1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
43 #include "internals.h"
45 static DEFINE_IDR(spi_master_idr);
47 static void spidev_release(struct device *dev)
49 struct spi_device *spi = to_spi_device(dev);
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
75 struct spi_device *spi = to_spi_device(dev);
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
88 const struct spi_device *spi = to_spi_device(dev);
92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
96 static DEVICE_ATTR_RW(driver_override);
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
100 struct spi_statistics __percpu *pcpu_stats;
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 char *buf, size_t offset)
126 for_each_possible_cpu(i) {
127 const struct spi_statistics *pcpu_stats;
132 pcpu_stats = per_cpu_ptr(stat, i);
133 field = (void *)pcpu_stats + offset;
135 start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 inc = u64_stats_read(field);
137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
140 return sysfs_emit(buf, "%llu\n", val);
143 #define SPI_STATISTICS_ATTRS(field, file) \
144 static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
152 static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
156 static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
163 static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
175 SPI_STATISTICS_ATTRS(name, file)
177 #define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
218 static struct attribute *spi_dev_attrs[] = {
219 &dev_attr_modalias.attr,
220 &dev_attr_driver_override.attr,
224 static const struct attribute_group spi_dev_group = {
225 .attrs = spi_dev_attrs,
228 static struct attribute *spi_device_statistics_attrs[] = {
229 &dev_attr_spi_device_messages.attr,
230 &dev_attr_spi_device_transfers.attr,
231 &dev_attr_spi_device_errors.attr,
232 &dev_attr_spi_device_timedout.attr,
233 &dev_attr_spi_device_spi_sync.attr,
234 &dev_attr_spi_device_spi_sync_immediate.attr,
235 &dev_attr_spi_device_spi_async.attr,
236 &dev_attr_spi_device_bytes.attr,
237 &dev_attr_spi_device_bytes_rx.attr,
238 &dev_attr_spi_device_bytes_tx.attr,
239 &dev_attr_spi_device_transfer_bytes_histo0.attr,
240 &dev_attr_spi_device_transfer_bytes_histo1.attr,
241 &dev_attr_spi_device_transfer_bytes_histo2.attr,
242 &dev_attr_spi_device_transfer_bytes_histo3.attr,
243 &dev_attr_spi_device_transfer_bytes_histo4.attr,
244 &dev_attr_spi_device_transfer_bytes_histo5.attr,
245 &dev_attr_spi_device_transfer_bytes_histo6.attr,
246 &dev_attr_spi_device_transfer_bytes_histo7.attr,
247 &dev_attr_spi_device_transfer_bytes_histo8.attr,
248 &dev_attr_spi_device_transfer_bytes_histo9.attr,
249 &dev_attr_spi_device_transfer_bytes_histo10.attr,
250 &dev_attr_spi_device_transfer_bytes_histo11.attr,
251 &dev_attr_spi_device_transfer_bytes_histo12.attr,
252 &dev_attr_spi_device_transfer_bytes_histo13.attr,
253 &dev_attr_spi_device_transfer_bytes_histo14.attr,
254 &dev_attr_spi_device_transfer_bytes_histo15.attr,
255 &dev_attr_spi_device_transfer_bytes_histo16.attr,
256 &dev_attr_spi_device_transfers_split_maxsize.attr,
260 static const struct attribute_group spi_device_statistics_group = {
261 .name = "statistics",
262 .attrs = spi_device_statistics_attrs,
265 static const struct attribute_group *spi_dev_groups[] = {
267 &spi_device_statistics_group,
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 &dev_attr_spi_controller_messages.attr,
273 &dev_attr_spi_controller_transfers.attr,
274 &dev_attr_spi_controller_errors.attr,
275 &dev_attr_spi_controller_timedout.attr,
276 &dev_attr_spi_controller_spi_sync.attr,
277 &dev_attr_spi_controller_spi_sync_immediate.attr,
278 &dev_attr_spi_controller_spi_async.attr,
279 &dev_attr_spi_controller_bytes.attr,
280 &dev_attr_spi_controller_bytes_rx.attr,
281 &dev_attr_spi_controller_bytes_tx.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 &dev_attr_spi_controller_transfers_split_maxsize.attr,
303 static const struct attribute_group spi_controller_statistics_group = {
304 .name = "statistics",
305 .attrs = spi_controller_statistics_attrs,
308 static const struct attribute_group *spi_master_groups[] = {
309 &spi_controller_statistics_group,
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 struct spi_transfer *xfer,
315 struct spi_message *msg)
317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 struct spi_statistics *stats;
324 stats = this_cpu_ptr(pcpu_stats);
325 u64_stats_update_begin(&stats->syncp);
327 u64_stats_inc(&stats->transfers);
328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
330 u64_stats_add(&stats->bytes, xfer->len);
331 if (spi_valid_txbuf(msg, xfer))
332 u64_stats_add(&stats->bytes_tx, xfer->len);
333 if (spi_valid_rxbuf(msg, xfer))
334 u64_stats_add(&stats->bytes_rx, xfer->len);
336 u64_stats_update_end(&stats->syncp);
341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342 * and the sysfs version makes coldplug work too.
344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 while (id->name[0]) {
347 if (!strcmp(name, id->name))
354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358 return spi_match_id(sdrv->id_table, sdev->modalias);
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
362 const void *spi_get_device_match_data(const struct spi_device *sdev)
366 match = device_get_match_data(&sdev->dev);
370 return (const void *)spi_get_device_id(sdev)->driver_data;
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374 static int spi_match_device(struct device *dev, struct device_driver *drv)
376 const struct spi_device *spi = to_spi_device(dev);
377 const struct spi_driver *sdrv = to_spi_driver(drv);
379 /* Check override first, and if set, only use the named driver */
380 if (spi->driver_override)
381 return strcmp(spi->driver_override, drv->name) == 0;
383 /* Attempt an OF style match */
384 if (of_driver_match_device(dev, drv))
388 if (acpi_driver_match_device(dev, drv))
392 return !!spi_match_id(sdrv->id_table, spi->modalias);
394 return strcmp(spi->modalias, drv->name) == 0;
397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
399 const struct spi_device *spi = to_spi_device(dev);
402 rc = acpi_device_uevent_modalias(dev, env);
406 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 static int spi_probe(struct device *dev)
411 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
412 struct spi_device *spi = to_spi_device(dev);
415 ret = of_clk_set_defaults(dev->of_node, false);
420 spi->irq = of_irq_get(dev->of_node, 0);
421 if (spi->irq == -EPROBE_DEFER)
422 return -EPROBE_DEFER;
427 ret = dev_pm_domain_attach(dev, true);
432 ret = sdrv->probe(spi);
434 dev_pm_domain_detach(dev, true);
440 static void spi_remove(struct device *dev)
442 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
445 sdrv->remove(to_spi_device(dev));
447 dev_pm_domain_detach(dev, true);
450 static void spi_shutdown(struct device *dev)
453 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456 sdrv->shutdown(to_spi_device(dev));
460 const struct bus_type spi_bus_type = {
462 .dev_groups = spi_dev_groups,
463 .match = spi_match_device,
464 .uevent = spi_uevent,
466 .remove = spi_remove,
467 .shutdown = spi_shutdown,
469 EXPORT_SYMBOL_GPL(spi_bus_type);
472 * __spi_register_driver - register a SPI driver
473 * @owner: owner module of the driver to register
474 * @sdrv: the driver to register
477 * Return: zero on success, else a negative error code.
479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
481 sdrv->driver.owner = owner;
482 sdrv->driver.bus = &spi_bus_type;
485 * For Really Good Reasons we use spi: modaliases not of:
486 * modaliases for DT so module autoloading won't work if we
487 * don't have a spi_device_id as well as a compatible string.
489 if (sdrv->driver.of_match_table) {
490 const struct of_device_id *of_id;
492 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
496 /* Strip off any vendor prefix */
497 of_name = strnchr(of_id->compatible,
498 sizeof(of_id->compatible), ',');
502 of_name = of_id->compatible;
504 if (sdrv->id_table) {
505 const struct spi_device_id *spi_id;
507 spi_id = spi_match_id(sdrv->id_table, of_name);
511 if (strcmp(sdrv->driver.name, of_name) == 0)
515 pr_warn("SPI driver %s has no spi_device_id for %s\n",
516 sdrv->driver.name, of_id->compatible);
520 return driver_register(&sdrv->driver);
522 EXPORT_SYMBOL_GPL(__spi_register_driver);
524 /*-------------------------------------------------------------------------*/
527 * SPI devices should normally not be created by SPI device drivers; that
528 * would make them board-specific. Similarly with SPI controller drivers.
529 * Device registration normally goes into like arch/.../mach.../board-YYY.c
530 * with other readonly (flashable) information about mainboard devices.
534 struct list_head list;
535 struct spi_board_info board_info;
538 static LIST_HEAD(board_list);
539 static LIST_HEAD(spi_controller_list);
542 * Used to protect add/del operation for board_info list and
543 * spi_controller list, and their matching process also used
544 * to protect object of type struct idr.
546 static DEFINE_MUTEX(board_lock);
549 * spi_alloc_device - Allocate a new SPI device
550 * @ctlr: Controller to which device is connected
553 * Allows a driver to allocate and initialize a spi_device without
554 * registering it immediately. This allows a driver to directly
555 * fill the spi_device with device parameters before calling
556 * spi_add_device() on it.
558 * Caller is responsible to call spi_add_device() on the returned
559 * spi_device structure to add it to the SPI controller. If the caller
560 * needs to discard the spi_device without adding it, then it should
561 * call spi_dev_put() on it.
563 * Return: a pointer to the new device, or NULL.
565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
567 struct spi_device *spi;
569 if (!spi_controller_get(ctlr))
572 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
574 spi_controller_put(ctlr);
578 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
579 if (!spi->pcpu_statistics) {
581 spi_controller_put(ctlr);
585 spi->controller = ctlr;
586 spi->dev.parent = &ctlr->dev;
587 spi->dev.bus = &spi_bus_type;
588 spi->dev.release = spidev_release;
589 spi->mode = ctlr->buswidth_override_bits;
591 device_initialize(&spi->dev);
594 EXPORT_SYMBOL_GPL(spi_alloc_device);
596 static void spi_dev_set_name(struct spi_device *spi)
598 struct device *dev = &spi->dev;
599 struct fwnode_handle *fwnode = dev_fwnode(dev);
601 if (is_acpi_device_node(fwnode)) {
602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
606 if (is_software_node(fwnode)) {
607 dev_set_name(dev, "spi-%pfwP", fwnode);
611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
612 spi_get_chipselect(spi, 0));
616 * Zero(0) is a valid physical CS value and can be located at any
617 * logical CS in the spi->chip_select[]. If all the physical CS
618 * are initialized to 0 then It would be difficult to differentiate
619 * between a valid physical CS 0 & an unused logical CS whose physical
620 * CS can be 0. As a solution to this issue initialize all the CS to -1.
621 * Now all the unused logical CS will have -1 physical CS value & can be
622 * ignored while performing physical CS validity checks.
624 #define SPI_INVALID_CS ((s8)-1)
626 static inline bool is_valid_cs(s8 chip_select)
628 return chip_select != SPI_INVALID_CS;
631 static inline int spi_dev_check_cs(struct device *dev,
632 struct spi_device *spi, u8 idx,
633 struct spi_device *new_spi, u8 new_idx)
638 cs = spi_get_chipselect(spi, idx);
639 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
640 cs_new = spi_get_chipselect(new_spi, idx_new);
641 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
642 dev_err(dev, "chipselect %u already in use\n", cs_new);
649 static int spi_dev_check(struct device *dev, void *data)
651 struct spi_device *spi = to_spi_device(dev);
652 struct spi_device *new_spi = data;
655 if (spi->controller == new_spi->controller) {
656 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
657 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
665 static void spi_cleanup(struct spi_device *spi)
667 if (spi->controller->cleanup)
668 spi->controller->cleanup(spi);
671 static int __spi_add_device(struct spi_device *spi)
673 struct spi_controller *ctlr = spi->controller;
674 struct device *dev = ctlr->dev.parent;
678 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
679 /* Chipselects are numbered 0..max; validate. */
680 cs = spi_get_chipselect(spi, idx);
681 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
682 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
683 ctlr->num_chipselect);
689 * Make sure that multiple logical CS doesn't map to the same physical CS.
690 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
692 if (!spi_controller_is_target(ctlr)) {
693 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
694 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
700 /* Set the bus ID string */
701 spi_dev_set_name(spi);
704 * We need to make sure there's no other device with this
705 * chipselect **BEFORE** we call setup(), else we'll trash
708 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
712 /* Controller may unregister concurrently */
713 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714 !device_is_registered(&ctlr->dev)) {
718 if (ctlr->cs_gpiods) {
721 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722 cs = spi_get_chipselect(spi, idx);
724 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
729 * Drivers may modify this initial i/o setup, but will
730 * normally rely on the device being setup. Devices
731 * using SPI_CS_HIGH can't coexist well otherwise...
