, &slot, split);
2499 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2500 mas_set_split_parent(mast->r, l, r, &slot, split);
2504 * mas_topiary_node() - Dispose of a single node
2505 * @mas: The maple state for pushing nodes
2506 * @enode: The encoded maple node
2507 * @in_rcu: If the tree is in rcu mode
2509 * The node will either be RCU freed or pushed back on the maple state.
2511 static inline void mas_topiary_node(struct ma_state *mas,
2512 struct ma_state *tmp_mas, bool in_rcu)
2514 struct maple_node *tmp;
2515 struct maple_enode *enode;
2517 if (mas_is_none(tmp_mas))
2520 enode = tmp_mas->node;
2521 tmp = mte_to_node(enode);
2522 mte_set_node_dead(enode);
2526 mas_push_node(mas, tmp);
2530 * mas_topiary_replace() - Replace the data with new data, then repair the
2531 * parent links within the new tree. Iterate over the dead sub-tree and collect
2532 * the dead subtrees and topiary the nodes that are no longer of use.
2534 * The new tree will have up to three children with the correct parent. Keep
2535 * track of the new entries as they need to be followed to find the next level
2538 * The old tree will have up to three children with the old parent. Keep track
2539 * of the old entries as they may have more nodes below replaced. Nodes within
2540 * [index, last] are dead subtrees, others need to be freed and followed.
2542 * @mas: The maple state pointing at the new data
2543 * @old_enode: The maple encoded node being replaced
2546 static inline void mas_topiary_replace(struct ma_state *mas,
2547 struct maple_enode *old_enode)
2549 struct ma_state tmp[3], tmp_next[3];
2550 MA_TOPIARY(subtrees, mas->tree);
2554 /* Place data in tree & then mark node as old */
2555 mas_put_in_tree(mas, old_enode);
2557 /* Update the parent pointers in the tree */
2560 tmp[1].status = ma_none;
2561 tmp[2].status = ma_none;
2562 while (!mte_is_leaf(tmp[0].node)) {
2564 for (i = 0; i < 3; i++) {
2565 if (mas_is_none(&tmp[i]))
2569 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2574 mas_adopt_children(&tmp[i], tmp[i].node);
2577 if (MAS_WARN_ON(mas, n == 0))
2581 tmp_next[n++].status = ma_none;
2583 for (i = 0; i < 3; i++)
2584 tmp[i] = tmp_next[i];
2587 /* Collect the old nodes that need to be discarded */
2588 if (mte_is_leaf(old_enode))
2589 return mas_free(mas, old_enode);
2593 tmp[0].node = old_enode;
2594 tmp[1].status = ma_none;
2595 tmp[2].status = ma_none;
2596 in_rcu = mt_in_rcu(mas->tree);
2599 for (i = 0; i < 3; i++) {
2600 if (mas_is_none(&tmp[i]))
2604 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2607 if ((tmp_next[n].min >= tmp_next->index) &&
2608 (tmp_next[n].max <= tmp_next->last)) {
2609 mat_add(&subtrees, tmp_next[n].node);
2610 tmp_next[n].status = ma_none;
2617 if (MAS_WARN_ON(mas, n == 0))
2621 tmp_next[n++].status = ma_none;
2623 for (i = 0; i < 3; i++) {
2624 mas_topiary_node(mas, &tmp[i], in_rcu);
2625 tmp[i] = tmp_next[i];
2627 } while (!mte_is_leaf(tmp[0].node));
2629 for (i = 0; i < 3; i++)
2630 mas_topiary_node(mas, &tmp[i], in_rcu);
2632 mas_mat_destroy(mas, &subtrees);
2636 * mas_wmb_replace() - Write memory barrier and replace
2637 * @mas: The maple state
2638 * @old: The old maple encoded node that is being replaced.
2640 * Updates gap as necessary.
2642 static inline void mas_wmb_replace(struct ma_state *mas,
2643 struct maple_enode *old_enode)
2645 /* Insert the new data in the tree */
2646 mas_topiary_replace(mas, old_enode);
2648 if (mte_is_leaf(mas->node))
2651 mas_update_gap(mas);
2655 * mast_cp_to_nodes() - Copy data out to nodes.
2656 * @mast: The maple subtree state
2657 * @left: The left encoded maple node
2658 * @middle: The middle encoded maple node
2659 * @right: The right encoded maple node
2660 * @split: The location to split between left and (middle ? middle : right)
2661 * @mid_split: The location to split between middle and right.
2663 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2664 struct maple_enode *left, struct maple_enode *middle,
2665 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2667 bool new_lmax = true;
2669 mas_node_or_none(mast->l, left);
2670 mas_node_or_none(mast->m, middle);
2671 mas_node_or_none(mast->r, right);
2673 mast->l->min = mast->orig_l->min;
2674 if (split == mast->bn->b_end) {
2675 mast->l->max = mast->orig_r->max;
2679 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2682 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2683 mast->m->min = mast->bn->pivot[split] + 1;
2687 mast->r->max = mast->orig_r->max;
2689 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2690 mast->r->min = mast->bn->pivot[split] + 1;
2695 * mast_combine_cp_left - Copy in the original left side of the tree into the
2696 * combined data set in the maple subtree state big node.
2697 * @mast: The maple subtree state
2699 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2701 unsigned char l_slot = mast->orig_l->offset;
2706 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2710 * mast_combine_cp_right: Copy in the original right side of the tree into the
2711 * combined data set in the maple subtree state big node.
2712 * @mast: The maple subtree state
2714 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2716 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2719 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2720 mt_slot_count(mast->orig_r->node), mast->bn,
2722 mast->orig_r->last = mast->orig_r->max;
2726 * mast_sufficient: Check if the maple subtree state has enough data in the big
2727 * node to create at least one sufficient node
2728 * @mast: the maple subtree state
2730 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2732 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2739 * mast_overflow: Check if there is too much data in the subtree state for a
2741 * @mast: The maple subtree state
2743 static inline bool mast_overflow(struct maple_subtree_state *mast)
2745 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2751 static inline void *mtree_range_walk(struct ma_state *mas)
2753 unsigned long *pivots;
2754 unsigned char offset;
2755 struct maple_node *node;
2756 struct maple_enode *next, *last;
2757 enum maple_type type;
2760 unsigned long max, min;
2761 unsigned long prev_max, prev_min;
2768 node = mte_to_node(next);
2769 type = mte_node_type(next);
2770 pivots = ma_pivots(node, type);
2771 end = ma_data_end(node, type, pivots, max);
2774 if (pivots[0] >= mas->index) {
2781 while (offset < end) {
2782 if (pivots[offset] >= mas->index) {
2783 max = pivots[offset];
2789 min = pivots[offset - 1] + 1;
2791 slots = ma_slots(node, type);
2792 next = mt_slot(mas->tree, slots, offset);
2793 if (unlikely(ma_dead_node(node)))
2795 } while (!ma_is_leaf(type));
2798 mas->offset = offset;
2801 mas->min = prev_min;
2802 mas->max = prev_max;
2804 return (void *)next;
2812 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2813 * @mas: The starting maple state
2814 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2815 * @count: The estimated count of iterations needed.
2817 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2818 * is hit. First @b_node is split into two entries which are inserted into the
2819 * next iteration of the loop. @b_node is returned populated with the final
2820 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2821 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2822 * to account of what has been copied into the new sub-tree. The update of
2823 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2824 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2825 * the new sub-tree in case the sub-tree becomes the full tree.
2827 * Return: the number of elements in b_node during the last loop.
2829 static int mas_spanning_rebalance(struct ma_state *mas,
2830 struct maple_subtree_state *mast, unsigned char count)
2832 unsigned char split, mid_split;
2833 unsigned char slot = 0;
2834 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2835 struct maple_enode *old_enode;
2837 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2838 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2839 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2842 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2843 * Rebalancing is done by use of the ``struct maple_topiary``.
2848 l_mas.status = r_mas.status = m_mas.status = ma_none;
2850 /* Check if this is not root and has sufficient data. */
2851 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2852 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2853 mast_spanning_rebalance(mast);
2858 * Each level of the tree is examined and balanced, pushing data to the left or
2859 * right, or rebalancing against left or right nodes is employed to avoid
2860 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2861 * the tree is created, there may be a mix of new and old nodes. The old nodes
2862 * will have the incorrect parent pointers and currently be in two trees: the
2863 * original tree and the partially new tree. To remedy the parent pointers in
2864 * the old tree, the new data is swapped into the active tree and a walk down
2865 * the tree is performed and the parent pointers are updated.
2866 * See mas_topiary_replace() for more information.
2870 mast->bn->type = mte_node_type(mast->orig_l->node);
2871 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2872 &mid_split, mast->orig_l->min);
2873 mast_set_split_parents(mast, left, middle, right, split,
2875 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2878 * Copy data from next level in the tree to mast->bn from next
2881 memset(mast->bn, 0, sizeof(struct maple_big_node));
2882 mast->bn->type = mte_node_type(left);
2885 /* Root already stored in l->node. */
2886 if (mas_is_root_limits(mast->l))
2890 mast_combine_cp_left(mast);
2891 l_mas.offset = mast->bn->b_end;
2892 mab_set_b_end(mast->bn, &l_mas, left);
2893 mab_set_b_end(mast->bn, &m_mas, middle);
2894 mab_set_b_end(mast->bn, &r_mas, right);
2896 /* Copy anything necessary out of the right node. */
2897 mast_combine_cp_right(mast);
2898 mast->orig_l->last = mast->orig_l->max;
2900 if (mast_sufficient(mast))
2903 if (mast_overflow(mast))
2906 /* May be a new root stored in mast->bn */
2907 if (mas_is_root_limits(mast->orig_l))
2910 mast_spanning_rebalance(mast);
2912 /* rebalancing from other nodes may require another loop. */
2917 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2918 mte_node_type(mast->orig_l->node));
2920 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2921 mas_set_parent(mas, left, l_mas.node, slot);
2923 mas_set_parent(mas, middle, l_mas.node, ++slot);
2926 mas_set_parent(mas, right, l_mas.node, ++slot);
2928 if (mas_is_root_limits(mast->l)) {
2930 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2931 while (!mte_is_root(mast->orig_l->node))
2934 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2937 old_enode = mast->orig_l->node;
2938 mas->depth = l_mas.depth;
2939 mas->node = l_mas.node;
2940 mas->min = l_mas.min;
2941 mas->max = l_mas.max;
2942 mas->offset = l_mas.offset;
2943 mas_wmb_replace(mas, old_enode);
2944 mtree_range_walk(mas);
2945 return mast->bn->b_end;
2949 * mas_rebalance() - Rebalance a given node.
2950 * @mas: The maple state
2951 * @b_node: The big maple node.
2953 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2954 * Continue upwards until tree is sufficient.
2956 * Return: the number of elements in b_node during the last loop.
2958 static inline int mas_rebalance(struct ma_state *mas,
2959 struct maple_big_node *b_node)
2961 char empty_count = mas_mt_height(mas);
2962 struct maple_subtree_state mast;
2963 unsigned char shift, b_end = ++b_node->b_end;
2965 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2966 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2968 trace_ma_op(__func__, mas);
2971 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2972 * against the node to the right if it exists, otherwise the node to the
2973 * left of this node is rebalanced against this node. If rebalancing
2974 * causes just one node to be produced instead of two, then the parent
2975 * is also examined and rebalanced if it is insufficient. Every level
2976 * tries to combine the data in the same way. If one node contains the
2977 * entire range of the tree, then that node is used as a new root node.
2979 mas_node_count(mas, empty_count * 2 - 1);
2980 if (mas_is_err(mas))
2983 mast.orig_l = &l_mas;
2984 mast.orig_r = &r_mas;
2986 mast.bn->type = mte_node_type(mas->node);
2988 l_mas = r_mas = *mas;
2990 if (mas_next_sibling(&r_mas)) {
2991 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2992 r_mas.last = r_mas.index = r_mas.max;
2994 mas_prev_sibling(&l_mas);
2995 shift = mas_data_end(&l_mas) + 1;
2996 mab_shift_right(b_node, shift);
2997 mas->offset += shift;
2998 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2999 b_node->b_end = shift + b_end;
3000 l_mas.index = l_mas.last = l_mas.min;
3003 return mas_spanning_rebalance(mas, &mast, empty_count);
3007 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3009 * @mas: The maple state
3010 * @end: The end of the left-most node.
3012 * During a mass-insert event (such as forking), it may be necessary to
3013 * rebalance the left-most node when it is not sufficient.
3015 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3017 enum maple_type mt = mte_node_type(mas->node);
3018 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3019 struct maple_enode *eparent, *old_eparent;
3020 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3021 void __rcu **l_slots, **slots;
3022 unsigned long *l_pivs, *pivs, gap;
3023 bool in_rcu = mt_in_rcu(mas->tree);
3025 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3028 mas_prev_sibling(&l_mas);
3032 /* Allocate for both left and right as well as parent. */
3033 mas_node_count(mas, 3);
3034 if (mas_is_err(mas))
3037 newnode = mas_pop_node(mas);
3043 newnode->parent = node->parent;
3044 slots = ma_slots(newnode, mt);
3045 pivs = ma_pivots(newnode, mt);
3046 left = mas_mn(&l_mas);
3047 l_slots = ma_slots(left, mt);
3048 l_pivs = ma_pivots(left, mt);
3049 if (!l_slots[split])
3051 tmp = mas_data_end(&l_mas) - split;
3053 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3054 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3055 pivs[tmp] = l_mas.max;
3056 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3057 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3059 l_mas.max = l_pivs[split];
3060 mas->min = l_mas.max + 1;
3061 old_eparent = mt_mk_node(mte_parent(l_mas.node),
3062 mas_parent_type(&l_mas, l_mas.node));
3065 unsigned char max_p = mt_pivots[mt];
3066 unsigned char max_s = mt_slots[mt];
3069 memset(pivs + tmp, 0,
3070 sizeof(unsigned long) * (max_p - tmp));
3072 if (tmp < mt_slots[mt])
3073 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3075 memcpy(node, newnode, sizeof(struct maple_node));
3076 ma_set_meta(node, mt, 0, tmp - 1);
3077 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3080 /* Remove data from l_pivs. */
3082 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3083 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3084 ma_set_meta(left, mt, 0, split);
3085 eparent = old_eparent;
3090 /* RCU requires replacing both l_mas, mas, and parent. */
3091 mas->node = mt_mk_node(newnode, mt);
3092 ma_set_meta(newnode, mt, 0, tmp);
3094 new_left = mas_pop_node(mas);
3095 new_left->parent = left->parent;
3096 mt = mte_node_type(l_mas.node);
3097 slots = ma_slots(new_left, mt);
3098 pivs = ma_pivots(new_left, mt);
3099 memcpy(slots, l_slots, sizeof(void *) * split);
3100 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3101 ma_set_meta(new_left, mt, 0, split);
3102 l_mas.node = mt_mk_node(new_left, mt);
3104 /* replace parent. */
3105 offset = mte_parent_slot(mas->node);
3106 mt = mas_parent_type(&l_mas, l_mas.node);
3107 parent = mas_pop_node(mas);
3108 slots = ma_slots(parent, mt);
3109 pivs = ma_pivots(parent, mt);
3110 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3111 rcu_assign_pointer(slots[offset], mas->node);
3112 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3113 pivs[offset - 1] = l_mas.max;
3114 eparent = mt_mk_node(parent, mt);
3116 gap = mas_leaf_max_gap(mas);
3117 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3118 gap = mas_leaf_max_gap(&l_mas);
3119 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3123 mas_replace_node(mas, old_eparent);
3124 mas_adopt_children(mas, mas->node);
3127 mas_update_gap(mas);
3131 * mas_split_final_node() - Split the final node in a subtree operation.
