]> Git Repo - linux.git/blob - drivers/spi/spi.c
net: phy: aquantia: add missing include guards
[linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_message *msg)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if (spi_valid_txbuf(msg, xfer))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if (spi_valid_rxbuf(msg, xfer))
334                 u64_stats_add(&stats->bytes_rx, xfer->len);
335
336         u64_stats_update_end(&stats->syncp);
337         put_cpu();
338 }
339
340 /*
341  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342  * and the sysfs version makes coldplug work too.
343  */
344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
345 {
346         while (id->name[0]) {
347                 if (!strcmp(name, id->name))
348                         return id;
349                 id++;
350         }
351         return NULL;
352 }
353
354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
355 {
356         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
357
358         return spi_match_id(sdrv->id_table, sdev->modalias);
359 }
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
361
362 const void *spi_get_device_match_data(const struct spi_device *sdev)
363 {
364         const void *match;
365
366         match = device_get_match_data(&sdev->dev);
367         if (match)
368                 return match;
369
370         return (const void *)spi_get_device_id(sdev)->driver_data;
371 }
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
373
374 static int spi_match_device(struct device *dev, struct device_driver *drv)
375 {
376         const struct spi_device *spi = to_spi_device(dev);
377         const struct spi_driver *sdrv = to_spi_driver(drv);
378
379         /* Check override first, and if set, only use the named driver */
380         if (spi->driver_override)
381                 return strcmp(spi->driver_override, drv->name) == 0;
382
383         /* Attempt an OF style match */
384         if (of_driver_match_device(dev, drv))
385                 return 1;
386
387         /* Then try ACPI */
388         if (acpi_driver_match_device(dev, drv))
389                 return 1;
390
391         if (sdrv->id_table)
392                 return !!spi_match_id(sdrv->id_table, spi->modalias);
393
394         return strcmp(spi->modalias, drv->name) == 0;
395 }
396
397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
398 {
399         const struct spi_device         *spi = to_spi_device(dev);
400         int rc;
401
402         rc = acpi_device_uevent_modalias(dev, env);
403         if (rc != -ENODEV)
404                 return rc;
405
406         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
407 }
408
409 static int spi_probe(struct device *dev)
410 {
411         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
412         struct spi_device               *spi = to_spi_device(dev);
413         int ret;
414
415         ret = of_clk_set_defaults(dev->of_node, false);
416         if (ret)
417                 return ret;
418
419         if (dev->of_node) {
420                 spi->irq = of_irq_get(dev->of_node, 0);
421                 if (spi->irq == -EPROBE_DEFER)
422                         return -EPROBE_DEFER;
423                 if (spi->irq < 0)
424                         spi->irq = 0;
425         }
426
427         ret = dev_pm_domain_attach(dev, true);
428         if (ret)
429                 return ret;
430
431         if (sdrv->probe) {
432                 ret = sdrv->probe(spi);
433                 if (ret)
434                         dev_pm_domain_detach(dev, true);
435         }
436
437         return ret;
438 }
439
440 static void spi_remove(struct device *dev)
441 {
442         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
443
444         if (sdrv->remove)
445                 sdrv->remove(to_spi_device(dev));
446
447         dev_pm_domain_detach(dev, true);
448 }
449
450 static void spi_shutdown(struct device *dev)
451 {
452         if (dev->driver) {
453                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
454
455                 if (sdrv->shutdown)
456                         sdrv->shutdown(to_spi_device(dev));
457         }
458 }
459
460 const struct bus_type spi_bus_type = {
461         .name           = "spi",
462         .dev_groups     = spi_dev_groups,
463         .match          = spi_match_device,
464         .uevent         = spi_uevent,
465         .probe          = spi_probe,
466         .remove         = spi_remove,
467         .shutdown       = spi_shutdown,
468 };
469 EXPORT_SYMBOL_GPL(spi_bus_type);
470
471 /**
472  * __spi_register_driver - register a SPI driver
473  * @owner: owner module of the driver to register
474  * @sdrv: the driver to register
475  * Context: can sleep
476  *
477  * Return: zero on success, else a negative error code.
478  */
479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
480 {
481         sdrv->driver.owner = owner;
482         sdrv->driver.bus = &spi_bus_type;
483
484         /*
485          * For Really Good Reasons we use spi: modaliases not of:
486          * modaliases for DT so module autoloading won't work if we
487          * don't have a spi_device_id as well as a compatible string.
488          */
489         if (sdrv->driver.of_match_table) {
490                 const struct of_device_id *of_id;
491
492                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
493                      of_id++) {
494                         const char *of_name;
495
496                         /* Strip off any vendor prefix */
497                         of_name = strnchr(of_id->compatible,
498                                           sizeof(of_id->compatible), ',');
499                         if (of_name)
500                                 of_name++;
501                         else
502                                 of_name = of_id->compatible;
503
504                         if (sdrv->id_table) {
505                                 const struct spi_device_id *spi_id;
506
507                                 spi_id = spi_match_id(sdrv->id_table, of_name);
508                                 if (spi_id)
509                                         continue;
510                         } else {
511                                 if (strcmp(sdrv->driver.name, of_name) == 0)
512                                         continue;
513                         }
514
515                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
516                                 sdrv->driver.name, of_id->compatible);
517                 }
518         }
519
520         return driver_register(&sdrv->driver);
521 }
522 EXPORT_SYMBOL_GPL(__spi_register_driver);
523
524 /*-------------------------------------------------------------------------*/
525
526 /*
527  * SPI devices should normally not be created by SPI device drivers; that
528  * would make them board-specific.  Similarly with SPI controller drivers.
529  * Device registration normally goes into like arch/.../mach.../board-YYY.c
530  * with other readonly (flashable) information about mainboard devices.
531  */
532
533 struct boardinfo {
534         struct list_head        list;
535         struct spi_board_info   board_info;
536 };
537
538 static LIST_HEAD(board_list);
539 static LIST_HEAD(spi_controller_list);
540
541 /*
542  * Used to protect add/del operation for board_info list and
543  * spi_controller list, and their matching process also used
544  * to protect object of type struct idr.
545  */
546 static DEFINE_MUTEX(board_lock);
547
548 /**
549  * spi_alloc_device - Allocate a new SPI device
550  * @ctlr: Controller to which device is connected
551  * Context: can sleep
552  *
553  * Allows a driver to allocate and initialize a spi_device without
554  * registering it immediately.  This allows a driver to directly
555  * fill the spi_device with device parameters before calling
556  * spi_add_device() on it.
557  *
558  * Caller is responsible to call spi_add_device() on the returned
559  * spi_device structure to add it to the SPI controller.  If the caller
560  * needs to discard the spi_device without adding it, then it should
561  * call spi_dev_put() on it.
562  *
563  * Return: a pointer to the new device, or NULL.
564  */
565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
566 {
567         struct spi_device       *spi;
568
569         if (!spi_controller_get(ctlr))
570                 return NULL;
571
572         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
573         if (!spi) {
574                 spi_controller_put(ctlr);
575                 return NULL;
576         }
577
578         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
579         if (!spi->pcpu_statistics) {
580                 kfree(spi);
581                 spi_controller_put(ctlr);
582                 return NULL;
583         }
584
585         spi->controller = ctlr;
586         spi->dev.parent = &ctlr->dev;
587         spi->dev.bus = &spi_bus_type;
588         spi->dev.release = spidev_release;
589         spi->mode = ctlr->buswidth_override_bits;
590
591         device_initialize(&spi->dev);
592         return spi;
593 }
594 EXPORT_SYMBOL_GPL(spi_alloc_device);
595
596 static void spi_dev_set_name(struct spi_device *spi)
597 {
598         struct device *dev = &spi->dev;
599         struct fwnode_handle *fwnode = dev_fwnode(dev);
600
601         if (is_acpi_device_node(fwnode)) {
602                 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
603                 return;
604         }
605
606         if (is_software_node(fwnode)) {
607                 dev_set_name(dev, "spi-%pfwP", fwnode);
608                 return;
609         }
610
611         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
612                      spi_get_chipselect(spi, 0));
613 }
614
615 /*
616  * Zero(0) is a valid physical CS value and can be located at any
617  * logical CS in the spi->chip_select[]. If all the physical CS
618  * are initialized to 0 then It would be difficult to differentiate
619  * between a valid physical CS 0 & an unused logical CS whose physical
620  * CS can be 0. As a solution to this issue initialize all the CS to -1.
621  * Now all the unused logical CS will have -1 physical CS value & can be
622  * ignored while performing physical CS validity checks.
623  */
624 #define SPI_INVALID_CS          ((s8)-1)
625
626 static inline bool is_valid_cs(s8 chip_select)
627 {
628         return chip_select != SPI_INVALID_CS;
629 }
630
631 static inline int spi_dev_check_cs(struct device *dev,
632                                    struct spi_device *spi, u8 idx,
633                                    struct spi_device *new_spi, u8 new_idx)
634 {
635         u8 cs, cs_new;
636         u8 idx_new;
637
638         cs = spi_get_chipselect(spi, idx);
639         for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
640                 cs_new = spi_get_chipselect(new_spi, idx_new);
641                 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
642                         dev_err(dev, "chipselect %u already in use\n", cs_new);
643                         return -EBUSY;
644                 }
645         }
646         return 0;
647 }
648
649 static int spi_dev_check(struct device *dev, void *data)
650 {
651         struct spi_device *spi = to_spi_device(dev);
652         struct spi_device *new_spi = data;
653         int status, idx;
654
655         if (spi->controller == new_spi->controller) {
656                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
657                         status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
658                         if (status)
659                                 return status;
660                 }
661         }
662         return 0;
663 }
664
665 static void spi_cleanup(struct spi_device *spi)
666 {
667         if (spi->controller->cleanup)
668                 spi->controller->cleanup(spi);
669 }
670
671 static int __spi_add_device(struct spi_device *spi)
672 {
673         struct spi_controller *ctlr = spi->controller;
674         struct device *dev = ctlr->dev.parent;
675         int status, idx;
676         u8 cs;
677
678         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
679                 /* Chipselects are numbered 0..max; validate. */
680                 cs = spi_get_chipselect(spi, idx);
681                 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
682                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
683                                 ctlr->num_chipselect);
684                         return -EINVAL;
685                 }
686         }
687
688         /*
689          * Make sure that multiple logical CS doesn't map to the same physical CS.
690          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
691          */
692         if (!spi_controller_is_target(ctlr)) {
693                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
694                         status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
695                         if (status)
696                                 return status;
697                 }
698         }
699
700         /* Set the bus ID string */
701         spi_dev_set_name(spi);
702
703         /*
704          * We need to make sure there's no other device with this
705          * chipselect **BEFORE** we call setup(), else we'll trash
706          * its configuration.
707          */
708         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
709         if (status)
710                 return status;
711
712         /* Controller may unregister concurrently */
713         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714             !device_is_registered(&ctlr->dev)) {
715                 return -ENODEV;
716         }
717
718         if (ctlr->cs_gpiods) {
719                 u8 cs;
720
721                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722                         cs = spi_get_chipselect(spi, idx);
723                         if (is_valid_cs(cs))
724                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
725                 }
726         }
727
728         /*
729          * Drivers may modify this initial i/o setup, but will
730          * normally rely on the device being setup.  Devices
731          * using SPI_CS_HIGH can't coexist well otherwise...
732          */
733         status = spi_setup(spi);
734         if (status < 0) {
735                 dev_err(dev, "can't setup %s, status %d\n",
736                                 dev_name(&spi->dev), status);
737                 return status;
738         }
739
740         /* Device may be bound to an active driver when this returns */
741         status = device_add(&spi->dev);
742         if (status < 0) {
743                 dev_err(dev, "can't add %s, status %d\n",
744                                 dev_name(&spi->dev), status);
745                 spi_cleanup(spi);
746         } else {
747                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
748         }
749
750         return status;
751 }
752
753 /**
754  * spi_add_device - Add spi_device allocated with spi_alloc_device
755  * @spi: spi_device to register
756  *
757  * Companion function to spi_alloc_device.  Devices allocated with
758  * spi_alloc_device can be added onto the SPI bus with this function.
759  *
760  * Return: 0 on success; negative errno on failure
761  */
762 int spi_add_device(struct spi_device *spi)
763 {
764         struct spi_controller *ctlr = spi->controller;
765         int status;
766
767         /* Set the bus ID string */
768         spi_dev_set_name(spi);
769
770         mutex_lock(&ctlr->add_lock);
771         status = __spi_add_device(spi);
772         mutex_unlock(&ctlr->add_lock);
773         return status;
774 }
775 EXPORT_SYMBOL_GPL(spi_add_device);
776
777 static void spi_set_all_cs_unused(struct spi_device *spi)
778 {
779         u8 idx;
780
781         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782                 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
783 }
784
785 /**
786  * spi_new_device - instantiate one new SPI device
787  * @ctlr: Controller to which device is connected
788  * @chip: Describes the SPI device
789  * Context: can sleep
790  *
791  * On typical mainboards, this is purely internal; and it's not needed
792  * after board init creates the hard-wired devices.  Some development
793  * platforms may not be able to use spi_register_board_info though, and
794  * this is exported so that for example a USB or parport based adapter
795  * driver could add devices (which it would learn about out-of-band).
796  *
797  * Return: the new device, or NULL.
798  */
799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800                                   struct spi_board_info *chip)
801 {
802         struct spi_device       *proxy;
803         int                     status;
804
805         /*
806          * NOTE:  caller did any chip->bus_num checks necessary.
807          *
808          * Also, unless we change the return value convention to use
809          * error-or-pointer (not NULL-or-pointer), troubleshootability
810          * suggests syslogged diagnostics are best here (ugh).
811          */
812
813         proxy = spi_alloc_device(ctlr);
814         if (!proxy)
815                 return NULL;
816
817         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
818
819         /* Use provided chip-select for proxy device */
820         spi_set_all_cs_unused(proxy);
821         spi_set_chipselect(proxy, 0, chip->chip_select);
822
823         proxy->max_speed_hz = chip->max_speed_hz;
824         proxy->mode = chip->mode;
825         proxy->irq = chip->irq;
826         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827         proxy->dev.platform_data = (void *) chip->platform_data;
828         proxy->controller_data = chip->controller_data;
829         proxy->controller_state = NULL;
830         /*
831          * By default spi->chip_select[0] will hold the physical CS number,
832          * so set bit 0 in spi->cs_index_mask.
833          */
834         proxy->cs_index_mask = BIT(0);
835
836         if (chip->swnode) {
837                 status = device_add_software_node(&proxy->dev, chip->swnode);
838                 if (status) {
839                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
840                                 chip->modalias, status);
841                         goto err_dev_put;
842                 }
843         }
844
845         status = spi_add_device(proxy);
846         if (status < 0)
847                 goto err_dev_put;
848
849         return proxy;
850
851 err_dev_put:
852         device_remove_software_node(&proxy->dev);
853         spi_dev_put(proxy);
854         return NULL;
855 }
856 EXPORT_SYMBOL_GPL(spi_new_device);
857
858 /**
859  * spi_unregister_device - unregister a single SPI device
860  * @spi: spi_device to unregister
861  *
862  * Start making the passed SPI device vanish. Normally this would be handled
863  * by spi_unregister_controller().
864  */
865 void spi_unregister_device(struct spi_device *spi)
866 {
867         if (!spi)
868                 return;
869
870         if (spi->dev.of_node) {
871                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
872                 of_node_put(spi->dev.of_node);
873         }
874         if (ACPI_COMPANION(&spi->dev))
875                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
876         device_remove_software_node(&spi->dev);
877         device_del(&spi->dev);
878         spi_cleanup(spi);
879         put_device(&spi->dev);
880 }
881 EXPORT_SYMBOL_GPL(spi_unregister_device);
882
883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
884                                               struct spi_board_info *bi)
885 {
886         struct spi_device *dev;
887
888         if (ctlr->bus_num != bi->bus_num)
889                 return;
890
891         dev = spi_new_device(ctlr, bi);
892         if (!dev)
893                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
894                         bi->modalias);
895 }
896
897 /**
898  * spi_register_board_info - register SPI devices for a given board
899  * @info: array of chip descriptors
900  * @n: how many descriptors are provided
901  * Context: can sleep
902  *
903  * Board-specific early init code calls this (probably during arch_initcall)
904  * with segments of the SPI device table.  Any device nodes are created later,
905  * after the relevant parent SPI controller (bus_num) is defined.  We keep
906  * this table of devices forever, so that reloading a controller driver will
907  * not make Linux forget about these hard-wired devices.
908  *
909  * Other code can also call this, e.g. a particular add-on board might provide
910  * SPI devices through its expansion connector, so code initializing that board
911  * would naturally declare its SPI devices.
912  *
913  * The board info passed can safely be __initdata ... but be careful of
914  * any embedded pointers (platform_data, etc), they're copied as-is.
915  *
916  * Return: zero on success, else a negative error code.