733 status = spi_setup(spi);
735 dev_err(dev, "can't setup %s, status %d\n",
736 dev_name(&spi->dev), status);
740 /* Device may be bound to an active driver when this returns */
741 status = device_add(&spi->dev);
743 dev_err(dev, "can't add %s, status %d\n",
744 dev_name(&spi->dev), status);
747 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
754 * spi_add_device - Add spi_device allocated with spi_alloc_device
755 * @spi: spi_device to register
757 * Companion function to spi_alloc_device. Devices allocated with
758 * spi_alloc_device can be added onto the SPI bus with this function.
760 * Return: 0 on success; negative errno on failure
762 int spi_add_device(struct spi_device *spi)
764 struct spi_controller *ctlr = spi->controller;
767 /* Set the bus ID string */
768 spi_dev_set_name(spi);
770 mutex_lock(&ctlr->add_lock);
771 status = __spi_add_device(spi);
772 mutex_unlock(&ctlr->add_lock);
775 EXPORT_SYMBOL_GPL(spi_add_device);
777 static void spi_set_all_cs_unused(struct spi_device *spi)
781 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
786 * spi_new_device - instantiate one new SPI device
787 * @ctlr: Controller to which device is connected
788 * @chip: Describes the SPI device
791 * On typical mainboards, this is purely internal; and it's not needed
792 * after board init creates the hard-wired devices. Some development
793 * platforms may not be able to use spi_register_board_info though, and
794 * this is exported so that for example a USB or parport based adapter
795 * driver could add devices (which it would learn about out-of-band).
797 * Return: the new device, or NULL.
799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800 struct spi_board_info *chip)
802 struct spi_device *proxy;
806 * NOTE: caller did any chip->bus_num checks necessary.
808 * Also, unless we change the return value convention to use
809 * error-or-pointer (not NULL-or-pointer), troubleshootability
810 * suggests syslogged diagnostics are best here (ugh).
813 proxy = spi_alloc_device(ctlr);
817 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
819 /* Use provided chip-select for proxy device */
820 spi_set_all_cs_unused(proxy);
821 spi_set_chipselect(proxy, 0, chip->chip_select);
823 proxy->max_speed_hz = chip->max_speed_hz;
824 proxy->mode = chip->mode;
825 proxy->irq = chip->irq;
826 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827 proxy->dev.platform_data = (void *) chip->platform_data;
828 proxy->controller_data = chip->controller_data;
829 proxy->controller_state = NULL;
831 * By default spi->chip_select[0] will hold the physical CS number,
832 * so set bit 0 in spi->cs_index_mask.
834 proxy->cs_index_mask = BIT(0);
837 status = device_add_software_node(&proxy->dev, chip->swnode);
839 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
840 chip->modalias, status);
845 status = spi_add_device(proxy);
852 device_remove_software_node(&proxy->dev);
856 EXPORT_SYMBOL_GPL(spi_new_device);
859 * spi_unregister_device - unregister a single SPI device
860 * @spi: spi_device to unregister
862 * Start making the passed SPI device vanish. Normally this would be handled
863 * by spi_unregister_controller().
865 void spi_unregister_device(struct spi_device *spi)
870 if (spi->dev.of_node) {
871 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
872 of_node_put(spi->dev.of_node);
874 if (ACPI_COMPANION(&spi->dev))
875 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
876 device_remove_software_node(&spi->dev);
877 device_del(&spi->dev);
879 put_device(&spi->dev);
881 EXPORT_SYMBOL_GPL(spi_unregister_device);
883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
884 struct spi_board_info *bi)
886 struct spi_device *dev;
888 if (ctlr->bus_num != bi->bus_num)
891 dev = spi_new_device(ctlr, bi);
893 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
898 * spi_register_board_info - register SPI devices for a given board
899 * @info: array of chip descriptors
900 * @n: how many descriptors are provided
903 * Board-specific early init code calls this (probably during arch_initcall)
904 * with segments of the SPI device table. Any device nodes are created later,
905 * after the relevant parent SPI controller (bus_num) is defined. We keep
906 * this table of devices forever, so that reloading a controller driver will
907 * not make Linux forget about these hard-wired devices.
909 * Other code can also call this, e.g. a particular add-on board might provide
910 * SPI devices through its expansion connector, so code initializing that board
911 * would naturally declare its SPI devices.
913 * The board info passed can safely be __initdata ... but be careful of
914 * any embedded pointers (platform_data, etc), they're copied as-is.
916 * Return: zero on success, else a negative error code.
918 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
920 struct boardinfo *bi;
926 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
930 for (i = 0; i < n; i++, bi++, info++) {
931 struct spi_controller *ctlr;
933 memcpy(&bi->board_info, info, sizeof(*info));
935 mutex_lock(&board_lock);
936 list_add_tail(&bi->list, &board_list);
937 list_for_each_entry(ctlr, &spi_controller_list, list)
938 spi_match_controller_to_boardinfo(ctlr,
940 mutex_unlock(&board_lock);
946 /*-------------------------------------------------------------------------*/
948 /* Core methods for SPI resource management */
951 * spi_res_alloc - allocate a spi resource that is life-cycle managed
952 * during the processing of a spi_message while using
954 * @spi: the SPI device for which we allocate memory
955 * @release: the release code to execute for this resource
956 * @size: size to alloc and return
957 * @gfp: GFP allocation flags
959 * Return: the pointer to the allocated data
961 * This may get enhanced in the future to allocate from a memory pool
962 * of the @spi_device or @spi_controller to avoid repeated allocations.
964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
965 size_t size, gfp_t gfp)
967 struct spi_res *sres;
969 sres = kzalloc(sizeof(*sres) + size, gfp);
973 INIT_LIST_HEAD(&sres->entry);
974 sres->release = release;
980 * spi_res_free - free an SPI resource
981 * @res: pointer to the custom data of a resource
983 static void spi_res_free(void *res)
985 struct spi_res *sres = container_of(res, struct spi_res, data);
990 WARN_ON(!list_empty(&sres->entry));
995 * spi_res_add - add a spi_res to the spi_message
996 * @message: the SPI message
997 * @res: the spi_resource
999 static void spi_res_add(struct spi_message *message, void *res)
1001 struct spi_res *sres = container_of(res, struct spi_res, data);
1003 WARN_ON(!list_empty(&sres->entry));
1004 list_add_tail(&sres->entry, &message->resources);
1008 * spi_res_release - release all SPI resources for this message
1009 * @ctlr: the @spi_controller
1010 * @message: the @spi_message
1012 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1014 struct spi_res *res, *tmp;
1016 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1018 res->release(ctlr, message, res->data);
1020 list_del(&res->entry);
1026 /*-------------------------------------------------------------------------*/
1027 #define spi_for_each_valid_cs(spi, idx) \
1028 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \
1029 if (!(spi->cs_index_mask & BIT(idx))) {} else
1031 static inline bool spi_is_last_cs(struct spi_device *spi)
1036 spi_for_each_valid_cs(spi, idx) {
1037 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1043 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1046 * Historically ACPI has no means of the GPIO polarity and
1047 * thus the SPISerialBus() resource defines it on the per-chip
1048 * basis. In order to avoid a chain of negations, the GPIO
1049 * polarity is considered being Active High. Even for the cases
1050 * when _DSD() is involved (in the updated versions of ACPI)
1051 * the GPIO CS polarity must be defined Active High to avoid
1052 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1055 if (has_acpi_companion(&spi->dev))
1056 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1058 /* Polarity handled by GPIO library */
1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1062 spi_delay_exec(&spi->cs_setup, NULL);
1064 spi_delay_exec(&spi->cs_inactive, NULL);
1067 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1069 bool activate = enable;
1073 * Avoid calling into the driver (or doing delays) if the chip select
1074 * isn't actually changing from the last time this was called.
1076 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1077 spi_is_last_cs(spi)) ||
1078 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1079 !spi_is_last_cs(spi))) &&
1080 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1083 trace_spi_set_cs(spi, activate);
1085 spi->controller->last_cs_index_mask = spi->cs_index_mask;
1086 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1087 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1088 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1090 if (spi->mode & SPI_CS_HIGH)
1094 * Handle chip select delays for GPIO based CS or controllers without
1095 * programmable chip select timing.
1097 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1098 spi_delay_exec(&spi->cs_hold, NULL);
1100 if (spi_is_csgpiod(spi)) {
1101 if (!(spi->mode & SPI_NO_CS)) {
1102 spi_for_each_valid_cs(spi, idx) {
1103 if (spi_get_csgpiod(spi, idx))
1104 spi_toggle_csgpiod(spi, idx, enable, activate);
1107 /* Some SPI masters need both GPIO CS & slave_select */
1108 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1109 spi->controller->set_cs)
1110 spi->controller->set_cs(spi, !enable);
1111 } else if (spi->controller->set_cs) {
1112 spi->controller->set_cs(spi, !enable);
1115 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1117 spi_delay_exec(&spi->cs_setup, NULL);
1119 spi_delay_exec(&spi->cs_inactive, NULL);
1123 #ifdef CONFIG_HAS_DMA
1124 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1125 struct sg_table *sgt, void *buf, size_t len,
1126 enum dma_data_direction dir, unsigned long attrs)
1128 const bool vmalloced_buf = is_vmalloc_addr(buf);
1129 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1130 #ifdef CONFIG_HIGHMEM
1131 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1132 (unsigned long)buf < (PKMAP_BASE +
1133 (LAST_PKMAP * PAGE_SIZE)));
1135 const bool kmap_buf = false;
1139 struct page *vm_page;
1140 struct scatterlist *sg;
1145 if (vmalloced_buf || kmap_buf) {
1146 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1147 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1148 } else if (virt_addr_valid(buf)) {
1149 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1150 sgs = DIV_ROUND_UP(len, desc_len);
1155 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1160 for (i = 0; i < sgs; i++) {
1162 if (vmalloced_buf || kmap_buf) {
1164 * Next scatterlist entry size is the minimum between
1165 * the desc_len and the remaining buffer length that
1168 min = min_t(size_t, desc_len,
1170 PAGE_SIZE - offset_in_page(buf)));
1172 vm_page = vmalloc_to_page(buf);
1174 vm_page = kmap_to_page(buf);
1179 sg_set_page(sg, vm_page,
1180 min, offset_in_page(buf));
1182 min = min_t(size_t, len, desc_len);
1184 sg_set_buf(sg, sg_buf, min);
1192 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1201 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1202 struct sg_table *sgt, void *buf, size_t len,
1203 enum dma_data_direction dir)
1205 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1208 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1209 struct device *dev, struct sg_table *sgt,
1210 enum dma_data_direction dir,
1211 unsigned long attrs)
1213 dma_unmap_sgtable(dev, sgt, dir, attrs);
1215 sgt->orig_nents = 0;
1219 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1220 struct sg_table *sgt, enum dma_data_direction dir)
1222 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1225 /* Dummy SG for unidirect transfers */
1226 static struct scatterlist dummy_sg = {
1227 .page_link = SG_END,
1230 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1232 struct device *tx_dev, *rx_dev;
1233 struct spi_transfer *xfer;
1240 tx_dev = ctlr->dma_tx->device->dev;
1241 else if (ctlr->dma_map_dev)
1242 tx_dev = ctlr->dma_map_dev;
1244 tx_dev = ctlr->dev.parent;
1247 rx_dev = ctlr->dma_rx->device->dev;
1248 else if (ctlr->dma_map_dev)
1249 rx_dev = ctlr->dma_map_dev;
1251 rx_dev = ctlr->dev.parent;
1254 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1255 /* The sync is done before each transfer. */
1256 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1258 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1261 if (xfer->tx_buf != NULL) {
1262 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1263 (void *)xfer->tx_buf,
1264 xfer->len, DMA_TO_DEVICE,
1269 xfer->tx_sg.sgl = &dummy_sg;
1272 if (xfer->rx_buf != NULL) {
1273 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1274 xfer->rx_buf, xfer->len,
1275 DMA_FROM_DEVICE, attrs);
1277 spi_unmap_buf_attrs(ctlr, tx_dev,
1278 &xfer->tx_sg, DMA_TO_DEVICE,
1284 xfer->rx_sg.sgl = &dummy_sg;
1287 /* No transfer has been mapped, bail out with success */
1291 ctlr->cur_rx_dma_dev = rx_dev;
1292 ctlr->cur_tx_dma_dev = tx_dev;
1293 ctlr->cur_msg_mapped = true;
1298 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1300 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1301 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1302 struct spi_transfer *xfer;
1304 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1307 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1308 /* The sync has already been done after each transfer. */
1309 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1311 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1314 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1315 DMA_FROM_DEVICE, attrs);
1316 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1317 DMA_TO_DEVICE, attrs);
1320 ctlr->cur_msg_mapped = false;
1325 static void spi_dma_sync_for_device(struct spi_controller *ctlr, struct spi_message *msg,
1326 struct spi_transfer *xfer)
1328 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1329 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1331 if (!ctlr->cur_msg_mapped)
1334 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1337 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1338 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1341 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, struct spi_message *msg,
1342 struct spi_transfer *xfer)
1344 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1345 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1347 if (!ctlr->cur_msg_mapped)
1350 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1353 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1354 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1356 #else /* !CONFIG_HAS_DMA */
1357 static inline int __spi_map_msg(struct spi_controller *ctlr,
1358 struct spi_message *msg)
1363 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1364 struct spi_message *msg)
1369 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1370 struct spi_message *msg,
1371 struct spi_transfer *xfer)
1375 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1376 struct spi_message *msg,
1377 struct spi_transfer *xfer)
1380 #endif /* !CONFIG_HAS_DMA */
1382 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1383 struct spi_message *msg)
1385 struct spi_transfer *xfer;
1387 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1389 * Restore the original value of tx_buf or rx_buf if they are
1392 if (xfer->tx_buf == ctlr->dummy_tx)
1393 xfer->tx_buf = NULL;
1394 if (xfer->rx_buf == ctlr->dummy_rx)
1395 xfer->rx_buf = NULL;
1398 return __spi_unmap_msg(ctlr, msg);
1401 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1403 struct spi_transfer *xfer;
1405 unsigned int max_tx, max_rx;
1407 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1408 && !(msg->spi->mode & SPI_3WIRE)) {
1412 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1415 max_tx = max(xfer->len, max_tx);
1416 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1418 max_rx = max(xfer->len, max_rx);
1422 tmp = krealloc(ctlr->dummy_tx, max_tx,
1423 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1426 ctlr->dummy_tx = tmp;
1430 tmp = krealloc(ctlr->dummy_rx, max_rx,
1431 GFP_KERNEL | GFP_DMA);
1434 ctlr->dummy_rx = tmp;
1437 if (max_tx || max_rx) {
1438 list_for_each_entry(xfer, &msg->transfers,
1443 xfer->tx_buf = ctlr->dummy_tx;
1445 xfer->rx_buf = ctlr->dummy_rx;
1450 return __spi_map_msg(ctlr, msg);
1453 static int spi_transfer_wait(struct spi_controller *ctlr,
1454 struct spi_message *msg,
1455 struct spi_transfer *xfer)
1457 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1458 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1459 u32 speed_hz = xfer->speed_hz;
1460 unsigned long long ms;
1462 if (spi_controller_is_slave(ctlr)) {
1463 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1464 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1472 * For each byte we wait for 8 cycles of the SPI clock.