3132 * @mast: the maple subtree state
3133 * @mas: The maple state
3134 * @height: The height of the tree in case it's a new root.
3136 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3137 struct ma_state *mas, int height)
3139 struct maple_enode *ancestor;
3141 if (mte_is_root(mas->node)) {
3142 if (mt_is_alloc(mas->tree))
3143 mast->bn->type = maple_arange_64;
3145 mast->bn->type = maple_range_64;
3146 mas->depth = height;
3149 * Only a single node is used here, could be root.
3150 * The Big_node data should just fit in a single node.
3152 ancestor = mas_new_ma_node(mas, mast->bn);
3153 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3154 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3155 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3157 mast->l->node = ancestor;
3158 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3159 mas->offset = mast->bn->b_end - 1;
3163 * mast_fill_bnode() - Copy data into the big node in the subtree state
3164 * @mast: The maple subtree state
3165 * @mas: the maple state
3166 * @skip: The number of entries to skip for new nodes insertion.
3168 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3169 struct ma_state *mas,
3173 unsigned char split;
3175 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3176 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3177 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3178 mast->bn->b_end = 0;
3180 if (mte_is_root(mas->node)) {
3184 mas->offset = mte_parent_slot(mas->node);
3187 if (cp && mast->l->offset)
3188 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3190 split = mast->bn->b_end;
3191 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3192 mast->r->offset = mast->bn->b_end;
3193 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3194 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3198 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3199 mast->bn, mast->bn->b_end);
3202 mast->bn->type = mte_node_type(mas->node);
3206 * mast_split_data() - Split the data in the subtree state big node into regular
3208 * @mast: The maple subtree state
3209 * @mas: The maple state
3210 * @split: The location to split the big node
3212 static inline void mast_split_data(struct maple_subtree_state *mast,
3213 struct ma_state *mas, unsigned char split)
3215 unsigned char p_slot;
3217 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3218 mte_set_pivot(mast->r->node, 0, mast->r->max);
3219 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3220 mast->l->offset = mte_parent_slot(mas->node);
3221 mast->l->max = mast->bn->pivot[split];
3222 mast->r->min = mast->l->max + 1;
3223 if (mte_is_leaf(mas->node))
3226 p_slot = mast->orig_l->offset;
3227 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3229 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3234 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3235 * data to the right or left node if there is room.
3236 * @mas: The maple state
3237 * @height: The current height of the maple state
3238 * @mast: The maple subtree state
3239 * @left: Push left or not.
3241 * Keeping the height of the tree low means faster lookups.
3243 * Return: True if pushed, false otherwise.
3245 static inline bool mas_push_data(struct ma_state *mas, int height,
3246 struct maple_subtree_state *mast, bool left)
3248 unsigned char slot_total = mast->bn->b_end;
3249 unsigned char end, space, split;
3251 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3253 tmp_mas.depth = mast->l->depth;
3255 if (left && !mas_prev_sibling(&tmp_mas))
3257 else if (!left && !mas_next_sibling(&tmp_mas))
3260 end = mas_data_end(&tmp_mas);
3262 space = 2 * mt_slot_count(mas->node) - 2;
3263 /* -2 instead of -1 to ensure there isn't a triple split */
3264 if (ma_is_leaf(mast->bn->type))
3267 if (mas->max == ULONG_MAX)
3270 if (slot_total >= space)
3273 /* Get the data; Fill mast->bn */
3276 mab_shift_right(mast->bn, end + 1);
3277 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3278 mast->bn->b_end = slot_total + 1;
3280 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3283 /* Configure mast for splitting of mast->bn */
3284 split = mt_slots[mast->bn->type] - 2;
3286 /* Switch mas to prev node */
3288 /* Start using mast->l for the left side. */
3289 tmp_mas.node = mast->l->node;
3292 tmp_mas.node = mast->r->node;
3294 split = slot_total - split;
3296 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3297 /* Update parent slot for split calculation. */
3299 mast->orig_l->offset += end + 1;
3301 mast_split_data(mast, mas, split);
3302 mast_fill_bnode(mast, mas, 2);
3303 mas_split_final_node(mast, mas, height + 1);
3308 * mas_split() - Split data that is too big for one node into two.
3309 * @mas: The maple state
3310 * @b_node: The maple big node
3311 * Return: 1 on success, 0 on failure.
3313 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3315 struct maple_subtree_state mast;
3317 unsigned char mid_split, split = 0;
3318 struct maple_enode *old;
3321 * Splitting is handled differently from any other B-tree; the Maple
3322 * Tree splits upwards. Splitting up means that the split operation
3323 * occurs when the walk of the tree hits the leaves and not on the way
3324 * down. The reason for splitting up is that it is impossible to know
3325 * how much space will be needed until the leaf is (or leaves are)
3326 * reached. Since overwriting data is allowed and a range could
3327 * overwrite more than one range or result in changing one entry into 3
3328 * entries, it is impossible to know if a split is required until the
3331 * Splitting is a balancing act between keeping allocations to a minimum
3332 * and avoiding a 'jitter' event where a tree is expanded to make room
3333 * for an entry followed by a contraction when the entry is removed. To
3334 * accomplish the balance, there are empty slots remaining in both left
3335 * and right nodes after a split.
3337 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3338 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3339 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3340 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3342 trace_ma_op(__func__, mas);
3343 mas->depth = mas_mt_height(mas);
3344 /* Allocation failures will happen early. */
3345 mas_node_count(mas, 1 + mas->depth * 2);
3346 if (mas_is_err(mas))
3351 mast.orig_l = &prev_l_mas;
3352 mast.orig_r = &prev_r_mas;
3355 while (height++ <= mas->depth) {
3356 if (mt_slots[b_node->type] > b_node->b_end) {
3357 mas_split_final_node(&mast, mas, height);
3361 l_mas = r_mas = *mas;
3362 l_mas.node = mas_new_ma_node(mas, b_node);
3363 r_mas.node = mas_new_ma_node(mas, b_node);
3365 * Another way that 'jitter' is avoided is to terminate a split up early if the
3366 * left or right node has space to spare. This is referred to as "pushing left"
3367 * or "pushing right" and is similar to the B* tree, except the nodes left or
3368 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3369 * is a significant savings.
3371 /* Try to push left. */
3372 if (mas_push_data(mas, height, &mast, true))
3374 /* Try to push right. */
3375 if (mas_push_data(mas, height, &mast, false))
3378 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3379 mast_split_data(&mast, mas, split);
3381 * Usually correct, mab_mas_cp in the above call overwrites
3384 mast.r->max = mas->max;
3385 mast_fill_bnode(&mast, mas, 1);
3386 prev_l_mas = *mast.l;
3387 prev_r_mas = *mast.r;
3390 /* Set the original node as dead */
3392 mas->node = l_mas.node;
3393 mas_wmb_replace(mas, old);
3394 mtree_range_walk(mas);
3399 * mas_reuse_node() - Reuse the node to store the data.
3400 * @wr_mas: The maple write state
3401 * @bn: The maple big node
3402 * @end: The end of the data.
3404 * Will always return false in RCU mode.
3406 * Return: True if node was reused, false otherwise.
3408 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3409 struct maple_big_node *bn, unsigned char end)
3411 /* Need to be rcu safe. */
3412 if (mt_in_rcu(wr_mas->mas->tree))
3415 if (end > bn->b_end) {
3416 int clear = mt_slots[wr_mas->type] - bn->b_end;
3418 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3419 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3421 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3426 * mas_commit_b_node() - Commit the big node into the tree.
3427 * @wr_mas: The maple write state
3428 * @b_node: The maple big node
3429 * @end: The end of the data.
3431 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3432 struct maple_big_node *b_node, unsigned char end)
3434 struct maple_node *node;
3435 struct maple_enode *old_enode;
3436 unsigned char b_end = b_node->b_end;
3437 enum maple_type b_type = b_node->type;
3439 old_enode = wr_mas->mas->node;
3440 if ((b_end < mt_min_slots[b_type]) &&
3441 (!mte_is_root(old_enode)) &&
3442 (mas_mt_height(wr_mas->mas) > 1))
3443 return mas_rebalance(wr_mas->mas, b_node);
3445 if (b_end >= mt_slots[b_type])
3446 return mas_split(wr_mas->mas, b_node);
3448 if (mas_reuse_node(wr_mas, b_node, end))
3451 mas_node_count(wr_mas->mas, 1);
3452 if (mas_is_err(wr_mas->mas))
3455 node = mas_pop_node(wr_mas->mas);
3456 node->parent = mas_mn(wr_mas->mas)->parent;
3457 wr_mas->mas->node = mt_mk_node(node, b_type);
3458 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3459 mas_replace_node(wr_mas->mas, old_enode);
3461 mas_update_gap(wr_mas->mas);
3462 wr_mas->mas->end = b_end;
3467 * mas_root_expand() - Expand a root to a node
3468 * @mas: The maple state
3469 * @entry: The entry to store into the tree
3471 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3473 void *contents = mas_root_locked(mas);
3474 enum maple_type type = maple_leaf_64;
3475 struct maple_node *node;
3477 unsigned long *pivots;
3480 mas_node_count(mas, 1);
3481 if (unlikely(mas_is_err(mas)))
3484 node = mas_pop_node(mas);
3485 pivots = ma_pivots(node, type);
3486 slots = ma_slots(node, type);
3487 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3488 mas->node = mt_mk_node(node, type);
3489 mas->status = ma_active;
3493 rcu_assign_pointer(slots[slot], contents);
3494 if (likely(mas->index > 1))
3497 pivots[slot++] = mas->index - 1;
3500 rcu_assign_pointer(slots[slot], entry);
3502 pivots[slot] = mas->last;
3503 if (mas->last != ULONG_MAX)
3504 pivots[++slot] = ULONG_MAX;
3507 mas_set_height(mas);
3508 ma_set_meta(node, maple_leaf_64, 0, slot);
3509 /* swap the new root into the tree */
3510 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3514 static inline void mas_store_root(struct ma_state *mas, void *entry)
3516 if (likely((mas->last != 0) || (mas->index != 0)))
3517 mas_root_expand(mas, entry);
3518 else if (((unsigned long) (entry) & 3) == 2)
3519 mas_root_expand(mas, entry);
3521 rcu_assign_pointer(mas->tree->ma_root, entry);
3522 mas->status = ma_start;
3527 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3529 * @mas: The maple state
3530 * @piv: The pivot value being written
3531 * @type: The maple node type
3532 * @entry: The data to write
3534 * Spanning writes are writes that start in one node and end in another OR if
3535 * the write of a %NULL will cause the node to end with a %NULL.
3537 * Return: True if this is a spanning write, false otherwise.
3539 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3541 unsigned long max = wr_mas->r_max;
3542 unsigned long last = wr_mas->mas->last;
3543 enum maple_type type = wr_mas->type;
3544 void *entry = wr_mas->entry;
3546 /* Contained in this pivot, fast path */
3550 if (ma_is_leaf(type)) {
3551 max = wr_mas->mas->max;
3558 * The last entry of leaf node cannot be NULL unless it is the
3559 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3561 if (entry || last == ULONG_MAX)
3565 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3569 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3571 wr_mas->type = mte_node_type(wr_mas->mas->node);
3572 mas_wr_node_walk(wr_mas);
3573 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3576 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3578 wr_mas->mas->max = wr_mas->r_max;
3579 wr_mas->mas->min = wr_mas->r_min;
3580 wr_mas->mas->node = wr_mas->content;
3581 wr_mas->mas->offset = 0;
3582 wr_mas->mas->depth++;
3585 * mas_wr_walk() - Walk the tree for a write.
3586 * @wr_mas: The maple write state
3588 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3590 * Return: True if it's contained in a node, false on spanning write.
3592 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3594 struct ma_state *mas = wr_mas->mas;
3597 mas_wr_walk_descend(wr_mas);
3598 if (unlikely(mas_is_span_wr(wr_mas)))
3601 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3603 if (ma_is_leaf(wr_mas->type))
3606 mas_wr_walk_traverse(wr_mas);
3612 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3614 struct ma_state *mas = wr_mas->mas;
3617 mas_wr_walk_descend(wr_mas);
3618 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3620 if (ma_is_leaf(wr_mas->type))
3622 mas_wr_walk_traverse(wr_mas);
3628 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3629 * @l_wr_mas: The left maple write state
3630 * @r_wr_mas: The right maple write state
3632 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3633 struct ma_wr_state *r_wr_mas)
3635 struct ma_state *r_mas = r_wr_mas->mas;
3636 struct ma_state *l_mas = l_wr_mas->mas;
3637 unsigned char l_slot;
3639 l_slot = l_mas->offset;
3640 if (!l_wr_mas->content)
3641 l_mas->index = l_wr_mas->r_min;
3643 if ((l_mas->index == l_wr_mas->r_min) &&
3645 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3647 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3649 l_mas->index = l_mas->min;
3651 l_mas->offset = l_slot - 1;
3654 if (!r_wr_mas->content) {
3655 if (r_mas->last < r_wr_mas->r_max)
3656 r_mas->last = r_wr_mas->r_max;
3658 } else if ((r_mas->last == r_wr_mas->r_max) &&
3659 (r_mas->last < r_mas->max) &&
3660 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3661 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3662 r_wr_mas->type, r_mas->offset + 1);
3667 static inline void *mas_state_walk(struct ma_state *mas)
3671 entry = mas_start(mas);
3672 if (mas_is_none(mas))
3675 if (mas_is_ptr(mas))
3678 return mtree_range_walk(mas);
3682 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3685 * @mas: The maple state.