917  */
918 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
919 {
920         struct boardinfo *bi;
921         int i;
922
923         if (!n)
924                 return 0;
925
926         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
927         if (!bi)
928                 return -ENOMEM;
929
930         for (i = 0; i < n; i++, bi++, info++) {
931                 struct spi_controller *ctlr;
932
933                 memcpy(&bi->board_info, info, sizeof(*info));
934
935                 mutex_lock(&board_lock);
936                 list_add_tail(&bi->list, &board_list);
937                 list_for_each_entry(ctlr, &spi_controller_list, list)
938                         spi_match_controller_to_boardinfo(ctlr,
939                                                           &bi->board_info);
940                 mutex_unlock(&board_lock);
941         }
942
943         return 0;
944 }
945
946 /*-------------------------------------------------------------------------*/
947
948 /* Core methods for SPI resource management */
949
950 /**
951  * spi_res_alloc - allocate a spi resource that is life-cycle managed
952  *                 during the processing of a spi_message while using
953  *                 spi_transfer_one
954  * @spi:     the SPI device for which we allocate memory
955  * @release: the release code to execute for this resource
956  * @size:    size to alloc and return
957  * @gfp:     GFP allocation flags
958  *
959  * Return: the pointer to the allocated data
960  *
961  * This may get enhanced in the future to allocate from a memory pool
962  * of the @spi_device or @spi_controller to avoid repeated allocations.
963  */
964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
965                            size_t size, gfp_t gfp)
966 {
967         struct spi_res *sres;
968
969         sres = kzalloc(sizeof(*sres) + size, gfp);
970         if (!sres)
971                 return NULL;
972
973         INIT_LIST_HEAD(&sres->entry);
974         sres->release = release;
975
976         return sres->data;
977 }
978
979 /**
980  * spi_res_free - free an SPI resource
981  * @res: pointer to the custom data of a resource
982  */
983 static void spi_res_free(void *res)
984 {
985         struct spi_res *sres = container_of(res, struct spi_res, data);
986
987         if (!res)
988                 return;
989
990         WARN_ON(!list_empty(&sres->entry));
991         kfree(sres);
992 }
993
994 /**
995  * spi_res_add - add a spi_res to the spi_message
996  * @message: the SPI message
997  * @res:     the spi_resource
998  */
999 static void spi_res_add(struct spi_message *message, void *res)
1000 {
1001         struct spi_res *sres = container_of(res, struct spi_res, data);
1002
1003         WARN_ON(!list_empty(&sres->entry));
1004         list_add_tail(&sres->entry, &message->resources);
1005 }
1006
1007 /**
1008  * spi_res_release - release all SPI resources for this message
1009  * @ctlr:  the @spi_controller
1010  * @message: the @spi_message
1011  */
1012 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1013 {
1014         struct spi_res *res, *tmp;
1015
1016         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1017                 if (res->release)
1018                         res->release(ctlr, message, res->data);
1019
1020                 list_del(&res->entry);
1021
1022                 kfree(res);
1023         }
1024 }
1025
1026 /*-------------------------------------------------------------------------*/
1027 #define spi_for_each_valid_cs(spi, idx)                         \
1028         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)              \
1029                 if (!(spi->cs_index_mask & BIT(idx))) {} else
1030
1031 static inline bool spi_is_last_cs(struct spi_device *spi)
1032 {
1033         u8 idx;
1034         bool last = false;
1035
1036         spi_for_each_valid_cs(spi, idx) {
1037                 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1038                         last = true;
1039         }
1040         return last;
1041 }
1042
1043 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1044 {
1045         /*
1046          * Historically ACPI has no means of the GPIO polarity and
1047          * thus the SPISerialBus() resource defines it on the per-chip
1048          * basis. In order to avoid a chain of negations, the GPIO
1049          * polarity is considered being Active High. Even for the cases
1050          * when _DSD() is involved (in the updated versions of ACPI)
1051          * the GPIO CS polarity must be defined Active High to avoid
1052          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1053          * into account.
1054          */
1055         if (has_acpi_companion(&spi->dev))
1056                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1057         else
1058                 /* Polarity handled by GPIO library */
1059                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1060
1061         if (activate)
1062                 spi_delay_exec(&spi->cs_setup, NULL);
1063         else
1064                 spi_delay_exec(&spi->cs_inactive, NULL);
1065 }
1066
1067 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1068 {
1069         bool activate = enable;
1070         u8 idx;
1071
1072         /*
1073          * Avoid calling into the driver (or doing delays) if the chip select
1074          * isn't actually changing from the last time this was called.
1075          */
1076         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1077                         spi_is_last_cs(spi)) ||
1078                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1079                         !spi_is_last_cs(spi))) &&
1080             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1081                 return;
1082
1083         trace_spi_set_cs(spi, activate);
1084
1085         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1086         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1087                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1088         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1089
1090         if (spi->mode & SPI_CS_HIGH)
1091                 enable = !enable;
1092
1093         /*
1094          * Handle chip select delays for GPIO based CS or controllers without
1095          * programmable chip select timing.
1096          */
1097         if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1098                 spi_delay_exec(&spi->cs_hold, NULL);
1099
1100         if (spi_is_csgpiod(spi)) {
1101                 if (!(spi->mode & SPI_NO_CS)) {
1102                         spi_for_each_valid_cs(spi, idx) {
1103                                 if (spi_get_csgpiod(spi, idx))
1104                                         spi_toggle_csgpiod(spi, idx, enable, activate);
1105                         }
1106                 }
1107                 /* Some SPI masters need both GPIO CS & slave_select */
1108                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1109                     spi->controller->set_cs)
1110                         spi->controller->set_cs(spi, !enable);
1111         } else if (spi->controller->set_cs) {
1112                 spi->controller->set_cs(spi, !enable);
1113         }
1114
1115         if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1116                 if (activate)
1117                         spi_delay_exec(&spi->cs_setup, NULL);
1118                 else
1119                         spi_delay_exec(&spi->cs_inactive, NULL);
1120         }
1121 }
1122
1123 #ifdef CONFIG_HAS_DMA
1124 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1125                              struct sg_table *sgt, void *buf, size_t len,
1126                              enum dma_data_direction dir, unsigned long attrs)
1127 {
1128         const bool vmalloced_buf = is_vmalloc_addr(buf);
1129         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1130 #ifdef CONFIG_HIGHMEM
1131         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1132                                 (unsigned long)buf < (PKMAP_BASE +
1133                                         (LAST_PKMAP * PAGE_SIZE)));
1134 #else
1135         const bool kmap_buf = false;
1136 #endif
1137         int desc_len;
1138         int sgs;
1139         struct page *vm_page;
1140         struct scatterlist *sg;
1141         void *sg_buf;
1142         size_t min;
1143         int i, ret;
1144
1145         if (vmalloced_buf || kmap_buf) {
1146                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1147                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1148         } else if (virt_addr_valid(buf)) {
1149                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1150                 sgs = DIV_ROUND_UP(len, desc_len);
1151         } else {
1152                 return -EINVAL;
1153         }
1154
1155         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1156         if (ret != 0)
1157                 return ret;
1158
1159         sg = &sgt->sgl[0];
1160         for (i = 0; i < sgs; i++) {
1161
1162                 if (vmalloced_buf || kmap_buf) {
1163                         /*
1164                          * Next scatterlist entry size is the minimum between
1165                          * the desc_len and the remaining buffer length that
1166                          * fits in a page.
1167                          */
1168                         min = min_t(size_t, desc_len,
1169                                     min_t(size_t, len,
1170                                           PAGE_SIZE - offset_in_page(buf)));
1171                         if (vmalloced_buf)
1172                                 vm_page = vmalloc_to_page(buf);
1173                         else
1174                                 vm_page = kmap_to_page(buf);
1175                         if (!vm_page) {
1176                                 sg_free_table(sgt);
1177                                 return -ENOMEM;
1178                         }
1179                         sg_set_page(sg, vm_page,
1180                                     min, offset_in_page(buf));
1181                 } else {
1182                         min = min_t(size_t, len, desc_len);
1183                         sg_buf = buf;
1184                         sg_set_buf(sg, sg_buf, min);
1185                 }
1186
1187                 buf += min;
1188                 len -= min;
1189                 sg = sg_next(sg);
1190         }
1191
1192         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1193         if (ret < 0) {
1194                 sg_free_table(sgt);
1195                 return ret;
1196         }
1197
1198         return 0;
1199 }
1200
1201 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1202                 struct sg_table *sgt, void *buf, size_t len,
1203                 enum dma_data_direction dir)
1204 {
1205         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1206 }
1207
1208 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1209                                 struct device *dev, struct sg_table *sgt,
1210                                 enum dma_data_direction dir,
1211                                 unsigned long attrs)
1212 {
1213         dma_unmap_sgtable(dev, sgt, dir, attrs);
1214         sg_free_table(sgt);
1215         sgt->orig_nents = 0;
1216         sgt->nents = 0;
1217 }
1218
1219 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1220                    struct sg_table *sgt, enum dma_data_direction dir)
1221 {
1222         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1223 }
1224
1225 /* Dummy SG for unidirect transfers */
1226 static struct scatterlist dummy_sg = {
1227         .page_link = SG_END,
1228 };
1229
1230 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1231 {
1232         struct device *tx_dev, *rx_dev;
1233         struct spi_transfer *xfer;
1234         int ret;
1235
1236         if (!ctlr->can_dma)
1237                 return 0;
1238
1239         if (ctlr->dma_tx)
1240                 tx_dev = ctlr->dma_tx->device->dev;
1241         else if (ctlr->dma_map_dev)
1242                 tx_dev = ctlr->dma_map_dev;
1243         else
1244                 tx_dev = ctlr->dev.parent;
1245
1246         if (ctlr->dma_rx)
1247                 rx_dev = ctlr->dma_rx->device->dev;
1248         else if (ctlr->dma_map_dev)
1249                 rx_dev = ctlr->dma_map_dev;
1250         else
1251                 rx_dev = ctlr->dev.parent;
1252
1253         ret = -ENOMSG;
1254         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1255                 /* The sync is done before each transfer. */
1256                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1257
1258                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1259                         continue;
1260
1261                 if (xfer->tx_buf != NULL) {
1262                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1263                                                 (void *)xfer->tx_buf,
1264                                                 xfer->len, DMA_TO_DEVICE,
1265                                                 attrs);
1266                         if (ret != 0)
1267                                 return ret;
1268                 } else {
1269                         xfer->tx_sg.sgl = &dummy_sg;
1270                 }
1271
1272                 if (xfer->rx_buf != NULL) {
1273                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1274                                                 xfer->rx_buf, xfer->len,
1275                                                 DMA_FROM_DEVICE, attrs);
1276                         if (ret != 0) {
1277                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1278                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1279                                                 attrs);
1280
1281                                 return ret;
1282                         }
1283                 } else {
1284                         xfer->rx_sg.sgl = &dummy_sg;
1285                 }
1286         }
1287         /* No transfer has been mapped, bail out with success */
1288         if (ret)
1289                 return 0;
1290
1291         ctlr->cur_rx_dma_dev = rx_dev;
1292         ctlr->cur_tx_dma_dev = tx_dev;
1293         ctlr->cur_msg_mapped = true;
1294
1295         return 0;
1296 }
1297
1298 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1299 {
1300         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1301         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1302         struct spi_transfer *xfer;
1303
1304         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1305                 return 0;
1306
1307         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1308                 /* The sync has already been done after each transfer. */
1309                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1310
1311                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1312                         continue;
1313
1314                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1315                                     DMA_FROM_DEVICE, attrs);
1316                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1317                                     DMA_TO_DEVICE, attrs);
1318         }
1319
1320         ctlr->cur_msg_mapped = false;
1321
1322         return 0;
1323 }
1324
1325 static void spi_dma_sync_for_device(struct spi_controller *ctlr, struct spi_message *msg,
1326                                     struct spi_transfer *xfer)
1327 {
1328         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1329         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1330
1331         if (!ctlr->cur_msg_mapped)
1332                 return;
1333
1334         if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1335                 return;
1336
1337         dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1338         dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1339 }
1340
1341 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, struct spi_message *msg,
1342                                  struct spi_transfer *xfer)
1343 {
1344         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1345         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1346
1347         if (!ctlr->cur_msg_mapped)
1348                 return;
1349
1350         if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1351                 return;
1352
1353         dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1354         dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1355 }
1356 #else /* !CONFIG_HAS_DMA */
1357 static inline int __spi_map_msg(struct spi_controller *ctlr,
1358                                 struct spi_message *msg)
1359 {
1360         return 0;
1361 }
1362
1363 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1364                                   struct spi_message *msg)
1365 {
1366         return 0;
1367 }
1368
1369 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1370                                     struct spi_message *msg,
1371                                     struct spi_transfer *xfer)
1372 {
1373 }
1374
1375 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1376                                  struct spi_message *msg,
1377                                  struct spi_transfer *xfer)
1378 {
1379 }
1380 #endif /* !CONFIG_HAS_DMA */
1381
1382 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1383                                 struct spi_message *msg)
1384 {
1385         struct spi_transfer *xfer;
1386
1387         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1388                 /*
1389                  * Restore the original value of tx_buf or rx_buf if they are
1390                  * NULL.
1391                  */
1392                 if (xfer->tx_buf == ctlr->dummy_tx)
1393                         xfer->tx_buf = NULL;
1394                 if (xfer->rx_buf == ctlr->dummy_rx)
1395                         xfer->rx_buf = NULL;
1396         }
1397
1398         return __spi_unmap_msg(ctlr, msg);
1399 }
1400
1401 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1402 {
1403         struct spi_transfer *xfer;
1404         void *tmp;
1405         unsigned int max_tx, max_rx;
1406
1407         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1408                 && !(msg->spi->mode & SPI_3WIRE)) {
1409                 max_tx = 0;
1410                 max_rx = 0;
1411
1412                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1414                             !xfer->tx_buf)
1415                                 max_tx = max(xfer->len, max_tx);
1416                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1417                             !xfer->rx_buf)
1418                                 max_rx = max(xfer->len, max_rx);
1419                 }
1420
1421                 if (max_tx) {
1422                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1423                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1424                         if (!tmp)
1425                                 return -ENOMEM;
1426                         ctlr->dummy_tx = tmp;
1427                 }
1428
1429                 if (max_rx) {
1430                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1431                                        GFP_KERNEL | GFP_DMA);
1432                         if (!tmp)
1433                                 return -ENOMEM;
1434                         ctlr->dummy_rx = tmp;
1435                 }
1436
1437                 if (max_tx || max_rx) {
1438                         list_for_each_entry(xfer, &msg->transfers,
1439                                             transfer_list) {
1440                                 if (!xfer->len)
1441                                         continue;
1442                                 if (!xfer->tx_buf)
1443                                         xfer->tx_buf = ctlr->dummy_tx;
1444                                 if (!xfer->rx_buf)
1445                                         xfer->rx_buf = ctlr->dummy_rx;
1446                         }
1447                 }
1448         }
1449
1450         return __spi_map_msg(ctlr, msg);
1451 }
1452
1453 static int spi_transfer_wait(struct spi_controller *ctlr,
1454                              struct spi_message *msg,
1455                              struct spi_transfer *xfer)
1456 {
1457         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1458         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1459         u32 speed_hz = xfer->speed_hz;
1460         unsigned long long ms;
1461
1462         if (spi_controller_is_slave(ctlr)) {
1463                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1464                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1465                         return -EINTR;
1466                 }
1467         } else {
1468                 if (!speed_hz)
1469                         speed_hz = 100000;
1470
1471                 /*
1472                  * For each byte we wait for 8 cycles of the SPI clock.
1473                  * Since speed is defined in Hz and we want milliseconds,
1474                  * use respective multiplier, but before the division,
1475                  * otherwise we may get 0 for short transfers.
1476                  */
1477                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1478                 do_div(ms, speed_hz);
1479
1480                 /*
1481                  * Increase it twice and add 200 ms tolerance, use
1482                  * predefined maximum in case of overflow.
1483                  */
1484                 ms += ms + 200;
1485                 if (ms > UINT_MAX)
1486                         ms = UINT_MAX;
1487
1488                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1489                                                  msecs_to_jiffies(ms));
1490
1491                 if (ms == 0) {
1492                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1493                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1494                         dev_err(&msg->spi->dev,
1495                                 "SPI transfer timed out\n");
1496                         return -ETIMEDOUT;
1497                 }
1498
1499                 if (xfer->error & SPI_TRANS_FAIL_IO)
1500                         return -EIO;
1501         }
1502
1503         return 0;
1504 }
1505
1506 static void _spi_transfer_delay_ns(u32 ns)
1507 {
1508         if (!ns)
1509                 return;
1510         if (ns <= NSEC_PER_USEC) {
1511                 ndelay(ns);
1512         } else {
1513                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1514
1515                 if (us <= 10)
1516                         udelay(us);
1517                 else
1518                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1519         }
1520 }
1521
1522 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1523 {
1524         u32 delay = _delay->value;
1525         u32 unit = _delay->unit;
1526         u32 hz;
1527
1528         if (!delay)
1529                 return 0;
1530
1531         switch (unit) {
1532         case SPI_DELAY_UNIT_USECS:
1533                 delay *= NSEC_PER_USEC;
1534                 break;
1535         case SPI_DELAY_UNIT_NSECS:
1536                 /* Nothing to do here */
1537                 break;
1538         case SPI_DELAY_UNIT_SCK:
1539                 /* Clock cycles need to be obtained from spi_transfer */
1540                 if (!xfer)
1541                         return -EINVAL;
1542                 /*
1543                  * If there is unknown effective speed, approximate it
1544                  * by underestimating with half of the requested Hz.