1473 * Since speed is defined in Hz and we want milliseconds,
1474 * use respective multiplier, but before the division,
1475 * otherwise we may get 0 for short transfers.
1477 ms = 8LL * MSEC_PER_SEC * xfer->len;
1478 do_div(ms, speed_hz);
1481 * Increase it twice and add 200 ms tolerance, use
1482 * predefined maximum in case of overflow.
1488 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1489 msecs_to_jiffies(ms));
1492 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1493 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1494 dev_err(&msg->spi->dev,
1495 "SPI transfer timed out\n");
1499 if (xfer->error & SPI_TRANS_FAIL_IO)
1506 static void _spi_transfer_delay_ns(u32 ns)
1510 if (ns <= NSEC_PER_USEC) {
1513 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1518 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1522 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1524 u32 delay = _delay->value;
1525 u32 unit = _delay->unit;
1532 case SPI_DELAY_UNIT_USECS:
1533 delay *= NSEC_PER_USEC;
1535 case SPI_DELAY_UNIT_NSECS:
1536 /* Nothing to do here */
1538 case SPI_DELAY_UNIT_SCK:
1539 /* Clock cycles need to be obtained from spi_transfer */
1543 * If there is unknown effective speed, approximate it
1544 * by underestimating with half of the requested Hz.
1546 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1550 /* Convert delay to nanoseconds */
1551 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1559 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1561 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1570 delay = spi_delay_to_ns(_delay, xfer);
1574 _spi_transfer_delay_ns(delay);
1578 EXPORT_SYMBOL_GPL(spi_delay_exec);
1580 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1581 struct spi_transfer *xfer)
1583 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1584 u32 delay = xfer->cs_change_delay.value;
1585 u32 unit = xfer->cs_change_delay.unit;
1588 /* Return early on "fast" mode - for everything but USECS */
1590 if (unit == SPI_DELAY_UNIT_USECS)
1591 _spi_transfer_delay_ns(default_delay_ns);
1595 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1597 dev_err_once(&msg->spi->dev,
1598 "Use of unsupported delay unit %i, using default of %luus\n",
1599 unit, default_delay_ns / NSEC_PER_USEC);
1600 _spi_transfer_delay_ns(default_delay_ns);
1604 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1605 struct spi_transfer *xfer)
1607 _spi_transfer_cs_change_delay(msg, xfer);
1609 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1612 * spi_transfer_one_message - Default implementation of transfer_one_message()
1614 * This is a standard implementation of transfer_one_message() for
1615 * drivers which implement a transfer_one() operation. It provides
1616 * standard handling of delays and chip select management.
1618 static int spi_transfer_one_message(struct spi_controller *ctlr,
1619 struct spi_message *msg)
1621 struct spi_transfer *xfer;
1622 bool keep_cs = false;
1624 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1625 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1627 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1628 spi_set_cs(msg->spi, !xfer->cs_off, false);
1630 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1631 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1633 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1634 trace_spi_transfer_start(msg, xfer);
1636 spi_statistics_add_transfer_stats(statm, xfer, msg);
1637 spi_statistics_add_transfer_stats(stats, xfer, msg);
1639 if (!ctlr->ptp_sts_supported) {
1640 xfer->ptp_sts_word_pre = 0;
1641 ptp_read_system_prets(xfer->ptp_sts);
1644 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1645 reinit_completion(&ctlr->xfer_completion);
1648 spi_dma_sync_for_device(ctlr, msg, xfer);
1649 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1651 spi_dma_sync_for_cpu(ctlr, msg, xfer);
1653 if (ctlr->cur_msg_mapped &&
1654 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1655 __spi_unmap_msg(ctlr, msg);
1656 ctlr->fallback = true;
1657 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1661 SPI_STATISTICS_INCREMENT_FIELD(statm,
1663 SPI_STATISTICS_INCREMENT_FIELD(stats,
1665 dev_err(&msg->spi->dev,
1666 "SPI transfer failed: %d\n", ret);
1671 ret = spi_transfer_wait(ctlr, msg, xfer);
1676 spi_dma_sync_for_cpu(ctlr, msg, xfer);
1679 dev_err(&msg->spi->dev,
1680 "Bufferless transfer has length %u\n",
1684 if (!ctlr->ptp_sts_supported) {
1685 ptp_read_system_postts(xfer->ptp_sts);
1686 xfer->ptp_sts_word_post = xfer->len;
1689 trace_spi_transfer_stop(msg, xfer);
1691 if (msg->status != -EINPROGRESS)
1694 spi_transfer_delay_exec(xfer);
1696 if (xfer->cs_change) {
1697 if (list_is_last(&xfer->transfer_list,
1702 spi_set_cs(msg->spi, false, false);
1703 _spi_transfer_cs_change_delay(msg, xfer);
1704 if (!list_next_entry(xfer, transfer_list)->cs_off)
1705 spi_set_cs(msg->spi, true, false);
1707 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1708 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1709 spi_set_cs(msg->spi, xfer->cs_off, false);
1712 msg->actual_length += xfer->len;
1716 if (ret != 0 || !keep_cs)
1717 spi_set_cs(msg->spi, false, false);
1719 if (msg->status == -EINPROGRESS)
1722 if (msg->status && ctlr->handle_err)
1723 ctlr->handle_err(ctlr, msg);
1725 spi_finalize_current_message(ctlr);
1731 * spi_finalize_current_transfer - report completion of a transfer
1732 * @ctlr: the controller reporting completion
1734 * Called by SPI drivers using the core transfer_one_message()
1735 * implementation to notify it that the current interrupt driven
1736 * transfer has finished and the next one may be scheduled.
1738 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1740 complete(&ctlr->xfer_completion);
1742 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1744 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1746 if (ctlr->auto_runtime_pm) {
1747 pm_runtime_mark_last_busy(ctlr->dev.parent);
1748 pm_runtime_put_autosuspend(ctlr->dev.parent);
1752 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1753 struct spi_message *msg, bool was_busy)
1755 struct spi_transfer *xfer;
1758 if (!was_busy && ctlr->auto_runtime_pm) {
1759 ret = pm_runtime_get_sync(ctlr->dev.parent);
1761 pm_runtime_put_noidle(ctlr->dev.parent);
1762 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1766 spi_finalize_current_message(ctlr);
1773 trace_spi_controller_busy(ctlr);
1775 if (!was_busy && ctlr->prepare_transfer_hardware) {
1776 ret = ctlr->prepare_transfer_hardware(ctlr);
1779 "failed to prepare transfer hardware: %d\n",
1782 if (ctlr->auto_runtime_pm)
1783 pm_runtime_put(ctlr->dev.parent);
1786 spi_finalize_current_message(ctlr);
1792 trace_spi_message_start(msg);
1794 if (ctlr->prepare_message) {
1795 ret = ctlr->prepare_message(ctlr, msg);
1797 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1800 spi_finalize_current_message(ctlr);
1803 msg->prepared = true;
1806 ret = spi_map_msg(ctlr, msg);
1809 spi_finalize_current_message(ctlr);
1813 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1814 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1815 xfer->ptp_sts_word_pre = 0;
1816 ptp_read_system_prets(xfer->ptp_sts);
1821 * Drivers implementation of transfer_one_message() must arrange for
1822 * spi_finalize_current_message() to get called. Most drivers will do
1823 * this in the calling context, but some don't. For those cases, a
1824 * completion is used to guarantee that this function does not return
1825 * until spi_finalize_current_message() is done accessing
1827 * Use of the following two flags enable to opportunistically skip the
1828 * use of the completion since its use involves expensive spin locks.
1829 * In case of a race with the context that calls
1830 * spi_finalize_current_message() the completion will always be used,
1831 * due to strict ordering of these flags using barriers.
1833 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1834 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1835 reinit_completion(&ctlr->cur_msg_completion);
1836 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1838 ret = ctlr->transfer_one_message(ctlr, msg);
1841 "failed to transfer one message from queue\n");
1845 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1846 smp_mb(); /* See spi_finalize_current_message()... */
1847 if (READ_ONCE(ctlr->cur_msg_incomplete))
1848 wait_for_completion(&ctlr->cur_msg_completion);
1854 * __spi_pump_messages - function which processes SPI message queue
1855 * @ctlr: controller to process queue for
1856 * @in_kthread: true if we are in the context of the message pump thread
1858 * This function checks if there is any SPI message in the queue that
1859 * needs processing and if so call out to the driver to initialize hardware
1860 * and transfer each message.
1862 * Note that it is called both from the kthread itself and also from
1863 * inside spi_sync(); the queue extraction handling at the top of the
1864 * function should deal with this safely.
1866 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1868 struct spi_message *msg;
1869 bool was_busy = false;
1870 unsigned long flags;
1873 /* Take the I/O mutex */
1874 mutex_lock(&ctlr->io_mutex);
1877 spin_lock_irqsave(&ctlr->queue_lock, flags);
1879 /* Make sure we are not already running a message */
1883 /* Check if the queue is idle */
1884 if (list_empty(&ctlr->queue) || !ctlr->running) {
1888 /* Defer any non-atomic teardown to the thread */
1890 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1891 !ctlr->unprepare_transfer_hardware) {
1892 spi_idle_runtime_pm(ctlr);
1894 ctlr->queue_empty = true;
1895 trace_spi_controller_idle(ctlr);
1897 kthread_queue_work(ctlr->kworker,
1898 &ctlr->pump_messages);
1904 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1906 kfree(ctlr->dummy_rx);
1907 ctlr->dummy_rx = NULL;
1908 kfree(ctlr->dummy_tx);
1909 ctlr->dummy_tx = NULL;
1910 if (ctlr->unprepare_transfer_hardware &&
1911 ctlr->unprepare_transfer_hardware(ctlr))
1913 "failed to unprepare transfer hardware\n");
1914 spi_idle_runtime_pm(ctlr);
1915 trace_spi_controller_idle(ctlr);
1917 spin_lock_irqsave(&ctlr->queue_lock, flags);
1918 ctlr->queue_empty = true;
1922 /* Extract head of queue */
1923 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1924 ctlr->cur_msg = msg;
1926 list_del_init(&msg->queue);
1931 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1933 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1934 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1936 ctlr->cur_msg = NULL;
1937 ctlr->fallback = false;
1939 mutex_unlock(&ctlr->io_mutex);
1941 /* Prod the scheduler in case transfer_one() was busy waiting */
1947 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1948 mutex_unlock(&ctlr->io_mutex);
1952 * spi_pump_messages - kthread work function which processes spi message queue
1953 * @work: pointer to kthread work struct contained in the controller struct
1955 static void spi_pump_messages(struct kthread_work *work)
1957 struct spi_controller *ctlr =
1958 container_of(work, struct spi_controller, pump_messages);
1960 __spi_pump_messages(ctlr, true);
1964 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1965 * @ctlr: Pointer to the spi_controller structure of the driver
1966 * @xfer: Pointer to the transfer being timestamped
1967 * @progress: How many words (not bytes) have been transferred so far
1968 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1969 * transfer, for less jitter in time measurement. Only compatible
1970 * with PIO drivers. If true, must follow up with
1971 * spi_take_timestamp_post or otherwise system will crash.
1972 * WARNING: for fully predictable results, the CPU frequency must
1973 * also be under control (governor).