3687 * Note: Leaves mas in undesirable state.
3688 * Return: The entry for @mas->index or %NULL on dead node.
3690 static inline void *mtree_lookup_walk(struct ma_state *mas)
3692 unsigned long *pivots;
3693 unsigned char offset;
3694 struct maple_node *node;
3695 struct maple_enode *next;
3696 enum maple_type type;
3702 node = mte_to_node(next);
3703 type = mte_node_type(next);
3704 pivots = ma_pivots(node, type);
3705 end = mt_pivots[type];
3708 if (pivots[offset] >= mas->index)
3710 } while (++offset < end);
3712 slots = ma_slots(node, type);
3713 next = mt_slot(mas->tree, slots, offset);
3714 if (unlikely(ma_dead_node(node)))
3716 } while (!ma_is_leaf(type));
3718 return (void *)next;
3725 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3727 * mas_new_root() - Create a new root node that only contains the entry passed
3729 * @mas: The maple state
3730 * @entry: The entry to store.
3732 * Only valid when the index == 0 and the last == ULONG_MAX
3734 * Return 0 on error, 1 on success.
3736 static inline int mas_new_root(struct ma_state *mas, void *entry)
3738 struct maple_enode *root = mas_root_locked(mas);
3739 enum maple_type type = maple_leaf_64;
3740 struct maple_node *node;
3742 unsigned long *pivots;
3744 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3746 mas_set_height(mas);
3747 rcu_assign_pointer(mas->tree->ma_root, entry);
3748 mas->status = ma_start;
3752 mas_node_count(mas, 1);
3753 if (mas_is_err(mas))
3756 node = mas_pop_node(mas);
3757 pivots = ma_pivots(node, type);
3758 slots = ma_slots(node, type);
3759 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3760 mas->node = mt_mk_node(node, type);
3761 mas->status = ma_active;
3762 rcu_assign_pointer(slots[0], entry);
3763 pivots[0] = mas->last;
3765 mas_set_height(mas);
3766 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3769 if (xa_is_node(root))
3770 mte_destroy_walk(root, mas->tree);
3775 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3776 * and new nodes where necessary, then place the sub-tree in the actual tree.
3777 * Note that mas is expected to point to the node which caused the store to
3779 * @wr_mas: The maple write state
3781 * Return: 0 on error, positive on success.
3783 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3785 struct maple_subtree_state mast;
3786 struct maple_big_node b_node;
3787 struct ma_state *mas;
3788 unsigned char height;
3790 /* Left and Right side of spanning store */
3791 MA_STATE(l_mas, NULL, 0, 0);
3792 MA_STATE(r_mas, NULL, 0, 0);
3793 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3794 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3797 * A store operation that spans multiple nodes is called a spanning
3798 * store and is handled early in the store call stack by the function
3799 * mas_is_span_wr(). When a spanning store is identified, the maple
3800 * state is duplicated. The first maple state walks the left tree path
3801 * to ``index``, the duplicate walks the right tree path to ``last``.
3802 * The data in the two nodes are combined into a single node, two nodes,
3803 * or possibly three nodes (see the 3-way split above). A ``NULL``
3804 * written to the last entry of a node is considered a spanning store as
3805 * a rebalance is required for the operation to complete and an overflow
3806 * of data may happen.
3809 trace_ma_op(__func__, mas);
3811 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3812 return mas_new_root(mas, wr_mas->entry);
3814 * Node rebalancing may occur due to this store, so there may be three new
3815 * entries per level plus a new root.
3817 height = mas_mt_height(mas);
3818 mas_node_count(mas, 1 + height * 3);
3819 if (mas_is_err(mas))
3823 * Set up right side. Need to get to the next offset after the spanning
3824 * store to ensure it's not NULL and to combine both the next node and
3825 * the node with the start together.
3828 /* Avoid overflow, walk to next slot in the tree. */
3832 r_mas.index = r_mas.last;
3833 mas_wr_walk_index(&r_wr_mas);
3834 r_mas.last = r_mas.index = mas->last;
3836 /* Set up left side. */
3838 mas_wr_walk_index(&l_wr_mas);
3840 if (!wr_mas->entry) {
3841 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3842 mas->offset = l_mas.offset;
3843 mas->index = l_mas.index;
3844 mas->last = l_mas.last = r_mas.last;
3847 /* expanding NULLs may make this cover the entire range */
3848 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3849 mas_set_range(mas, 0, ULONG_MAX);
3850 return mas_new_root(mas, wr_mas->entry);
3853 memset(&b_node, 0, sizeof(struct maple_big_node));
3854 /* Copy l_mas and store the value in b_node. */
3855 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3856 /* Copy r_mas into b_node. */
3857 if (r_mas.offset <= r_mas.end)
3858 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3859 &b_node, b_node.b_end + 1);
3863 /* Stop spanning searches by searching for just index. */
3864 l_mas.index = l_mas.last = mas->index;
3867 mast.orig_l = &l_mas;
3868 mast.orig_r = &r_mas;
3869 /* Combine l_mas and r_mas and split them up evenly again. */
3870 return mas_spanning_rebalance(mas, &mast, height + 1);
3874 * mas_wr_node_store() - Attempt to store the value in a node
3875 * @wr_mas: The maple write state
3877 * Attempts to reuse the node, but may allocate.
3879 * Return: True if stored, false otherwise
3881 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
3882 unsigned char new_end)
3884 struct ma_state *mas = wr_mas->mas;
3885 void __rcu **dst_slots;
3886 unsigned long *dst_pivots;
3887 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3888 struct maple_node reuse, *newnode;
3889 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3890 bool in_rcu = mt_in_rcu(mas->tree);
3892 /* Check if there is enough data. The room is enough. */
3893 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
3894 !(mas->mas_flags & MA_STATE_BULK))
3897 if (mas->last == wr_mas->end_piv)
3898 offset_end++; /* don't copy this offset */
3899 else if (unlikely(wr_mas->r_max == ULONG_MAX))
3900 mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3904 mas_node_count(mas, 1);
3905 if (mas_is_err(mas))
3908 newnode = mas_pop_node(mas);
3910 memset(&reuse, 0, sizeof(struct maple_node));
3914 newnode->parent = mas_mn(mas)->parent;
3915 dst_pivots = ma_pivots(newnode, wr_mas->type);
3916 dst_slots = ma_slots(newnode, wr_mas->type);
3917 /* Copy from start to insert point */
3918 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3919 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3921 /* Handle insert of new range starting after old range */
3922 if (wr_mas->r_min < mas->index) {
3923 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3924 dst_pivots[mas->offset++] = mas->index - 1;
3927 /* Store the new entry and range end. */
3928 if (mas->offset < node_pivots)
3929 dst_pivots[mas->offset] = mas->last;
3930 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3933 * this range wrote to the end of the node or it overwrote the rest of
3936 if (offset_end > mas->end)
3939 dst_offset = mas->offset + 1;
3940 /* Copy to the end of node if necessary. */
3941 copy_size = mas->end - offset_end + 1;
3942 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3943 sizeof(void *) * copy_size);
3944 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3945 sizeof(unsigned long) * (copy_size - 1));
3947 if (new_end < node_pivots)
3948 dst_pivots[new_end] = mas->max;
3951 mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3953 struct maple_enode *old_enode = mas->node;
3955 mas->node = mt_mk_node(newnode, wr_mas->type);
3956 mas_replace_node(mas, old_enode);
3958 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3960 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3961 mas_update_gap(mas);
3967 * mas_wr_slot_store: Attempt to store a value in a slot.
3968 * @wr_mas: the maple write state
3970 * Return: True if stored, false otherwise
3972 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
3974 struct ma_state *mas = wr_mas->mas;
3975 unsigned char offset = mas->offset;
3976 void __rcu **slots = wr_mas->slots;
3979 gap |= !mt_slot_locked(mas->tree, slots, offset);
3980 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3982 if (wr_mas->offset_end - offset == 1) {
3983 if (mas->index == wr_mas->r_min) {
3984 /* Overwriting the range and a part of the next one */
3985 rcu_assign_pointer(slots[offset], wr_mas->entry);
3986 wr_mas->pivots[offset] = mas->last;
3988 /* Overwriting a part of the range and the next one */
3989 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3990 wr_mas->pivots[offset] = mas->index - 1;
3991 mas->offset++; /* Keep mas accurate. */
3993 } else if (!mt_in_rcu(mas->tree)) {
3995 * Expand the range, only partially overwriting the previous and
3998 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3999 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4000 wr_mas->pivots[offset] = mas->index - 1;
4001 wr_mas->pivots[offset + 1] = mas->last;
4002 mas->offset++; /* Keep mas accurate. */
4007 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4009 * Only update gap when the new entry is empty or there is an empty
4010 * entry in the original two ranges.
4012 if (!wr_mas->entry || gap)
4013 mas_update_gap(mas);
4018 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4020 struct ma_state *mas = wr_mas->mas;
4022 if (!wr_mas->slots[wr_mas->offset_end]) {
4023 /* If this one is null, the next and prev are not */
4024 mas->last = wr_mas->end_piv;
4026 /* Check next slot(s) if we are overwriting the end */
4027 if ((mas->last == wr_mas->end_piv) &&
4028 (mas->end != wr_mas->offset_end) &&
4029 !wr_mas->slots[wr_mas->offset_end + 1]) {
4030 wr_mas->offset_end++;
4031 if (wr_mas->offset_end == mas->end)
4032 mas->last = mas->max;
4034 mas->last = wr_mas->pivots[wr_mas->offset_end];
4035 wr_mas->end_piv = mas->last;
4039 if (!wr_mas->content) {
4040 /* If this one is null, the next and prev are not */
4041 mas->index = wr_mas->r_min;
4043 /* Check prev slot if we are overwriting the start */
4044 if (mas->index == wr_mas->r_min && mas->offset &&
4045 !wr_mas->slots[mas->offset - 1]) {
4047 wr_mas->r_min = mas->index =
4048 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4049 wr_mas->r_max = wr_mas->pivots[mas->offset];
4054 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4056 while ((wr_mas->offset_end < wr_mas->mas->end) &&
4057 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4058 wr_mas->offset_end++;
4060 if (wr_mas->offset_end < wr_mas->mas->end)
4061 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4063 wr_mas->end_piv = wr_mas->mas->max;
4066 mas_wr_extend_null(wr_mas);
4069 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4071 struct ma_state *mas = wr_mas->mas;
4072 unsigned char new_end = mas->end + 2;
4074 new_end -= wr_mas->offset_end - mas->offset;
4075 if (wr_mas->r_min == mas->index)
4078 if (wr_mas->end_piv == mas->last)
4085 * mas_wr_append: Attempt to append
4086 * @wr_mas: the maple write state
4087 * @new_end: The end of the node after the modification
4089 * This is currently unsafe in rcu mode since the end of the node may be cached
4090 * by readers while the node contents may be updated which could result in
4091 * inaccurate information.
4093 * Return: True if appended, false otherwise
4095 static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4096 unsigned char new_end)
4098 struct ma_state *mas;
4103 if (mt_in_rcu(mas->tree))
4107 if (mas->offset != end)
4110 if (new_end < mt_pivots[wr_mas->type]) {
4111 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4112 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4115 slots = wr_mas->slots;
4116 if (new_end == end + 1) {
4117 if (mas->last == wr_mas->r_max) {
4118 /* Append to end of range */
4119 rcu_assign_pointer(slots[new_end], wr_mas->entry);
4120 wr_mas->pivots[end] = mas->index - 1;
4121 mas->offset = new_end;
4123 /* Append to start of range */
4124 rcu_assign_pointer(slots[new_end], wr_mas->content);
4125 wr_mas->pivots[end] = mas->last;
4126 rcu_assign_pointer(slots[end], wr_mas->entry);
4129 /* Append to the range without touching any boundaries. */
4130 rcu_assign_pointer(slots[new_end], wr_mas->content);
4131 wr_mas->pivots[end + 1] = mas->last;
4132 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4133 wr_mas->pivots[end] = mas->index - 1;
4134 mas->offset = end + 1;
4137 if (!wr_mas->content || !wr_mas->entry)
4138 mas_update_gap(mas);
4141 trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4146 * mas_wr_bnode() - Slow path for a modification.
4147 * @wr_mas: The write maple state
4149 * This is where split, rebalance end up.
4151 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4153 struct maple_big_node b_node;
4155 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4156 memset(&b_node, 0, sizeof(struct maple_big_node));
4157 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4158 mas_commit_b_node(wr_mas, &b_node, wr_mas->mas->end);
4161 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4163 struct ma_state *mas = wr_mas->mas;
4164 unsigned char new_end;
4166 /* Direct replacement */
4167 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4168 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4169 if (!!wr_mas->entry ^ !!wr_mas->content)
4170 mas_update_gap(mas);
4175 * new_end exceeds the size of the maple node and cannot enter the fast
4178 new_end = mas_wr_new_end(wr_mas);
4179 if (new_end >= mt_slots[wr_mas->type])
4182 /* Attempt to append */
4183 if (mas_wr_append(wr_mas, new_end))
4186 if (new_end == mas->end && mas_wr_slot_store(wr_mas))
4189 if (mas_wr_node_store(wr_mas, new_end))
4192 if (mas_is_err(mas))
4196 mas_wr_bnode(wr_mas);
4200 * mas_wr_store_entry() - Internal call to store a value
4201 * @mas: The maple state
4202 * @entry: The entry to store.
4204 * Return: The contents that was stored at the index.
4206 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4208 struct ma_state *mas = wr_mas->mas;
4210 wr_mas->content = mas_start(mas);
4211 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4212 mas_store_root(mas, wr_mas->entry);
4213 return wr_mas->content;
4216 if (unlikely(!mas_wr_walk(wr_mas))) {
4217 mas_wr_spanning_store(wr_mas);
4218 return wr_mas->content;
4221 /* At this point, we are at the leaf node that needs to be altered. */
4222 mas_wr_end_piv(wr_mas);
4223 /* New root for a single pointer */
4224 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4225 mas_new_root(mas, wr_mas->entry);
4226 return wr_mas->content;
4229 mas_wr_modify(wr_mas);
4230 return wr_mas->content;
4234 * mas_insert() - Internal call to insert a value
4235 * @mas: The maple state
4236 * @entry: The entry to store
4238 * Return: %NULL or the contents that already exists at the requested index
4239 * otherwise. The maple state needs to be checked for error conditions.
4241 static inline void *mas_insert(struct ma_state *mas, void *entry)
4243 MA_WR_STATE(wr_mas, mas, entry);
4246 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4247 * tree. If the insert fits exactly into an existing gap with a value
4248 * of NULL, then the slot only needs to be written with the new value.