1545                  */
1546                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1547                 if (!hz)
1548                         return -EINVAL;
1549
1550                 /* Convert delay to nanoseconds */
1551                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1552                 break;
1553         default:
1554                 return -EINVAL;
1555         }
1556
1557         return delay;
1558 }
1559 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1560
1561 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1562 {
1563         int delay;
1564
1565         might_sleep();
1566
1567         if (!_delay)
1568                 return -EINVAL;
1569
1570         delay = spi_delay_to_ns(_delay, xfer);
1571         if (delay < 0)
1572                 return delay;
1573
1574         _spi_transfer_delay_ns(delay);
1575
1576         return 0;
1577 }
1578 EXPORT_SYMBOL_GPL(spi_delay_exec);
1579
1580 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1581                                           struct spi_transfer *xfer)
1582 {
1583         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1584         u32 delay = xfer->cs_change_delay.value;
1585         u32 unit = xfer->cs_change_delay.unit;
1586         int ret;
1587
1588         /* Return early on "fast" mode - for everything but USECS */
1589         if (!delay) {
1590                 if (unit == SPI_DELAY_UNIT_USECS)
1591                         _spi_transfer_delay_ns(default_delay_ns);
1592                 return;
1593         }
1594
1595         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1596         if (ret) {
1597                 dev_err_once(&msg->spi->dev,
1598                              "Use of unsupported delay unit %i, using default of %luus\n",
1599                              unit, default_delay_ns / NSEC_PER_USEC);
1600                 _spi_transfer_delay_ns(default_delay_ns);
1601         }
1602 }
1603
1604 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1605                                                   struct spi_transfer *xfer)
1606 {
1607         _spi_transfer_cs_change_delay(msg, xfer);
1608 }
1609 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1610
1611 /*
1612  * spi_transfer_one_message - Default implementation of transfer_one_message()
1613  *
1614  * This is a standard implementation of transfer_one_message() for
1615  * drivers which implement a transfer_one() operation.  It provides
1616  * standard handling of delays and chip select management.
1617  */
1618 static int spi_transfer_one_message(struct spi_controller *ctlr,
1619                                     struct spi_message *msg)
1620 {
1621         struct spi_transfer *xfer;
1622         bool keep_cs = false;
1623         int ret = 0;
1624         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1625         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1626
1627         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1628         spi_set_cs(msg->spi, !xfer->cs_off, false);
1629
1630         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1631         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1632
1633         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1634                 trace_spi_transfer_start(msg, xfer);
1635
1636                 spi_statistics_add_transfer_stats(statm, xfer, msg);
1637                 spi_statistics_add_transfer_stats(stats, xfer, msg);
1638
1639                 if (!ctlr->ptp_sts_supported) {
1640                         xfer->ptp_sts_word_pre = 0;
1641                         ptp_read_system_prets(xfer->ptp_sts);
1642                 }
1643
1644                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1645                         reinit_completion(&ctlr->xfer_completion);
1646
1647 fallback_pio:
1648                         spi_dma_sync_for_device(ctlr, msg, xfer);
1649                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1650                         if (ret < 0) {
1651                                 spi_dma_sync_for_cpu(ctlr, msg, xfer);
1652
1653                                 if (ctlr->cur_msg_mapped &&
1654                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1655                                         __spi_unmap_msg(ctlr, msg);
1656                                         ctlr->fallback = true;
1657                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1658                                         goto fallback_pio;
1659                                 }
1660
1661                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1662                                                                errors);
1663                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1664                                                                errors);
1665                                 dev_err(&msg->spi->dev,
1666                                         "SPI transfer failed: %d\n", ret);
1667                                 goto out;
1668                         }
1669
1670                         if (ret > 0) {
1671                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1672                                 if (ret < 0)
1673                                         msg->status = ret;
1674                         }
1675
1676                         spi_dma_sync_for_cpu(ctlr, msg, xfer);
1677                 } else {
1678                         if (xfer->len)
1679                                 dev_err(&msg->spi->dev,
1680                                         "Bufferless transfer has length %u\n",
1681                                         xfer->len);
1682                 }
1683
1684                 if (!ctlr->ptp_sts_supported) {
1685                         ptp_read_system_postts(xfer->ptp_sts);
1686                         xfer->ptp_sts_word_post = xfer->len;
1687                 }
1688
1689                 trace_spi_transfer_stop(msg, xfer);
1690
1691                 if (msg->status != -EINPROGRESS)
1692                         goto out;
1693
1694                 spi_transfer_delay_exec(xfer);
1695
1696                 if (xfer->cs_change) {
1697                         if (list_is_last(&xfer->transfer_list,
1698                                          &msg->transfers)) {
1699                                 keep_cs = true;
1700                         } else {
1701                                 if (!xfer->cs_off)
1702                                         spi_set_cs(msg->spi, false, false);
1703                                 _spi_transfer_cs_change_delay(msg, xfer);
1704                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1705                                         spi_set_cs(msg->spi, true, false);
1706                         }
1707                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1708                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1709                         spi_set_cs(msg->spi, xfer->cs_off, false);
1710                 }
1711
1712                 msg->actual_length += xfer->len;
1713         }
1714
1715 out:
1716         if (ret != 0 || !keep_cs)
1717                 spi_set_cs(msg->spi, false, false);
1718
1719         if (msg->status == -EINPROGRESS)
1720                 msg->status = ret;
1721
1722         if (msg->status && ctlr->handle_err)
1723                 ctlr->handle_err(ctlr, msg);
1724
1725         spi_finalize_current_message(ctlr);
1726
1727         return ret;
1728 }
1729
1730 /**
1731  * spi_finalize_current_transfer - report completion of a transfer
1732  * @ctlr: the controller reporting completion
1733  *
1734  * Called by SPI drivers using the core transfer_one_message()
1735  * implementation to notify it that the current interrupt driven
1736  * transfer has finished and the next one may be scheduled.
1737  */
1738 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1739 {
1740         complete(&ctlr->xfer_completion);
1741 }
1742 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1743
1744 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1745 {
1746         if (ctlr->auto_runtime_pm) {
1747                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1748                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1749         }
1750 }
1751
1752 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1753                 struct spi_message *msg, bool was_busy)
1754 {
1755         struct spi_transfer *xfer;
1756         int ret;
1757
1758         if (!was_busy && ctlr->auto_runtime_pm) {
1759                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1760                 if (ret < 0) {
1761                         pm_runtime_put_noidle(ctlr->dev.parent);
1762                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1763                                 ret);
1764
1765                         msg->status = ret;
1766                         spi_finalize_current_message(ctlr);
1767
1768                         return ret;
1769                 }
1770         }
1771
1772         if (!was_busy)
1773                 trace_spi_controller_busy(ctlr);
1774
1775         if (!was_busy && ctlr->prepare_transfer_hardware) {
1776                 ret = ctlr->prepare_transfer_hardware(ctlr);
1777                 if (ret) {
1778                         dev_err(&ctlr->dev,
1779                                 "failed to prepare transfer hardware: %d\n",
1780                                 ret);
1781
1782                         if (ctlr->auto_runtime_pm)
1783                                 pm_runtime_put(ctlr->dev.parent);
1784
1785                         msg->status = ret;
1786                         spi_finalize_current_message(ctlr);
1787
1788                         return ret;
1789                 }
1790         }
1791
1792         trace_spi_message_start(msg);
1793
1794         if (ctlr->prepare_message) {
1795                 ret = ctlr->prepare_message(ctlr, msg);
1796                 if (ret) {
1797                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1798                                 ret);
1799                         msg->status = ret;
1800                         spi_finalize_current_message(ctlr);
1801                         return ret;
1802                 }
1803                 msg->prepared = true;
1804         }
1805
1806         ret = spi_map_msg(ctlr, msg);
1807         if (ret) {
1808                 msg->status = ret;
1809                 spi_finalize_current_message(ctlr);
1810                 return ret;
1811         }
1812
1813         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1814                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1815                         xfer->ptp_sts_word_pre = 0;
1816                         ptp_read_system_prets(xfer->ptp_sts);
1817                 }
1818         }
1819
1820         /*
1821          * Drivers implementation of transfer_one_message() must arrange for
1822          * spi_finalize_current_message() to get called. Most drivers will do
1823          * this in the calling context, but some don't. For those cases, a
1824          * completion is used to guarantee that this function does not return
1825          * until spi_finalize_current_message() is done accessing
1826          * ctlr->cur_msg.
1827          * Use of the following two flags enable to opportunistically skip the
1828          * use of the completion since its use involves expensive spin locks.
1829          * In case of a race with the context that calls
1830          * spi_finalize_current_message() the completion will always be used,
1831          * due to strict ordering of these flags using barriers.
1832          */
1833         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1834         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1835         reinit_completion(&ctlr->cur_msg_completion);
1836         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1837
1838         ret = ctlr->transfer_one_message(ctlr, msg);
1839         if (ret) {
1840                 dev_err(&ctlr->dev,
1841                         "failed to transfer one message from queue\n");
1842                 return ret;
1843         }
1844
1845         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1846         smp_mb(); /* See spi_finalize_current_message()... */
1847         if (READ_ONCE(ctlr->cur_msg_incomplete))
1848                 wait_for_completion(&ctlr->cur_msg_completion);
1849
1850         return 0;
1851 }
1852
1853 /**
1854  * __spi_pump_messages - function which processes SPI message queue
1855  * @ctlr: controller to process queue for
1856  * @in_kthread: true if we are in the context of the message pump thread
1857  *
1858  * This function checks if there is any SPI message in the queue that
1859  * needs processing and if so call out to the driver to initialize hardware
1860  * and transfer each message.
1861  *
1862  * Note that it is called both from the kthread itself and also from
1863  * inside spi_sync(); the queue extraction handling at the top of the
1864  * function should deal with this safely.
1865  */
1866 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1867 {
1868         struct spi_message *msg;
1869         bool was_busy = false;
1870         unsigned long flags;
1871         int ret;
1872
1873         /* Take the I/O mutex */
1874         mutex_lock(&ctlr->io_mutex);
1875
1876         /* Lock queue */
1877         spin_lock_irqsave(&ctlr->queue_lock, flags);
1878
1879         /* Make sure we are not already running a message */
1880         if (ctlr->cur_msg)
1881                 goto out_unlock;
1882
1883         /* Check if the queue is idle */
1884         if (list_empty(&ctlr->queue) || !ctlr->running) {
1885                 if (!ctlr->busy)
1886                         goto out_unlock;
1887
1888                 /* Defer any non-atomic teardown to the thread */
1889                 if (!in_kthread) {
1890                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1891                             !ctlr->unprepare_transfer_hardware) {
1892                                 spi_idle_runtime_pm(ctlr);
1893                                 ctlr->busy = false;
1894                                 ctlr->queue_empty = true;
1895                                 trace_spi_controller_idle(ctlr);
1896                         } else {
1897                                 kthread_queue_work(ctlr->kworker,
1898                                                    &ctlr->pump_messages);
1899                         }
1900                         goto out_unlock;
1901                 }
1902
1903                 ctlr->busy = false;
1904                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1905
1906                 kfree(ctlr->dummy_rx);
1907                 ctlr->dummy_rx = NULL;
1908                 kfree(ctlr->dummy_tx);
1909                 ctlr->dummy_tx = NULL;
1910                 if (ctlr->unprepare_transfer_hardware &&
1911                     ctlr->unprepare_transfer_hardware(ctlr))
1912                         dev_err(&ctlr->dev,
1913                                 "failed to unprepare transfer hardware\n");
1914                 spi_idle_runtime_pm(ctlr);
1915                 trace_spi_controller_idle(ctlr);
1916
1917                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1918                 ctlr->queue_empty = true;
1919                 goto out_unlock;
1920         }
1921
1922         /* Extract head of queue */
1923         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1924         ctlr->cur_msg = msg;
1925
1926         list_del_init(&msg->queue);
1927         if (ctlr->busy)
1928                 was_busy = true;
1929         else
1930                 ctlr->busy = true;
1931         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1932
1933         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1934         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1935
1936         ctlr->cur_msg = NULL;
1937         ctlr->fallback = false;
1938
1939         mutex_unlock(&ctlr->io_mutex);
1940
1941         /* Prod the scheduler in case transfer_one() was busy waiting */
1942         if (!ret)
1943                 cond_resched();
1944         return;
1945
1946 out_unlock:
1947         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1948         mutex_unlock(&ctlr->io_mutex);
1949 }
1950
1951 /**
1952  * spi_pump_messages - kthread work function which processes spi message queue
1953  * @work: pointer to kthread work struct contained in the controller struct
1954  */
1955 static void spi_pump_messages(struct kthread_work *work)
1956 {
1957         struct spi_controller *ctlr =
1958                 container_of(work, struct spi_controller, pump_messages);
1959
1960         __spi_pump_messages(ctlr, true);
1961 }
1962
1963 /**
1964  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1965  * @ctlr: Pointer to the spi_controller structure of the driver
1966  * @xfer: Pointer to the transfer being timestamped
1967  * @progress: How many words (not bytes) have been transferred so far
1968  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1969  *            transfer, for less jitter in time measurement. Only compatible
1970  *            with PIO drivers. If true, must follow up with
1971  *            spi_take_timestamp_post or otherwise system will crash.
1972  *            WARNING: for fully predictable results, the CPU frequency must
1973  *            also be under control (governor).
1974  *
1975  * This is a helper for drivers to collect the beginning of the TX timestamp
1976  * for the requested byte from the SPI transfer. The frequency with which this
1977  * function must be called (once per word, once for the whole transfer, once
1978  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1979  * greater than or equal to the requested byte at the time of the call. The
1980  * timestamp is only taken once, at the first such call. It is assumed that
1981  * the driver advances its @tx buffer pointer monotonically.
1982  */
1983 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1984                             struct spi_transfer *xfer,
1985                             size_t progress, bool irqs_off)
1986 {
1987         if (!xfer->ptp_sts)
1988                 return;
1989
1990         if (xfer->timestamped)
1991                 return;
1992
1993         if (progress > xfer->ptp_sts_word_pre)
1994                 return;
1995
1996         /* Capture the resolution of the timestamp */
1997         xfer->ptp_sts_word_pre = progress;
1998
1999         if (irqs_off) {
2000                 local_irq_save(ctlr->irq_flags);
2001                 preempt_disable();
2002         }
2003
2004         ptp_read_system_prets(xfer->ptp_sts);
2005 }
2006 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
2007
2008 /**
2009  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
2010  * @ctlr: Pointer to the spi_controller structure of the driver
2011  * @xfer: Pointer to the transfer being timestamped
2012  * @progress: How many words (not bytes) have been transferred so far
2013  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2014  *
2015  * This is a helper for drivers to collect the end of the TX timestamp for
2016  * the requested byte from the SPI transfer. Can be called with an arbitrary
2017  * frequency: only the first call where @tx exceeds or is equal to the
2018  * requested word will be timestamped.
2019  */
2020 void spi_take_timestamp_post(struct spi_controller *ctlr,
2021                              struct spi_transfer *xfer,
2022                              size_t progress, bool irqs_off)
2023 {
2024         if (!xfer->ptp_sts)
2025                 return;
2026
2027         if (xfer->timestamped)
2028                 return;
2029
2030         if (progress < xfer->ptp_sts_word_post)
2031                 return;
2032
2033         ptp_read_system_postts(xfer->ptp_sts);
2034
2035         if (irqs_off) {
2036                 local_irq_restore(ctlr->irq_flags);
2037                 preempt_enable();
2038         }
2039
2040         /* Capture the resolution of the timestamp */
2041         xfer->ptp_sts_word_post = progress;
2042
2043         xfer->timestamped = 1;
2044 }
2045 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2046
2047 /**
2048  * spi_set_thread_rt - set the controller to pump at realtime priority
2049  * @ctlr: controller to boost priority of
2050  *
2051  * This can be called because the controller requested realtime priority
2052  * (by setting the ->rt value before calling spi_register_controller()) or
2053  * because a device on the bus said that its transfers needed realtime
2054  * priority.
2055  *
2056  * NOTE: at the moment if any device on a bus says it needs realtime then
2057  * the thread will be at realtime priority for all transfers on that
2058  * controller.  If this eventually becomes a problem we may see if we can
2059  * find a way to boost the priority only temporarily during relevant
2060  * transfers.
2061  */
2062 static void spi_set_thread_rt(struct spi_controller *ctlr)
2063 {
2064         dev_info(&ctlr->dev,
2065                 "will run message pump with realtime priority\n");
2066         sched_set_fifo(ctlr->kworker->task);
2067 }
2068
2069 static int spi_init_queue(struct spi_controller *ctlr)
2070 {
2071         ctlr->running = false;
2072         ctlr->busy = false;
2073         ctlr->queue_empty = true;
2074
2075         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2076         if (IS_ERR(ctlr->kworker)) {
2077                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2078                 return PTR_ERR(ctlr->kworker);
2079         }
2080
2081         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2082
2083         /*
2084          * Controller config will indicate if this controller should run the
2085          * message pump with high (realtime) priority to reduce the transfer
2086          * latency on the bus by minimising the delay between a transfer
2087          * request and the scheduling of the message pump thread. Without this
2088          * setting the message pump thread will remain at default priority.