1975 * This is a helper for drivers to collect the beginning of the TX timestamp
1976 * for the requested byte from the SPI transfer. The frequency with which this
1977 * function must be called (once per word, once for the whole transfer, once
1978 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1979 * greater than or equal to the requested byte at the time of the call. The
1980 * timestamp is only taken once, at the first such call. It is assumed that
1981 * the driver advances its @tx buffer pointer monotonically.
1983 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1984 struct spi_transfer *xfer,
1985 size_t progress, bool irqs_off)
1990 if (xfer->timestamped)
1993 if (progress > xfer->ptp_sts_word_pre)
1996 /* Capture the resolution of the timestamp */
1997 xfer->ptp_sts_word_pre = progress;
2000 local_irq_save(ctlr->irq_flags);
2004 ptp_read_system_prets(xfer->ptp_sts);
2006 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
2009 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
2010 * @ctlr: Pointer to the spi_controller structure of the driver
2011 * @xfer: Pointer to the transfer being timestamped
2012 * @progress: How many words (not bytes) have been transferred so far
2013 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2015 * This is a helper for drivers to collect the end of the TX timestamp for
2016 * the requested byte from the SPI transfer. Can be called with an arbitrary
2017 * frequency: only the first call where @tx exceeds or is equal to the
2018 * requested word will be timestamped.
2020 void spi_take_timestamp_post(struct spi_controller *ctlr,
2021 struct spi_transfer *xfer,
2022 size_t progress, bool irqs_off)
2027 if (xfer->timestamped)
2030 if (progress < xfer->ptp_sts_word_post)
2033 ptp_read_system_postts(xfer->ptp_sts);
2036 local_irq_restore(ctlr->irq_flags);
2040 /* Capture the resolution of the timestamp */
2041 xfer->ptp_sts_word_post = progress;
2043 xfer->timestamped = 1;
2045 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2048 * spi_set_thread_rt - set the controller to pump at realtime priority
2049 * @ctlr: controller to boost priority of
2051 * This can be called because the controller requested realtime priority
2052 * (by setting the ->rt value before calling spi_register_controller()) or
2053 * because a device on the bus said that its transfers needed realtime
2056 * NOTE: at the moment if any device on a bus says it needs realtime then
2057 * the thread will be at realtime priority for all transfers on that
2058 * controller. If this eventually becomes a problem we may see if we can
2059 * find a way to boost the priority only temporarily during relevant
2062 static void spi_set_thread_rt(struct spi_controller *ctlr)
2064 dev_info(&ctlr->dev,
2065 "will run message pump with realtime priority\n");
2066 sched_set_fifo(ctlr->kworker->task);
2069 static int spi_init_queue(struct spi_controller *ctlr)
2071 ctlr->running = false;
2073 ctlr->queue_empty = true;
2075 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2076 if (IS_ERR(ctlr->kworker)) {
2077 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2078 return PTR_ERR(ctlr->kworker);
2081 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2084 * Controller config will indicate if this controller should run the
2085 * message pump with high (realtime) priority to reduce the transfer
2086 * latency on the bus by minimising the delay between a transfer
2087 * request and the scheduling of the message pump thread. Without this
2088 * setting the message pump thread will remain at default priority.
2091 spi_set_thread_rt(ctlr);
2097 * spi_get_next_queued_message() - called by driver to check for queued
2099 * @ctlr: the controller to check for queued messages
2101 * If there are more messages in the queue, the next message is returned from
2104 * Return: the next message in the queue, else NULL if the queue is empty.
2106 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2108 struct spi_message *next;
2109 unsigned long flags;
2111 /* Get a pointer to the next message, if any */
2112 spin_lock_irqsave(&ctlr->queue_lock, flags);
2113 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2115 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2119 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2122 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2123 * and spi_maybe_unoptimize_message()
2124 * @msg: the message to unoptimize
2126 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2127 * core should use spi_maybe_unoptimize_message() rather than calling this
2128 * function directly.
2130 * It is not valid to call this on a message that is not currently optimized.
2132 static void __spi_unoptimize_message(struct spi_message *msg)
2134 struct spi_controller *ctlr = msg->spi->controller;
2136 if (ctlr->unoptimize_message)
2137 ctlr->unoptimize_message(msg);
2139 spi_res_release(ctlr, msg);
2141 msg->optimized = false;
2142 msg->opt_state = NULL;
2146 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2147 * @msg: the message to unoptimize
2149 * This function is used to unoptimize a message if and only if it was
2150 * optimized by the core (via spi_maybe_optimize_message()).
2152 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2154 if (!msg->pre_optimized && msg->optimized)
2155 __spi_unoptimize_message(msg);
2159 * spi_finalize_current_message() - the current message is complete
2160 * @ctlr: the controller to return the message to
2162 * Called by the driver to notify the core that the message in the front of the
2163 * queue is complete and can be removed from the queue.
2165 void spi_finalize_current_message(struct spi_controller *ctlr)
2167 struct spi_transfer *xfer;
2168 struct spi_message *mesg;
2171 mesg = ctlr->cur_msg;
2173 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2174 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2175 ptp_read_system_postts(xfer->ptp_sts);
2176 xfer->ptp_sts_word_post = xfer->len;
2180 if (unlikely(ctlr->ptp_sts_supported))
2181 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2182 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2184 spi_unmap_msg(ctlr, mesg);
2186 if (mesg->prepared && ctlr->unprepare_message) {
2187 ret = ctlr->unprepare_message(ctlr, mesg);
2189 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2194 mesg->prepared = false;
2196 spi_maybe_unoptimize_message(mesg);
2198 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2199 smp_mb(); /* See __spi_pump_transfer_message()... */
2200 if (READ_ONCE(ctlr->cur_msg_need_completion))
2201 complete(&ctlr->cur_msg_completion);
2203 trace_spi_message_done(mesg);
2207 mesg->complete(mesg->context);
2209 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2211 static int spi_start_queue(struct spi_controller *ctlr)
2213 unsigned long flags;
2215 spin_lock_irqsave(&ctlr->queue_lock, flags);
2217 if (ctlr->running || ctlr->busy) {
2218 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2222 ctlr->running = true;
2223 ctlr->cur_msg = NULL;
2224 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2226 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2231 static int spi_stop_queue(struct spi_controller *ctlr)
2233 unsigned long flags;
2234 unsigned limit = 500;
2237 spin_lock_irqsave(&ctlr->queue_lock, flags);
2240 * This is a bit lame, but is optimized for the common execution path.
2241 * A wait_queue on the ctlr->busy could be used, but then the common
2242 * execution path (pump_messages) would be required to call wake_up or
2243 * friends on every SPI message. Do this instead.
2245 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2246 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2247 usleep_range(10000, 11000);
2248 spin_lock_irqsave(&ctlr->queue_lock, flags);
2251 if (!list_empty(&ctlr->queue) || ctlr->busy)
2254 ctlr->running = false;
2256 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2261 static int spi_destroy_queue(struct spi_controller *ctlr)
2265 ret = spi_stop_queue(ctlr);
2268 * kthread_flush_worker will block until all work is done.
2269 * If the reason that stop_queue timed out is that the work will never
2270 * finish, then it does no good to call flush/stop thread, so
2274 dev_err(&ctlr->dev, "problem destroying queue\n");
2278 kthread_destroy_worker(ctlr->kworker);
2283 static int __spi_queued_transfer(struct spi_device *spi,
2284 struct spi_message *msg,
2287 struct spi_controller *ctlr = spi->controller;
2288 unsigned long flags;
2290 spin_lock_irqsave(&ctlr->queue_lock, flags);
2292 if (!ctlr->running) {
2293 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2296 msg->actual_length = 0;
2297 msg->status = -EINPROGRESS;
2299 list_add_tail(&msg->queue, &ctlr->queue);
2300 ctlr->queue_empty = false;
2301 if (!ctlr->busy && need_pump)
2302 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2304 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2309 * spi_queued_transfer - transfer function for queued transfers
2310 * @spi: SPI device which is requesting transfer
2311 * @msg: SPI message which is to handled is queued to driver queue
2313 * Return: zero on success, else a negative error code.
2315 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2317 return __spi_queued_transfer(spi, msg, true);
2320 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2324 ctlr->transfer = spi_queued_transfer;
2325 if (!ctlr->transfer_one_message)
2326 ctlr->transfer_one_message = spi_transfer_one_message;
2328 /* Initialize and start queue */
2329 ret = spi_init_queue(ctlr);
2331 dev_err(&ctlr->dev, "problem initializing queue\n");
2332 goto err_init_queue;
2334 ctlr->queued = true;
2335 ret = spi_start_queue(ctlr);
2337 dev_err(&ctlr->dev, "problem starting queue\n");
2338 goto err_start_queue;
2344 spi_destroy_queue(ctlr);
2350 * spi_flush_queue - Send all pending messages in the queue from the callers'
2352 * @ctlr: controller to process queue for
2354 * This should be used when one wants to ensure all pending messages have been
2355 * sent before doing something. Is used by the spi-mem code to make sure SPI
2356 * memory operations do not preempt regular SPI transfers that have been queued
2357 * before the spi-mem operation.
2359 void spi_flush_queue(struct spi_controller *ctlr)
2361 if (ctlr->transfer == spi_queued_transfer)
2362 __spi_pump_messages(ctlr, false);
2365 /*-------------------------------------------------------------------------*/
2367 #if defined(CONFIG_OF)
2368 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2369 struct spi_delay *delay, const char *prop)
2373 if (!of_property_read_u32(nc, prop, &value)) {
2374 if (value > U16_MAX) {
2375 delay->value = DIV_ROUND_UP(value, 1000);
2376 delay->unit = SPI_DELAY_UNIT_USECS;
2378 delay->value = value;
2379 delay->unit = SPI_DELAY_UNIT_NSECS;
2384 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2385 struct device_node *nc)
2387 u32 value, cs[SPI_CS_CNT_MAX];
2390 /* Mode (clock phase/polarity/etc.) */
2391 if (of_property_read_bool(nc, "spi-cpha"))
2392 spi->mode |= SPI_CPHA;
2393 if (of_property_read_bool(nc, "spi-cpol"))
2394 spi->mode |= SPI_CPOL;
2395 if (of_property_read_bool(nc, "spi-3wire"))
2396 spi->mode |= SPI_3WIRE;
2397 if (of_property_read_bool(nc, "spi-lsb-first"))
2398 spi->mode |= SPI_LSB_FIRST;
2399 if (of_property_read_bool(nc, "spi-cs-high"))
2400 spi->mode |= SPI_CS_HIGH;
2402 /* Device DUAL/QUAD mode */
2403 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2406 spi->mode |= SPI_NO_TX;
2411 spi->mode |= SPI_TX_DUAL;
2414 spi->mode |= SPI_TX_QUAD;
2417 spi->mode |= SPI_TX_OCTAL;
2420 dev_warn(&ctlr->dev,
2421 "spi-tx-bus-width %d not supported\n",
2427 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2430 spi->mode |= SPI_NO_RX;
2435 spi->mode |= SPI_RX_DUAL;
2438 spi->mode |= SPI_RX_QUAD;
2441 spi->mode |= SPI_RX_OCTAL;
2444 dev_warn(&ctlr->dev,
2445 "spi-rx-bus-width %d not supported\n",
2451 if (spi_controller_is_slave(ctlr)) {
2452 if (!of_node_name_eq(nc, "slave")) {
2453 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2460 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2461 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2465 spi_set_all_cs_unused(spi);
2467 /* Device address */
2468 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2471 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2475 if (rc > ctlr->num_chipselect) {
2476 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2480 if ((of_property_read_bool(nc, "parallel-memories")) &&
2481 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2482 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2485 for (idx = 0; idx < rc; idx++)
2486 spi_set_chipselect(spi, idx, cs[idx]);
2489 * By default spi->chip_select[0] will hold the physical CS number,
2490 * so set bit 0 in spi->cs_index_mask.
2492 spi->cs_index_mask = BIT(0);
2495 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2496 spi->max_speed_hz = value;
2498 /* Device CS delays */
2499 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2500 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2501 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2506 static struct spi_device *
2507 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2509 struct spi_device *spi;
2512 /* Alloc an spi_device */
2513 spi = spi_alloc_device(ctlr);
2515 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2520 /* Select device driver */
2521 rc = of_alias_from_compatible(nc, spi->modalias,
2522 sizeof(spi->modalias));
2524 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2528 rc = of_spi_parse_dt(ctlr, spi, nc);
2532 /* Store a pointer to the node in the device structure */
2535 device_set_node(&spi->dev, of_fwnode_handle(nc));
2537 /* Register the new device */
2538 rc = spi_add_device(spi);
2540 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2541 goto err_of_node_put;
2554 * of_register_spi_devices() - Register child devices onto the SPI bus
2555 * @ctlr: Pointer to spi_controller device
2557 * Registers an spi_device for each child node of controller node which
2558 * represents a valid SPI slave.
2560 static void of_register_spi_devices(struct spi_controller *ctlr)
2562 struct spi_device *spi;
2563 struct device_node *nc;
2565 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2566 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2568 spi = of_register_spi_device(ctlr, nc);
2570 dev_warn(&ctlr->dev,
2571 "Failed to create SPI device for %pOF\n", nc);
2572 of_node_clear_flag(nc, OF_POPULATED);
2577 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2581 * spi_new_ancillary_device() - Register ancillary SPI device
2582 * @spi: Pointer to the main SPI device registering the ancillary device
2583 * @chip_select: Chip Select of the ancillary device
2585 * Register an ancillary SPI device; for example some chips have a chip-select
2586 * for normal device usage and another one for setup/firmware upload.