4249 * If the range being inserted is adjacent to another range, then only a
4250 * single pivot needs to be inserted (as well as writing the entry). If
4251 * the new range is within a gap but does not touch any other ranges,
4252 * then two pivots need to be inserted: the start - 1, and the end. As
4253 * usual, the entry must be written. Most operations require a new node
4254 * to be allocated and replace an existing node to ensure RCU safety,
4255 * when in RCU mode. The exception to requiring a newly allocated node
4256 * is when inserting at the end of a node (appending). When done
4257 * carefully, appending can reuse the node in place.
4259 wr_mas.content = mas_start(mas);
4263 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4264 mas_store_root(mas, entry);
4268 /* spanning writes always overwrite something */
4269 if (!mas_wr_walk(&wr_mas))
4272 /* At this point, we are at the leaf node that needs to be altered. */
4273 wr_mas.offset_end = mas->offset;
4274 wr_mas.end_piv = wr_mas.r_max;
4276 if (wr_mas.content || (mas->last > wr_mas.r_max))
4282 mas_wr_modify(&wr_mas);
4283 return wr_mas.content;
4286 mas_set_err(mas, -EEXIST);
4287 return wr_mas.content;
4292 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4293 * @mas: The maple state.
4294 * @startp: Pointer to ID.
4295 * @range_lo: Lower bound of range to search.
4296 * @range_hi: Upper bound of range to search.
4297 * @entry: The entry to store.
4298 * @next: Pointer to next ID to allocate.
4299 * @gfp: The GFP_FLAGS to use for allocations.
4301 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4302 * allocation succeeded after wrapping, or -EBUSY if there are no
4305 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4306 void *entry, unsigned long range_lo, unsigned long range_hi,
4307 unsigned long *next, gfp_t gfp)
4309 unsigned long min = range_lo;
4312 range_lo = max(min, *next);
4313 ret = mas_empty_area(mas, range_lo, range_hi, 1);
4314 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4315 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4318 if (ret < 0 && range_lo > min) {
4319 ret = mas_empty_area(mas, min, range_hi, 1);
4327 mas_insert(mas, entry);
4328 } while (mas_nomem(mas, gfp));
4329 if (mas_is_err(mas))
4330 return xa_err(mas->node);
4332 *startp = mas->index;
4333 *next = *startp + 1;
4335 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4339 EXPORT_SYMBOL(mas_alloc_cyclic);
4341 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4344 mas_set(mas, index);
4345 mas_state_walk(mas);
4346 if (mas_is_start(mas))
4350 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4351 struct maple_node *node, const unsigned long index)
4353 if (unlikely(ma_dead_node(node))) {
4354 mas_rewalk(mas, index);
4361 * mas_prev_node() - Find the prev non-null entry at the same level in the
4362 * tree. The prev value will be mas->node[mas->offset] or the status will be
4364 * @mas: The maple state
4365 * @min: The lower limit to search
4367 * The prev node value will be mas->node[mas->offset] or the status will be
4369 * Return: 1 if the node is dead, 0 otherwise.
4371 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4376 struct maple_node *node;
4377 unsigned long *pivots;
4390 if (ma_is_root(node))
4394 if (unlikely(mas_ascend(mas)))
4396 offset = mas->offset;
4402 mt = mte_node_type(mas->node);
4405 slots = ma_slots(node, mt);
4406 mas->node = mas_slot(mas, slots, offset);
4407 if (unlikely(ma_dead_node(node)))
4410 mt = mte_node_type(mas->node);
4412 pivots = ma_pivots(node, mt);
4413 offset = ma_data_end(node, mt, pivots, max);
4414 if (unlikely(ma_dead_node(node)))
4418 slots = ma_slots(node, mt);
4419 mas->node = mas_slot(mas, slots, offset);
4420 pivots = ma_pivots(node, mt);
4421 if (unlikely(ma_dead_node(node)))
4425 mas->min = pivots[offset - 1] + 1;
4427 mas->offset = mas_data_end(mas);
4428 if (unlikely(mte_dead_node(mas->node)))
4431 mas->end = mas->offset;
4435 if (unlikely(ma_dead_node(node)))
4438 mas->status = ma_underflow;
4443 * mas_prev_slot() - Get the entry in the previous slot
4445 * @mas: The maple state
4446 * @max: The minimum starting range
4447 * @empty: Can be empty
4448 * @set_underflow: Set the @mas->node to underflow state on limit.
4450 * Return: The entry in the previous slot which is possibly NULL
4452 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4456 unsigned long pivot;
4457 enum maple_type type;
4458 unsigned long *pivots;
4459 struct maple_node *node;
4460 unsigned long save_point = mas->index;
4464 type = mte_node_type(mas->node);
4465 pivots = ma_pivots(node, type);
4466 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4469 if (mas->min <= min) {
4470 pivot = mas_safe_min(mas, pivots, mas->offset);
4472 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4480 if (likely(mas->offset)) {
4482 mas->last = mas->index - 1;
4483 mas->index = mas_safe_min(mas, pivots, mas->offset);
4485 if (mas->index <= min)
4488 if (mas_prev_node(mas, min)) {
4489 mas_rewalk(mas, save_point);
4493 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4496 mas->last = mas->max;
4498 type = mte_node_type(mas->node);
4499 pivots = ma_pivots(node, type);
4500 mas->index = pivots[mas->offset - 1] + 1;
4503 slots = ma_slots(node, type);
4504 entry = mas_slot(mas, slots, mas->offset);
4505 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4513 if (mas->index <= min) {
4514 mas->status = ma_underflow;
4524 mas->status = ma_underflow;
4529 * mas_next_node() - Get the next node at the same level in the tree.
4530 * @mas: The maple state
4531 * @max: The maximum pivot value to check.
4533 * The next value will be mas->node[mas->offset] or the status will have
4535 * Return: 1 on dead node, 0 otherwise.
4537 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4541 unsigned long *pivots;
4542 struct maple_enode *enode;
4543 struct maple_node *tmp;
4545 unsigned char node_end;
4549 if (mas->max >= max)
4555 if (ma_is_root(node))
4559 if (unlikely(mas_ascend(mas)))
4564 mt = mte_node_type(mas->node);
4565 pivots = ma_pivots(node, mt);
4566 node_end = ma_data_end(node, mt, pivots, mas->max);
4567 if (unlikely(ma_dead_node(node)))
4570 } while (unlikely(mas->offset == node_end));
4572 slots = ma_slots(node, mt);
4574 enode = mas_slot(mas, slots, mas->offset);
4575 if (unlikely(ma_dead_node(node)))
4581 while (unlikely(level > 1)) {
4585 mt = mte_node_type(mas->node);
4586 slots = ma_slots(node, mt);
4587 enode = mas_slot(mas, slots, 0);
4588 if (unlikely(ma_dead_node(node)))
4593 pivots = ma_pivots(node, mt);
4595 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4596 tmp = mte_to_node(enode);
4597 mt = mte_node_type(enode);
4598 pivots = ma_pivots(tmp, mt);
4599 mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4600 if (unlikely(ma_dead_node(node)))
4608 if (unlikely(ma_dead_node(node)))
4611 mas->status = ma_overflow;
4616 * mas_next_slot() - Get the entry in the next slot
4618 * @mas: The maple state
4619 * @max: The maximum starting range
4620 * @empty: Can be empty
4621 * @set_overflow: Should @mas->node be set to overflow when the limit is
4624 * Return: The entry in the next slot which is possibly NULL
4626 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4629 unsigned long *pivots;
4630 unsigned long pivot;
4631 enum maple_type type;
4632 struct maple_node *node;
4633 unsigned long save_point = mas->last;
4638 type = mte_node_type(mas->node);
4639 pivots = ma_pivots(node, type);
4640 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4643 if (mas->max >= max) {
4644 if (likely(mas->offset < mas->end))
4645 pivot = pivots[mas->offset];
4649 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4652 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4653 mas->status = ma_overflow;
4658 if (likely(mas->offset < mas->end)) {
4659 mas->index = pivots[mas->offset] + 1;
4662 if (likely(mas->offset < mas->end))
4663 mas->last = pivots[mas->offset];
4665 mas->last = mas->max;
4667 if (mas->last >= max) {
4668 mas->status = ma_overflow;
4672 if (mas_next_node(mas, node, max)) {
4673 mas_rewalk(mas, save_point);
4677 if (WARN_ON_ONCE(mas_is_overflow(mas)))
4681 mas->index = mas->min;
4683 type = mte_node_type(mas->node);
4684 pivots = ma_pivots(node, type);
4685 mas->last = pivots[0];
4688 slots = ma_slots(node, type);
4689 entry = mt_slot(mas->tree, slots, mas->offset);
4690 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4698 if (mas->last >= max) {
4699 mas->status = ma_overflow;
4703 mas->index = mas->last + 1;
4711 * mas_next_entry() - Internal function to get the next entry.
4712 * @mas: The maple state
4713 * @limit: The maximum range start.
4715 * Set the @mas->node to the next entry and the range_start to
4716 * the beginning value for the entry. Does not check beyond @limit.
4717 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4718 * @mas->last on overflow.
4719 * Restarts on dead nodes.
4721 * Return: the next entry or %NULL.
4723 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4725 if (mas->last >= limit) {
4726 mas->status = ma_overflow;
4730 return mas_next_slot(mas, limit, false);
4734 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4735 * highest gap address of a given size in a given node and descend.
4736 * @mas: The maple state
4737 * @size: The needed size.
4739 * Return: True if found in a leaf, false otherwise.
4742 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4743 unsigned long *gap_min, unsigned long *gap_max)
4745 enum maple_type type = mte_node_type(mas->node);
4746 struct maple_node *node = mas_mn(mas);
4747 unsigned long *pivots, *gaps;
4749 unsigned long gap = 0;
4750 unsigned long max, min;
4751 unsigned char offset;
4753 if (unlikely(mas_is_err(mas)))
4756 if (ma_is_dense(type)) {
4758 mas->offset = (unsigned char)(mas->index - mas->min);
4762 pivots = ma_pivots(node, type);
4763 slots = ma_slots(node, type);
4764 gaps = ma_gaps(node, type);
4765 offset = mas->offset;
4766 min = mas_safe_min(mas, pivots, offset);
4767 /* Skip out of bounds. */
4768 while (mas->last < min)
4769 min = mas_safe_min(mas, pivots, --offset);
4771 max = mas_safe_pivot(mas, pivots, offset, type);
4772 while (mas->index <= max) {
4776 else if (!mas_slot(mas, slots, offset))
4777 gap = max - min + 1;
4780 if ((size <= gap) && (size <= mas->last - min + 1))
4784 /* Skip the next slot, it cannot be a gap. */
4789 max = pivots[offset];
4790 min = mas_safe_min(mas, pivots, offset);
4800 min = mas_safe_min(mas, pivots, offset);
4803 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4806 if (unlikely(ma_is_leaf(type))) {
4807 mas->offset = offset;
4809 *gap_max = min + gap - 1;
4813 /* descend, only happens under lock. */
4814 mas->node = mas_slot(mas, slots, offset);
4817 mas->offset = mas_data_end(mas);
4821 if (!mte_is_root(mas->node))
4825 mas_set_err(mas, -EBUSY);
4829 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4831 enum maple_type type = mte_node_type(mas->node);
4832 unsigned long pivot, min, gap = 0;
4833 unsigned char offset, data_end;
4834 unsigned long *gaps, *pivots;
4836 struct maple_node *node;
4839 if (ma_is_dense(type)) {
4840 mas->offset = (unsigned char)(mas->index - mas->min);
4845 pivots = ma_pivots(node, type);
4846 slots = ma_slots(node, type);
4847 gaps = ma_gaps(node, type);
4848 offset = mas->offset;
4849 min = mas_safe_min(mas, pivots, offset);
4850 data_end = ma_data_end(node, type, pivots, mas->max);
4851 for (; offset <= data_end; offset++) {
4852 pivot = mas_safe_pivot(mas, pivots, offset, type);
4854 /* Not within lower bounds */
4855 if (mas->index > pivot)
4860 else if (!mas_slot(mas, slots, offset))
4861 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4866 if (ma_is_leaf(type)) {
4870 if (mas->index <= pivot) {
4871 mas->node = mas_slot(mas, slots, offset);
4880 if (mas->last <= pivot) {
4881 mas_set_err(mas, -EBUSY);
4886 if (mte_is_root(mas->node))
4889 mas->offset = offset;
4894 * mas_walk() - Search for @mas->index in the tree.
4895 * @mas: The maple state.
4897 * mas->index and mas->last will be set to the range if there is a value. If
4898 * mas->status is ma_none, reset to ma_start
4900 * Return: the entry at the location or %NULL.
4902 void *mas_walk(struct ma_state *mas)
4906 if (!mas_is_active(mas) || !mas_is_start(mas))
4907 mas->status = ma_start;
4909 entry = mas_state_walk(mas);
4910 if (mas_is_start(mas)) {
4912 } else if (mas_is_none(mas)) {
4914 mas->last = ULONG_MAX;
4915 } else if (mas_is_ptr(mas)) {
4922 mas->last = ULONG_MAX;
4923 mas->status = ma_none;
4929 EXPORT_SYMBOL_GPL(mas_walk);
4931 static inline bool mas_rewind_node(struct ma_state *mas)
4936 if (mte_is_root(mas->node)) {
4946 mas->offset = --slot;
4951 * mas_skip_node() - Internal function. Skip over a node.
4952 * @mas: The maple state.
4954 * Return: true if there is another node, false otherwise.
4956 static inline bool mas_skip_node(struct ma_state *mas)
4958 if (mas_is_err(mas))
4962 if (mte_is_root(mas->node)) {
4963 if (mas->offset >= mas_data_end(mas)) {
4964 mas_set_err(mas, -EBUSY);
4970 } while (mas->offset >= mas_data_end(mas));
4977 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
4979 * @mas: The maple state
4980 * @size: The size of the gap required
4982 * Search between @mas->index and @mas->last for a gap of @size.
4984 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4986 struct maple_enode *last = NULL;
4989 * There are 4 options:
4990 * go to child (descend)
4991 * go back to parent (ascend)
4992 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
4993 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
4995 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4996 if (last == mas->node)
5004 * mas_sparse_area() - Internal function. Return upper or lower limit when
5005 * searching for a gap in an empty tree.
5006 * @mas: The maple state
5007 * @min: the minimum range
5008 * @max: The maximum range
5009 * @size: The size of the gap
5010 * @fwd: Searching forward or back
5012 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5013 unsigned long max, unsigned long size, bool fwd)
5015 if (!unlikely(mas_is_none(mas)) && min == 0) {
5018 * At this time, min is increased, we need to recheck whether
5019 * the size is satisfied.