2089          */
2090         if (ctlr->rt)
2091                 spi_set_thread_rt(ctlr);
2092
2093         return 0;
2094 }
2095
2096 /**
2097  * spi_get_next_queued_message() - called by driver to check for queued
2098  * messages
2099  * @ctlr: the controller to check for queued messages
2100  *
2101  * If there are more messages in the queue, the next message is returned from
2102  * this call.
2103  *
2104  * Return: the next message in the queue, else NULL if the queue is empty.
2105  */
2106 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2107 {
2108         struct spi_message *next;
2109         unsigned long flags;
2110
2111         /* Get a pointer to the next message, if any */
2112         spin_lock_irqsave(&ctlr->queue_lock, flags);
2113         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2114                                         queue);
2115         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2116
2117         return next;
2118 }
2119 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2120
2121 /*
2122  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2123  *                            and spi_maybe_unoptimize_message()
2124  * @msg: the message to unoptimize
2125  *
2126  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2127  * core should use spi_maybe_unoptimize_message() rather than calling this
2128  * function directly.
2129  *
2130  * It is not valid to call this on a message that is not currently optimized.
2131  */
2132 static void __spi_unoptimize_message(struct spi_message *msg)
2133 {
2134         struct spi_controller *ctlr = msg->spi->controller;
2135
2136         if (ctlr->unoptimize_message)
2137                 ctlr->unoptimize_message(msg);
2138
2139         spi_res_release(ctlr, msg);
2140
2141         msg->optimized = false;
2142         msg->opt_state = NULL;
2143 }
2144
2145 /*
2146  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2147  * @msg: the message to unoptimize
2148  *
2149  * This function is used to unoptimize a message if and only if it was
2150  * optimized by the core (via spi_maybe_optimize_message()).
2151  */
2152 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2153 {
2154         if (!msg->pre_optimized && msg->optimized)
2155                 __spi_unoptimize_message(msg);
2156 }
2157
2158 /**
2159  * spi_finalize_current_message() - the current message is complete
2160  * @ctlr: the controller to return the message to
2161  *
2162  * Called by the driver to notify the core that the message in the front of the
2163  * queue is complete and can be removed from the queue.
2164  */
2165 void spi_finalize_current_message(struct spi_controller *ctlr)
2166 {
2167         struct spi_transfer *xfer;
2168         struct spi_message *mesg;
2169         int ret;
2170
2171         mesg = ctlr->cur_msg;
2172
2173         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2174                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2175                         ptp_read_system_postts(xfer->ptp_sts);
2176                         xfer->ptp_sts_word_post = xfer->len;
2177                 }
2178         }
2179
2180         if (unlikely(ctlr->ptp_sts_supported))
2181                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2182                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2183
2184         spi_unmap_msg(ctlr, mesg);
2185
2186         if (mesg->prepared && ctlr->unprepare_message) {
2187                 ret = ctlr->unprepare_message(ctlr, mesg);
2188                 if (ret) {
2189                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2190                                 ret);
2191                 }
2192         }
2193
2194         mesg->prepared = false;
2195
2196         spi_maybe_unoptimize_message(mesg);
2197
2198         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2199         smp_mb(); /* See __spi_pump_transfer_message()... */
2200         if (READ_ONCE(ctlr->cur_msg_need_completion))
2201                 complete(&ctlr->cur_msg_completion);
2202
2203         trace_spi_message_done(mesg);
2204
2205         mesg->state = NULL;
2206         if (mesg->complete)
2207                 mesg->complete(mesg->context);
2208 }
2209 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2210
2211 static int spi_start_queue(struct spi_controller *ctlr)
2212 {
2213         unsigned long flags;
2214
2215         spin_lock_irqsave(&ctlr->queue_lock, flags);
2216
2217         if (ctlr->running || ctlr->busy) {
2218                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2219                 return -EBUSY;
2220         }
2221
2222         ctlr->running = true;
2223         ctlr->cur_msg = NULL;
2224         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2225
2226         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2227
2228         return 0;
2229 }
2230
2231 static int spi_stop_queue(struct spi_controller *ctlr)
2232 {
2233         unsigned long flags;
2234         unsigned limit = 500;
2235         int ret = 0;
2236
2237         spin_lock_irqsave(&ctlr->queue_lock, flags);
2238
2239         /*
2240          * This is a bit lame, but is optimized for the common execution path.
2241          * A wait_queue on the ctlr->busy could be used, but then the common
2242          * execution path (pump_messages) would be required to call wake_up or
2243          * friends on every SPI message. Do this instead.
2244          */
2245         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2246                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2247                 usleep_range(10000, 11000);
2248                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2249         }
2250
2251         if (!list_empty(&ctlr->queue) || ctlr->busy)
2252                 ret = -EBUSY;
2253         else
2254                 ctlr->running = false;
2255
2256         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2257
2258         return ret;
2259 }
2260
2261 static int spi_destroy_queue(struct spi_controller *ctlr)
2262 {
2263         int ret;
2264
2265         ret = spi_stop_queue(ctlr);
2266
2267         /*
2268          * kthread_flush_worker will block until all work is done.
2269          * If the reason that stop_queue timed out is that the work will never
2270          * finish, then it does no good to call flush/stop thread, so
2271          * return anyway.
2272          */
2273         if (ret) {
2274                 dev_err(&ctlr->dev, "problem destroying queue\n");
2275                 return ret;
2276         }
2277
2278         kthread_destroy_worker(ctlr->kworker);
2279
2280         return 0;
2281 }
2282
2283 static int __spi_queued_transfer(struct spi_device *spi,
2284                                  struct spi_message *msg,
2285                                  bool need_pump)
2286 {
2287         struct spi_controller *ctlr = spi->controller;
2288         unsigned long flags;
2289
2290         spin_lock_irqsave(&ctlr->queue_lock, flags);
2291
2292         if (!ctlr->running) {
2293                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2294                 return -ESHUTDOWN;
2295         }
2296         msg->actual_length = 0;
2297         msg->status = -EINPROGRESS;
2298
2299         list_add_tail(&msg->queue, &ctlr->queue);
2300         ctlr->queue_empty = false;
2301         if (!ctlr->busy && need_pump)
2302                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2303
2304         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2305         return 0;
2306 }
2307
2308 /**
2309  * spi_queued_transfer - transfer function for queued transfers
2310  * @spi: SPI device which is requesting transfer
2311  * @msg: SPI message which is to handled is queued to driver queue
2312  *
2313  * Return: zero on success, else a negative error code.
2314  */
2315 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2316 {
2317         return __spi_queued_transfer(spi, msg, true);
2318 }
2319
2320 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2321 {
2322         int ret;
2323
2324         ctlr->transfer = spi_queued_transfer;
2325         if (!ctlr->transfer_one_message)
2326                 ctlr->transfer_one_message = spi_transfer_one_message;
2327
2328         /* Initialize and start queue */
2329         ret = spi_init_queue(ctlr);
2330         if (ret) {
2331                 dev_err(&ctlr->dev, "problem initializing queue\n");
2332                 goto err_init_queue;
2333         }
2334         ctlr->queued = true;
2335         ret = spi_start_queue(ctlr);
2336         if (ret) {
2337                 dev_err(&ctlr->dev, "problem starting queue\n");
2338                 goto err_start_queue;
2339         }
2340
2341         return 0;
2342
2343 err_start_queue:
2344         spi_destroy_queue(ctlr);
2345 err_init_queue:
2346         return ret;
2347 }
2348
2349 /**
2350  * spi_flush_queue - Send all pending messages in the queue from the callers'
2351  *                   context
2352  * @ctlr: controller to process queue for
2353  *
2354  * This should be used when one wants to ensure all pending messages have been
2355  * sent before doing something. Is used by the spi-mem code to make sure SPI
2356  * memory operations do not preempt regular SPI transfers that have been queued
2357  * before the spi-mem operation.
2358  */
2359 void spi_flush_queue(struct spi_controller *ctlr)
2360 {
2361         if (ctlr->transfer == spi_queued_transfer)
2362                 __spi_pump_messages(ctlr, false);
2363 }
2364
2365 /*-------------------------------------------------------------------------*/
2366
2367 #if defined(CONFIG_OF)
2368 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2369                                      struct spi_delay *delay, const char *prop)
2370 {
2371         u32 value;
2372
2373         if (!of_property_read_u32(nc, prop, &value)) {
2374                 if (value > U16_MAX) {
2375                         delay->value = DIV_ROUND_UP(value, 1000);
2376                         delay->unit = SPI_DELAY_UNIT_USECS;
2377                 } else {
2378                         delay->value = value;
2379                         delay->unit = SPI_DELAY_UNIT_NSECS;
2380                 }
2381         }
2382 }
2383
2384 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2385                            struct device_node *nc)
2386 {
2387         u32 value, cs[SPI_CS_CNT_MAX];
2388         int rc, idx;
2389
2390         /* Mode (clock phase/polarity/etc.) */
2391         if (of_property_read_bool(nc, "spi-cpha"))
2392                 spi->mode |= SPI_CPHA;
2393         if (of_property_read_bool(nc, "spi-cpol"))
2394                 spi->mode |= SPI_CPOL;
2395         if (of_property_read_bool(nc, "spi-3wire"))
2396                 spi->mode |= SPI_3WIRE;
2397         if (of_property_read_bool(nc, "spi-lsb-first"))
2398                 spi->mode |= SPI_LSB_FIRST;
2399         if (of_property_read_bool(nc, "spi-cs-high"))
2400                 spi->mode |= SPI_CS_HIGH;
2401
2402         /* Device DUAL/QUAD mode */
2403         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2404                 switch (value) {
2405                 case 0:
2406                         spi->mode |= SPI_NO_TX;
2407                         break;
2408                 case 1:
2409                         break;
2410                 case 2:
2411                         spi->mode |= SPI_TX_DUAL;
2412                         break;
2413                 case 4:
2414                         spi->mode |= SPI_TX_QUAD;
2415                         break;
2416                 case 8:
2417                         spi->mode |= SPI_TX_OCTAL;
2418                         break;
2419                 default:
2420                         dev_warn(&ctlr->dev,
2421                                 "spi-tx-bus-width %d not supported\n",
2422                                 value);
2423                         break;
2424                 }
2425         }
2426
2427         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2428                 switch (value) {
2429                 case 0:
2430                         spi->mode |= SPI_NO_RX;
2431                         break;
2432                 case 1:
2433                         break;
2434                 case 2:
2435                         spi->mode |= SPI_RX_DUAL;
2436                         break;
2437                 case 4:
2438                         spi->mode |= SPI_RX_QUAD;
2439                         break;
2440                 case 8:
2441                         spi->mode |= SPI_RX_OCTAL;
2442                         break;
2443                 default:
2444                         dev_warn(&ctlr->dev,
2445                                 "spi-rx-bus-width %d not supported\n",
2446                                 value);
2447                         break;
2448                 }
2449         }
2450
2451         if (spi_controller_is_slave(ctlr)) {
2452                 if (!of_node_name_eq(nc, "slave")) {
2453                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2454                                 nc);
2455                         return -EINVAL;
2456                 }
2457                 return 0;
2458         }
2459
2460         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2461                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2462                 return -EINVAL;
2463         }
2464
2465         spi_set_all_cs_unused(spi);
2466
2467         /* Device address */
2468         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2469                                                  SPI_CS_CNT_MAX);
2470         if (rc < 0) {
2471                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2472                         nc, rc);
2473                 return rc;
2474         }
2475         if (rc > ctlr->num_chipselect) {
2476                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2477                         nc, rc);
2478                 return rc;
2479         }
2480         if ((of_property_read_bool(nc, "parallel-memories")) &&
2481             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2482                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2483                 return -EINVAL;
2484         }
2485         for (idx = 0; idx < rc; idx++)
2486                 spi_set_chipselect(spi, idx, cs[idx]);
2487
2488         /*
2489          * By default spi->chip_select[0] will hold the physical CS number,
2490          * so set bit 0 in spi->cs_index_mask.
2491          */
2492         spi->cs_index_mask = BIT(0);
2493
2494         /* Device speed */
2495         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2496                 spi->max_speed_hz = value;
2497
2498         /* Device CS delays */
2499         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2500         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2501         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2502
2503         return 0;
2504 }
2505
2506 static struct spi_device *
2507 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2508 {
2509         struct spi_device *spi;
2510         int rc;
2511
2512         /* Alloc an spi_device */
2513         spi = spi_alloc_device(ctlr);
2514         if (!spi) {
2515                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2516                 rc = -ENOMEM;
2517                 goto err_out;
2518         }
2519
2520         /* Select device driver */
2521         rc = of_alias_from_compatible(nc, spi->modalias,
2522                                       sizeof(spi->modalias));
2523         if (rc < 0) {
2524                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2525                 goto err_out;
2526         }
2527
2528         rc = of_spi_parse_dt(ctlr, spi, nc);
2529         if (rc)
2530                 goto err_out;
2531
2532         /* Store a pointer to the node in the device structure */
2533         of_node_get(nc);
2534
2535         device_set_node(&spi->dev, of_fwnode_handle(nc));
2536
2537         /* Register the new device */
2538         rc = spi_add_device(spi);
2539         if (rc) {
2540                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2541                 goto err_of_node_put;
2542         }
2543
2544         return spi;
2545
2546 err_of_node_put:
2547         of_node_put(nc);
2548 err_out:
2549         spi_dev_put(spi);
2550         return ERR_PTR(rc);
2551 }
2552
2553 /**
2554  * of_register_spi_devices() - Register child devices onto the SPI bus
2555  * @ctlr:       Pointer to spi_controller device
2556  *
2557  * Registers an spi_device for each child node of controller node which
2558  * represents a valid SPI slave.
2559  */
2560 static void of_register_spi_devices(struct spi_controller *ctlr)
2561 {
2562         struct spi_device *spi;
2563         struct device_node *nc;
2564
2565         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2566                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2567                         continue;
2568                 spi = of_register_spi_device(ctlr, nc);
2569                 if (IS_ERR(spi)) {
2570                         dev_warn(&ctlr->dev,
2571                                  "Failed to create SPI device for %pOF\n", nc);
2572                         of_node_clear_flag(nc, OF_POPULATED);
2573                 }
2574         }
2575 }
2576 #else
2577 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2578 #endif
2579
2580 /**
2581  * spi_new_ancillary_device() - Register ancillary SPI device
2582  * @spi:         Pointer to the main SPI device registering the ancillary device
2583  * @chip_select: Chip Select of the ancillary device
2584  *
2585  * Register an ancillary SPI device; for example some chips have a chip-select
2586  * for normal device usage and another one for setup/firmware upload.
2587  *
2588  * This may only be called from main SPI device's probe routine.
2589  *
2590  * Return: 0 on success; negative errno on failure
2591  */
2592 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2593                                              u8 chip_select)
2594 {
2595         struct spi_controller *ctlr = spi->controller;
2596         struct spi_device *ancillary;
2597         int rc = 0;
2598
2599         /* Alloc an spi_device */
2600         ancillary = spi_alloc_device(ctlr);
2601         if (!ancillary) {
2602                 rc = -ENOMEM;
2603                 goto err_out;
2604         }
2605
2606         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2607
2608         /* Use provided chip-select for ancillary device */
2609         spi_set_all_cs_unused(ancillary);
2610         spi_set_chipselect(ancillary, 0, chip_select);
2611
2612         /* Take over SPI mode/speed from SPI main device */
2613         ancillary->max_speed_hz = spi->max_speed_hz;
2614         ancillary->mode = spi->mode;
2615         /*
2616          * By default spi->chip_select[0] will hold the physical CS number,
2617          * so set bit 0 in spi->cs_index_mask.
2618          */
2619         ancillary->cs_index_mask = BIT(0);
2620
2621         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2622
2623         /* Register the new device */
2624         rc = __spi_add_device(ancillary);
2625         if (rc) {
2626                 dev_err(&spi->dev, "failed to register ancillary device\n");
2627                 goto err_out;
2628         }
2629
2630         return ancillary;
2631
2632 err_out:
2633         spi_dev_put(ancillary);
2634         return ERR_PTR(rc);
2635 }
2636 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2637
2638 #ifdef CONFIG_ACPI
2639 struct acpi_spi_lookup {
2640         struct spi_controller   *ctlr;
2641         u32                     max_speed_hz;
2642         u32                     mode;
2643         int                     irq;
2644         u8                      bits_per_word;
2645         u8                      chip_select;
2646         int                     n;
2647         int                     index;
2648 };
2649
2650 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2651 {
2652         struct acpi_resource_spi_serialbus *sb;
2653         int *count = data;
2654
2655         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2656                 return 1;
2657
2658         sb = &ares->data.spi_serial_bus;
2659         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2660                 return 1;
2661
2662         *count = *count + 1;
2663
2664         return 1;
2665 }
2666
2667 /**
2668  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2669  * @adev:       ACPI device
2670  *
2671  * Return: the number of SpiSerialBus resources in the ACPI-device's
2672  * resource-list; or a negative error code.
