]> Git Repo - linux.git/blob - net/sunrpc/sched.c
net/mlx5e: Fix use after free in mlx5e_fs_init()
[linux.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <[email protected]>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <[email protected]>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE      (2048)
37 #define RPC_BUFFER_POOLSIZE     (8)
38 #define RPC_TASK_POOLSIZE       (8)
39 static struct kmem_cache        *rpc_task_slabp __read_mostly;
40 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
41 static mempool_t        *rpc_task_mempool __read_mostly;
42 static mempool_t        *rpc_buffer_mempool __read_mostly;
43
44 static void                     rpc_async_schedule(struct work_struct *);
45 static void                      rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59
60 gfp_t rpc_task_gfp_mask(void)
61 {
62         if (current->flags & PF_WQ_WORKER)
63                 return GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
64         return GFP_KERNEL;
65 }
66 EXPORT_SYMBOL_GPL(rpc_task_gfp_mask);
67
68 unsigned long
69 rpc_task_timeout(const struct rpc_task *task)
70 {
71         unsigned long timeout = READ_ONCE(task->tk_timeout);
72
73         if (timeout != 0) {
74                 unsigned long now = jiffies;
75                 if (time_before(now, timeout))
76                         return timeout - now;
77         }
78         return 0;
79 }
80 EXPORT_SYMBOL_GPL(rpc_task_timeout);
81
82 /*
83  * Disable the timer for a given RPC task. Should be called with
84  * queue->lock and bh_disabled in order to avoid races within
85  * rpc_run_timer().
86  */
87 static void
88 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90         if (list_empty(&task->u.tk_wait.timer_list))
91                 return;
92         task->tk_timeout = 0;
93         list_del(&task->u.tk_wait.timer_list);
94         if (list_empty(&queue->timer_list.list))
95                 cancel_delayed_work(&queue->timer_list.dwork);
96 }
97
98 static void
99 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
100 {
101         unsigned long now = jiffies;
102         queue->timer_list.expires = expires;
103         if (time_before_eq(expires, now))
104                 expires = 0;
105         else
106                 expires -= now;
107         mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
108 }
109
110 /*
111  * Set up a timer for the current task.
112  */
113 static void
114 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
115                 unsigned long timeout)
116 {
117         task->tk_timeout = timeout;
118         if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119                 rpc_set_queue_timer(queue, timeout);
120         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125         if (queue->priority != priority) {
126                 queue->priority = priority;
127                 queue->nr = 1U << priority;
128         }
129 }
130
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133         rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142         struct rpc_task *t;
143
144         list_for_each_entry(t, q, u.tk_wait.list) {
145                 if (t->tk_owner == task->tk_owner) {
146                         list_add_tail(&task->u.tk_wait.links,
147                                         &t->u.tk_wait.links);
148                         /* Cache the queue head in task->u.tk_wait.list */
149                         task->u.tk_wait.list.next = q;
150                         task->u.tk_wait.list.prev = NULL;
151                         return;
152                 }
153         }
154         INIT_LIST_HEAD(&task->u.tk_wait.links);
155         list_add_tail(&task->u.tk_wait.list, q);
156 }
157
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164         struct list_head *q;
165         struct rpc_task *t;
166
167         if (task->u.tk_wait.list.prev == NULL) {
168                 list_del(&task->u.tk_wait.links);
169                 return;
170         }
171         if (!list_empty(&task->u.tk_wait.links)) {
172                 t = list_first_entry(&task->u.tk_wait.links,
173                                 struct rpc_task,
174                                 u.tk_wait.links);
175                 /* Assume __rpc_list_enqueue_task() cached the queue head */
176                 q = t->u.tk_wait.list.next;
177                 list_add_tail(&t->u.tk_wait.list, q);
178                 list_del(&task->u.tk_wait.links);
179         }
180         list_del(&task->u.tk_wait.list);
181 }
182
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187                 struct rpc_task *task,
188                 unsigned char queue_priority)
189 {
190         if (unlikely(queue_priority > queue->maxpriority))
191                 queue_priority = queue->maxpriority;
192         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194
195 /*
196  * Add new request to wait queue.