5021 if (min > max || max - min + 1 < size)
5028 mas->last = min + size - 1;
5031 mas->index = max - size + 1;
5037 * mas_empty_area() - Get the lowest address within the range that is
5038 * sufficient for the size requested.
5039 * @mas: The maple state
5040 * @min: The lowest value of the range
5041 * @max: The highest value of the range
5042 * @size: The size needed
5044 int mas_empty_area(struct ma_state *mas, unsigned long min,
5045 unsigned long max, unsigned long size)
5047 unsigned char offset;
5048 unsigned long *pivots;
5050 struct maple_node *node;
5055 if (size == 0 || max - min < size - 1)
5058 if (mas_is_start(mas))
5060 else if (mas->offset >= 2)
5062 else if (!mas_skip_node(mas))
5066 if (mas_is_none(mas) || mas_is_ptr(mas))
5067 return mas_sparse_area(mas, min, max, size, true);
5069 /* The start of the window can only be within these values */
5072 mas_awalk(mas, size);
5074 if (unlikely(mas_is_err(mas)))
5075 return xa_err(mas->node);
5077 offset = mas->offset;
5078 if (unlikely(offset == MAPLE_NODE_SLOTS))
5082 mt = mte_node_type(mas->node);
5083 pivots = ma_pivots(node, mt);
5084 min = mas_safe_min(mas, pivots, offset);
5085 if (mas->index < min)
5087 mas->last = mas->index + size - 1;
5088 mas->end = ma_data_end(node, mt, pivots, mas->max);
5091 EXPORT_SYMBOL_GPL(mas_empty_area);
5094 * mas_empty_area_rev() - Get the highest address within the range that is
5095 * sufficient for the size requested.
5096 * @mas: The maple state
5097 * @min: The lowest value of the range
5098 * @max: The highest value of the range
5099 * @size: The size needed
5101 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5102 unsigned long max, unsigned long size)
5104 struct maple_enode *last = mas->node;
5109 if (size == 0 || max - min < size - 1)
5112 if (mas_is_start(mas))
5114 else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5117 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5118 return mas_sparse_area(mas, min, max, size, false);
5119 else if (mas->offset >= 2)
5122 mas->offset = mas_data_end(mas);
5125 /* The start of the window can only be within these values. */
5129 while (!mas_rev_awalk(mas, size, &min, &max)) {
5130 if (last == mas->node) {
5131 if (!mas_rewind_node(mas))
5138 if (mas_is_err(mas))
5139 return xa_err(mas->node);
5141 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5144 /* Trim the upper limit to the max. */
5145 if (max < mas->last)
5148 mas->index = mas->last - size + 1;
5149 mas->end = mas_data_end(mas);
5152 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5155 * mte_dead_leaves() - Mark all leaves of a node as dead.
5156 * @mas: The maple state
5157 * @slots: Pointer to the slot array
5158 * @type: The maple node type
5160 * Must hold the write lock.
5162 * Return: The number of leaves marked as dead.
5165 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5168 struct maple_node *node;
5169 enum maple_type type;
5173 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5174 entry = mt_slot(mt, slots, offset);
5175 type = mte_node_type(entry);
5176 node = mte_to_node(entry);
5177 /* Use both node and type to catch LE & BE metadata */
5181 mte_set_node_dead(entry);
5183 rcu_assign_pointer(slots[offset], node);
5190 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5191 * @enode: The maple encoded node
5192 * @offset: The starting offset
5194 * Note: This can only be used from the RCU callback context.
5196 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5198 struct maple_node *node, *next;
5199 void __rcu **slots = NULL;
5201 next = mte_to_node(*enode);
5203 *enode = ma_enode_ptr(next);
5204 node = mte_to_node(*enode);
5205 slots = ma_slots(node, node->type);
5206 next = rcu_dereference_protected(slots[offset],
5207 lock_is_held(&rcu_callback_map));
5209 } while (!ma_is_leaf(next->type));
5215 * mt_free_walk() - Walk & free a tree in the RCU callback context
5216 * @head: The RCU head that's within the node.
5218 * Note: This can only be used from the RCU callback context.
5220 static void mt_free_walk(struct rcu_head *head)
5223 struct maple_node *node, *start;
5224 struct maple_enode *enode;
5225 unsigned char offset;
5226 enum maple_type type;
5228 node = container_of(head, struct maple_node, rcu);
5230 if (ma_is_leaf(node->type))
5234 enode = mt_mk_node(node, node->type);
5235 slots = mte_dead_walk(&enode, 0);
5236 node = mte_to_node(enode);
5238 mt_free_bulk(node->slot_len, slots);
5239 offset = node->parent_slot + 1;
5240 enode = node->piv_parent;
5241 if (mte_to_node(enode) == node)
5244 type = mte_node_type(enode);
5245 slots = ma_slots(mte_to_node(enode), type);
5246 if ((offset < mt_slots[type]) &&
5247 rcu_dereference_protected(slots[offset],
5248 lock_is_held(&rcu_callback_map)))
5249 slots = mte_dead_walk(&enode, offset);
5250 node = mte_to_node(enode);
5251 } while ((node != start) || (node->slot_len < offset));
5253 slots = ma_slots(node, node->type);
5254 mt_free_bulk(node->slot_len, slots);
5257 mt_free_rcu(&node->rcu);
5260 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5261 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5263 struct maple_node *node;
5264 struct maple_enode *next = *enode;
5265 void __rcu **slots = NULL;
5266 enum maple_type type;
5267 unsigned char next_offset = 0;
5271 node = mte_to_node(*enode);
5272 type = mte_node_type(*enode);
5273 slots = ma_slots(node, type);
5274 next = mt_slot_locked(mt, slots, next_offset);
5275 if ((mte_dead_node(next)))
5276 next = mt_slot_locked(mt, slots, ++next_offset);
5278 mte_set_node_dead(*enode);
5280 node->piv_parent = prev;
5281 node->parent_slot = offset;
5282 offset = next_offset;
5285 } while (!mte_is_leaf(next));
5290 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5294 struct maple_node *node = mte_to_node(enode);
5295 struct maple_enode *start;
5297 if (mte_is_leaf(enode)) {
5298 node->type = mte_node_type(enode);
5303 slots = mte_destroy_descend(&enode, mt, start, 0);
5304 node = mte_to_node(enode); // Updated in the above call.
5306 enum maple_type type;
5307 unsigned char offset;
5308 struct maple_enode *parent, *tmp;
5310 node->slot_len = mte_dead_leaves(enode, mt, slots);
5312 mt_free_bulk(node->slot_len, slots);
5313 offset = node->parent_slot + 1;
5314 enode = node->piv_parent;
5315 if (mte_to_node(enode) == node)
5318 type = mte_node_type(enode);
5319 slots = ma_slots(mte_to_node(enode), type);
5320 if (offset >= mt_slots[type])
5323 tmp = mt_slot_locked(mt, slots, offset);
5324 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5327 slots = mte_destroy_descend(&enode, mt, parent, offset);
5330 node = mte_to_node(enode);
5331 } while (start != enode);
5333 node = mte_to_node(enode);
5334 node->slot_len = mte_dead_leaves(enode, mt, slots);
5336 mt_free_bulk(node->slot_len, slots);
5340 mt_free_rcu(&node->rcu);
5342 mt_clear_meta(mt, node, node->type);
5346 * mte_destroy_walk() - Free a tree or sub-tree.
5347 * @enode: the encoded maple node (maple_enode) to start
5348 * @mt: the tree to free - needed for node types.
5350 * Must hold the write lock.
5352 static inline void mte_destroy_walk(struct maple_enode *enode,
5353 struct maple_tree *mt)
5355 struct maple_node *node = mte_to_node(enode);
5357 if (mt_in_rcu(mt)) {
5358 mt_destroy_walk(enode, mt, false);
5359 call_rcu(&node->rcu, mt_free_walk);
5361 mt_destroy_walk(enode, mt, true);
5365 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5367 if (!mas_is_active(wr_mas->mas)) {
5368 if (mas_is_start(wr_mas->mas))
5371 if (unlikely(mas_is_paused(wr_mas->mas)))
5374 if (unlikely(mas_is_none(wr_mas->mas)))
5377 if (unlikely(mas_is_overflow(wr_mas->mas)))
5380 if (unlikely(mas_is_underflow(wr_mas->mas)))
5385 * A less strict version of mas_is_span_wr() where we allow spanning
5386 * writes within this node. This is to stop partial walks in
5387 * mas_prealloc() from being reset.
5389 if (wr_mas->mas->last > wr_mas->mas->max)
5395 if (mte_is_leaf(wr_mas->mas->node) &&
5396 wr_mas->mas->last == wr_mas->mas->max)
5402 mas_reset(wr_mas->mas);
5408 * mas_store() - Store an @entry.
5409 * @mas: The maple state.
5410 * @entry: The entry to store.
5412 * The @mas->index and @mas->last is used to set the range for the @entry.
5413 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5414 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5416 * Return: the first entry between mas->index and mas->last or %NULL.
5418 void *mas_store(struct ma_state *mas, void *entry)
5420 MA_WR_STATE(wr_mas, mas, entry);
5422 trace_ma_write(__func__, mas, 0, entry);
5423 #ifdef CONFIG_DEBUG_MAPLE_TREE
5424 if (MAS_WARN_ON(mas, mas->index > mas->last))
5425 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5427 if (mas->index > mas->last) {
5428 mas_set_err(mas, -EINVAL);
5435 * Storing is the same operation as insert with the added caveat that it
5436 * can overwrite entries. Although this seems simple enough, one may
5437 * want to examine what happens if a single store operation was to
5438 * overwrite multiple entries within a self-balancing B-Tree.
5440 mas_wr_store_setup(&wr_mas);
5441 mas_wr_store_entry(&wr_mas);
5442 return wr_mas.content;
5444 EXPORT_SYMBOL_GPL(mas_store);
5447 * mas_store_gfp() - Store a value into the tree.
5448 * @mas: The maple state
5449 * @entry: The entry to store
5450 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5452 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5455 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5457 MA_WR_STATE(wr_mas, mas, entry);
5459 mas_wr_store_setup(&wr_mas);
5460 trace_ma_write(__func__, mas, 0, entry);
5462 mas_wr_store_entry(&wr_mas);
5463 if (unlikely(mas_nomem(mas, gfp)))
5466 if (unlikely(mas_is_err(mas)))
5467 return xa_err(mas->node);
5471 EXPORT_SYMBOL_GPL(mas_store_gfp);
5474 * mas_store_prealloc() - Store a value into the tree using memory
5475 * preallocated in the maple state.
5476 * @mas: The maple state
5477 * @entry: The entry to store.
5479 void mas_store_prealloc(struct ma_state *mas, void *entry)
5481 MA_WR_STATE(wr_mas, mas, entry);
5483 mas_wr_store_setup(&wr_mas);
5484 trace_ma_write(__func__, mas, 0, entry);
5485 mas_wr_store_entry(&wr_mas);
5486 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5489 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5492 * mas_preallocate() - Preallocate enough nodes for a store operation
5493 * @mas: The maple state
5494 * @entry: The entry that will be stored
5495 * @gfp: The GFP_FLAGS to use for allocations.
5497 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5499 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5501 MA_WR_STATE(wr_mas, mas, entry);
5502 unsigned char node_size;
5507 if (unlikely(!mas->index && mas->last == ULONG_MAX))
5510 mas_wr_store_setup(&wr_mas);
5511 wr_mas.content = mas_start(mas);
5513 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5516 if (unlikely(!mas_wr_walk(&wr_mas))) {
5517 /* Spanning store, use worst case for now */
5518 request = 1 + mas_mt_height(mas) * 3;
5522 /* At this point, we are at the leaf node that needs to be altered. */
5523 /* Exact fit, no nodes needed. */
5524 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5527 mas_wr_end_piv(&wr_mas);
5528 node_size = mas_wr_new_end(&wr_mas);
5530 /* Slot store, does not require additional nodes */
5531 if (node_size == mas->end) {
5533 if (!mt_in_rcu(mas->tree))
5535 /* shifting boundary */
5536 if (wr_mas.offset_end - mas->offset == 1)
5540 if (node_size >= mt_slots[wr_mas.type]) {
5541 /* Split, worst case for now. */
5542 request = 1 + mas_mt_height(mas) * 2;
5546 /* New root needs a single node */
5547 if (unlikely(mte_is_root(mas->node)))
5550 /* Potential spanning rebalance collapsing a node, use worst-case */
5551 if (node_size - 1 <= mt_min_slots[wr_mas.type])
5552 request = mas_mt_height(mas) * 2 - 1;
5554 /* node store, slot store needs one node */
5556 mas_node_count_gfp(mas, request, gfp);
5557 mas->mas_flags |= MA_STATE_PREALLOC;
5558 if (likely(!mas_is_err(mas)))
5561 mas_set_alloc_req(mas, 0);
5562 ret = xa_err(mas->node);
5568 EXPORT_SYMBOL_GPL(mas_preallocate);
5571 * mas_destroy() - destroy a maple state.
5572 * @mas: The maple state
5574 * Upon completion, check the left-most node and rebalance against the node to
5575 * the right if necessary. Frees any allocated nodes associated with this maple
5578 void mas_destroy(struct ma_state *mas)
5580 struct maple_alloc *node;
5581 unsigned long total;
5584 * When using mas_for_each() to insert an expected number of elements,
5585 * it is possible that the number inserted is less than the expected
5586 * number. To fix an invalid final node, a check is performed here to
5587 * rebalance the previous node with the final node.
5589 if (mas->mas_flags & MA_STATE_REBALANCE) {
5593 mtree_range_walk(mas);
5595 if (end < mt_min_slot_count(mas->node) - 1)
5596 mas_destroy_rebalance(mas, end);
5598 mas->mas_flags &= ~MA_STATE_REBALANCE;
5600 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5602 total = mas_allocated(mas);
5605 mas->alloc = node->slot[0];
5606 if (node->node_count > 1) {
5607 size_t count = node->node_count - 1;
5609 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5612 mt_free_one(ma_mnode_ptr(node));
5618 EXPORT_SYMBOL_GPL(mas_destroy);
5621 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5622 * @mas: The maple state
5623 * @nr_entries: The number of expected entries.
5625 * This will attempt to pre-allocate enough nodes to store the expected number
5626 * of entries. The allocations will occur using the bulk allocator interface
5627 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5628 * to ensure any unused nodes are freed.