2673  */
2674 int acpi_spi_count_resources(struct acpi_device *adev)
2675 {
2676         LIST_HEAD(r);
2677         int count = 0;
2678         int ret;
2679
2680         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2681         if (ret < 0)
2682                 return ret;
2683
2684         acpi_dev_free_resource_list(&r);
2685
2686         return count;
2687 }
2688 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2689
2690 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2691                                             struct acpi_spi_lookup *lookup)
2692 {
2693         const union acpi_object *obj;
2694
2695         if (!x86_apple_machine)
2696                 return;
2697
2698         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2699             && obj->buffer.length >= 4)
2700                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2701
2702         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2703             && obj->buffer.length == 8)
2704                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2705
2706         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2707             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2708                 lookup->mode |= SPI_LSB_FIRST;
2709
2710         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2711             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2712                 lookup->mode |= SPI_CPOL;
2713
2714         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2715             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2716                 lookup->mode |= SPI_CPHA;
2717 }
2718
2719 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2720 {
2721         struct acpi_spi_lookup *lookup = data;
2722         struct spi_controller *ctlr = lookup->ctlr;
2723
2724         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2725                 struct acpi_resource_spi_serialbus *sb;
2726                 acpi_handle parent_handle;
2727                 acpi_status status;
2728
2729                 sb = &ares->data.spi_serial_bus;
2730                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2731
2732                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2733                                 return 1;
2734
2735                         status = acpi_get_handle(NULL,
2736                                                  sb->resource_source.string_ptr,
2737                                                  &parent_handle);
2738
2739                         if (ACPI_FAILURE(status))
2740                                 return -ENODEV;
2741
2742                         if (ctlr) {
2743                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2744                                         return -ENODEV;
2745                         } else {
2746                                 struct acpi_device *adev;
2747
2748                                 adev = acpi_fetch_acpi_dev(parent_handle);
2749                                 if (!adev)
2750                                         return -ENODEV;
2751
2752                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2753                                 if (!ctlr)
2754                                         return -EPROBE_DEFER;
2755
2756                                 lookup->ctlr = ctlr;
2757                         }
2758
2759                         /*
2760                          * ACPI DeviceSelection numbering is handled by the
2761                          * host controller driver in Windows and can vary
2762                          * from driver to driver. In Linux we always expect
2763                          * 0 .. max - 1 so we need to ask the driver to
2764                          * translate between the two schemes.
2765                          */
2766                         if (ctlr->fw_translate_cs) {
2767                                 int cs = ctlr->fw_translate_cs(ctlr,
2768                                                 sb->device_selection);
2769                                 if (cs < 0)
2770                                         return cs;
2771                                 lookup->chip_select = cs;
2772                         } else {
2773                                 lookup->chip_select = sb->device_selection;
2774                         }
2775
2776                         lookup->max_speed_hz = sb->connection_speed;
2777                         lookup->bits_per_word = sb->data_bit_length;
2778
2779                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2780                                 lookup->mode |= SPI_CPHA;
2781                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2782                                 lookup->mode |= SPI_CPOL;
2783                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2784                                 lookup->mode |= SPI_CS_HIGH;
2785                 }
2786         } else if (lookup->irq < 0) {
2787                 struct resource r;
2788
2789                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2790                         lookup->irq = r.start;
2791         }
2792
2793         /* Always tell the ACPI core to skip this resource */
2794         return 1;
2795 }
2796
2797 /**
2798  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2799  * @ctlr: controller to which the spi device belongs
2800  * @adev: ACPI Device for the spi device
2801  * @index: Index of the spi resource inside the ACPI Node
2802  *
2803  * This should be used to allocate a new SPI device from and ACPI Device node.
2804  * The caller is responsible for calling spi_add_device to register the SPI device.
2805  *
2806  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2807  * using the resource.
2808  * If index is set to -1, index is not used.
2809  * Note: If index is -1, ctlr must be set.
2810  *
2811  * Return: a pointer to the new device, or ERR_PTR on error.
2812  */
2813 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2814                                          struct acpi_device *adev,
2815                                          int index)
2816 {
2817         acpi_handle parent_handle = NULL;
2818         struct list_head resource_list;
2819         struct acpi_spi_lookup lookup = {};
2820         struct spi_device *spi;
2821         int ret;
2822
2823         if (!ctlr && index == -1)
2824                 return ERR_PTR(-EINVAL);
2825
2826         lookup.ctlr             = ctlr;
2827         lookup.irq              = -1;
2828         lookup.index            = index;
2829         lookup.n                = 0;
2830
2831         INIT_LIST_HEAD(&resource_list);
2832         ret = acpi_dev_get_resources(adev, &resource_list,
2833                                      acpi_spi_add_resource, &lookup);
2834         acpi_dev_free_resource_list(&resource_list);
2835
2836         if (ret < 0)
2837                 /* Found SPI in _CRS but it points to another controller */
2838                 return ERR_PTR(ret);
2839
2840         if (!lookup.max_speed_hz &&
2841             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2842             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2843                 /* Apple does not use _CRS but nested devices for SPI slaves */
2844                 acpi_spi_parse_apple_properties(adev, &lookup);
2845         }
2846
2847         if (!lookup.max_speed_hz)
2848                 return ERR_PTR(-ENODEV);
2849
2850         spi = spi_alloc_device(lookup.ctlr);
2851         if (!spi) {
2852                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2853                         dev_name(&adev->dev));
2854                 return ERR_PTR(-ENOMEM);
2855         }
2856
2857         spi_set_all_cs_unused(spi);
2858         spi_set_chipselect(spi, 0, lookup.chip_select);
2859
2860         ACPI_COMPANION_SET(&spi->dev, adev);
2861         spi->max_speed_hz       = lookup.max_speed_hz;
2862         spi->mode               |= lookup.mode;
2863         spi->irq                = lookup.irq;
2864         spi->bits_per_word      = lookup.bits_per_word;
2865         /*
2866          * By default spi->chip_select[0] will hold the physical CS number,
2867          * so set bit 0 in spi->cs_index_mask.
2868          */
2869         spi->cs_index_mask      = BIT(0);
2870
2871         return spi;
2872 }
2873 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2874
2875 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2876                                             struct acpi_device *adev)
2877 {
2878         struct spi_device *spi;
2879
2880         if (acpi_bus_get_status(adev) || !adev->status.present ||
2881             acpi_device_enumerated(adev))
2882                 return AE_OK;
2883
2884         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2885         if (IS_ERR(spi)) {
2886                 if (PTR_ERR(spi) == -ENOMEM)
2887                         return AE_NO_MEMORY;
2888                 else
2889                         return AE_OK;
2890         }
2891
2892         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2893                           sizeof(spi->modalias));
2894
2895         if (spi->irq < 0)
2896                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2897
2898         acpi_device_set_enumerated(adev);
2899
2900         adev->power.flags.ignore_parent = true;
2901         if (spi_add_device(spi)) {
2902                 adev->power.flags.ignore_parent = false;
2903                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2904                         dev_name(&adev->dev));
2905                 spi_dev_put(spi);
2906         }
2907
2908         return AE_OK;
2909 }
2910
2911 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2912                                        void *data, void **return_value)
2913 {
2914         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2915         struct spi_controller *ctlr = data;
2916
2917         if (!adev)
2918                 return AE_OK;
2919
2920         return acpi_register_spi_device(ctlr, adev);
2921 }
2922
2923 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2924
2925 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2926 {
2927         acpi_status status;
2928         acpi_handle handle;
2929
2930         handle = ACPI_HANDLE(ctlr->dev.parent);
2931         if (!handle)
2932                 return;
2933
2934         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2935                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2936                                      acpi_spi_add_device, NULL, ctlr, NULL);
2937         if (ACPI_FAILURE(status))
2938                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2939 }
2940 #else
2941 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2942 #endif /* CONFIG_ACPI */
2943
2944 static void spi_controller_release(struct device *dev)
2945 {
2946         struct spi_controller *ctlr;
2947
2948         ctlr = container_of(dev, struct spi_controller, dev);
2949         kfree(ctlr);
2950 }
2951
2952 static struct class spi_master_class = {
2953         .name           = "spi_master",
2954         .dev_release    = spi_controller_release,
2955         .dev_groups     = spi_master_groups,
2956 };
2957
2958 #ifdef CONFIG_SPI_SLAVE
2959 /**
2960  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2961  *                   controller
2962  * @spi: device used for the current transfer
2963  */
2964 int spi_slave_abort(struct spi_device *spi)
2965 {
2966         struct spi_controller *ctlr = spi->controller;
2967
2968         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2969                 return ctlr->slave_abort(ctlr);
2970
2971         return -ENOTSUPP;
2972 }
2973 EXPORT_SYMBOL_GPL(spi_slave_abort);
2974
2975 int spi_target_abort(struct spi_device *spi)
2976 {
2977         struct spi_controller *ctlr = spi->controller;
2978
2979         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2980                 return ctlr->target_abort(ctlr);
2981
2982         return -ENOTSUPP;
2983 }
2984 EXPORT_SYMBOL_GPL(spi_target_abort);
2985
2986 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2987                           char *buf)
2988 {
2989         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2990                                                    dev);
2991         struct device *child;
2992
2993         child = device_find_any_child(&ctlr->dev);
2994         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2995 }
2996
2997 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2998                            const char *buf, size_t count)
2999 {
3000         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
3001                                                    dev);
3002         struct spi_device *spi;
3003         struct device *child;
3004         char name[32];
3005         int rc;
3006
3007         rc = sscanf(buf, "%31s", name);
3008         if (rc != 1 || !name[0])
3009                 return -EINVAL;
3010
3011         child = device_find_any_child(&ctlr->dev);
3012         if (child) {
3013                 /* Remove registered slave */
3014                 device_unregister(child);
3015                 put_device(child);
3016         }
3017
3018         if (strcmp(name, "(null)")) {
3019                 /* Register new slave */
3020                 spi = spi_alloc_device(ctlr);
3021                 if (!spi)
3022                         return -ENOMEM;
3023
3024                 strscpy(spi->modalias, name, sizeof(spi->modalias));
3025
3026                 rc = spi_add_device(spi);
3027                 if (rc) {
3028                         spi_dev_put(spi);
3029                         return rc;
3030                 }
3031         }
3032
3033         return count;
3034 }
3035
3036 static DEVICE_ATTR_RW(slave);
3037
3038 static struct attribute *spi_slave_attrs[] = {
3039         &dev_attr_slave.attr,
3040         NULL,
3041 };
3042
3043 static const struct attribute_group spi_slave_group = {
3044         .attrs = spi_slave_attrs,
3045 };
3046
3047 static const struct attribute_group *spi_slave_groups[] = {
3048         &spi_controller_statistics_group,
3049         &spi_slave_group,
3050         NULL,
3051 };
3052
3053 static struct class spi_slave_class = {
3054         .name           = "spi_slave",
3055         .dev_release    = spi_controller_release,
3056         .dev_groups     = spi_slave_groups,
3057 };
3058 #else
3059 extern struct class spi_slave_class;    /* dummy */
3060 #endif
3061
3062 /**
3063  * __spi_alloc_controller - allocate an SPI master or slave controller
3064  * @dev: the controller, possibly using the platform_bus
3065  * @size: how much zeroed driver-private data to allocate; the pointer to this
3066  *      memory is in the driver_data field of the returned device, accessible
3067  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3068  *      drivers granting DMA access to portions of their private data need to
3069  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3070  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3071  *      slave (true) controller
3072  * Context: can sleep
3073  *
3074  * This call is used only by SPI controller drivers, which are the
3075  * only ones directly touching chip registers.  It's how they allocate
3076  * an spi_controller structure, prior to calling spi_register_controller().
3077  *
3078  * This must be called from context that can sleep.
3079  *
3080  * The caller is responsible for assigning the bus number and initializing the
3081  * controller's methods before calling spi_register_controller(); and (after
3082  * errors adding the device) calling spi_controller_put() to prevent a memory
3083  * leak.
3084  *
3085  * Return: the SPI controller structure on success, else NULL.
3086  */
3087 struct spi_controller *__spi_alloc_controller(struct device *dev,
3088                                               unsigned int size, bool slave)
3089 {
3090         struct spi_controller   *ctlr;
3091         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3092
3093         if (!dev)
3094                 return NULL;
3095
3096         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3097         if (!ctlr)
3098                 return NULL;
3099
3100         device_initialize(&ctlr->dev);
3101         INIT_LIST_HEAD(&ctlr->queue);
3102         spin_lock_init(&ctlr->queue_lock);
3103         spin_lock_init(&ctlr->bus_lock_spinlock);
3104         mutex_init(&ctlr->bus_lock_mutex);
3105         mutex_init(&ctlr->io_mutex);
3106         mutex_init(&ctlr->add_lock);
3107         ctlr->bus_num = -1;
3108         ctlr->num_chipselect = 1;
3109         ctlr->slave = slave;
3110         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3111                 ctlr->dev.class = &spi_slave_class;
3112         else
3113                 ctlr->dev.class = &spi_master_class;
3114         ctlr->dev.parent = dev;
3115         pm_suspend_ignore_children(&ctlr->dev, true);
3116         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3117
3118         return ctlr;
3119 }
3120 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3121
3122 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3123 {
3124         spi_controller_put(*(struct spi_controller **)ctlr);
3125 }
3126
3127 /**
3128  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3129  * @dev: physical device of SPI controller
3130  * @size: how much zeroed driver-private data to allocate
3131  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3132  * Context: can sleep
3133  *
3134  * Allocate an SPI controller and automatically release a reference on it
3135  * when @dev is unbound from its driver.  Drivers are thus relieved from
3136  * having to call spi_controller_put().
3137  *
3138  * The arguments to this function are identical to __spi_alloc_controller().
3139  *
3140  * Return: the SPI controller structure on success, else NULL.
3141  */
3142 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3143                                                    unsigned int size,
3144                                                    bool slave)
3145 {
3146         struct spi_controller **ptr, *ctlr;
3147
3148         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3149                            GFP_KERNEL);
3150         if (!ptr)
3151                 return NULL;
3152
3153         ctlr = __spi_alloc_controller(dev, size, slave);
3154         if (ctlr) {
3155                 ctlr->devm_allocated = true;
3156                 *ptr = ctlr;
3157                 devres_add(dev, ptr);
3158         } else {
3159                 devres_free(ptr);
3160         }
3161
3162         return ctlr;
3163 }
3164 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3165
3166 /**
3167  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3168  * @ctlr: The SPI master to grab GPIO descriptors for
3169  */
3170 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3171 {
3172         int nb, i;
3173         struct gpio_desc **cs;
3174         struct device *dev = &ctlr->dev;
3175         unsigned long native_cs_mask = 0;
3176         unsigned int num_cs_gpios = 0;
3177
3178         nb = gpiod_count(dev, "cs");
3179         if (nb < 0) {
3180                 /* No GPIOs at all is fine, else return the error */
3181                 if (nb == -ENOENT)
3182                         return 0;
3183                 return nb;
3184         }
3185
3186         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3187
3188         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3189                           GFP_KERNEL);
3190         if (!cs)
3191                 return -ENOMEM;
3192         ctlr->cs_gpiods = cs;
3193
3194         for (i = 0; i < nb; i++) {
3195                 /*
3196                  * Most chipselects are active low, the inverted
3197                  * semantics are handled by special quirks in gpiolib,
3198                  * so initializing them GPIOD_OUT_LOW here means
3199                  * "unasserted", in most cases this will drive the physical
3200                  * line high.
3201                  */
3202                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3203                                                       GPIOD_OUT_LOW);
3204                 if (IS_ERR(cs[i]))
3205                         return PTR_ERR(cs[i]);
3206
3207                 if (cs[i]) {
3208                         /*
3209                          * If we find a CS GPIO, name it after the device and
3210                          * chip select line.
3211                          */
3212                         char *gpioname;
3213
3214                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3215                                                   dev_name(dev), i);
3216                         if (!gpioname)
3217                                 return -ENOMEM;
3218                         gpiod_set_consumer_name(cs[i], gpioname);
3219                         num_cs_gpios++;
3220                         continue;
3221                 }
3222
3223                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3224                         dev_err(dev, "Invalid native chip select %d\n", i);
3225                         return -EINVAL;
3226                 }
3227                 native_cs_mask |= BIT(i);
3228         }
3229
3230         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3231
3232         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3233             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3234                 dev_err(dev, "No unused native chip select available\n");
3235                 return -EINVAL;
3236         }
3237
3238         return 0;
3239 }
3240
3241 static int spi_controller_check_ops(struct spi_controller *ctlr)
3242 {
3243         /*
3244          * The controller may implement only the high-level SPI-memory like
3245          * operations if it does not support regular SPI transfers, and this is
3246          * valid use case.
3247          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3248          * one of the ->transfer_xxx() method be implemented.