2588 * This may only be called from main SPI device's probe routine.
2590 * Return: 0 on success; negative errno on failure
2592 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2595 struct spi_controller *ctlr = spi->controller;
2596 struct spi_device *ancillary;
2599 /* Alloc an spi_device */
2600 ancillary = spi_alloc_device(ctlr);
2606 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2608 /* Use provided chip-select for ancillary device */
2609 spi_set_all_cs_unused(ancillary);
2610 spi_set_chipselect(ancillary, 0, chip_select);
2612 /* Take over SPI mode/speed from SPI main device */
2613 ancillary->max_speed_hz = spi->max_speed_hz;
2614 ancillary->mode = spi->mode;
2616 * By default spi->chip_select[0] will hold the physical CS number,
2617 * so set bit 0 in spi->cs_index_mask.
2619 ancillary->cs_index_mask = BIT(0);
2621 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2623 /* Register the new device */
2624 rc = __spi_add_device(ancillary);
2626 dev_err(&spi->dev, "failed to register ancillary device\n");
2633 spi_dev_put(ancillary);
2636 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2639 struct acpi_spi_lookup {
2640 struct spi_controller *ctlr;
2650 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2652 struct acpi_resource_spi_serialbus *sb;
2655 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2658 sb = &ares->data.spi_serial_bus;
2659 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2662 *count = *count + 1;
2668 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2669 * @adev: ACPI device
2671 * Return: the number of SpiSerialBus resources in the ACPI-device's
2672 * resource-list; or a negative error code.
2674 int acpi_spi_count_resources(struct acpi_device *adev)
2680 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2684 acpi_dev_free_resource_list(&r);
2688 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2690 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2691 struct acpi_spi_lookup *lookup)
2693 const union acpi_object *obj;
2695 if (!x86_apple_machine)
2698 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2699 && obj->buffer.length >= 4)
2700 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2702 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2703 && obj->buffer.length == 8)
2704 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2706 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2707 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2708 lookup->mode |= SPI_LSB_FIRST;
2710 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2711 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2712 lookup->mode |= SPI_CPOL;
2714 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2715 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2716 lookup->mode |= SPI_CPHA;
2719 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2721 struct acpi_spi_lookup *lookup = data;
2722 struct spi_controller *ctlr = lookup->ctlr;
2724 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2725 struct acpi_resource_spi_serialbus *sb;
2726 acpi_handle parent_handle;
2729 sb = &ares->data.spi_serial_bus;
2730 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2732 if (lookup->index != -1 && lookup->n++ != lookup->index)
2735 status = acpi_get_handle(NULL,
2736 sb->resource_source.string_ptr,
2739 if (ACPI_FAILURE(status))
2743 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2746 struct acpi_device *adev;
2748 adev = acpi_fetch_acpi_dev(parent_handle);
2752 ctlr = acpi_spi_find_controller_by_adev(adev);
2754 return -EPROBE_DEFER;
2756 lookup->ctlr = ctlr;
2760 * ACPI DeviceSelection numbering is handled by the
2761 * host controller driver in Windows and can vary
2762 * from driver to driver. In Linux we always expect
2763 * 0 .. max - 1 so we need to ask the driver to
2764 * translate between the two schemes.
2766 if (ctlr->fw_translate_cs) {
2767 int cs = ctlr->fw_translate_cs(ctlr,
2768 sb->device_selection);
2771 lookup->chip_select = cs;
2773 lookup->chip_select = sb->device_selection;
2776 lookup->max_speed_hz = sb->connection_speed;
2777 lookup->bits_per_word = sb->data_bit_length;
2779 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2780 lookup->mode |= SPI_CPHA;
2781 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2782 lookup->mode |= SPI_CPOL;
2783 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2784 lookup->mode |= SPI_CS_HIGH;
2786 } else if (lookup->irq < 0) {
2789 if (acpi_dev_resource_interrupt(ares, 0, &r))
2790 lookup->irq = r.start;
2793 /* Always tell the ACPI core to skip this resource */
2798 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2799 * @ctlr: controller to which the spi device belongs
2800 * @adev: ACPI Device for the spi device
2801 * @index: Index of the spi resource inside the ACPI Node
2803 * This should be used to allocate a new SPI device from and ACPI Device node.
2804 * The caller is responsible for calling spi_add_device to register the SPI device.
2806 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2807 * using the resource.
2808 * If index is set to -1, index is not used.
2809 * Note: If index is -1, ctlr must be set.
2811 * Return: a pointer to the new device, or ERR_PTR on error.
2813 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2814 struct acpi_device *adev,
2817 acpi_handle parent_handle = NULL;
2818 struct list_head resource_list;
2819 struct acpi_spi_lookup lookup = {};
2820 struct spi_device *spi;
2823 if (!ctlr && index == -1)
2824 return ERR_PTR(-EINVAL);
2828 lookup.index = index;
2831 INIT_LIST_HEAD(&resource_list);
2832 ret = acpi_dev_get_resources(adev, &resource_list,
2833 acpi_spi_add_resource, &lookup);
2834 acpi_dev_free_resource_list(&resource_list);
2837 /* Found SPI in _CRS but it points to another controller */
2838 return ERR_PTR(ret);
2840 if (!lookup.max_speed_hz &&
2841 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2842 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2843 /* Apple does not use _CRS but nested devices for SPI slaves */
2844 acpi_spi_parse_apple_properties(adev, &lookup);
2847 if (!lookup.max_speed_hz)
2848 return ERR_PTR(-ENODEV);
2850 spi = spi_alloc_device(lookup.ctlr);
2852 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2853 dev_name(&adev->dev));
2854 return ERR_PTR(-ENOMEM);
2857 spi_set_all_cs_unused(spi);
2858 spi_set_chipselect(spi, 0, lookup.chip_select);
2860 ACPI_COMPANION_SET(&spi->dev, adev);
2861 spi->max_speed_hz = lookup.max_speed_hz;
2862 spi->mode |= lookup.mode;
2863 spi->irq = lookup.irq;
2864 spi->bits_per_word = lookup.bits_per_word;
2866 * By default spi->chip_select[0] will hold the physical CS number,
2867 * so set bit 0 in spi->cs_index_mask.
2869 spi->cs_index_mask = BIT(0);
2873 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2875 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2876 struct acpi_device *adev)
2878 struct spi_device *spi;
2880 if (acpi_bus_get_status(adev) || !adev->status.present ||
2881 acpi_device_enumerated(adev))
2884 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2886 if (PTR_ERR(spi) == -ENOMEM)
2887 return AE_NO_MEMORY;
2892 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2893 sizeof(spi->modalias));
2896 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2898 acpi_device_set_enumerated(adev);
2900 adev->power.flags.ignore_parent = true;
2901 if (spi_add_device(spi)) {
2902 adev->power.flags.ignore_parent = false;
2903 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2904 dev_name(&adev->dev));
2911 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2912 void *data, void **return_value)
2914 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2915 struct spi_controller *ctlr = data;
2920 return acpi_register_spi_device(ctlr, adev);
2923 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2925 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2930 handle = ACPI_HANDLE(ctlr->dev.parent);
2934 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2935 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2936 acpi_spi_add_device, NULL, ctlr, NULL);
2937 if (ACPI_FAILURE(status))
2938 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2941 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2942 #endif /* CONFIG_ACPI */
2944 static void spi_controller_release(struct device *dev)
2946 struct spi_controller *ctlr;
2948 ctlr = container_of(dev, struct spi_controller, dev);
2952 static struct class spi_master_class = {
2953 .name = "spi_master",
2954 .dev_release = spi_controller_release,
2955 .dev_groups = spi_master_groups,
2958 #ifdef CONFIG_SPI_SLAVE
2960 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2962 * @spi: device used for the current transfer
2964 int spi_slave_abort(struct spi_device *spi)
2966 struct spi_controller *ctlr = spi->controller;
2968 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2969 return ctlr->slave_abort(ctlr);
2973 EXPORT_SYMBOL_GPL(spi_slave_abort);
2975 int spi_target_abort(struct spi_device *spi)
2977 struct spi_controller *ctlr = spi->controller;
2979 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2980 return ctlr->target_abort(ctlr);
2984 EXPORT_SYMBOL_GPL(spi_target_abort);
2986 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2989 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2991 struct device *child;
2993 child = device_find_any_child(&ctlr->dev);
2994 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2997 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2998 const char *buf, size_t count)
3000 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
3002 struct spi_device *spi;
3003 struct device *child;
3007 rc = sscanf(buf, "%31s", name);
3008 if (rc != 1 || !name[0])
3011 child = device_find_any_child(&ctlr->dev);
3013 /* Remove registered slave */
3014 device_unregister(child);
3018 if (strcmp(name, "(null)")) {
3019 /* Register new slave */
3020 spi = spi_alloc_device(ctlr);
3024 strscpy(spi->modalias, name, sizeof(spi->modalias));
3026 rc = spi_add_device(spi);
3036 static DEVICE_ATTR_RW(slave);
3038 static struct attribute *spi_slave_attrs[] = {
3039 &dev_attr_slave.attr,
3043 static const struct attribute_group spi_slave_group = {
3044 .attrs = spi_slave_attrs,
3047 static const struct attribute_group *spi_slave_groups[] = {
3048 &spi_controller_statistics_group,
3053 static struct class spi_slave_class = {
3054 .name = "spi_slave",
3055 .dev_release = spi_controller_release,
3056 .dev_groups = spi_slave_groups,
3059 extern struct class spi_slave_class; /* dummy */
3063 * __spi_alloc_controller - allocate an SPI master or slave controller
3064 * @dev: the controller, possibly using the platform_bus
3065 * @size: how much zeroed driver-private data to allocate; the pointer to this
3066 * memory is in the driver_data field of the returned device, accessible
3067 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3068 * drivers granting DMA access to portions of their private data need to
3069 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3070 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3071 * slave (true) controller
3072 * Context: can sleep
3074 * This call is used only by SPI controller drivers, which are the
3075 * only ones directly touching chip registers. It's how they allocate
3076 * an spi_controller structure, prior to calling spi_register_controller().
3078 * This must be called from context that can sleep.
3080 * The caller is responsible for assigning the bus number and initializing the
3081 * controller's methods before calling spi_register_controller(); and (after
3082 * errors adding the device) calling spi_controller_put() to prevent a memory
3085 * Return: the SPI controller structure on success, else NULL.
3087 struct spi_controller *__spi_alloc_controller(struct device *dev,
3088 unsigned int size, bool slave)
3090 struct spi_controller *ctlr;
3091 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3096 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3100 device_initialize(&ctlr->dev);
3101 INIT_LIST_HEAD(&ctlr->queue);
3102 spin_lock_init(&ctlr->queue_lock);
3103 spin_lock_init(&ctlr->bus_lock_spinlock);
3104 mutex_init(&ctlr->bus_lock_mutex);
3105 mutex_init(&ctlr->io_mutex);
3106 mutex_init(&ctlr->add_lock);
3108 ctlr->num_chipselect = 1;
3109 ctlr->slave = slave;
3110 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3111 ctlr->dev.class = &spi_slave_class;
3113 ctlr->dev.class = &spi_master_class;
3114 ctlr->dev.parent = dev;
3115 pm_suspend_ignore_children(&ctlr->dev, true);
3116 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3120 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3122 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3124 spi_controller_put(*(struct spi_controller **)ctlr);
3128 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3129 * @dev: physical device of SPI controller
3130 * @size: how much zeroed driver-private data to allocate
3131 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3132 * Context: can sleep
3134 * Allocate an SPI controller and automatically release a reference on it
3135 * when @dev is unbound from its driver. Drivers are thus relieved from
3136 * having to call spi_controller_put().
3138 * The arguments to this function are identical to __spi_alloc_controller().
3140 * Return: the SPI controller structure on success, else NULL.
3142 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3146 struct spi_controller **ptr, *ctlr;
3148 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3153 ctlr = __spi_alloc_controller(dev, size, slave);
3155 ctlr->devm_allocated = true;
3157 devres_add(dev, ptr);
3164 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3167 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3168 * @ctlr: The SPI master to grab GPIO descriptors for
3170 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3173 struct gpio_desc **cs;
3174 struct device *dev = &ctlr->dev;
3175 unsigned long native_cs_mask = 0;
3176 unsigned int num_cs_gpios = 0;
3178 nb = gpiod_count(dev, "cs");
3180 /* No GPIOs at all is fine, else return the error */
3186 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3188 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3192 ctlr->cs_gpiods = cs;
3194 for (i = 0; i < nb; i++) {
3196 * Most chipselects are active low, the inverted
3197 * semantics are handled by special quirks in gpiolib,
3198 * so initializing them GPIOD_OUT_LOW here means
3199 * "unasserted", in most cases this will drive the physical
3202 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3205 return PTR_ERR(cs[i]);
3209 * If we find a CS GPIO, name it after the device and
3214 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3218 gpiod_set_consumer_name(cs[i], gpioname);
3223 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3224 dev_err(dev, "Invalid native chip select %d\n", i);
3227 native_cs_mask |= BIT(i);
3230 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3232 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3233 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3234 dev_err(dev, "No unused native chip select available\n");
3241 static int spi_controller_check_ops(struct spi_controller *ctlr)
3244 * The controller may implement only the high-level SPI-memory like
3245 * operations if it does not support regular SPI transfers, and this is
3247 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3248 * one of the ->transfer_xxx() method be implemented.