197  */
198 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
199                 struct rpc_task *task,
200                 unsigned char queue_priority)
201 {
202         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
203         if (RPC_IS_PRIORITY(queue))
204                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
205         else
206                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
207         task->tk_waitqueue = queue;
208         queue->qlen++;
209         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
210         smp_wmb();
211         rpc_set_queued(task);
212 }
213
214 /*
215  * Remove request from a priority queue.
216  */
217 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
218 {
219         __rpc_list_dequeue_task(task);
220 }
221
222 /*
223  * Remove request from queue.
224  * Note: must be called with spin lock held.
225  */
226 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
227 {
228         __rpc_disable_timer(queue, task);
229         if (RPC_IS_PRIORITY(queue))
230                 __rpc_remove_wait_queue_priority(task);
231         else
232                 list_del(&task->u.tk_wait.list);
233         queue->qlen--;
234 }
235
236 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
237 {
238         int i;
239
240         spin_lock_init(&queue->lock);
241         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
242                 INIT_LIST_HEAD(&queue->tasks[i]);
243         queue->maxpriority = nr_queues - 1;
244         rpc_reset_waitqueue_priority(queue);
245         queue->qlen = 0;
246         queue->timer_list.expires = 0;
247         INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
248         INIT_LIST_HEAD(&queue->timer_list.list);
249         rpc_assign_waitqueue_name(queue, qname);
250 }
251
252 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
253 {
254         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
255 }
256 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
257
258 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
259 {
260         __rpc_init_priority_wait_queue(queue, qname, 1);
261 }
262 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
263
264 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
265 {
266         cancel_delayed_work_sync(&queue->timer_list.dwork);
267 }
268 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
269
270 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
271 {
272         freezable_schedule_unsafe();
273         if (signal_pending_state(mode, current))
274                 return -ERESTARTSYS;
275         return 0;
276 }
277
278 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
279 static void rpc_task_set_debuginfo(struct rpc_task *task)
280 {
281         struct rpc_clnt *clnt = task->tk_client;
282
283         /* Might be a task carrying a reverse-direction operation */
284         if (!clnt) {
285                 static atomic_t rpc_pid;
286
287                 task->tk_pid = atomic_inc_return(&rpc_pid);
288                 return;
289         }
290
291         task->tk_pid = atomic_inc_return(&clnt->cl_pid);
292 }
293 #else
294 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
295 {
296 }
297 #endif
298
299 static void rpc_set_active(struct rpc_task *task)
300 {
301         rpc_task_set_debuginfo(task);
302         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
303         trace_rpc_task_begin(task, NULL);
304 }
305
306 /*
307  * Mark an RPC call as having completed by clearing the 'active' bit
308  * and then waking up all tasks that were sleeping.
309  */
310 static int rpc_complete_task(struct rpc_task *task)
311 {
312         void *m = &task->tk_runstate;
313         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
314         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
315         unsigned long flags;
316         int ret;
317
318         trace_rpc_task_complete(task, NULL);
319
320         spin_lock_irqsave(&wq->lock, flags);
321         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
322         ret = atomic_dec_and_test(&task->tk_count);
323         if (waitqueue_active(wq))
324                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
325         spin_unlock_irqrestore(&wq->lock, flags);
326         return ret;
327 }
328
329 /*
330  * Allow callers to wait for completion of an RPC call
331  *
332  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
333  * to enforce taking of the wq->lock and hence avoid races with
334  * rpc_complete_task().
335  */
336 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
337 {
338         if (action == NULL)
339                 action = rpc_wait_bit_killable;
340         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
341                         action, TASK_KILLABLE);
342 }
343 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
344
345 /*
346  * Make an RPC task runnable.
347  *
348  * Note: If the task is ASYNC, and is being made runnable after sitting on an
349  * rpc_wait_queue, this must be called with the queue spinlock held to protect
350  * the wait queue operation.