3249          */
3250         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3251                 if (!ctlr->transfer && !ctlr->transfer_one &&
3252                    !ctlr->transfer_one_message) {
3253                         return -EINVAL;
3254                 }
3255         }
3256
3257         return 0;
3258 }
3259
3260 /* Allocate dynamic bus number using Linux idr */
3261 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3262 {
3263         int id;
3264
3265         mutex_lock(&board_lock);
3266         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3267         mutex_unlock(&board_lock);
3268         if (WARN(id < 0, "couldn't get idr"))
3269                 return id == -ENOSPC ? -EBUSY : id;
3270         ctlr->bus_num = id;
3271         return 0;
3272 }
3273
3274 /**
3275  * spi_register_controller - register SPI master or slave controller
3276  * @ctlr: initialized master, originally from spi_alloc_master() or
3277  *      spi_alloc_slave()
3278  * Context: can sleep
3279  *
3280  * SPI controllers connect to their drivers using some non-SPI bus,
3281  * such as the platform bus.  The final stage of probe() in that code
3282  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3283  *
3284  * SPI controllers use board specific (often SOC specific) bus numbers,
3285  * and board-specific addressing for SPI devices combines those numbers
3286  * with chip select numbers.  Since SPI does not directly support dynamic
3287  * device identification, boards need configuration tables telling which
3288  * chip is at which address.
3289  *
3290  * This must be called from context that can sleep.  It returns zero on
3291  * success, else a negative error code (dropping the controller's refcount).
3292  * After a successful return, the caller is responsible for calling
3293  * spi_unregister_controller().
3294  *
3295  * Return: zero on success, else a negative error code.
3296  */
3297 int spi_register_controller(struct spi_controller *ctlr)
3298 {
3299         struct device           *dev = ctlr->dev.parent;
3300         struct boardinfo        *bi;
3301         int                     first_dynamic;
3302         int                     status;
3303         int                     idx;
3304
3305         if (!dev)
3306                 return -ENODEV;
3307
3308         /*
3309          * Make sure all necessary hooks are implemented before registering
3310          * the SPI controller.
3311          */
3312         status = spi_controller_check_ops(ctlr);
3313         if (status)
3314                 return status;
3315
3316         if (ctlr->bus_num < 0)
3317                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3318         if (ctlr->bus_num >= 0) {
3319                 /* Devices with a fixed bus num must check-in with the num */
3320                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3321                 if (status)
3322                         return status;
3323         }
3324         if (ctlr->bus_num < 0) {
3325                 first_dynamic = of_alias_get_highest_id("spi");
3326                 if (first_dynamic < 0)
3327                         first_dynamic = 0;
3328                 else
3329                         first_dynamic++;
3330
3331                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3332                 if (status)
3333                         return status;
3334         }
3335         ctlr->bus_lock_flag = 0;
3336         init_completion(&ctlr->xfer_completion);
3337         init_completion(&ctlr->cur_msg_completion);
3338         if (!ctlr->max_dma_len)
3339                 ctlr->max_dma_len = INT_MAX;
3340
3341         /*
3342          * Register the device, then userspace will see it.
3343          * Registration fails if the bus ID is in use.
3344          */
3345         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3346
3347         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3348                 status = spi_get_gpio_descs(ctlr);
3349                 if (status)
3350                         goto free_bus_id;
3351                 /*
3352                  * A controller using GPIO descriptors always
3353                  * supports SPI_CS_HIGH if need be.
3354                  */
3355                 ctlr->mode_bits |= SPI_CS_HIGH;
3356         }
3357
3358         /*
3359          * Even if it's just one always-selected device, there must
3360          * be at least one chipselect.
3361          */
3362         if (!ctlr->num_chipselect) {
3363                 status = -EINVAL;
3364                 goto free_bus_id;
3365         }
3366
3367         /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3368         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3369                 ctlr->last_cs[idx] = SPI_INVALID_CS;
3370
3371         status = device_add(&ctlr->dev);
3372         if (status < 0)
3373                 goto free_bus_id;
3374         dev_dbg(dev, "registered %s %s\n",
3375                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3376                         dev_name(&ctlr->dev));
3377
3378         /*
3379          * If we're using a queued driver, start the queue. Note that we don't
3380          * need the queueing logic if the driver is only supporting high-level
3381          * memory operations.
3382          */
3383         if (ctlr->transfer) {
3384                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3385         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3386                 status = spi_controller_initialize_queue(ctlr);
3387                 if (status) {
3388                         device_del(&ctlr->dev);
3389                         goto free_bus_id;
3390                 }
3391         }
3392         /* Add statistics */
3393         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3394         if (!ctlr->pcpu_statistics) {
3395                 dev_err(dev, "Error allocating per-cpu statistics\n");
3396                 status = -ENOMEM;
3397                 goto destroy_queue;
3398         }
3399
3400         mutex_lock(&board_lock);
3401         list_add_tail(&ctlr->list, &spi_controller_list);
3402         list_for_each_entry(bi, &board_list, list)
3403                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3404         mutex_unlock(&board_lock);
3405
3406         /* Register devices from the device tree and ACPI */
3407         of_register_spi_devices(ctlr);
3408         acpi_register_spi_devices(ctlr);
3409         return status;
3410
3411 destroy_queue:
3412         spi_destroy_queue(ctlr);
3413 free_bus_id:
3414         mutex_lock(&board_lock);
3415         idr_remove(&spi_master_idr, ctlr->bus_num);
3416         mutex_unlock(&board_lock);
3417         return status;
3418 }
3419 EXPORT_SYMBOL_GPL(spi_register_controller);
3420
3421 static void devm_spi_unregister(struct device *dev, void *res)
3422 {
3423         spi_unregister_controller(*(struct spi_controller **)res);
3424 }
3425
3426 /**
3427  * devm_spi_register_controller - register managed SPI master or slave
3428  *      controller
3429  * @dev:    device managing SPI controller
3430  * @ctlr: initialized controller, originally from spi_alloc_master() or
3431  *      spi_alloc_slave()
3432  * Context: can sleep
3433  *
3434  * Register a SPI device as with spi_register_controller() which will
3435  * automatically be unregistered and freed.
3436  *
3437  * Return: zero on success, else a negative error code.
3438  */
3439 int devm_spi_register_controller(struct device *dev,
3440                                  struct spi_controller *ctlr)
3441 {
3442         struct spi_controller **ptr;
3443         int ret;
3444
3445         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3446         if (!ptr)
3447                 return -ENOMEM;
3448
3449         ret = spi_register_controller(ctlr);
3450         if (!ret) {
3451                 *ptr = ctlr;
3452                 devres_add(dev, ptr);
3453         } else {
3454                 devres_free(ptr);
3455         }
3456
3457         return ret;
3458 }
3459 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3460
3461 static int __unregister(struct device *dev, void *null)
3462 {
3463         spi_unregister_device(to_spi_device(dev));
3464         return 0;
3465 }
3466
3467 /**
3468  * spi_unregister_controller - unregister SPI master or slave controller
3469  * @ctlr: the controller being unregistered
3470  * Context: can sleep
3471  *
3472  * This call is used only by SPI controller drivers, which are the
3473  * only ones directly touching chip registers.
3474  *
3475  * This must be called from context that can sleep.
3476  *
3477  * Note that this function also drops a reference to the controller.
3478  */
3479 void spi_unregister_controller(struct spi_controller *ctlr)
3480 {
3481         struct spi_controller *found;
3482         int id = ctlr->bus_num;
3483
3484         /* Prevent addition of new devices, unregister existing ones */
3485         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3486                 mutex_lock(&ctlr->add_lock);
3487
3488         device_for_each_child(&ctlr->dev, NULL, __unregister);
3489
3490         /* First make sure that this controller was ever added */
3491         mutex_lock(&board_lock);
3492         found = idr_find(&spi_master_idr, id);
3493         mutex_unlock(&board_lock);
3494         if (ctlr->queued) {
3495                 if (spi_destroy_queue(ctlr))
3496                         dev_err(&ctlr->dev, "queue remove failed\n");
3497         }
3498         mutex_lock(&board_lock);
3499         list_del(&ctlr->list);
3500         mutex_unlock(&board_lock);
3501
3502         device_del(&ctlr->dev);
3503
3504         /* Free bus id */
3505         mutex_lock(&board_lock);
3506         if (found == ctlr)
3507                 idr_remove(&spi_master_idr, id);
3508         mutex_unlock(&board_lock);
3509
3510         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3511                 mutex_unlock(&ctlr->add_lock);
3512
3513         /*
3514          * Release the last reference on the controller if its driver
3515          * has not yet been converted to devm_spi_alloc_master/slave().
3516          */
3517         if (!ctlr->devm_allocated)
3518                 put_device(&ctlr->dev);
3519 }
3520 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3521
3522 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3523 {
3524         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3525 }
3526
3527 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3528 {
3529         mutex_lock(&ctlr->bus_lock_mutex);
3530         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3531         mutex_unlock(&ctlr->bus_lock_mutex);
3532 }
3533
3534 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3535 {
3536         mutex_lock(&ctlr->bus_lock_mutex);
3537         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3538         mutex_unlock(&ctlr->bus_lock_mutex);
3539 }
3540
3541 int spi_controller_suspend(struct spi_controller *ctlr)
3542 {
3543         int ret = 0;
3544
3545         /* Basically no-ops for non-queued controllers */
3546         if (ctlr->queued) {
3547                 ret = spi_stop_queue(ctlr);
3548                 if (ret)
3549                         dev_err(&ctlr->dev, "queue stop failed\n");
3550         }
3551
3552         __spi_mark_suspended(ctlr);
3553         return ret;
3554 }
3555 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3556
3557 int spi_controller_resume(struct spi_controller *ctlr)
3558 {
3559         int ret = 0;
3560
3561         __spi_mark_resumed(ctlr);
3562
3563         if (ctlr->queued) {
3564                 ret = spi_start_queue(ctlr);
3565                 if (ret)
3566                         dev_err(&ctlr->dev, "queue restart failed\n");
3567         }
3568         return ret;
3569 }
3570 EXPORT_SYMBOL_GPL(spi_controller_resume);
3571
3572 /*-------------------------------------------------------------------------*/
3573
3574 /* Core methods for spi_message alterations */
3575
3576 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3577                                             struct spi_message *msg,
3578                                             void *res)
3579 {
3580         struct spi_replaced_transfers *rxfer = res;
3581         size_t i;
3582
3583         /* Call extra callback if requested */
3584         if (rxfer->release)
3585                 rxfer->release(ctlr, msg, res);
3586
3587         /* Insert replaced transfers back into the message */
3588         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3589
3590         /* Remove the formerly inserted entries */
3591         for (i = 0; i < rxfer->inserted; i++)
3592                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3593 }
3594
3595 /**
3596  * spi_replace_transfers - replace transfers with several transfers
3597  *                         and register change with spi_message.resources
3598  * @msg:           the spi_message we work upon
3599  * @xfer_first:    the first spi_transfer we want to replace
3600  * @remove:        number of transfers to remove
3601  * @insert:        the number of transfers we want to insert instead
3602  * @release:       extra release code necessary in some circumstances
3603  * @extradatasize: extra data to allocate (with alignment guarantees
3604  *                 of struct @spi_transfer)
3605  * @gfp:           gfp flags
3606  *
3607  * Returns: pointer to @spi_replaced_transfers,
3608  *          PTR_ERR(...) in case of errors.
3609  */
3610 static struct spi_replaced_transfers *spi_replace_transfers(
3611         struct spi_message *msg,
3612         struct spi_transfer *xfer_first,
3613         size_t remove,
3614         size_t insert,
3615         spi_replaced_release_t release,
3616         size_t extradatasize,
3617         gfp_t gfp)
3618 {
3619         struct spi_replaced_transfers *rxfer;
3620         struct spi_transfer *xfer;
3621         size_t i;
3622
3623         /* Allocate the structure using spi_res */
3624         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3625                               struct_size(rxfer, inserted_transfers, insert)
3626                               + extradatasize,
3627                               gfp);
3628         if (!rxfer)
3629                 return ERR_PTR(-ENOMEM);
3630
3631         /* The release code to invoke before running the generic release */
3632         rxfer->release = release;
3633
3634         /* Assign extradata */
3635         if (extradatasize)
3636                 rxfer->extradata =
3637                         &rxfer->inserted_transfers[insert];
3638
3639         /* Init the replaced_transfers list */
3640         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3641
3642         /*
3643          * Assign the list_entry after which we should reinsert
3644          * the @replaced_transfers - it may be spi_message.messages!
3645          */
3646         rxfer->replaced_after = xfer_first->transfer_list.prev;
3647
3648         /* Remove the requested number of transfers */
3649         for (i = 0; i < remove; i++) {
3650                 /*
3651                  * If the entry after replaced_after it is msg->transfers
3652                  * then we have been requested to remove more transfers
3653                  * than are in the list.
3654                  */
3655                 if (rxfer->replaced_after->next == &msg->transfers) {
3656                         dev_err(&msg->spi->dev,
3657                                 "requested to remove more spi_transfers than are available\n");
3658                         /* Insert replaced transfers back into the message */
3659                         list_splice(&rxfer->replaced_transfers,
3660                                     rxfer->replaced_after);
3661
3662                         /* Free the spi_replace_transfer structure... */
3663                         spi_res_free(rxfer);
3664
3665                         /* ...and return with an error */
3666                         return ERR_PTR(-EINVAL);
3667                 }
3668
3669                 /*
3670                  * Remove the entry after replaced_after from list of
3671                  * transfers and add it to list of replaced_transfers.
3672                  */
3673                 list_move_tail(rxfer->replaced_after->next,
3674                                &rxfer->replaced_transfers);
3675         }
3676
3677         /*
3678          * Create copy of the given xfer with identical settings
3679          * based on the first transfer to get removed.
3680          */
3681         for (i = 0; i < insert; i++) {
3682                 /* We need to run in reverse order */
3683                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3684
3685                 /* Copy all spi_transfer data */
3686                 memcpy(xfer, xfer_first, sizeof(*xfer));
3687
3688                 /* Add to list */
3689                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3690
3691                 /* Clear cs_change and delay for all but the last */
3692                 if (i) {
3693                         xfer->cs_change = false;
3694                         xfer->delay.value = 0;
3695                 }
3696         }
3697
3698         /* Set up inserted... */
3699         rxfer->inserted = insert;
3700
3701         /* ...and register it with spi_res/spi_message */
3702         spi_res_add(msg, rxfer);
3703
3704         return rxfer;
3705 }
3706
3707 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3708                                         struct spi_message *msg,
3709                                         struct spi_transfer **xferp,
3710                                         size_t maxsize)
3711 {
3712         struct spi_transfer *xfer = *xferp, *xfers;
3713         struct spi_replaced_transfers *srt;
3714         size_t offset;
3715         size_t count, i;
3716
3717         /* Calculate how many we have to replace */
3718         count = DIV_ROUND_UP(xfer->len, maxsize);
3719
3720         /* Create replacement */
3721         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3722         if (IS_ERR(srt))
3723                 return PTR_ERR(srt);
3724         xfers = srt->inserted_transfers;
3725
3726         /*
3727          * Now handle each of those newly inserted spi_transfers.
3728          * Note that the replacements spi_transfers all are preset
3729          * to the same values as *xferp, so tx_buf, rx_buf and len
3730          * are all identical (as well as most others)
3731          * so we just have to fix up len and the pointers.
3732          */
3733
3734         /*
3735          * The first transfer just needs the length modified, so we
3736          * run it outside the loop.
3737          */
3738         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3739
3740         /* All the others need rx_buf/tx_buf also set */
3741         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3742                 /* Update rx_buf, tx_buf and DMA */
3743                 if (xfers[i].rx_buf)
3744                         xfers[i].rx_buf += offset;
3745                 if (xfers[i].tx_buf)
3746                         xfers[i].tx_buf += offset;
3747
3748                 /* Update length */
3749                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3750         }
3751
3752         /*
3753          * We set up xferp to the last entry we have inserted,
3754          * so that we skip those already split transfers.
3755          */
3756         *xferp = &xfers[count - 1];
3757
3758         /* Increment statistics counters */
3759         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3760                                        transfers_split_maxsize);
3761         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3762                                        transfers_split_maxsize);
3763
3764         return 0;
3765 }
3766
3767 /**
3768  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3769  *                               when an individual transfer exceeds a
3770  *                               certain size
3771  * @ctlr:    the @spi_controller for this transfer
3772  * @msg:   the @spi_message to transform
3773  * @maxsize:  the maximum when to apply this
3774  *
3775  * This function allocates resources that are automatically freed during the
3776  * spi message unoptimize phase so this function should only be called from
3777  * optimize_message callbacks.
3778  *
3779  * Return: status of transformation
3780  */
3781 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3782                                 struct spi_message *msg,
3783                                 size_t maxsize)
3784 {
3785         struct spi_transfer *xfer;
3786         int ret;
3787
3788         /*
3789          * Iterate over the transfer_list,
3790          * but note that xfer is advanced to the last transfer inserted
3791          * to avoid checking sizes again unnecessarily (also xfer does
3792          * potentially belong to a different list by the time the
3793          * replacement has happened).