3250 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3251 if (!ctlr->transfer && !ctlr->transfer_one &&
3252 !ctlr->transfer_one_message) {
3260 /* Allocate dynamic bus number using Linux idr */
3261 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3265 mutex_lock(&board_lock);
3266 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3267 mutex_unlock(&board_lock);
3268 if (WARN(id < 0, "couldn't get idr"))
3269 return id == -ENOSPC ? -EBUSY : id;
3275 * spi_register_controller - register SPI master or slave controller
3276 * @ctlr: initialized master, originally from spi_alloc_master() or
3278 * Context: can sleep
3280 * SPI controllers connect to their drivers using some non-SPI bus,
3281 * such as the platform bus. The final stage of probe() in that code
3282 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3284 * SPI controllers use board specific (often SOC specific) bus numbers,
3285 * and board-specific addressing for SPI devices combines those numbers
3286 * with chip select numbers. Since SPI does not directly support dynamic
3287 * device identification, boards need configuration tables telling which
3288 * chip is at which address.
3290 * This must be called from context that can sleep. It returns zero on
3291 * success, else a negative error code (dropping the controller's refcount).
3292 * After a successful return, the caller is responsible for calling
3293 * spi_unregister_controller().
3295 * Return: zero on success, else a negative error code.
3297 int spi_register_controller(struct spi_controller *ctlr)
3299 struct device *dev = ctlr->dev.parent;
3300 struct boardinfo *bi;
3309 * Make sure all necessary hooks are implemented before registering
3310 * the SPI controller.
3312 status = spi_controller_check_ops(ctlr);
3316 if (ctlr->bus_num < 0)
3317 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3318 if (ctlr->bus_num >= 0) {
3319 /* Devices with a fixed bus num must check-in with the num */
3320 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3324 if (ctlr->bus_num < 0) {
3325 first_dynamic = of_alias_get_highest_id("spi");
3326 if (first_dynamic < 0)
3331 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3335 ctlr->bus_lock_flag = 0;
3336 init_completion(&ctlr->xfer_completion);
3337 init_completion(&ctlr->cur_msg_completion);
3338 if (!ctlr->max_dma_len)
3339 ctlr->max_dma_len = INT_MAX;
3342 * Register the device, then userspace will see it.
3343 * Registration fails if the bus ID is in use.
3345 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3347 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3348 status = spi_get_gpio_descs(ctlr);
3352 * A controller using GPIO descriptors always
3353 * supports SPI_CS_HIGH if need be.
3355 ctlr->mode_bits |= SPI_CS_HIGH;
3359 * Even if it's just one always-selected device, there must
3360 * be at least one chipselect.
3362 if (!ctlr->num_chipselect) {
3367 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3368 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3369 ctlr->last_cs[idx] = SPI_INVALID_CS;
3371 status = device_add(&ctlr->dev);
3374 dev_dbg(dev, "registered %s %s\n",
3375 spi_controller_is_slave(ctlr) ? "slave" : "master",
3376 dev_name(&ctlr->dev));
3379 * If we're using a queued driver, start the queue. Note that we don't
3380 * need the queueing logic if the driver is only supporting high-level
3381 * memory operations.
3383 if (ctlr->transfer) {
3384 dev_info(dev, "controller is unqueued, this is deprecated\n");
3385 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3386 status = spi_controller_initialize_queue(ctlr);
3388 device_del(&ctlr->dev);
3392 /* Add statistics */
3393 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3394 if (!ctlr->pcpu_statistics) {
3395 dev_err(dev, "Error allocating per-cpu statistics\n");
3400 mutex_lock(&board_lock);
3401 list_add_tail(&ctlr->list, &spi_controller_list);
3402 list_for_each_entry(bi, &board_list, list)
3403 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3404 mutex_unlock(&board_lock);
3406 /* Register devices from the device tree and ACPI */
3407 of_register_spi_devices(ctlr);
3408 acpi_register_spi_devices(ctlr);
3412 spi_destroy_queue(ctlr);
3414 mutex_lock(&board_lock);
3415 idr_remove(&spi_master_idr, ctlr->bus_num);
3416 mutex_unlock(&board_lock);
3419 EXPORT_SYMBOL_GPL(spi_register_controller);
3421 static void devm_spi_unregister(struct device *dev, void *res)
3423 spi_unregister_controller(*(struct spi_controller **)res);
3427 * devm_spi_register_controller - register managed SPI master or slave
3429 * @dev: device managing SPI controller
3430 * @ctlr: initialized controller, originally from spi_alloc_master() or
3432 * Context: can sleep
3434 * Register a SPI device as with spi_register_controller() which will
3435 * automatically be unregistered and freed.
3437 * Return: zero on success, else a negative error code.
3439 int devm_spi_register_controller(struct device *dev,
3440 struct spi_controller *ctlr)
3442 struct spi_controller **ptr;
3445 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3449 ret = spi_register_controller(ctlr);
3452 devres_add(dev, ptr);
3459 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3461 static int __unregister(struct device *dev, void *null)
3463 spi_unregister_device(to_spi_device(dev));
3468 * spi_unregister_controller - unregister SPI master or slave controller
3469 * @ctlr: the controller being unregistered
3470 * Context: can sleep
3472 * This call is used only by SPI controller drivers, which are the
3473 * only ones directly touching chip registers.
3475 * This must be called from context that can sleep.
3477 * Note that this function also drops a reference to the controller.
3479 void spi_unregister_controller(struct spi_controller *ctlr)
3481 struct spi_controller *found;
3482 int id = ctlr->bus_num;
3484 /* Prevent addition of new devices, unregister existing ones */
3485 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3486 mutex_lock(&ctlr->add_lock);
3488 device_for_each_child(&ctlr->dev, NULL, __unregister);
3490 /* First make sure that this controller was ever added */
3491 mutex_lock(&board_lock);
3492 found = idr_find(&spi_master_idr, id);
3493 mutex_unlock(&board_lock);
3495 if (spi_destroy_queue(ctlr))
3496 dev_err(&ctlr->dev, "queue remove failed\n");
3498 mutex_lock(&board_lock);
3499 list_del(&ctlr->list);
3500 mutex_unlock(&board_lock);
3502 device_del(&ctlr->dev);
3505 mutex_lock(&board_lock);
3507 idr_remove(&spi_master_idr, id);
3508 mutex_unlock(&board_lock);
3510 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3511 mutex_unlock(&ctlr->add_lock);
3514 * Release the last reference on the controller if its driver
3515 * has not yet been converted to devm_spi_alloc_master/slave().
3517 if (!ctlr->devm_allocated)
3518 put_device(&ctlr->dev);
3520 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3522 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3524 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3527 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3529 mutex_lock(&ctlr->bus_lock_mutex);
3530 ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3531 mutex_unlock(&ctlr->bus_lock_mutex);
3534 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3536 mutex_lock(&ctlr->bus_lock_mutex);
3537 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3538 mutex_unlock(&ctlr->bus_lock_mutex);
3541 int spi_controller_suspend(struct spi_controller *ctlr)
3545 /* Basically no-ops for non-queued controllers */
3547 ret = spi_stop_queue(ctlr);
3549 dev_err(&ctlr->dev, "queue stop failed\n");
3552 __spi_mark_suspended(ctlr);
3555 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3557 int spi_controller_resume(struct spi_controller *ctlr)
3561 __spi_mark_resumed(ctlr);
3564 ret = spi_start_queue(ctlr);
3566 dev_err(&ctlr->dev, "queue restart failed\n");
3570 EXPORT_SYMBOL_GPL(spi_controller_resume);
3572 /*-------------------------------------------------------------------------*/
3574 /* Core methods for spi_message alterations */
3576 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3577 struct spi_message *msg,
3580 struct spi_replaced_transfers *rxfer = res;
3583 /* Call extra callback if requested */
3585 rxfer->release(ctlr, msg, res);
3587 /* Insert replaced transfers back into the message */
3588 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3590 /* Remove the formerly inserted entries */
3591 for (i = 0; i < rxfer->inserted; i++)
3592 list_del(&rxfer->inserted_transfers[i].transfer_list);
3596 * spi_replace_transfers - replace transfers with several transfers
3597 * and register change with spi_message.resources
3598 * @msg: the spi_message we work upon
3599 * @xfer_first: the first spi_transfer we want to replace
3600 * @remove: number of transfers to remove
3601 * @insert: the number of transfers we want to insert instead
3602 * @release: extra release code necessary in some circumstances
3603 * @extradatasize: extra data to allocate (with alignment guarantees
3604 * of struct @spi_transfer)
3607 * Returns: pointer to @spi_replaced_transfers,
3608 * PTR_ERR(...) in case of errors.
3610 static struct spi_replaced_transfers *spi_replace_transfers(
3611 struct spi_message *msg,
3612 struct spi_transfer *xfer_first,
3615 spi_replaced_release_t release,
3616 size_t extradatasize,
3619 struct spi_replaced_transfers *rxfer;
3620 struct spi_transfer *xfer;
3623 /* Allocate the structure using spi_res */
3624 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3625 struct_size(rxfer, inserted_transfers, insert)
3629 return ERR_PTR(-ENOMEM);
3631 /* The release code to invoke before running the generic release */
3632 rxfer->release = release;
3634 /* Assign extradata */
3637 &rxfer->inserted_transfers[insert];
3639 /* Init the replaced_transfers list */
3640 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3643 * Assign the list_entry after which we should reinsert
3644 * the @replaced_transfers - it may be spi_message.messages!
3646 rxfer->replaced_after = xfer_first->transfer_list.prev;
3648 /* Remove the requested number of transfers */
3649 for (i = 0; i < remove; i++) {
3651 * If the entry after replaced_after it is msg->transfers
3652 * then we have been requested to remove more transfers
3653 * than are in the list.
3655 if (rxfer->replaced_after->next == &msg->transfers) {
3656 dev_err(&msg->spi->dev,
3657 "requested to remove more spi_transfers than are available\n");
3658 /* Insert replaced transfers back into the message */
3659 list_splice(&rxfer->replaced_transfers,
3660 rxfer->replaced_after);
3662 /* Free the spi_replace_transfer structure... */
3663 spi_res_free(rxfer);
3665 /* ...and return with an error */
3666 return ERR_PTR(-EINVAL);
3670 * Remove the entry after replaced_after from list of
3671 * transfers and add it to list of replaced_transfers.
3673 list_move_tail(rxfer->replaced_after->next,
3674 &rxfer->replaced_transfers);
3678 * Create copy of the given xfer with identical settings
3679 * based on the first transfer to get removed.
3681 for (i = 0; i < insert; i++) {
3682 /* We need to run in reverse order */
3683 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3685 /* Copy all spi_transfer data */
3686 memcpy(xfer, xfer_first, sizeof(*xfer));
3689 list_add(&xfer->transfer_list, rxfer->replaced_after);
3691 /* Clear cs_change and delay for all but the last */
3693 xfer->cs_change = false;
3694 xfer->delay.value = 0;
3698 /* Set up inserted... */
3699 rxfer->inserted = insert;
3701 /* ...and register it with spi_res/spi_message */
3702 spi_res_add(msg, rxfer);
3707 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3708 struct spi_message *msg,
3709 struct spi_transfer **xferp,
3712 struct spi_transfer *xfer = *xferp, *xfers;
3713 struct spi_replaced_transfers *srt;
3717 /* Calculate how many we have to replace */
3718 count = DIV_ROUND_UP(xfer->len, maxsize);
3720 /* Create replacement */
3721 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3723 return PTR_ERR(srt);
3724 xfers = srt->inserted_transfers;
3727 * Now handle each of those newly inserted spi_transfers.
3728 * Note that the replacements spi_transfers all are preset
3729 * to the same values as *xferp, so tx_buf, rx_buf and len
3730 * are all identical (as well as most others)
3731 * so we just have to fix up len and the pointers.
3735 * The first transfer just needs the length modified, so we
3736 * run it outside the loop.
3738 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3740 /* All the others need rx_buf/tx_buf also set */
3741 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3742 /* Update rx_buf, tx_buf and DMA */
3743 if (xfers[i].rx_buf)
3744 xfers[i].rx_buf += offset;
3745 if (xfers[i].tx_buf)
3746 xfers[i].tx_buf += offset;
3749 xfers[i].len = min(maxsize, xfers[i].len - offset);
3753 * We set up xferp to the last entry we have inserted,
3754 * so that we skip those already split transfers.
3756 *xferp = &xfers[count - 1];
3758 /* Increment statistics counters */
3759 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3760 transfers_split_maxsize);
3761 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3762 transfers_split_maxsize);
3768 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3769 * when an individual transfer exceeds a
3771 * @ctlr: the @spi_controller for this transfer
3772 * @msg: the @spi_message to transform
3773 * @maxsize: the maximum when to apply this
3775 * This function allocates resources that are automatically freed during the
3776 * spi message unoptimize phase so this function should only be called from
3777 * optimize_message callbacks.