351  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
352  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
353  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
354  * the RPC_TASK_RUNNING flag.
355  */
356 static void rpc_make_runnable(struct workqueue_struct *wq,
357                 struct rpc_task *task)
358 {
359         bool need_wakeup = !rpc_test_and_set_running(task);
360
361         rpc_clear_queued(task);
362         if (!need_wakeup)
363                 return;
364         if (RPC_IS_ASYNC(task)) {
365                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
366                 queue_work(wq, &task->u.tk_work);
367         } else
368                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
369 }
370
371 /*
372  * Prepare for sleeping on a wait queue.
373  * By always appending tasks to the list we ensure FIFO behavior.
374  * NB: An RPC task will only receive interrupt-driven events as long
375  * as it's on a wait queue.
376  */
377 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
378                 struct rpc_task *task,
379                 unsigned char queue_priority)
380 {
381         trace_rpc_task_sleep(task, q);
382
383         __rpc_add_wait_queue(q, task, queue_priority);
384 }
385
386 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
387                 struct rpc_task *task,
388                 unsigned char queue_priority)
389 {
390         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
391                 return;
392         __rpc_do_sleep_on_priority(q, task, queue_priority);
393 }
394
395 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
396                 struct rpc_task *task, unsigned long timeout,
397                 unsigned char queue_priority)
398 {
399         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
400                 return;
401         if (time_is_after_jiffies(timeout)) {
402                 __rpc_do_sleep_on_priority(q, task, queue_priority);
403                 __rpc_add_timer(q, task, timeout);
404         } else
405                 task->tk_status = -ETIMEDOUT;
406 }
407
408 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
409 {
410         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
411                 task->tk_callback = action;
412 }
413
414 static bool rpc_sleep_check_activated(struct rpc_task *task)
415 {
416         /* We shouldn't ever put an inactive task to sleep */
417         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
418                 task->tk_status = -EIO;
419                 rpc_put_task_async(task);
420                 return false;
421         }
422         return true;
423 }
424
425 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
426                                 rpc_action action, unsigned long timeout)
427 {
428         if (!rpc_sleep_check_activated(task))
429                 return;
430
431         rpc_set_tk_callback(task, action);
432
433         /*
434          * Protect the queue operations.
435          */
436         spin_lock(&q->lock);
437         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
438         spin_unlock(&q->lock);
439 }
440 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
441
442 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
443                                 rpc_action action)
444 {
445         if (!rpc_sleep_check_activated(task))
446                 return;
447
448         rpc_set_tk_callback(task, action);
449
450         WARN_ON_ONCE(task->tk_timeout != 0);
451         /*
452          * Protect the queue operations.
453          */
454         spin_lock(&q->lock);
455         __rpc_sleep_on_priority(q, task, task->tk_priority);
456         spin_unlock(&q->lock);
457 }
458 EXPORT_SYMBOL_GPL(rpc_sleep_on);
459
460 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
461                 struct rpc_task *task, unsigned long timeout, int priority)
462 {
463         if (!rpc_sleep_check_activated(task))
464                 return;
465
466         priority -= RPC_PRIORITY_LOW;
467         /*
468          * Protect the queue operations.
469          */
470         spin_lock(&q->lock);
471         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
472         spin_unlock(&q->lock);
473 }
474 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
475
476 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
477                 int priority)
478 {
479         if (!rpc_sleep_check_activated(task))
480                 return;
481
482         WARN_ON_ONCE(task->tk_timeout != 0);
483         priority -= RPC_PRIORITY_LOW;
484         /*
485          * Protect the queue operations.
486          */
487         spin_lock(&q->lock);
488         __rpc_sleep_on_priority(q, task, priority);
489         spin_unlock(&q->lock);
490 }
491 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
492
493 /**
494  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
495  * @wq: workqueue on which to run task
496  * @queue: wait queue
497  * @task: task to be woken up
498  *
499  * Caller must hold queue->lock, and have cleared the task queued flag.