5630 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5632 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5634 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5635 struct maple_enode *enode = mas->node;
5640 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5641 * forking a process and duplicating the VMAs from one tree to a new
5642 * tree. When such a situation arises, it is known that the new tree is
5643 * not going to be used until the entire tree is populated. For
5644 * performance reasons, it is best to use a bulk load with RCU disabled.
5645 * This allows for optimistic splitting that favours the left and reuse
5646 * of nodes during the operation.
5649 /* Optimize splitting for bulk insert in-order */
5650 mas->mas_flags |= MA_STATE_BULK;
5653 * Avoid overflow, assume a gap between each entry and a trailing null.
5654 * If this is wrong, it just means allocation can happen during
5655 * insertion of entries.
5657 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5658 if (!mt_is_alloc(mas->tree))
5659 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5661 /* Leaves; reduce slots to keep space for expansion */
5662 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5663 /* Internal nodes */
5664 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5665 /* Add working room for split (2 nodes) + new parents */
5666 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5668 /* Detect if allocations run out */
5669 mas->mas_flags |= MA_STATE_PREALLOC;
5671 if (!mas_is_err(mas))
5674 ret = xa_err(mas->node);
5680 EXPORT_SYMBOL_GPL(mas_expected_entries);
5682 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5685 bool was_none = mas_is_none(mas);
5687 if (unlikely(mas->last >= max)) {
5688 mas->status = ma_overflow;
5692 switch (mas->status) {
5698 mas->status = ma_start;
5701 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5704 /* Overflowed before, but the max changed */
5705 mas->status = ma_active;
5708 /* The user expects the mas to be one before where it is */
5709 mas->status = ma_active;
5710 *entry = mas_walk(mas);
5720 if (likely(mas_is_active(mas))) /* Fast path */
5723 if (mas_is_ptr(mas)) {
5725 if (was_none && mas->index == 0) {
5726 mas->index = mas->last = 0;
5730 mas->last = ULONG_MAX;
5731 mas->status = ma_none;
5735 if (mas_is_none(mas))
5742 * mas_next() - Get the next entry.
5743 * @mas: The maple state
5744 * @max: The maximum index to check.
5746 * Returns the next entry after @mas->index.
5747 * Must hold rcu_read_lock or the write lock.
5748 * Can return the zero entry.
5750 * Return: The next entry or %NULL
5752 void *mas_next(struct ma_state *mas, unsigned long max)
5756 if (mas_next_setup(mas, max, &entry))
5759 /* Retries on dead nodes handled by mas_next_slot */
5760 return mas_next_slot(mas, max, false);
5762 EXPORT_SYMBOL_GPL(mas_next);
5765 * mas_next_range() - Advance the maple state to the next range
5766 * @mas: The maple state
5767 * @max: The maximum index to check.
5769 * Sets @mas->index and @mas->last to the range.
5770 * Must hold rcu_read_lock or the write lock.
5771 * Can return the zero entry.
5773 * Return: The next entry or %NULL
5775 void *mas_next_range(struct ma_state *mas, unsigned long max)
5779 if (mas_next_setup(mas, max, &entry))
5782 /* Retries on dead nodes handled by mas_next_slot */
5783 return mas_next_slot(mas, max, true);
5785 EXPORT_SYMBOL_GPL(mas_next_range);
5788 * mt_next() - get the next value in the maple tree
5789 * @mt: The maple tree
5790 * @index: The start index
5791 * @max: The maximum index to check
5793 * Takes RCU read lock internally to protect the search, which does not
5794 * protect the returned pointer after dropping RCU read lock.
5795 * See also: Documentation/core-api/maple_tree.rst
5797 * Return: The entry higher than @index or %NULL if nothing is found.
5799 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5802 MA_STATE(mas, mt, index, index);
5805 entry = mas_next(&mas, max);
5809 EXPORT_SYMBOL_GPL(mt_next);
5811 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5813 if (unlikely(mas->index <= min)) {
5814 mas->status = ma_underflow;
5818 switch (mas->status) {
5826 mas->status = ma_start;
5829 /* underflowed before but the min changed */
5830 mas->status = ma_active;
5833 /* User expects mas to be one after where it is */
5834 mas->status = ma_active;
5835 *entry = mas_walk(mas);
5845 if (mas_is_start(mas))
5848 if (unlikely(mas_is_ptr(mas))) {
5850 mas->status = ma_none;
5853 mas->index = mas->last = 0;
5854 *entry = mas_root(mas);
5858 if (mas_is_none(mas)) {
5860 /* Walked to out-of-range pointer? */
5861 mas->index = mas->last = 0;
5862 mas->status = ma_root;
5863 *entry = mas_root(mas);
5873 * mas_prev() - Get the previous entry
5874 * @mas: The maple state
5875 * @min: The minimum value to check.
5877 * Must hold rcu_read_lock or the write lock.
5878 * Will reset mas to ma_start if the status is ma_none. Will stop on not
5881 * Return: the previous value or %NULL.
5883 void *mas_prev(struct ma_state *mas, unsigned long min)
5887 if (mas_prev_setup(mas, min, &entry))
5890 return mas_prev_slot(mas, min, false);
5892 EXPORT_SYMBOL_GPL(mas_prev);
5895 * mas_prev_range() - Advance to the previous range
5896 * @mas: The maple state
5897 * @min: The minimum value to check.
5899 * Sets @mas->index and @mas->last to the range.
5900 * Must hold rcu_read_lock or the write lock.
5901 * Will reset mas to ma_start if the node is ma_none. Will stop on not
5904 * Return: the previous value or %NULL.
5906 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5910 if (mas_prev_setup(mas, min, &entry))
5913 return mas_prev_slot(mas, min, true);
5915 EXPORT_SYMBOL_GPL(mas_prev_range);
5918 * mt_prev() - get the previous value in the maple tree
5919 * @mt: The maple tree
5920 * @index: The start index
5921 * @min: The minimum index to check
5923 * Takes RCU read lock internally to protect the search, which does not
5924 * protect the returned pointer after dropping RCU read lock.
5925 * See also: Documentation/core-api/maple_tree.rst
5927 * Return: The entry before @index or %NULL if nothing is found.
5929 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5932 MA_STATE(mas, mt, index, index);
5935 entry = mas_prev(&mas, min);
5939 EXPORT_SYMBOL_GPL(mt_prev);
5942 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5943 * @mas: The maple state to pause
5945 * Some users need to pause a walk and drop the lock they're holding in
5946 * order to yield to a higher priority thread or carry out an operation
5947 * on an entry. Those users should call this function before they drop
5948 * the lock. It resets the @mas to be suitable for the next iteration
5949 * of the loop after the user has reacquired the lock. If most entries
5950 * found during a walk require you to call mas_pause(), the mt_for_each()
5951 * iterator may be more appropriate.
5954 void mas_pause(struct ma_state *mas)
5956 mas->status = ma_pause;
5959 EXPORT_SYMBOL_GPL(mas_pause);
5962 * mas_find_setup() - Internal function to set up mas_find*().
5963 * @mas: The maple state
5964 * @max: The maximum index
5965 * @entry: Pointer to the entry
5967 * Returns: True if entry is the answer, false otherwise.
5969 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5971 switch (mas->status) {
5973 if (mas->last < max)
5979 if (unlikely(mas->last >= max))
5982 mas->index = ++mas->last;
5983 mas->status = ma_start;
5986 if (unlikely(mas->last >= max))
5989 mas->index = mas->last;
5990 mas->status = ma_start;
5993 /* mas is pointing at entry before unable to go lower */
5994 if (unlikely(mas->index >= max)) {
5995 mas->status = ma_overflow;
5999 mas->status = ma_active;
6000 *entry = mas_walk(mas);
6005 if (unlikely(mas->last >= max))
6008 mas->status = ma_active;
6009 *entry = mas_walk(mas);
6019 if (mas_is_start(mas)) {
6020 /* First run or continue */
6021 if (mas->index > max)
6024 *entry = mas_walk(mas);
6030 if (unlikely(mas_is_ptr(mas)))
6031 goto ptr_out_of_range;
6033 if (unlikely(mas_is_none(mas)))
6036 if (mas->index == max)
6042 mas->status = ma_none;
6044 mas->last = ULONG_MAX;
6049 * mas_find() - On the first call, find the entry at or after mas->index up to
6050 * %max. Otherwise, find the entry after mas->index.
6051 * @mas: The maple state
6052 * @max: The maximum value to check.
6054 * Must hold rcu_read_lock or the write lock.
6055 * If an entry exists, last and index are updated accordingly.
6056 * May set @mas->status to ma_overflow.
6058 * Return: The entry or %NULL.
6060 void *mas_find(struct ma_state *mas, unsigned long max)
6064 if (mas_find_setup(mas, max, &entry))
6067 /* Retries on dead nodes handled by mas_next_slot */
6068 entry = mas_next_slot(mas, max, false);
6069 /* Ignore overflow */
6070 mas->status = ma_active;
6073 EXPORT_SYMBOL_GPL(mas_find);
6076 * mas_find_range() - On the first call, find the entry at or after
6077 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6078 * @mas: The maple state
6079 * @max: The maximum value to check.
6081 * Must hold rcu_read_lock or the write lock.
6082 * If an entry exists, last and index are updated accordingly.
6083 * May set @mas->status to ma_overflow.
6085 * Return: The entry or %NULL.
6087 void *mas_find_range(struct ma_state *mas, unsigned long max)
6091 if (mas_find_setup(mas, max, &entry))
6094 /* Retries on dead nodes handled by mas_next_slot */
6095 return mas_next_slot(mas, max, true);
6097 EXPORT_SYMBOL_GPL(mas_find_range);
6100 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6101 * @mas: The maple state
6102 * @min: The minimum index
6103 * @entry: Pointer to the entry
6105 * Returns: True if entry is the answer, false otherwise.
6107 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6111 switch (mas->status) {
6117 if (unlikely(mas->index <= min)) {
6118 mas->status = ma_underflow;
6121 mas->last = --mas->index;
6122 mas->status = ma_start;
6125 if (mas->index <= min)
6128 mas->last = mas->index;
6129 mas->status = ma_start;
6131 case ma_overflow: /* user expects the mas to be one after where it is */
6132 if (unlikely(mas->index <= min)) {
6133 mas->status = ma_underflow;
6137 mas->status = ma_active;
6139 case ma_underflow: /* user expects the mas to be one before where it is */
6140 if (unlikely(mas->index <= min))
6143 mas->status = ma_active;
6151 if (mas_is_start(mas)) {
6152 /* First run or continue */
6153 if (mas->index < min)
6156 *entry = mas_walk(mas);
6161 if (unlikely(mas_is_ptr(mas)))
6164 if (unlikely(mas_is_none(mas))) {
6166 * Walked to the location, and there was nothing so the previous
6169 mas->last = mas->index = 0;
6170 mas->status = ma_root;
6171 *entry = mas_root(mas);
6176 if (mas->index < min)
6182 mas->status = ma_none;
6187 * mas_find_rev: On the first call, find the first non-null entry at or below
6188 * mas->index down to %min. Otherwise find the first non-null entry below
6189 * mas->index down to %min.
6190 * @mas: The maple state
6191 * @min: The minimum value to check.
6193 * Must hold rcu_read_lock or the write lock.
6194 * If an entry exists, last and index are updated accordingly.
6195 * May set @mas->status to ma_underflow.
6197 * Return: The entry or %NULL.
6199 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6203 if (mas_find_rev_setup(mas, min, &entry))
6206 /* Retries on dead nodes handled by mas_prev_slot */
6207 return mas_prev_slot(mas, min, false);
6210 EXPORT_SYMBOL_GPL(mas_find_rev);
6213 * mas_find_range_rev: On the first call, find the first non-null entry at or
6214 * below mas->index down to %min. Otherwise advance to the previous slot after
6215 * mas->index down to %min.
6216 * @mas: The maple state
6217 * @min: The minimum value to check.
6219 * Must hold rcu_read_lock or the write lock.
6220 * If an entry exists, last and index are updated accordingly.
6221 * May set @mas->status to ma_underflow.
6223 * Return: The entry or %NULL.
6225 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6229 if (mas_find_rev_setup(mas, min, &entry))
6232 /* Retries on dead nodes handled by mas_prev_slot */
6233 return mas_prev_slot(mas, min, true);
6235 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6238 * mas_erase() - Find the range in which index resides and erase the entire
6240 * @mas: The maple state
6242 * Must hold the write lock.
6243 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6244 * erases that range.
6246 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6248 void *mas_erase(struct ma_state *mas)
6251 MA_WR_STATE(wr_mas, mas, NULL);
6253 if (!mas_is_active(mas) || !mas_is_start(mas))
6254 mas->status = ma_start;
6256 /* Retry unnecessary when holding the write lock. */
6257 entry = mas_state_walk(mas);
6262 /* Must reset to ensure spanning writes of last slot are detected */
6264 mas_wr_store_setup(&wr_mas);
6265 mas_wr_store_entry(&wr_mas);
6266 if (mas_nomem(mas, GFP_KERNEL))
6271 EXPORT_SYMBOL_GPL(mas_erase);
6274 * mas_nomem() - Check if there was an error allocating and do the allocation
6275 * if necessary If there are allocations, then free them.
6276 * @mas: The maple state
6277 * @gfp: The GFP_FLAGS to use for allocations
6278 * Return: true on allocation, false otherwise.
6280 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6281 __must_hold(mas->tree->ma_lock)
6283 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6288 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6289 mtree_unlock(mas->tree);
6290 mas_alloc_nodes(mas, gfp);
6291 mtree_lock(mas->tree);
6293 mas_alloc_nodes(mas, gfp);
6296 if (!mas_allocated(mas))
6299 mas->status = ma_start;
6303 void __init maple_tree_init(void)
6305 maple_node_cache = kmem_cache_create("maple_node",
6306 sizeof(struct maple_node), sizeof(struct maple_node),
6311 * mtree_load() - Load a value stored in a maple tree
6312 * @mt: The maple tree
6313 * @index: The index to load
6315 * Return: the entry or %NULL
6317 void *mtree_load(struct maple_tree *mt, unsigned long index)
6319 MA_STATE(mas, mt, index, index);
6322 trace_ma_read(__func__, &mas);
6325 entry = mas_start(&mas);
6326 if (unlikely(mas_is_none(&mas)))
6329 if (unlikely(mas_is_ptr(&mas))) {
6336 entry = mtree_lookup_walk(&mas);
6337 if (!entry && unlikely(mas_is_start(&mas)))
6341 if (xa_is_zero(entry))
6346 EXPORT_SYMBOL(mtree_load);
6349 * mtree_store_range() - Store an entry at a given range.