3794          */
3795         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3796                 if (xfer->len > maxsize) {
3797                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3798                                                            maxsize);
3799                         if (ret)
3800                                 return ret;
3801                 }
3802         }
3803
3804         return 0;
3805 }
3806 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3807
3808
3809 /**
3810  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3811  *                                when an individual transfer exceeds a
3812  *                                certain number of SPI words
3813  * @ctlr:     the @spi_controller for this transfer
3814  * @msg:      the @spi_message to transform
3815  * @maxwords: the number of words to limit each transfer to
3816  *
3817  * This function allocates resources that are automatically freed during the
3818  * spi message unoptimize phase so this function should only be called from
3819  * optimize_message callbacks.
3820  *
3821  * Return: status of transformation
3822  */
3823 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3824                                  struct spi_message *msg,
3825                                  size_t maxwords)
3826 {
3827         struct spi_transfer *xfer;
3828
3829         /*
3830          * Iterate over the transfer_list,
3831          * but note that xfer is advanced to the last transfer inserted
3832          * to avoid checking sizes again unnecessarily (also xfer does
3833          * potentially belong to a different list by the time the
3834          * replacement has happened).
3835          */
3836         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3837                 size_t maxsize;
3838                 int ret;
3839
3840                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3841                 if (xfer->len > maxsize) {
3842                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3843                                                            maxsize);
3844                         if (ret)
3845                                 return ret;
3846                 }
3847         }
3848
3849         return 0;
3850 }
3851 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3852
3853 /*-------------------------------------------------------------------------*/
3854
3855 /*
3856  * Core methods for SPI controller protocol drivers. Some of the
3857  * other core methods are currently defined as inline functions.
3858  */
3859
3860 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3861                                         u8 bits_per_word)
3862 {
3863         if (ctlr->bits_per_word_mask) {
3864                 /* Only 32 bits fit in the mask */
3865                 if (bits_per_word > 32)
3866                         return -EINVAL;
3867                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3868                         return -EINVAL;
3869         }
3870
3871         return 0;
3872 }
3873
3874 /**
3875  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3876  * @spi: the device that requires specific CS timing configuration
3877  *
3878  * Return: zero on success, else a negative error code.
3879  */
3880 static int spi_set_cs_timing(struct spi_device *spi)
3881 {
3882         struct device *parent = spi->controller->dev.parent;
3883         int status = 0;
3884
3885         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3886                 if (spi->controller->auto_runtime_pm) {
3887                         status = pm_runtime_get_sync(parent);
3888                         if (status < 0) {
3889                                 pm_runtime_put_noidle(parent);
3890                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3891                                         status);
3892                                 return status;
3893                         }
3894
3895                         status = spi->controller->set_cs_timing(spi);
3896                         pm_runtime_mark_last_busy(parent);
3897                         pm_runtime_put_autosuspend(parent);
3898                 } else {
3899                         status = spi->controller->set_cs_timing(spi);
3900                 }
3901         }
3902         return status;
3903 }
3904
3905 /**
3906  * spi_setup - setup SPI mode and clock rate
3907  * @spi: the device whose settings are being modified
3908  * Context: can sleep, and no requests are queued to the device
3909  *
3910  * SPI protocol drivers may need to update the transfer mode if the
3911  * device doesn't work with its default.  They may likewise need
3912  * to update clock rates or word sizes from initial values.  This function
3913  * changes those settings, and must be called from a context that can sleep.
3914  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3915  * effect the next time the device is selected and data is transferred to
3916  * or from it.  When this function returns, the SPI device is deselected.
3917  *
3918  * Note that this call will fail if the protocol driver specifies an option
3919  * that the underlying controller or its driver does not support.  For
3920  * example, not all hardware supports wire transfers using nine bit words,
3921  * LSB-first wire encoding, or active-high chipselects.
3922  *
3923  * Return: zero on success, else a negative error code.
3924  */
3925 int spi_setup(struct spi_device *spi)
3926 {
3927         unsigned        bad_bits, ugly_bits;
3928         int             status = 0;
3929
3930         /*
3931          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3932          * are set at the same time.
3933          */
3934         if ((hweight_long(spi->mode &
3935                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3936             (hweight_long(spi->mode &
3937                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3938                 dev_err(&spi->dev,
3939                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3940                 return -EINVAL;
3941         }
3942         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3943         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3944                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3945                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3946                 return -EINVAL;
3947         /*
3948          * Help drivers fail *cleanly* when they need options
3949          * that aren't supported with their current controller.
3950          * SPI_CS_WORD has a fallback software implementation,
3951          * so it is ignored here.
3952          */
3953         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3954                                  SPI_NO_TX | SPI_NO_RX);
3955         ugly_bits = bad_bits &
3956                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3957                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3958         if (ugly_bits) {
3959                 dev_warn(&spi->dev,
3960                          "setup: ignoring unsupported mode bits %x\n",
3961                          ugly_bits);
3962                 spi->mode &= ~ugly_bits;
3963                 bad_bits &= ~ugly_bits;
3964         }
3965         if (bad_bits) {
3966                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3967                         bad_bits);
3968                 return -EINVAL;
3969         }
3970
3971         if (!spi->bits_per_word) {
3972                 spi->bits_per_word = 8;
3973         } else {
3974                 /*
3975                  * Some controllers may not support the default 8 bits-per-word
3976                  * so only perform the check when this is explicitly provided.
3977                  */
3978                 status = __spi_validate_bits_per_word(spi->controller,
3979                                                       spi->bits_per_word);
3980                 if (status)
3981                         return status;
3982         }
3983
3984         if (spi->controller->max_speed_hz &&
3985             (!spi->max_speed_hz ||
3986              spi->max_speed_hz > spi->controller->max_speed_hz))
3987                 spi->max_speed_hz = spi->controller->max_speed_hz;
3988
3989         mutex_lock(&spi->controller->io_mutex);
3990
3991         if (spi->controller->setup) {
3992                 status = spi->controller->setup(spi);
3993                 if (status) {
3994                         mutex_unlock(&spi->controller->io_mutex);
3995                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3996                                 status);
3997                         return status;
3998                 }
3999         }
4000
4001         status = spi_set_cs_timing(spi);
4002         if (status) {
4003                 mutex_unlock(&spi->controller->io_mutex);
4004                 return status;
4005         }
4006
4007         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
4008                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
4009                 if (status < 0) {
4010                         mutex_unlock(&spi->controller->io_mutex);
4011                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4012                                 status);
4013                         return status;
4014                 }
4015
4016                 /*
4017                  * We do not want to return positive value from pm_runtime_get,
4018                  * there are many instances of devices calling spi_setup() and
4019                  * checking for a non-zero return value instead of a negative
4020                  * return value.
4021                  */
4022                 status = 0;
4023
4024                 spi_set_cs(spi, false, true);
4025                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4026                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4027         } else {
4028                 spi_set_cs(spi, false, true);
4029         }
4030
4031         mutex_unlock(&spi->controller->io_mutex);
4032
4033         if (spi->rt && !spi->controller->rt) {
4034                 spi->controller->rt = true;
4035                 spi_set_thread_rt(spi->controller);
4036         }
4037
4038         trace_spi_setup(spi, status);
4039
4040         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4041                         spi->mode & SPI_MODE_X_MASK,
4042                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4043                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4044                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4045                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4046                         spi->bits_per_word, spi->max_speed_hz,
4047                         status);
4048
4049         return status;
4050 }
4051 EXPORT_SYMBOL_GPL(spi_setup);
4052
4053 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4054                                        struct spi_device *spi)
4055 {
4056         int delay1, delay2;
4057
4058         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4059         if (delay1 < 0)
4060                 return delay1;
4061
4062         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4063         if (delay2 < 0)
4064                 return delay2;
4065
4066         if (delay1 < delay2)
4067                 memcpy(&xfer->word_delay, &spi->word_delay,
4068                        sizeof(xfer->word_delay));
4069
4070         return 0;
4071 }
4072
4073 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4074 {
4075         struct spi_controller *ctlr = spi->controller;
4076         struct spi_transfer *xfer;
4077         int w_size;
4078
4079         if (list_empty(&message->transfers))
4080                 return -EINVAL;
4081
4082         message->spi = spi;
4083
4084         /*
4085          * Half-duplex links include original MicroWire, and ones with
4086          * only one data pin like SPI_3WIRE (switches direction) or where
4087          * either MOSI or MISO is missing.  They can also be caused by
4088          * software limitations.
4089          */
4090         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4091             (spi->mode & SPI_3WIRE)) {
4092                 unsigned flags = ctlr->flags;
4093
4094                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4095                         if (xfer->rx_buf && xfer->tx_buf)
4096                                 return -EINVAL;
4097                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4098                                 return -EINVAL;
4099                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4100                                 return -EINVAL;
4101                 }
4102         }
4103
4104         /*
4105          * Set transfer bits_per_word and max speed as spi device default if
4106          * it is not set for this transfer.
4107          * Set transfer tx_nbits and rx_nbits as single transfer default
4108          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4109          * Ensure transfer word_delay is at least as long as that required by
4110          * device itself.
4111          */
4112         message->frame_length = 0;
4113         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4114                 xfer->effective_speed_hz = 0;
4115                 message->frame_length += xfer->len;
4116                 if (!xfer->bits_per_word)
4117                         xfer->bits_per_word = spi->bits_per_word;
4118
4119                 if (!xfer->speed_hz)
4120                         xfer->speed_hz = spi->max_speed_hz;
4121
4122                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4123                         xfer->speed_hz = ctlr->max_speed_hz;
4124
4125                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4126                         return -EINVAL;
4127
4128                 /*
4129                  * SPI transfer length should be multiple of SPI word size
4130                  * where SPI word size should be power-of-two multiple.
4131                  */
4132                 if (xfer->bits_per_word <= 8)
4133                         w_size = 1;
4134                 else if (xfer->bits_per_word <= 16)
4135                         w_size = 2;
4136                 else
4137                         w_size = 4;
4138
4139                 /* No partial transfers accepted */
4140                 if (xfer->len % w_size)
4141                         return -EINVAL;
4142
4143                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4144                     xfer->speed_hz < ctlr->min_speed_hz)
4145                         return -EINVAL;
4146
4147                 if (xfer->tx_buf && !xfer->tx_nbits)
4148                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4149                 if (xfer->rx_buf && !xfer->rx_nbits)
4150                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4151                 /*
4152                  * Check transfer tx/rx_nbits:
4153                  * 1. check the value matches one of single, dual and quad
4154                  * 2. check tx/rx_nbits match the mode in spi_device
4155                  */
4156                 if (xfer->tx_buf) {
4157                         if (spi->mode & SPI_NO_TX)
4158                                 return -EINVAL;
4159                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4160                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4161                                 xfer->tx_nbits != SPI_NBITS_QUAD &&
4162                                 xfer->tx_nbits != SPI_NBITS_OCTAL)
4163                                 return -EINVAL;
4164                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4165                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4166                                 return -EINVAL;
4167                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4168                                 !(spi->mode & SPI_TX_QUAD))
4169                                 return -EINVAL;
4170                 }
4171                 /* Check transfer rx_nbits */
4172                 if (xfer->rx_buf) {
4173                         if (spi->mode & SPI_NO_RX)
4174                                 return -EINVAL;
4175                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4176                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4177                                 xfer->rx_nbits != SPI_NBITS_QUAD &&
4178                                 xfer->rx_nbits != SPI_NBITS_OCTAL)
4179                                 return -EINVAL;
4180                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4181                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4182                                 return -EINVAL;
4183                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4184                                 !(spi->mode & SPI_RX_QUAD))
4185                                 return -EINVAL;
4186                 }
4187
4188                 if (_spi_xfer_word_delay_update(xfer, spi))
4189                         return -EINVAL;
4190         }
4191
4192         message->status = -EINPROGRESS;
4193
4194         return 0;
4195 }
4196
4197 /*
4198  * spi_split_transfers - generic handling of transfer splitting
4199  * @msg: the message to split
4200  *
4201  * Under certain conditions, a SPI controller may not support arbitrary
4202  * transfer sizes or other features required by a peripheral. This function
4203  * will split the transfers in the message into smaller transfers that are
4204  * supported by the controller.
4205  *
4206  * Controllers with special requirements not covered here can also split
4207  * transfers in the optimize_message() callback.
4208  *
4209  * Context: can sleep
4210  * Return: zero on success, else a negative error code
4211  */
4212 static int spi_split_transfers(struct spi_message *msg)
4213 {
4214         struct spi_controller *ctlr = msg->spi->controller;
4215         struct spi_transfer *xfer;
4216         int ret;
4217
4218         /*
4219          * If an SPI controller does not support toggling the CS line on each
4220          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4221          * for the CS line, we can emulate the CS-per-word hardware function by
4222          * splitting transfers into one-word transfers and ensuring that
4223          * cs_change is set for each transfer.
4224          */
4225         if ((msg->spi->mode & SPI_CS_WORD) &&
4226             (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4227                 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4228                 if (ret)
4229                         return ret;
4230
4231                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4232                         /* Don't change cs_change on the last entry in the list */
4233                         if (list_is_last(&xfer->transfer_list, &msg->transfers))
4234                                 break;
4235
4236                         xfer->cs_change = 1;
4237                 }
4238         } else {
4239                 ret = spi_split_transfers_maxsize(ctlr, msg,
4240                                                   spi_max_transfer_size(msg->spi));
4241                 if (ret)
4242                         return ret;
4243         }
4244
4245         return 0;
4246 }
4247
4248 /*
4249  * __spi_optimize_message - shared implementation for spi_optimize_message()
4250  *                          and spi_maybe_optimize_message()
4251  * @spi: the device that will be used for the message
4252  * @msg: the message to optimize
4253  *
4254  * Peripheral drivers will call spi_optimize_message() and the spi core will
4255  * call spi_maybe_optimize_message() instead of calling this directly.
4256  *
4257  * It is not valid to call this on a message that has already been optimized.
4258  *
4259  * Return: zero on success, else a negative error code
4260  */
4261 static int __spi_optimize_message(struct spi_device *spi,
4262                                   struct spi_message *msg)
4263 {
4264         struct spi_controller *ctlr = spi->controller;
4265         int ret;
4266
4267         ret = __spi_validate(spi, msg);
4268         if (ret)
4269                 return ret;
4270
4271         ret = spi_split_transfers(msg);
4272         if (ret)
4273                 return ret;
4274
4275         if (ctlr->optimize_message) {
4276                 ret = ctlr->optimize_message(msg);
4277                 if (ret) {
4278                         spi_res_release(ctlr, msg);
4279                         return ret;
4280                 }
4281         }
4282
4283         msg->optimized = true;
4284
4285         return 0;
4286 }
4287
4288 /*
4289  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4290  * @spi: the device that will be used for the message
4291  * @msg: the message to optimize
4292  * Return: zero on success, else a negative error code
4293  */
4294 static int spi_maybe_optimize_message(struct spi_device *spi,
4295                                       struct spi_message *msg)
4296 {
4297         if (msg->pre_optimized)
4298                 return 0;
4299
4300         return __spi_optimize_message(spi, msg);
4301 }
4302
4303 /**
4304  * spi_optimize_message - do any one-time validation and setup for a SPI message
4305  * @spi: the device that will be used for the message
4306  * @msg: the message to optimize
4307  *
4308  * Peripheral drivers that reuse the same message repeatedly may call this to
4309  * perform as much message prep as possible once, rather than repeating it each
4310  * time a message transfer is performed to improve throughput and reduce CPU
4311  * usage.
4312  *
4313  * Once a message has been optimized, it cannot be modified with the exception
4314  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4315  * only the data in the memory it points to).
4316  *
4317  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4318  * to avoid leaking resources.
4319  *
4320  * Context: can sleep
4321  * Return: zero on success, else a negative error code
4322  */
4323 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4324 {
4325         int ret;
4326
4327         ret = __spi_optimize_message(spi, msg);
4328         if (ret)
4329                 return ret;
4330
4331         /*
4332          * This flag indicates that the peripheral driver called spi_optimize_message()
4333          * and therefore we shouldn't unoptimize message automatically when finalizing
4334          * the message but rather wait until spi_unoptimize_message() is called
4335          * by the peripheral driver.
4336          */
4337         msg->pre_optimized = true;
4338
4339         return 0;
4340 }
4341 EXPORT_SYMBOL_GPL(spi_optimize_message);
4342
4343 /**
4344  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4345  * @msg: the message to unoptimize
4346  *
4347  * Calls to this function must be balanced with calls to spi_optimize_message().
4348  *
4349  * Context: can sleep
4350  */
4351 void spi_unoptimize_message(struct spi_message *msg)
4352 {
4353         __spi_unoptimize_message(msg);
4354         msg->pre_optimized = false;
4355 }
4356 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4357
4358 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4359 {
4360         struct spi_controller *ctlr = spi->controller;
4361         struct spi_transfer *xfer;
4362
4363         /*
4364          * Some controllers do not support doing regular SPI transfers. Return
4365          * ENOTSUPP when this is the case.
4366          */
4367         if (!ctlr->transfer)
4368                 return -ENOTSUPP;
4369
4370         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4371         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4372
4373         trace_spi_message_submit(message);
4374
4375         if (!ctlr->ptp_sts_supported) {
4376                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4377                         xfer->ptp_sts_word_pre = 0;
4378                         ptp_read_system_prets(xfer->ptp_sts);
4379                 }
4380         }
4381
4382         return ctlr->transfer(spi, message);
4383 }
4384
4385 /**
4386  * spi_async - asynchronous SPI transfer
4387  * @spi: device with which data will be exchanged
4388  * @message: describes the data transfers, including completion callback
4389  * Context: any (IRQs may be blocked, etc)
4390  *
4391  * This call may be used in_irq and other contexts which can't sleep,
4392  * as well as from task contexts which can sleep.