3779 * Return: status of transformation
3781 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3782 struct spi_message *msg,
3785 struct spi_transfer *xfer;
3789 * Iterate over the transfer_list,
3790 * but note that xfer is advanced to the last transfer inserted
3791 * to avoid checking sizes again unnecessarily (also xfer does
3792 * potentially belong to a different list by the time the
3793 * replacement has happened).
3795 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3796 if (xfer->len > maxsize) {
3797 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3806 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3810 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3811 * when an individual transfer exceeds a
3812 * certain number of SPI words
3813 * @ctlr: the @spi_controller for this transfer
3814 * @msg: the @spi_message to transform
3815 * @maxwords: the number of words to limit each transfer to
3817 * This function allocates resources that are automatically freed during the
3818 * spi message unoptimize phase so this function should only be called from
3819 * optimize_message callbacks.
3821 * Return: status of transformation
3823 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3824 struct spi_message *msg,
3827 struct spi_transfer *xfer;
3830 * Iterate over the transfer_list,
3831 * but note that xfer is advanced to the last transfer inserted
3832 * to avoid checking sizes again unnecessarily (also xfer does
3833 * potentially belong to a different list by the time the
3834 * replacement has happened).
3836 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3840 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3841 if (xfer->len > maxsize) {
3842 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3851 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3853 /*-------------------------------------------------------------------------*/
3856 * Core methods for SPI controller protocol drivers. Some of the
3857 * other core methods are currently defined as inline functions.
3860 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3863 if (ctlr->bits_per_word_mask) {
3864 /* Only 32 bits fit in the mask */
3865 if (bits_per_word > 32)
3867 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3875 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3876 * @spi: the device that requires specific CS timing configuration
3878 * Return: zero on success, else a negative error code.
3880 static int spi_set_cs_timing(struct spi_device *spi)
3882 struct device *parent = spi->controller->dev.parent;
3885 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3886 if (spi->controller->auto_runtime_pm) {
3887 status = pm_runtime_get_sync(parent);
3889 pm_runtime_put_noidle(parent);
3890 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3895 status = spi->controller->set_cs_timing(spi);
3896 pm_runtime_mark_last_busy(parent);
3897 pm_runtime_put_autosuspend(parent);
3899 status = spi->controller->set_cs_timing(spi);
3906 * spi_setup - setup SPI mode and clock rate
3907 * @spi: the device whose settings are being modified
3908 * Context: can sleep, and no requests are queued to the device
3910 * SPI protocol drivers may need to update the transfer mode if the
3911 * device doesn't work with its default. They may likewise need
3912 * to update clock rates or word sizes from initial values. This function
3913 * changes those settings, and must be called from a context that can sleep.
3914 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3915 * effect the next time the device is selected and data is transferred to
3916 * or from it. When this function returns, the SPI device is deselected.
3918 * Note that this call will fail if the protocol driver specifies an option
3919 * that the underlying controller or its driver does not support. For
3920 * example, not all hardware supports wire transfers using nine bit words,
3921 * LSB-first wire encoding, or active-high chipselects.
3923 * Return: zero on success, else a negative error code.
3925 int spi_setup(struct spi_device *spi)
3927 unsigned bad_bits, ugly_bits;
3931 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3932 * are set at the same time.
3934 if ((hweight_long(spi->mode &
3935 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3936 (hweight_long(spi->mode &
3937 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3939 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3942 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3943 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3944 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3945 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3948 * Help drivers fail *cleanly* when they need options
3949 * that aren't supported with their current controller.
3950 * SPI_CS_WORD has a fallback software implementation,
3951 * so it is ignored here.
3953 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3954 SPI_NO_TX | SPI_NO_RX);
3955 ugly_bits = bad_bits &
3956 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3957 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3960 "setup: ignoring unsupported mode bits %x\n",
3962 spi->mode &= ~ugly_bits;
3963 bad_bits &= ~ugly_bits;
3966 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3971 if (!spi->bits_per_word) {
3972 spi->bits_per_word = 8;
3975 * Some controllers may not support the default 8 bits-per-word
3976 * so only perform the check when this is explicitly provided.
3978 status = __spi_validate_bits_per_word(spi->controller,
3979 spi->bits_per_word);
3984 if (spi->controller->max_speed_hz &&
3985 (!spi->max_speed_hz ||
3986 spi->max_speed_hz > spi->controller->max_speed_hz))
3987 spi->max_speed_hz = spi->controller->max_speed_hz;
3989 mutex_lock(&spi->controller->io_mutex);
3991 if (spi->controller->setup) {
3992 status = spi->controller->setup(spi);
3994 mutex_unlock(&spi->controller->io_mutex);
3995 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
4001 status = spi_set_cs_timing(spi);
4003 mutex_unlock(&spi->controller->io_mutex);
4007 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
4008 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
4010 mutex_unlock(&spi->controller->io_mutex);
4011 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4017 * We do not want to return positive value from pm_runtime_get,
4018 * there are many instances of devices calling spi_setup() and
4019 * checking for a non-zero return value instead of a negative
4024 spi_set_cs(spi, false, true);
4025 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4026 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4028 spi_set_cs(spi, false, true);
4031 mutex_unlock(&spi->controller->io_mutex);
4033 if (spi->rt && !spi->controller->rt) {
4034 spi->controller->rt = true;
4035 spi_set_thread_rt(spi->controller);
4038 trace_spi_setup(spi, status);
4040 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4041 spi->mode & SPI_MODE_X_MASK,
4042 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4043 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4044 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4045 (spi->mode & SPI_LOOP) ? "loopback, " : "",
4046 spi->bits_per_word, spi->max_speed_hz,
4051 EXPORT_SYMBOL_GPL(spi_setup);
4053 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4054 struct spi_device *spi)
4058 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4062 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4066 if (delay1 < delay2)
4067 memcpy(&xfer->word_delay, &spi->word_delay,
4068 sizeof(xfer->word_delay));
4073 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4075 struct spi_controller *ctlr = spi->controller;
4076 struct spi_transfer *xfer;
4079 if (list_empty(&message->transfers))
4085 * Half-duplex links include original MicroWire, and ones with
4086 * only one data pin like SPI_3WIRE (switches direction) or where
4087 * either MOSI or MISO is missing. They can also be caused by
4088 * software limitations.
4090 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4091 (spi->mode & SPI_3WIRE)) {
4092 unsigned flags = ctlr->flags;
4094 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4095 if (xfer->rx_buf && xfer->tx_buf)
4097 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4099 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4105 * Set transfer bits_per_word and max speed as spi device default if
4106 * it is not set for this transfer.
4107 * Set transfer tx_nbits and rx_nbits as single transfer default
4108 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4109 * Ensure transfer word_delay is at least as long as that required by
4112 message->frame_length = 0;
4113 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4114 xfer->effective_speed_hz = 0;
4115 message->frame_length += xfer->len;
4116 if (!xfer->bits_per_word)
4117 xfer->bits_per_word = spi->bits_per_word;
4119 if (!xfer->speed_hz)
4120 xfer->speed_hz = spi->max_speed_hz;
4122 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4123 xfer->speed_hz = ctlr->max_speed_hz;
4125 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4129 * SPI transfer length should be multiple of SPI word size
4130 * where SPI word size should be power-of-two multiple.
4132 if (xfer->bits_per_word <= 8)
4134 else if (xfer->bits_per_word <= 16)
4139 /* No partial transfers accepted */
4140 if (xfer->len % w_size)
4143 if (xfer->speed_hz && ctlr->min_speed_hz &&
4144 xfer->speed_hz < ctlr->min_speed_hz)
4147 if (xfer->tx_buf && !xfer->tx_nbits)
4148 xfer->tx_nbits = SPI_NBITS_SINGLE;
4149 if (xfer->rx_buf && !xfer->rx_nbits)
4150 xfer->rx_nbits = SPI_NBITS_SINGLE;
4152 * Check transfer tx/rx_nbits:
4153 * 1. check the value matches one of single, dual and quad
4154 * 2. check tx/rx_nbits match the mode in spi_device
4157 if (spi->mode & SPI_NO_TX)
4159 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4160 xfer->tx_nbits != SPI_NBITS_DUAL &&
4161 xfer->tx_nbits != SPI_NBITS_QUAD &&
4162 xfer->tx_nbits != SPI_NBITS_OCTAL)
4164 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4165 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4167 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4168 !(spi->mode & SPI_TX_QUAD))
4171 /* Check transfer rx_nbits */
4173 if (spi->mode & SPI_NO_RX)
4175 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4176 xfer->rx_nbits != SPI_NBITS_DUAL &&
4177 xfer->rx_nbits != SPI_NBITS_QUAD &&
4178 xfer->rx_nbits != SPI_NBITS_OCTAL)
4180 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4181 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4183 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4184 !(spi->mode & SPI_RX_QUAD))
4188 if (_spi_xfer_word_delay_update(xfer, spi))
4192 message->status = -EINPROGRESS;
4198 * spi_split_transfers - generic handling of transfer splitting
4199 * @msg: the message to split
4201 * Under certain conditions, a SPI controller may not support arbitrary
4202 * transfer sizes or other features required by a peripheral. This function
4203 * will split the transfers in the message into smaller transfers that are
4204 * supported by the controller.
4206 * Controllers with special requirements not covered here can also split
4207 * transfers in the optimize_message() callback.
4209 * Context: can sleep
4210 * Return: zero on success, else a negative error code
4212 static int spi_split_transfers(struct spi_message *msg)
4214 struct spi_controller *ctlr = msg->spi->controller;
4215 struct spi_transfer *xfer;
4219 * If an SPI controller does not support toggling the CS line on each
4220 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4221 * for the CS line, we can emulate the CS-per-word hardware function by
4222 * splitting transfers into one-word transfers and ensuring that
4223 * cs_change is set for each transfer.
4225 if ((msg->spi->mode & SPI_CS_WORD) &&
4226 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4227 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4231 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4232 /* Don't change cs_change on the last entry in the list */
4233 if (list_is_last(&xfer->transfer_list, &msg->transfers))
4236 xfer->cs_change = 1;
4239 ret = spi_split_transfers_maxsize(ctlr, msg,
4240 spi_max_transfer_size(msg->spi));
4249 * __spi_optimize_message - shared implementation for spi_optimize_message()
4250 * and spi_maybe_optimize_message()
4251 * @spi: the device that will be used for the message
4252 * @msg: the message to optimize
4254 * Peripheral drivers will call spi_optimize_message() and the spi core will
4255 * call spi_maybe_optimize_message() instead of calling this directly.
4257 * It is not valid to call this on a message that has already been optimized.
4259 * Return: zero on success, else a negative error code
4261 static int __spi_optimize_message(struct spi_device *spi,
4262 struct spi_message *msg)
4264 struct spi_controller *ctlr = spi->controller;
4267 ret = __spi_validate(spi, msg);
4271 ret = spi_split_transfers(msg);
4275 if (ctlr->optimize_message) {
4276 ret = ctlr->optimize_message(msg);
4278 spi_res_release(ctlr, msg);
4283 msg->optimized = true;
4289 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4290 * @spi: the device that will be used for the message
4291 * @msg: the message to optimize
4292 * Return: zero on success, else a negative error code
4294 static int spi_maybe_optimize_message(struct spi_device *spi,
4295 struct spi_message *msg)
4297 if (msg->pre_optimized)
4300 return __spi_optimize_message(spi, msg);
4304 * spi_optimize_message - do any one-time validation and setup for a SPI message
4305 * @spi: the device that will be used for the message
4306 * @msg: the message to optimize
4308 * Peripheral drivers that reuse the same message repeatedly may call this to
4309 * perform as much message prep as possible once, rather than repeating it each
4310 * time a message transfer is performed to improve throughput and reduce CPU
4313 * Once a message has been optimized, it cannot be modified with the exception
4314 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4315 * only the data in the memory it points to).
4317 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4318 * to avoid leaking resources.
4320 * Context: can sleep
4321 * Return: zero on success, else a negative error code
4323 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4327 ret = __spi_optimize_message(spi, msg);
4332 * This flag indicates that the peripheral driver called spi_optimize_message()
4333 * and therefore we shouldn't unoptimize message automatically when finalizing
4334 * the message but rather wait until spi_unoptimize_message() is called
4335 * by the peripheral driver.
4337 msg->pre_optimized = true;
4341 EXPORT_SYMBOL_GPL(spi_optimize_message);
4344 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4345 * @msg: the message to unoptimize
4347 * Calls to this function must be balanced with calls to spi_optimize_message().
4349 * Context: can sleep
4351 void spi_unoptimize_message(struct spi_message *msg)
4353 __spi_unoptimize_message(msg);
4354 msg->pre_optimized = false;
4356 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4358 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4360 struct spi_controller *ctlr = spi->controller;
4361 struct spi_transfer *xfer;
4364 * Some controllers do not support doing regular SPI transfers. Return
4365 * ENOTSUPP when this is the case.