6350 * @mt: The maple tree
6351 * @index: The start of the range
6352 * @last: The end of the range
6353 * @entry: The entry to store
6354 * @gfp: The GFP_FLAGS to use for allocations
6356 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6359 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6360 unsigned long last, void *entry, gfp_t gfp)
6362 MA_STATE(mas, mt, index, last);
6363 MA_WR_STATE(wr_mas, &mas, entry);
6365 trace_ma_write(__func__, &mas, 0, entry);
6366 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6374 mas_wr_store_entry(&wr_mas);
6375 if (mas_nomem(&mas, gfp))
6379 if (mas_is_err(&mas))
6380 return xa_err(mas.node);
6384 EXPORT_SYMBOL(mtree_store_range);
6387 * mtree_store() - Store an entry at a given index.
6388 * @mt: The maple tree
6389 * @index: The index to store the value
6390 * @entry: The entry to store
6391 * @gfp: The GFP_FLAGS to use for allocations
6393 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6396 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6399 return mtree_store_range(mt, index, index, entry, gfp);
6401 EXPORT_SYMBOL(mtree_store);
6404 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6405 * @mt: The maple tree
6406 * @first: The start of the range
6407 * @last: The end of the range
6408 * @entry: The entry to store
6409 * @gfp: The GFP_FLAGS to use for allocations.
6411 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6412 * request, -ENOMEM if memory could not be allocated.
6414 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6415 unsigned long last, void *entry, gfp_t gfp)
6417 MA_STATE(ms, mt, first, last);
6419 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6427 mas_insert(&ms, entry);
6428 if (mas_nomem(&ms, gfp))
6432 if (mas_is_err(&ms))
6433 return xa_err(ms.node);
6437 EXPORT_SYMBOL(mtree_insert_range);
6440 * mtree_insert() - Insert an entry at a given index if there is no value.
6441 * @mt: The maple tree
6442 * @index : The index to store the value
6443 * @entry: The entry to store
6444 * @gfp: The GFP_FLAGS to use for allocations.
6446 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6447 * request, -ENOMEM if memory could not be allocated.
6449 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6452 return mtree_insert_range(mt, index, index, entry, gfp);
6454 EXPORT_SYMBOL(mtree_insert);
6456 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6457 void *entry, unsigned long size, unsigned long min,
6458 unsigned long max, gfp_t gfp)
6462 MA_STATE(mas, mt, 0, 0);
6463 if (!mt_is_alloc(mt))
6466 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6471 ret = mas_empty_area(&mas, min, max, size);
6475 mas_insert(&mas, entry);
6477 * mas_nomem() may release the lock, causing the allocated area
6478 * to be unavailable, so try to allocate a free area again.
6480 if (mas_nomem(&mas, gfp))
6483 if (mas_is_err(&mas))
6484 ret = xa_err(mas.node);
6486 *startp = mas.index;
6492 EXPORT_SYMBOL(mtree_alloc_range);
6495 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6496 * @mt: The maple tree.
6497 * @startp: Pointer to ID.
6498 * @range_lo: Lower bound of range to search.
6499 * @range_hi: Upper bound of range to search.
6500 * @entry: The entry to store.
6501 * @next: Pointer to next ID to allocate.
6502 * @gfp: The GFP_FLAGS to use for allocations.
6504 * Finds an empty entry in @mt after @next, stores the new index into
6505 * the @id pointer, stores the entry at that index, then updates @next.
6507 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6509 * Context: Any context. Takes and releases the mt.lock. May sleep if
6510 * the @gfp flags permit.
6512 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6513 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6514 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6517 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6518 void *entry, unsigned long range_lo, unsigned long range_hi,
6519 unsigned long *next, gfp_t gfp)
6523 MA_STATE(mas, mt, 0, 0);
6525 if (!mt_is_alloc(mt))
6527 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6530 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6535 EXPORT_SYMBOL(mtree_alloc_cyclic);
6537 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6538 void *entry, unsigned long size, unsigned long min,
6539 unsigned long max, gfp_t gfp)
6543 MA_STATE(mas, mt, 0, 0);
6544 if (!mt_is_alloc(mt))
6547 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6552 ret = mas_empty_area_rev(&mas, min, max, size);
6556 mas_insert(&mas, entry);
6558 * mas_nomem() may release the lock, causing the allocated area
6559 * to be unavailable, so try to allocate a free area again.
6561 if (mas_nomem(&mas, gfp))
6564 if (mas_is_err(&mas))
6565 ret = xa_err(mas.node);
6567 *startp = mas.index;
6573 EXPORT_SYMBOL(mtree_alloc_rrange);
6576 * mtree_erase() - Find an index and erase the entire range.
6577 * @mt: The maple tree
6578 * @index: The index to erase
6580 * Erasing is the same as a walk to an entry then a store of a NULL to that
6581 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6583 * Return: The entry stored at the @index or %NULL
6585 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6589 MA_STATE(mas, mt, index, index);
6590 trace_ma_op(__func__, &mas);
6593 entry = mas_erase(&mas);
6598 EXPORT_SYMBOL(mtree_erase);
6601 * mas_dup_free() - Free an incomplete duplication of a tree.
6602 * @mas: The maple state of a incomplete tree.
6604 * The parameter @mas->node passed in indicates that the allocation failed on
6605 * this node. This function frees all nodes starting from @mas->node in the
6606 * reverse order of mas_dup_build(). There is no need to hold the source tree
6607 * lock at this time.
6609 static void mas_dup_free(struct ma_state *mas)
6611 struct maple_node *node;
6612 enum maple_type type;
6614 unsigned char count, i;
6616 /* Maybe the first node allocation failed. */
6617 if (mas_is_none(mas))
6620 while (!mte_is_root(mas->node)) {
6626 mas->offset = mas_data_end(mas);
6627 } while (!mte_is_leaf(mas->node));
6632 node = mte_to_node(mas->node);
6633 type = mte_node_type(mas->node);
6634 slots = ma_slots(node, type);
6635 count = mas_data_end(mas) + 1;
6636 for (i = 0; i < count; i++)
6637 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6638 mt_free_bulk(count, slots);
6641 node = mte_to_node(mas->node);
6646 * mas_copy_node() - Copy a maple node and replace the parent.
6647 * @mas: The maple state of source tree.
6648 * @new_mas: The maple state of new tree.
6649 * @parent: The parent of the new node.
6651 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6652 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6654 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6655 struct maple_pnode *parent)
6657 struct maple_node *node = mte_to_node(mas->node);
6658 struct maple_node *new_node = mte_to_node(new_mas->node);
6661 /* Copy the node completely. */
6662 memcpy(new_node, node, sizeof(struct maple_node));
6663 /* Update the parent node pointer. */
6664 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6665 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6669 * mas_dup_alloc() - Allocate child nodes for a maple node.
6670 * @mas: The maple state of source tree.
6671 * @new_mas: The maple state of new tree.
6672 * @gfp: The GFP_FLAGS to use for allocations.
6674 * This function allocates child nodes for @new_mas->node during the duplication
6675 * process. If memory allocation fails, @mas is set to -ENOMEM.
6677 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6680 struct maple_node *node = mte_to_node(mas->node);
6681 struct maple_node *new_node = mte_to_node(new_mas->node);
6682 enum maple_type type;
6683 unsigned char request, count, i;
6685 void __rcu **new_slots;
6688 /* Allocate memory for child nodes. */
6689 type = mte_node_type(mas->node);
6690 new_slots = ma_slots(new_node, type);
6691 request = mas_data_end(mas) + 1;
6692 count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6693 if (unlikely(count < request)) {
6694 memset(new_slots, 0, request * sizeof(void *));
6695 mas_set_err(mas, -ENOMEM);
6699 /* Restore node type information in slots. */
6700 slots = ma_slots(node, type);
6701 for (i = 0; i < count; i++) {
6702 val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6703 val &= MAPLE_NODE_MASK;
6704 ((unsigned long *)new_slots)[i] |= val;
6709 * mas_dup_build() - Build a new maple tree from a source tree
6710 * @mas: The maple state of source tree, need to be in MAS_START state.
6711 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6712 * @gfp: The GFP_FLAGS to use for allocations.
6714 * This function builds a new tree in DFS preorder. If the memory allocation
6715 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6716 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6718 * Note that the attributes of the two trees need to be exactly the same, and the
6719 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6721 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6724 struct maple_node *node;
6725 struct maple_pnode *parent = NULL;
6726 struct maple_enode *root;
6727 enum maple_type type;
6729 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6730 unlikely(!mtree_empty(new_mas->tree))) {
6731 mas_set_err(mas, -EINVAL);
6735 root = mas_start(mas);
6736 if (mas_is_ptr(mas) || mas_is_none(mas))
6739 node = mt_alloc_one(gfp);
6741 new_mas->status = ma_none;
6742 mas_set_err(mas, -ENOMEM);
6746 type = mte_node_type(mas->node);
6747 root = mt_mk_node(node, type);
6748 new_mas->node = root;
6750 new_mas->max = ULONG_MAX;
6751 root = mte_mk_root(root);
6753 mas_copy_node(mas, new_mas, parent);
6754 if (!mte_is_leaf(mas->node)) {
6755 /* Only allocate child nodes for non-leaf nodes. */
6756 mas_dup_alloc(mas, new_mas, gfp);
6757 if (unlikely(mas_is_err(mas)))
6761 * This is the last leaf node and duplication is
6764 if (mas->max == ULONG_MAX)
6767 /* This is not the last leaf node and needs to go up. */
6770 mas_ascend(new_mas);
6771 } while (mas->offset == mas_data_end(mas));
6773 /* Move to the next subtree. */
6779 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6780 mas_descend(new_mas);
6782 new_mas->offset = 0;
6785 /* Specially handle the parent of the root node. */
6786 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6788 /* Make them the same height */
6789 new_mas->tree->ma_flags = mas->tree->ma_flags;
6790 rcu_assign_pointer(new_mas->tree->ma_root, root);
6794 * __mt_dup(): Duplicate an entire maple tree
6795 * @mt: The source maple tree
6796 * @new: The new maple tree
6797 * @gfp: The GFP_FLAGS to use for allocations
6799 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6800 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6801 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6802 * source node except for all the addresses stored in it. It will be faster than
6803 * traversing all elements in the source tree and inserting them one by one into
6805 * The user needs to ensure that the attributes of the source tree and the new
6806 * tree are the same, and the new tree needs to be an empty tree, otherwise
6807 * -EINVAL will be returned.
6808 * Note that the user needs to manually lock the source tree and the new tree.
6810 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6811 * the attributes of the two trees are different or the new tree is not an empty
6814 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6817 MA_STATE(mas, mt, 0, 0);
6818 MA_STATE(new_mas, new, 0, 0);
6820 mas_dup_build(&mas, &new_mas, gfp);
6821 if (unlikely(mas_is_err(&mas))) {
6822 ret = xa_err(mas.node);
6824 mas_dup_free(&new_mas);
6829 EXPORT_SYMBOL(__mt_dup);
6832 * mtree_dup(): Duplicate an entire maple tree
6833 * @mt: The source maple tree
6834 * @new: The new maple tree
6835 * @gfp: The GFP_FLAGS to use for allocations
6837 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6838 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6839 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6840 * source node except for all the addresses stored in it. It will be faster than
6841 * traversing all elements in the source tree and inserting them one by one into
6843 * The user needs to ensure that the attributes of the source tree and the new
6844 * tree are the same, and the new tree needs to be an empty tree, otherwise
6845 * -EINVAL will be returned.
6847 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6848 * the attributes of the two trees are different or the new tree is not an empty
6851 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6854 MA_STATE(mas, mt, 0, 0);
6855 MA_STATE(new_mas, new, 0, 0);
6858 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6859 mas_dup_build(&mas, &new_mas, gfp);
6861 if (unlikely(mas_is_err(&mas))) {
6862 ret = xa_err(mas.node);
6864 mas_dup_free(&new_mas);
6867 mas_unlock(&new_mas);
6870 EXPORT_SYMBOL(mtree_dup);
6873 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6874 * @mt: The maple tree
6876 * Note: Does not handle locking.
6878 void __mt_destroy(struct maple_tree *mt)
6880 void *root = mt_root_locked(mt);
6882 rcu_assign_pointer(mt->ma_root, NULL);
6883 if (xa_is_node(root))
6884 mte_destroy_walk(root, mt);
6886 mt->ma_flags = mt_attr(mt);
6888 EXPORT_SYMBOL_GPL(__mt_destroy);
6891 * mtree_destroy() - Destroy a maple tree
6892 * @mt: The maple tree
6894 * Frees all resources used by the tree. Handles locking.
6896 void mtree_destroy(struct maple_tree *mt)
6902 EXPORT_SYMBOL(mtree_destroy);
6905 * mt_find() - Search from the start up until an entry is found.
6906 * @mt: The maple tree
6907 * @index: Pointer which contains the start location of the search
6908 * @max: The maximum value of the search range
6910 * Takes RCU read lock internally to protect the search, which does not
6911 * protect the returned pointer after dropping RCU read lock.
6912 * See also: Documentation/core-api/maple_tree.rst
6914 * In case that an entry is found @index is updated to point to the next
6915 * possible entry independent whether the found entry is occupying a
6916 * single index or a range if indices.
6918 * Return: The entry at or after the @index or %NULL
6920 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6922 MA_STATE(mas, mt, *index, *index);
6924 #ifdef CONFIG_DEBUG_MAPLE_TREE
6925 unsigned long copy = *index;
6928 trace_ma_read(__func__, &mas);
6935 entry = mas_state_walk(&mas);
6936 if (mas_is_start(&mas))
6939 if (unlikely(xa_is_zero(entry)))
6945 while (mas_is_active(&mas) && (mas.last < max)) {
6946 entry = mas_next_entry(&mas, max);
6947 if (likely(entry && !xa_is_zero(entry)))
6951 if (unlikely(xa_is_zero(entry)))
6955 if (likely(entry)) {
6956 *index = mas.last + 1;
6957 #ifdef CONFIG_DEBUG_MAPLE_TREE
6958 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6959 pr_err("index not increased! %lx <= %lx\n",
6966 EXPORT_SYMBOL(mt_find);
6969 * mt_find_after() - Search from the start up until an entry is found.
6970 * @mt: The maple tree
6971 * @index: Pointer which contains the start location of the search
6972 * @max: The maximum value to check
6974 * Same as mt_find() except that it checks @index for 0 before
6975 * searching. If @index == 0, the search is aborted. This covers a wrap
6976 * around of @index to 0 in an iterator loop.