4393  *
4394  * The completion callback is invoked in a context which can't sleep.
4395  * Before that invocation, the value of message->status is undefined.
4396  * When the callback is issued, message->status holds either zero (to
4397  * indicate complete success) or a negative error code.  After that
4398  * callback returns, the driver which issued the transfer request may
4399  * deallocate the associated memory; it's no longer in use by any SPI
4400  * core or controller driver code.
4401  *
4402  * Note that although all messages to a spi_device are handled in
4403  * FIFO order, messages may go to different devices in other orders.
4404  * Some device might be higher priority, or have various "hard" access
4405  * time requirements, for example.
4406  *
4407  * On detection of any fault during the transfer, processing of
4408  * the entire message is aborted, and the device is deselected.
4409  * Until returning from the associated message completion callback,
4410  * no other spi_message queued to that device will be processed.
4411  * (This rule applies equally to all the synchronous transfer calls,
4412  * which are wrappers around this core asynchronous primitive.)
4413  *
4414  * Return: zero on success, else a negative error code.
4415  */
4416 int spi_async(struct spi_device *spi, struct spi_message *message)
4417 {
4418         struct spi_controller *ctlr = spi->controller;
4419         int ret;
4420         unsigned long flags;
4421
4422         ret = spi_maybe_optimize_message(spi, message);
4423         if (ret)
4424                 return ret;
4425
4426         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4427
4428         if (ctlr->bus_lock_flag)
4429                 ret = -EBUSY;
4430         else
4431                 ret = __spi_async(spi, message);
4432
4433         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4434
4435         spi_maybe_unoptimize_message(message);
4436
4437         return ret;
4438 }
4439 EXPORT_SYMBOL_GPL(spi_async);
4440
4441 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4442 {
4443         bool was_busy;
4444         int ret;
4445
4446         mutex_lock(&ctlr->io_mutex);
4447
4448         was_busy = ctlr->busy;
4449
4450         ctlr->cur_msg = msg;
4451         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4452         if (ret)
4453                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4454         ctlr->cur_msg = NULL;
4455         ctlr->fallback = false;
4456
4457         if (!was_busy) {
4458                 kfree(ctlr->dummy_rx);
4459                 ctlr->dummy_rx = NULL;
4460                 kfree(ctlr->dummy_tx);
4461                 ctlr->dummy_tx = NULL;
4462                 if (ctlr->unprepare_transfer_hardware &&
4463                     ctlr->unprepare_transfer_hardware(ctlr))
4464                         dev_err(&ctlr->dev,
4465                                 "failed to unprepare transfer hardware\n");
4466                 spi_idle_runtime_pm(ctlr);
4467         }
4468
4469         mutex_unlock(&ctlr->io_mutex);
4470 }
4471
4472 /*-------------------------------------------------------------------------*/
4473
4474 /*
4475  * Utility methods for SPI protocol drivers, layered on
4476  * top of the core.  Some other utility methods are defined as
4477  * inline functions.
4478  */
4479
4480 static void spi_complete(void *arg)
4481 {
4482         complete(arg);
4483 }
4484
4485 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4486 {
4487         DECLARE_COMPLETION_ONSTACK(done);
4488         unsigned long flags;
4489         int status;
4490         struct spi_controller *ctlr = spi->controller;
4491
4492         if (__spi_check_suspended(ctlr)) {
4493                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4494                 return -ESHUTDOWN;
4495         }
4496
4497         status = spi_maybe_optimize_message(spi, message);
4498         if (status)
4499                 return status;
4500
4501         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4502         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4503
4504         /*
4505          * Checking queue_empty here only guarantees async/sync message
4506          * ordering when coming from the same context. It does not need to
4507          * guard against reentrancy from a different context. The io_mutex
4508          * will catch those cases.
4509          */
4510         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4511                 message->actual_length = 0;
4512                 message->status = -EINPROGRESS;
4513
4514                 trace_spi_message_submit(message);
4515
4516                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4517                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4518
4519                 __spi_transfer_message_noqueue(ctlr, message);
4520
4521                 return message->status;
4522         }
4523
4524         /*
4525          * There are messages in the async queue that could have originated
4526          * from the same context, so we need to preserve ordering.
4527          * Therefor we send the message to the async queue and wait until they
4528          * are completed.
4529          */
4530         message->complete = spi_complete;
4531         message->context = &done;
4532
4533         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4534         status = __spi_async(spi, message);
4535         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4536
4537         if (status == 0) {
4538                 wait_for_completion(&done);
4539                 status = message->status;
4540         }
4541         message->complete = NULL;
4542         message->context = NULL;
4543
4544         return status;
4545 }
4546
4547 /**
4548  * spi_sync - blocking/synchronous SPI data transfers
4549  * @spi: device with which data will be exchanged
4550  * @message: describes the data transfers
4551  * Context: can sleep
4552  *
4553  * This call may only be used from a context that may sleep.  The sleep
4554  * is non-interruptible, and has no timeout.  Low-overhead controller
4555  * drivers may DMA directly into and out of the message buffers.
4556  *
4557  * Note that the SPI device's chip select is active during the message,
4558  * and then is normally disabled between messages.  Drivers for some
4559  * frequently-used devices may want to minimize costs of selecting a chip,
4560  * by leaving it selected in anticipation that the next message will go
4561  * to the same chip.  (That may increase power usage.)
4562  *
4563  * Also, the caller is guaranteeing that the memory associated with the
4564  * message will not be freed before this call returns.
4565  *
4566  * Return: zero on success, else a negative error code.
4567  */
4568 int spi_sync(struct spi_device *spi, struct spi_message *message)
4569 {
4570         int ret;
4571
4572         mutex_lock(&spi->controller->bus_lock_mutex);
4573         ret = __spi_sync(spi, message);
4574         mutex_unlock(&spi->controller->bus_lock_mutex);
4575
4576         return ret;
4577 }
4578 EXPORT_SYMBOL_GPL(spi_sync);
4579
4580 /**
4581  * spi_sync_locked - version of spi_sync with exclusive bus usage
4582  * @spi: device with which data will be exchanged
4583  * @message: describes the data transfers
4584  * Context: can sleep
4585  *
4586  * This call may only be used from a context that may sleep.  The sleep
4587  * is non-interruptible, and has no timeout.  Low-overhead controller
4588  * drivers may DMA directly into and out of the message buffers.
4589  *
4590  * This call should be used by drivers that require exclusive access to the
4591  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4592  * be released by a spi_bus_unlock call when the exclusive access is over.
4593  *
4594  * Return: zero on success, else a negative error code.
4595  */
4596 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4597 {
4598         return __spi_sync(spi, message);
4599 }
4600 EXPORT_SYMBOL_GPL(spi_sync_locked);
4601
4602 /**
4603  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4604  * @ctlr: SPI bus master that should be locked for exclusive bus access
4605  * Context: can sleep
4606  *
4607  * This call may only be used from a context that may sleep.  The sleep
4608  * is non-interruptible, and has no timeout.
4609  *
4610  * This call should be used by drivers that require exclusive access to the
4611  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4612  * exclusive access is over. Data transfer must be done by spi_sync_locked
4613  * and spi_async_locked calls when the SPI bus lock is held.
4614  *
4615  * Return: always zero.
4616  */
4617 int spi_bus_lock(struct spi_controller *ctlr)
4618 {
4619         unsigned long flags;
4620
4621         mutex_lock(&ctlr->bus_lock_mutex);
4622
4623         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4624         ctlr->bus_lock_flag = 1;
4625         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4626
4627         /* Mutex remains locked until spi_bus_unlock() is called */
4628
4629         return 0;
4630 }
4631 EXPORT_SYMBOL_GPL(spi_bus_lock);
4632
4633 /**
4634  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4635  * @ctlr: SPI bus master that was locked for exclusive bus access
4636  * Context: can sleep
4637  *
4638  * This call may only be used from a context that may sleep.  The sleep
4639  * is non-interruptible, and has no timeout.
4640  *
4641  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4642  * call.
4643  *
4644  * Return: always zero.
4645  */
4646 int spi_bus_unlock(struct spi_controller *ctlr)
4647 {
4648         ctlr->bus_lock_flag = 0;
4649
4650         mutex_unlock(&ctlr->bus_lock_mutex);
4651
4652         return 0;
4653 }
4654 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4655
4656 /* Portable code must never pass more than 32 bytes */
4657 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4658
4659 static u8       *buf;
4660
4661 /**
4662  * spi_write_then_read - SPI synchronous write followed by read
4663  * @spi: device with which data will be exchanged
4664  * @txbuf: data to be written (need not be DMA-safe)
4665  * @n_tx: size of txbuf, in bytes
4666  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4667  * @n_rx: size of rxbuf, in bytes
4668  * Context: can sleep
4669  *
4670  * This performs a half duplex MicroWire style transaction with the
4671  * device, sending txbuf and then reading rxbuf.  The return value
4672  * is zero for success, else a negative errno status code.
4673  * This call may only be used from a context that may sleep.
4674  *
4675  * Parameters to this routine are always copied using a small buffer.
4676  * Performance-sensitive or bulk transfer code should instead use
4677  * spi_{async,sync}() calls with DMA-safe buffers.
4678  *
4679  * Return: zero on success, else a negative error code.
4680  */
4681 int spi_write_then_read(struct spi_device *spi,
4682                 const void *txbuf, unsigned n_tx,
4683                 void *rxbuf, unsigned n_rx)
4684 {
4685         static DEFINE_MUTEX(lock);
4686
4687         int                     status;
4688         struct spi_message      message;
4689         struct spi_transfer     x[2];
4690         u8                      *local_buf;
4691
4692         /*
4693          * Use preallocated DMA-safe buffer if we can. We can't avoid
4694          * copying here, (as a pure convenience thing), but we can
4695          * keep heap costs out of the hot path unless someone else is
4696          * using the pre-allocated buffer or the transfer is too large.
4697          */
4698         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4699                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4700                                     GFP_KERNEL | GFP_DMA);
4701                 if (!local_buf)
4702                         return -ENOMEM;
4703         } else {
4704                 local_buf = buf;
4705         }
4706
4707         spi_message_init(&message);
4708         memset(x, 0, sizeof(x));
4709         if (n_tx) {
4710                 x[0].len = n_tx;
4711                 spi_message_add_tail(&x[0], &message);
4712         }
4713         if (n_rx) {
4714                 x[1].len = n_rx;
4715                 spi_message_add_tail(&x[1], &message);
4716         }
4717
4718         memcpy(local_buf, txbuf, n_tx);
4719         x[0].tx_buf = local_buf;
4720         x[1].rx_buf = local_buf + n_tx;
4721
4722         /* Do the I/O */
4723         status = spi_sync(spi, &message);
4724         if (status == 0)
4725                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4726
4727         if (x[0].tx_buf == buf)
4728                 mutex_unlock(&lock);
4729         else
4730                 kfree(local_buf);
4731
4732         return status;
4733 }
4734 EXPORT_SYMBOL_GPL(spi_write_then_read);
4735
4736 /*-------------------------------------------------------------------------*/
4737
4738 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4739 /* Must call put_device() when done with returned spi_device device */
4740 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4741 {
4742         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4743
4744         return dev ? to_spi_device(dev) : NULL;
4745 }
4746
4747 /* The spi controllers are not using spi_bus, so we find it with another way */
4748 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4749 {
4750         struct device *dev;
4751
4752         dev = class_find_device_by_of_node(&spi_master_class, node);
4753         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4754                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4755         if (!dev)
4756                 return NULL;
4757
4758         /* Reference got in class_find_device */
4759         return container_of(dev, struct spi_controller, dev);
4760 }
4761
4762 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4763                          void *arg)
4764 {
4765         struct of_reconfig_data *rd = arg;
4766         struct spi_controller *ctlr;
4767         struct spi_device *spi;
4768
4769         switch (of_reconfig_get_state_change(action, arg)) {
4770         case OF_RECONFIG_CHANGE_ADD:
4771                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4772                 if (ctlr == NULL)
4773                         return NOTIFY_OK;       /* Not for us */
4774
4775                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4776                         put_device(&ctlr->dev);
4777                         return NOTIFY_OK;
4778                 }
4779
4780                 /*
4781                  * Clear the flag before adding the device so that fw_devlink
4782                  * doesn't skip adding consumers to this device.
4783                  */
4784                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4785                 spi = of_register_spi_device(ctlr, rd->dn);
4786                 put_device(&ctlr->dev);
4787
4788                 if (IS_ERR(spi)) {
4789                         pr_err("%s: failed to create for '%pOF'\n",
4790                                         __func__, rd->dn);
4791                         of_node_clear_flag(rd->dn, OF_POPULATED);
4792                         return notifier_from_errno(PTR_ERR(spi));
4793                 }
4794                 break;
4795
4796         case OF_RECONFIG_CHANGE_REMOVE:
4797                 /* Already depopulated? */
4798                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4799                         return NOTIFY_OK;
4800
4801                 /* Find our device by node */
4802                 spi = of_find_spi_device_by_node(rd->dn);
4803                 if (spi == NULL)
4804                         return NOTIFY_OK;       /* No? not meant for us */
4805
4806                 /* Unregister takes one ref away */
4807                 spi_unregister_device(spi);
4808
4809                 /* And put the reference of the find */
4810                 put_device(&spi->dev);
4811                 break;
4812         }
4813
4814         return NOTIFY_OK;
4815 }
4816
4817 static struct notifier_block spi_of_notifier = {
4818         .notifier_call = of_spi_notify,
4819 };
4820 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4821 extern struct notifier_block spi_of_notifier;
4822 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4823
4824 #if IS_ENABLED(CONFIG_ACPI)
4825 static int spi_acpi_controller_match(struct device *dev, const void *data)
4826 {
4827         return ACPI_COMPANION(dev->parent) == data;
4828 }
4829
4830 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4831 {
4832         struct device *dev;
4833
4834         dev = class_find_device(&spi_master_class, NULL, adev,
4835                                 spi_acpi_controller_match);
4836         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4837                 dev = class_find_device(&spi_slave_class, NULL, adev,
4838                                         spi_acpi_controller_match);
4839         if (!dev)
4840                 return NULL;
4841
4842         return container_of(dev, struct spi_controller, dev);
4843 }
4844 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4845
4846 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4847 {
4848         struct device *dev;
4849
4850         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4851         return to_spi_device(dev);
4852 }
4853
4854 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4855                            void *arg)
4856 {
4857         struct acpi_device *adev = arg;
4858         struct spi_controller *ctlr;
4859         struct spi_device *spi;
4860
4861         switch (value) {
4862         case ACPI_RECONFIG_DEVICE_ADD:
4863                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4864                 if (!ctlr)
4865                         break;
4866
4867                 acpi_register_spi_device(ctlr, adev);
4868                 put_device(&ctlr->dev);
4869                 break;
4870         case ACPI_RECONFIG_DEVICE_REMOVE:
4871                 if (!acpi_device_enumerated(adev))
4872                         break;
4873
4874                 spi = acpi_spi_find_device_by_adev(adev);
4875                 if (!spi)
4876                         break;
4877
4878                 spi_unregister_device(spi);
4879                 put_device(&spi->dev);
4880                 break;
4881         }
4882
4883         return NOTIFY_OK;
4884 }
4885
4886 static struct notifier_block spi_acpi_notifier = {
4887         .notifier_call = acpi_spi_notify,
4888 };
4889 #else
4890 extern struct notifier_block spi_acpi_notifier;
4891 #endif
4892
4893 static int __init spi_init(void)
4894 {
4895         int     status;
4896
4897         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4898         if (!buf) {
4899                 status = -ENOMEM;
4900                 goto err0;
4901         }
4902
4903         status = bus_register(&spi_bus_type);
4904         if (status < 0)
4905                 goto err1;
4906
4907         status = class_register(&spi_master_class);
4908         if (status < 0)
4909                 goto err2;
4910
4911         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4912                 status = class_register(&spi_slave_class);
4913                 if (status < 0)
4914                         goto err3;
4915         }
4916
4917         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4918                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4919         if (IS_ENABLED(CONFIG_ACPI))
4920                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4921
4922         return 0;
4923
4924 err3:
4925         class_unregister(&spi_master_class);
4926 err2:
4927         bus_unregister(&spi_bus_type);
4928 err1:
4929         kfree(buf);
4930         buf = NULL;
4931 err0:
4932         return status;
4933 }
4934
4935 /*
4936  * A board_info is normally registered in arch_initcall(),
4937  * but even essential drivers wait till later.
4938  *
4939  * REVISIT only boardinfo really needs static linking. The rest (device and
4940  * driver registration) _could_ be dynamically linked (modular) ... Costs
4941  * include needing to have boardinfo data structures be much more public.
4942  */
4943 postcore_initcall(spi_init);
This page took 0.314208 seconds and 4 git commands to generate.