4367 if (!ctlr->transfer)
4370 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4371 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4373 trace_spi_message_submit(message);
4375 if (!ctlr->ptp_sts_supported) {
4376 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4377 xfer->ptp_sts_word_pre = 0;
4378 ptp_read_system_prets(xfer->ptp_sts);
4382 return ctlr->transfer(spi, message);
4386 * spi_async - asynchronous SPI transfer
4387 * @spi: device with which data will be exchanged
4388 * @message: describes the data transfers, including completion callback
4389 * Context: any (IRQs may be blocked, etc)
4391 * This call may be used in_irq and other contexts which can't sleep,
4392 * as well as from task contexts which can sleep.
4394 * The completion callback is invoked in a context which can't sleep.
4395 * Before that invocation, the value of message->status is undefined.
4396 * When the callback is issued, message->status holds either zero (to
4397 * indicate complete success) or a negative error code. After that
4398 * callback returns, the driver which issued the transfer request may
4399 * deallocate the associated memory; it's no longer in use by any SPI
4400 * core or controller driver code.
4402 * Note that although all messages to a spi_device are handled in
4403 * FIFO order, messages may go to different devices in other orders.
4404 * Some device might be higher priority, or have various "hard" access
4405 * time requirements, for example.
4407 * On detection of any fault during the transfer, processing of
4408 * the entire message is aborted, and the device is deselected.
4409 * Until returning from the associated message completion callback,
4410 * no other spi_message queued to that device will be processed.
4411 * (This rule applies equally to all the synchronous transfer calls,
4412 * which are wrappers around this core asynchronous primitive.)
4414 * Return: zero on success, else a negative error code.
4416 int spi_async(struct spi_device *spi, struct spi_message *message)
4418 struct spi_controller *ctlr = spi->controller;
4420 unsigned long flags;
4422 ret = spi_maybe_optimize_message(spi, message);
4426 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4428 if (ctlr->bus_lock_flag)
4431 ret = __spi_async(spi, message);
4433 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4435 spi_maybe_unoptimize_message(message);
4439 EXPORT_SYMBOL_GPL(spi_async);
4441 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4446 mutex_lock(&ctlr->io_mutex);
4448 was_busy = ctlr->busy;
4450 ctlr->cur_msg = msg;
4451 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4453 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4454 ctlr->cur_msg = NULL;
4455 ctlr->fallback = false;
4458 kfree(ctlr->dummy_rx);
4459 ctlr->dummy_rx = NULL;
4460 kfree(ctlr->dummy_tx);
4461 ctlr->dummy_tx = NULL;
4462 if (ctlr->unprepare_transfer_hardware &&
4463 ctlr->unprepare_transfer_hardware(ctlr))
4465 "failed to unprepare transfer hardware\n");
4466 spi_idle_runtime_pm(ctlr);
4469 mutex_unlock(&ctlr->io_mutex);
4472 /*-------------------------------------------------------------------------*/
4475 * Utility methods for SPI protocol drivers, layered on
4476 * top of the core. Some other utility methods are defined as
4480 static void spi_complete(void *arg)
4485 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4487 DECLARE_COMPLETION_ONSTACK(done);
4488 unsigned long flags;
4490 struct spi_controller *ctlr = spi->controller;
4492 if (__spi_check_suspended(ctlr)) {
4493 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4497 status = spi_maybe_optimize_message(spi, message);
4501 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4502 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4505 * Checking queue_empty here only guarantees async/sync message
4506 * ordering when coming from the same context. It does not need to
4507 * guard against reentrancy from a different context. The io_mutex
4508 * will catch those cases.
4510 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4511 message->actual_length = 0;
4512 message->status = -EINPROGRESS;
4514 trace_spi_message_submit(message);
4516 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4517 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4519 __spi_transfer_message_noqueue(ctlr, message);
4521 return message->status;
4525 * There are messages in the async queue that could have originated
4526 * from the same context, so we need to preserve ordering.
4527 * Therefor we send the message to the async queue and wait until they
4530 message->complete = spi_complete;
4531 message->context = &done;
4533 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4534 status = __spi_async(spi, message);
4535 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4538 wait_for_completion(&done);
4539 status = message->status;
4541 message->complete = NULL;
4542 message->context = NULL;
4548 * spi_sync - blocking/synchronous SPI data transfers
4549 * @spi: device with which data will be exchanged
4550 * @message: describes the data transfers
4551 * Context: can sleep
4553 * This call may only be used from a context that may sleep. The sleep
4554 * is non-interruptible, and has no timeout. Low-overhead controller
4555 * drivers may DMA directly into and out of the message buffers.
4557 * Note that the SPI device's chip select is active during the message,
4558 * and then is normally disabled between messages. Drivers for some
4559 * frequently-used devices may want to minimize costs of selecting a chip,
4560 * by leaving it selected in anticipation that the next message will go
4561 * to the same chip. (That may increase power usage.)
4563 * Also, the caller is guaranteeing that the memory associated with the
4564 * message will not be freed before this call returns.
4566 * Return: zero on success, else a negative error code.
4568 int spi_sync(struct spi_device *spi, struct spi_message *message)
4572 mutex_lock(&spi->controller->bus_lock_mutex);
4573 ret = __spi_sync(spi, message);
4574 mutex_unlock(&spi->controller->bus_lock_mutex);
4578 EXPORT_SYMBOL_GPL(spi_sync);
4581 * spi_sync_locked - version of spi_sync with exclusive bus usage
4582 * @spi: device with which data will be exchanged
4583 * @message: describes the data transfers
4584 * Context: can sleep
4586 * This call may only be used from a context that may sleep. The sleep
4587 * is non-interruptible, and has no timeout. Low-overhead controller
4588 * drivers may DMA directly into and out of the message buffers.
4590 * This call should be used by drivers that require exclusive access to the
4591 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4592 * be released by a spi_bus_unlock call when the exclusive access is over.
4594 * Return: zero on success, else a negative error code.
4596 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4598 return __spi_sync(spi, message);
4600 EXPORT_SYMBOL_GPL(spi_sync_locked);
4603 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4604 * @ctlr: SPI bus master that should be locked for exclusive bus access
4605 * Context: can sleep
4607 * This call may only be used from a context that may sleep. The sleep
4608 * is non-interruptible, and has no timeout.
4610 * This call should be used by drivers that require exclusive access to the
4611 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4612 * exclusive access is over. Data transfer must be done by spi_sync_locked
4613 * and spi_async_locked calls when the SPI bus lock is held.
4615 * Return: always zero.
4617 int spi_bus_lock(struct spi_controller *ctlr)
4619 unsigned long flags;
4621 mutex_lock(&ctlr->bus_lock_mutex);
4623 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4624 ctlr->bus_lock_flag = 1;
4625 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4627 /* Mutex remains locked until spi_bus_unlock() is called */
4631 EXPORT_SYMBOL_GPL(spi_bus_lock);
4634 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4635 * @ctlr: SPI bus master that was locked for exclusive bus access
4636 * Context: can sleep
4638 * This call may only be used from a context that may sleep. The sleep
4639 * is non-interruptible, and has no timeout.
4641 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4644 * Return: always zero.
4646 int spi_bus_unlock(struct spi_controller *ctlr)
4648 ctlr->bus_lock_flag = 0;
4650 mutex_unlock(&ctlr->bus_lock_mutex);
4654 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4656 /* Portable code must never pass more than 32 bytes */
4657 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4662 * spi_write_then_read - SPI synchronous write followed by read
4663 * @spi: device with which data will be exchanged
4664 * @txbuf: data to be written (need not be DMA-safe)
4665 * @n_tx: size of txbuf, in bytes
4666 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4667 * @n_rx: size of rxbuf, in bytes
4668 * Context: can sleep
4670 * This performs a half duplex MicroWire style transaction with the
4671 * device, sending txbuf and then reading rxbuf. The return value
4672 * is zero for success, else a negative errno status code.
4673 * This call may only be used from a context that may sleep.
4675 * Parameters to this routine are always copied using a small buffer.
4676 * Performance-sensitive or bulk transfer code should instead use
4677 * spi_{async,sync}() calls with DMA-safe buffers.
4679 * Return: zero on success, else a negative error code.
4681 int spi_write_then_read(struct spi_device *spi,
4682 const void *txbuf, unsigned n_tx,
4683 void *rxbuf, unsigned n_rx)
4685 static DEFINE_MUTEX(lock);
4688 struct spi_message message;
4689 struct spi_transfer x[2];
4693 * Use preallocated DMA-safe buffer if we can. We can't avoid
4694 * copying here, (as a pure convenience thing), but we can
4695 * keep heap costs out of the hot path unless someone else is
4696 * using the pre-allocated buffer or the transfer is too large.
4698 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4699 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4700 GFP_KERNEL | GFP_DMA);
4707 spi_message_init(&message);
4708 memset(x, 0, sizeof(x));
4711 spi_message_add_tail(&x[0], &message);
4715 spi_message_add_tail(&x[1], &message);
4718 memcpy(local_buf, txbuf, n_tx);
4719 x[0].tx_buf = local_buf;
4720 x[1].rx_buf = local_buf + n_tx;
4723 status = spi_sync(spi, &message);
4725 memcpy(rxbuf, x[1].rx_buf, n_rx);
4727 if (x[0].tx_buf == buf)
4728 mutex_unlock(&lock);
4734 EXPORT_SYMBOL_GPL(spi_write_then_read);
4736 /*-------------------------------------------------------------------------*/
4738 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4739 /* Must call put_device() when done with returned spi_device device */
4740 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4742 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4744 return dev ? to_spi_device(dev) : NULL;
4747 /* The spi controllers are not using spi_bus, so we find it with another way */
4748 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4752 dev = class_find_device_by_of_node(&spi_master_class, node);
4753 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4754 dev = class_find_device_by_of_node(&spi_slave_class, node);
4758 /* Reference got in class_find_device */
4759 return container_of(dev, struct spi_controller, dev);
4762 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4765 struct of_reconfig_data *rd = arg;
4766 struct spi_controller *ctlr;
4767 struct spi_device *spi;
4769 switch (of_reconfig_get_state_change(action, arg)) {
4770 case OF_RECONFIG_CHANGE_ADD:
4771 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4773 return NOTIFY_OK; /* Not for us */
4775 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4776 put_device(&ctlr->dev);
4781 * Clear the flag before adding the device so that fw_devlink
4782 * doesn't skip adding consumers to this device.
4784 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4785 spi = of_register_spi_device(ctlr, rd->dn);
4786 put_device(&ctlr->dev);
4789 pr_err("%s: failed to create for '%pOF'\n",
4791 of_node_clear_flag(rd->dn, OF_POPULATED);
4792 return notifier_from_errno(PTR_ERR(spi));
4796 case OF_RECONFIG_CHANGE_REMOVE:
4797 /* Already depopulated? */
4798 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4801 /* Find our device by node */
4802 spi = of_find_spi_device_by_node(rd->dn);
4804 return NOTIFY_OK; /* No? not meant for us */
4806 /* Unregister takes one ref away */
4807 spi_unregister_device(spi);
4809 /* And put the reference of the find */
4810 put_device(&spi->dev);
4817 static struct notifier_block spi_of_notifier = {
4818 .notifier_call = of_spi_notify,
4820 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4821 extern struct notifier_block spi_of_notifier;
4822 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4824 #if IS_ENABLED(CONFIG_ACPI)
4825 static int spi_acpi_controller_match(struct device *dev, const void *data)
4827 return ACPI_COMPANION(dev->parent) == data;
4830 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4834 dev = class_find_device(&spi_master_class, NULL, adev,
4835 spi_acpi_controller_match);
4836 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4837 dev = class_find_device(&spi_slave_class, NULL, adev,
4838 spi_acpi_controller_match);
4842 return container_of(dev, struct spi_controller, dev);
4844 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4846 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4850 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4851 return to_spi_device(dev);
4854 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4857 struct acpi_device *adev = arg;
4858 struct spi_controller *ctlr;
4859 struct spi_device *spi;
4862 case ACPI_RECONFIG_DEVICE_ADD:
4863 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4867 acpi_register_spi_device(ctlr, adev);
4868 put_device(&ctlr->dev);
4870 case ACPI_RECONFIG_DEVICE_REMOVE:
4871 if (!acpi_device_enumerated(adev))
4874 spi = acpi_spi_find_device_by_adev(adev);
4878 spi_unregister_device(spi);
4879 put_device(&spi->dev);
4886 static struct notifier_block spi_acpi_notifier = {
4887 .notifier_call = acpi_spi_notify,
4890 extern struct notifier_block spi_acpi_notifier;
4893 static int __init spi_init(void)
4897 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4903 status = bus_register(&spi_bus_type);
4907 status = class_register(&spi_master_class);
4911 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4912 status = class_register(&spi_slave_class);
4917 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4918 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4919 if (IS_ENABLED(CONFIG_ACPI))
4920 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4925 class_unregister(&spi_master_class);
4927 bus_unregister(&spi_bus_type);
4936 * A board_info is normally registered in arch_initcall(),
4937 * but even essential drivers wait till later.
4939 * REVISIT only boardinfo really needs static linking. The rest (device and
4940 * driver registration) _could_ be dynamically linked (modular) ... Costs
4941 * include needing to have boardinfo data structures be much more public.
4943 postcore_initcall(spi_init);