6978 * Return: The entry at or after the @index or %NULL
6980 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6986 return mt_find(mt, index, max);
6988 EXPORT_SYMBOL(mt_find_after);
6990 #ifdef CONFIG_DEBUG_MAPLE_TREE
6991 atomic_t maple_tree_tests_run;
6992 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6993 atomic_t maple_tree_tests_passed;
6994 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6997 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6998 void mt_set_non_kernel(unsigned int val)
7000 kmem_cache_set_non_kernel(maple_node_cache, val);
7003 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
7004 unsigned long mt_get_alloc_size(void)
7006 return kmem_cache_get_alloc(maple_node_cache);
7009 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7010 void mt_zero_nr_tallocated(void)
7012 kmem_cache_zero_nr_tallocated(maple_node_cache);
7015 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7016 unsigned int mt_nr_tallocated(void)
7018 return kmem_cache_nr_tallocated(maple_node_cache);
7021 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7022 unsigned int mt_nr_allocated(void)
7024 return kmem_cache_nr_allocated(maple_node_cache);
7027 void mt_cache_shrink(void)
7032 * mt_cache_shrink() - For testing, don't use this.
7034 * Certain testcases can trigger an OOM when combined with other memory
7035 * debugging configuration options. This function is used to reduce the
7036 * possibility of an out of memory even due to kmem_cache objects remaining
7037 * around for longer than usual.
7039 void mt_cache_shrink(void)
7041 kmem_cache_shrink(maple_node_cache);
7044 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7046 #endif /* not defined __KERNEL__ */
7048 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7049 * @mas: The maple state
7050 * @offset: The offset into the slot array to fetch.
7052 * Return: The entry stored at @offset.
7054 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7055 unsigned char offset)
7057 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7061 /* Depth first search, post-order */
7062 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7065 struct maple_enode *p, *mn = mas->node;
7066 unsigned long p_min, p_max;
7068 mas_next_node(mas, mas_mn(mas), max);
7069 if (!mas_is_overflow(mas))
7072 if (mte_is_root(mn))
7081 mas_prev_node(mas, 0);
7082 } while (!mas_is_underflow(mas));
7089 /* Tree validations */
7090 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7091 unsigned long min, unsigned long max, unsigned int depth,
7092 enum mt_dump_format format);
7093 static void mt_dump_range(unsigned long min, unsigned long max,
7094 unsigned int depth, enum mt_dump_format format)
7096 static const char spaces[] = " ";
7101 pr_info("%.*s%lx: ", depth * 2, spaces, min);
7103 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7107 pr_info("%.*s%lu: ", depth * 2, spaces, min);
7109 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7113 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7114 unsigned int depth, enum mt_dump_format format)
7116 mt_dump_range(min, max, depth, format);
7118 if (xa_is_value(entry))
7119 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
7120 xa_to_value(entry), entry);
7121 else if (xa_is_zero(entry))
7122 pr_cont("zero (%ld)\n", xa_to_internal(entry));
7123 else if (mt_is_reserved(entry))
7124 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
7126 pr_cont("%p\n", entry);
7129 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7130 unsigned long min, unsigned long max, unsigned int depth,
7131 enum mt_dump_format format)
7133 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7134 bool leaf = mte_is_leaf(entry);
7135 unsigned long first = min;
7138 pr_cont(" contents: ");
7139 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7142 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7145 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7148 pr_cont("%p\n", node->slot[i]);
7149 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7150 unsigned long last = max;
7152 if (i < (MAPLE_RANGE64_SLOTS - 1))
7153 last = node->pivot[i];
7154 else if (!node->slot[i] && max != mt_node_max(entry))
7156 if (last == 0 && i > 0)
7159 mt_dump_entry(mt_slot(mt, node->slot, i),
7160 first, last, depth + 1, format);
7161 else if (node->slot[i])
7162 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7163 first, last, depth + 1, format);
7170 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7171 node, last, max, i);
7174 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7175 node, last, max, i);
7182 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7183 unsigned long min, unsigned long max, unsigned int depth,
7184 enum mt_dump_format format)
7186 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7187 bool leaf = mte_is_leaf(entry);
7188 unsigned long first = min;
7191 pr_cont(" contents: ");
7192 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7195 pr_cont("%lx ", node->gap[i]);
7198 pr_cont("%lu ", node->gap[i]);
7201 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7202 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7205 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7208 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7211 pr_cont("%p\n", node->slot[i]);
7212 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7213 unsigned long last = max;
7215 if (i < (MAPLE_ARANGE64_SLOTS - 1))
7216 last = node->pivot[i];
7217 else if (!node->slot[i])
7219 if (last == 0 && i > 0)
7222 mt_dump_entry(mt_slot(mt, node->slot, i),
7223 first, last, depth + 1, format);
7224 else if (node->slot[i])
7225 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7226 first, last, depth + 1, format);
7231 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7232 node, last, max, i);
7239 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7240 unsigned long min, unsigned long max, unsigned int depth,
7241 enum mt_dump_format format)
7243 struct maple_node *node = mte_to_node(entry);
7244 unsigned int type = mte_node_type(entry);
7247 mt_dump_range(min, max, depth, format);
7249 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
7250 node ? node->parent : NULL);
7254 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7256 pr_cont("OUT OF RANGE: ");
7257 mt_dump_entry(mt_slot(mt, node->slot, i),
7258 min + i, min + i, depth, format);
7262 case maple_range_64:
7263 mt_dump_range64(mt, entry, min, max, depth, format);
7265 case maple_arange_64:
7266 mt_dump_arange64(mt, entry, min, max, depth, format);
7270 pr_cont(" UNKNOWN TYPE\n");
7274 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7276 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7278 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
7279 mt, mt->ma_flags, mt_height(mt), entry);
7280 if (!xa_is_node(entry))
7281 mt_dump_entry(entry, 0, 0, 0, format);
7283 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7285 EXPORT_SYMBOL_GPL(mt_dump);
7288 * Calculate the maximum gap in a node and check if that's what is reported in
7289 * the parent (unless root).
7291 static void mas_validate_gaps(struct ma_state *mas)
7293 struct maple_enode *mte = mas->node;
7294 struct maple_node *p_mn, *node = mte_to_node(mte);
7295 enum maple_type mt = mte_node_type(mas->node);
7296 unsigned long gap = 0, max_gap = 0;
7297 unsigned long p_end, p_start = mas->min;
7298 unsigned char p_slot, offset;
7299 unsigned long *gaps = NULL;
7300 unsigned long *pivots = ma_pivots(node, mt);
7303 if (ma_is_dense(mt)) {
7304 for (i = 0; i < mt_slot_count(mte); i++) {
7305 if (mas_get_slot(mas, i)) {
7316 gaps = ma_gaps(node, mt);
7317 for (i = 0; i < mt_slot_count(mte); i++) {
7318 p_end = mas_safe_pivot(mas, pivots, i, mt);
7321 if (!mas_get_slot(mas, i))
7322 gap = p_end - p_start + 1;
7324 void *entry = mas_get_slot(mas, i);
7327 MT_BUG_ON(mas->tree, !entry);
7329 if (gap > p_end - p_start + 1) {
7330 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7331 mas_mn(mas), i, gap, p_end, p_start,
7332 p_end - p_start + 1);
7333 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7340 p_start = p_end + 1;
7341 if (p_end >= mas->max)
7346 if (mt == maple_arange_64) {
7347 MT_BUG_ON(mas->tree, !gaps);
7348 offset = ma_meta_gap(node);
7350 pr_err("gap offset %p[%u] is invalid\n", node, offset);
7351 MT_BUG_ON(mas->tree, 1);
7354 if (gaps[offset] != max_gap) {
7355 pr_err("gap %p[%u] is not the largest gap %lu\n",
7356 node, offset, max_gap);
7357 MT_BUG_ON(mas->tree, 1);
7360 for (i++ ; i < mt_slot_count(mte); i++) {
7362 pr_err("gap %p[%u] beyond node limit != 0\n",
7364 MT_BUG_ON(mas->tree, 1);
7369 if (mte_is_root(mte))
7372 p_slot = mte_parent_slot(mas->node);
7373 p_mn = mte_parent(mte);
7374 MT_BUG_ON(mas->tree, max_gap > mas->max);
7375 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7376 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7377 mt_dump(mas->tree, mt_dump_hex);
7378 MT_BUG_ON(mas->tree, 1);
7382 static void mas_validate_parent_slot(struct ma_state *mas)
7384 struct maple_node *parent;
7385 struct maple_enode *node;
7386 enum maple_type p_type;
7387 unsigned char p_slot;
7391 if (mte_is_root(mas->node))
7394 p_slot = mte_parent_slot(mas->node);
7395 p_type = mas_parent_type(mas, mas->node);
7396 parent = mte_parent(mas->node);
7397 slots = ma_slots(parent, p_type);
7398 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7400 /* Check prev/next parent slot for duplicate node entry */
7402 for (i = 0; i < mt_slots[p_type]; i++) {
7403 node = mas_slot(mas, slots, i);
7405 if (node != mas->node)
7406 pr_err("parent %p[%u] does not have %p\n",
7407 parent, i, mas_mn(mas));
7408 MT_BUG_ON(mas->tree, node != mas->node);
7409 } else if (node == mas->node) {
7410 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7411 mas_mn(mas), parent, i, p_slot);
7412 MT_BUG_ON(mas->tree, node == mas->node);
7417 static void mas_validate_child_slot(struct ma_state *mas)
7419 enum maple_type type = mte_node_type(mas->node);
7420 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7421 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7422 struct maple_enode *child;
7425 if (mte_is_leaf(mas->node))
7428 for (i = 0; i < mt_slots[type]; i++) {
7429 child = mas_slot(mas, slots, i);
7432 pr_err("Non-leaf node lacks child at %p[%u]\n",
7434 MT_BUG_ON(mas->tree, 1);
7437 if (mte_parent_slot(child) != i) {
7438 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7439 mas_mn(mas), i, mte_to_node(child),
7440 mte_parent_slot(child));
7441 MT_BUG_ON(mas->tree, 1);
7444 if (mte_parent(child) != mte_to_node(mas->node)) {
7445 pr_err("child %p has parent %p not %p\n",
7446 mte_to_node(child), mte_parent(child),
7447 mte_to_node(mas->node));
7448 MT_BUG_ON(mas->tree, 1);
7451 if (i < mt_pivots[type] && pivots[i] == mas->max)
7457 * Validate all pivots are within mas->min and mas->max, check metadata ends
7458 * where the maximum ends and ensure there is no slots or pivots set outside of
7459 * the end of the data.
7461 static void mas_validate_limits(struct ma_state *mas)
7464 unsigned long prev_piv = 0;
7465 enum maple_type type = mte_node_type(mas->node);
7466 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7467 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7469 for (i = 0; i < mt_slots[type]; i++) {
7472 piv = mas_safe_pivot(mas, pivots, i, type);
7474 if (!piv && (i != 0)) {
7475 pr_err("Missing node limit pivot at %p[%u]",
7477 MAS_WARN_ON(mas, 1);
7480 if (prev_piv > piv) {
7481 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7482 mas_mn(mas), i, piv, prev_piv);
7483 MAS_WARN_ON(mas, piv < prev_piv);
7486 if (piv < mas->min) {
7487 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7489 MAS_WARN_ON(mas, piv < mas->min);
7491 if (piv > mas->max) {
7492 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7494 MAS_WARN_ON(mas, piv > mas->max);
7497 if (piv == mas->max)
7501 if (mas_data_end(mas) != i) {
7502 pr_err("node%p: data_end %u != the last slot offset %u\n",
7503 mas_mn(mas), mas_data_end(mas), i);
7504 MT_BUG_ON(mas->tree, 1);
7507 for (i += 1; i < mt_slots[type]; i++) {
7508 void *entry = mas_slot(mas, slots, i);
7510 if (entry && (i != mt_slots[type] - 1)) {
7511 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7513 MT_BUG_ON(mas->tree, entry != NULL);
7516 if (i < mt_pivots[type]) {
7517 unsigned long piv = pivots[i];
7522 pr_err("%p[%u] should not have piv %lu\n",
7523 mas_mn(mas), i, piv);
7524 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7529 static void mt_validate_nulls(struct maple_tree *mt)
7531 void *entry, *last = (void *)1;
7532 unsigned char offset = 0;
7534 MA_STATE(mas, mt, 0, 0);
7537 if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7540 while (!mte_is_leaf(mas.node))
7543 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7545 entry = mas_slot(&mas, slots, offset);
7546 if (!last && !entry) {
7547 pr_err("Sequential nulls end at %p[%u]\n",
7548 mas_mn(&mas), offset);
7550 MT_BUG_ON(mt, !last && !entry);
7552 if (offset == mas_data_end(&mas)) {
7553 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7554 if (mas_is_overflow(&mas))
7557 slots = ma_slots(mte_to_node(mas.node),
7558 mte_node_type(mas.node));
7563 } while (!mas_is_overflow(&mas));
7567 * validate a maple tree by checking:
7568 * 1. The limits (pivots are within mas->min to mas->max)
7569 * 2. The gap is correctly set in the parents
7571 void mt_validate(struct maple_tree *mt)
7575 MA_STATE(mas, mt, 0, 0);
7578 if (!mas_is_active(&mas))
7581 while (!mte_is_leaf(mas.node))
7584 while (!mas_is_overflow(&mas)) {
7585 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7586 end = mas_data_end(&mas);
7587 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7588 (mas.max != ULONG_MAX))) {
7589 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7592 mas_validate_parent_slot(&mas);
7593 mas_validate_limits(&mas);
7594 mas_validate_child_slot(&mas);
7595 if (mt_is_alloc(mt))
7596 mas_validate_gaps(&mas);
7597 mas_dfs_postorder(&mas, ULONG_MAX);
7599 mt_validate_nulls(mt);
7604 EXPORT_SYMBOL_GPL(mt_validate);
7606 void mas_dump(const struct ma_state *mas)
7608 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7609 switch (mas->status) {
7611 pr_err("(ma_active)");
7614 pr_err("(ma_none)");
7617 pr_err("(ma_root)");
7620 pr_err("(ma_start) ");
7623 pr_err("(ma_pause) ");
7626 pr_err("(ma_overflow) ");
7629 pr_err("(ma_underflow) ");
7632 pr_err("(ma_error) ");
7636 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7637 mas->index, mas->last);
7638 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7639 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7640 if (mas->index > mas->last)
7641 pr_err("Check index & last\n");
7643 EXPORT_SYMBOL_GPL(mas_dump);
7645 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7647 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7648 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7649 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7650 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7653 EXPORT_SYMBOL_GPL(mas_wr_dump);
7655 #endif /* CONFIG_DEBUG_MAPLE_TREE */