500  */
501 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
502                 struct rpc_wait_queue *queue,
503                 struct rpc_task *task)
504 {
505         /* Has the task been executed yet? If not, we cannot wake it up! */
506         if (!RPC_IS_ACTIVATED(task)) {
507                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
508                 return;
509         }
510
511         trace_rpc_task_wakeup(task, queue);
512
513         __rpc_remove_wait_queue(queue, task);
514
515         rpc_make_runnable(wq, task);
516 }
517
518 /*
519  * Wake up a queued task while the queue lock is being held
520  */
521 static struct rpc_task *
522 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
523                 struct rpc_wait_queue *queue, struct rpc_task *task,
524                 bool (*action)(struct rpc_task *, void *), void *data)
525 {
526         if (RPC_IS_QUEUED(task)) {
527                 smp_rmb();
528                 if (task->tk_waitqueue == queue) {
529                         if (action == NULL || action(task, data)) {
530                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
531                                 return task;
532                         }
533                 }
534         }
535         return NULL;
536 }
537
538 /*
539  * Wake up a queued task while the queue lock is being held
540  */
541 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
542                                           struct rpc_task *task)
543 {
544         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
545                                                    task, NULL, NULL);
546 }
547
548 /*
549  * Wake up a task on a specific queue
550  */
551 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
552 {
553         if (!RPC_IS_QUEUED(task))
554                 return;
555         spin_lock(&queue->lock);
556         rpc_wake_up_task_queue_locked(queue, task);
557         spin_unlock(&queue->lock);
558 }
559 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
560
561 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
562 {
563         task->tk_status = *(int *)status;
564         return true;
565 }
566
567 static void
568 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
569                 struct rpc_task *task, int status)
570 {
571         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
572                         task, rpc_task_action_set_status, &status);
573 }
574
575 /**
576  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
577  * @queue: pointer to rpc_wait_queue
578  * @task: pointer to rpc_task
579  * @status: integer error value
580  *
581  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
582  * set to the value of @status.
583  */
584 void
585 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
586                 struct rpc_task *task, int status)
587 {
588         if (!RPC_IS_QUEUED(task))
589                 return;
590         spin_lock(&queue->lock);
591         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
592         spin_unlock(&queue->lock);
593 }
594
595 /*
596  * Wake up the next task on a priority queue.
597  */
598 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
599 {
600         struct list_head *q;
601         struct rpc_task *task;
602
603         /*
604          * Service the privileged queue.
605          */
606         q = &queue->tasks[RPC_NR_PRIORITY - 1];
607         if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
608                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
609                 goto out;
610         }
611
612         /*
613          * Service a batch of tasks from a single owner.
614          */
615         q = &queue->tasks[queue->priority];
616         if (!list_empty(q) && queue->nr) {
617                 queue->nr--;
618                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
619                 goto out;
620         }
621
622         /*
623          * Service the next queue.
624          */
625         do {
626                 if (q == &queue->tasks[0])
627                         q = &queue->tasks[queue->maxpriority];
628                 else
629                         q = q - 1;
630                 if (!list_empty(q)) {
631                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
632                         goto new_queue;
633                 }
634         } while (q != &queue->tasks[queue->priority]);
635
636         rpc_reset_waitqueue_priority(queue);
637         return NULL;
638
639 new_queue:
640         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
641 out:
642         return task;
643 }
644
645 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
646 {
647         if (RPC_IS_PRIORITY(queue))
648                 return __rpc_find_next_queued_priority(queue);
649         if (!list_empty(&queue->tasks[0]))
650                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
651         return NULL;
652 }
653
654 /*
655  * Wake up the first task on the wait queue.
656  */
657 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
658                 struct rpc_wait_queue *queue,
659                 bool (*func)(struct rpc_task *, void *), void *data)
660 {
661         struct rpc_task *task = NULL;
662
663         spin_lock(&queue->lock);
664         task = __rpc_find_next_queued(queue);
665         if (task != NULL)
666                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
667                                 task, func, data);
668         spin_unlock(&queue->lock);
669
670         return task;
671 }
672
673 /*
674  * Wake up the first task on the wait queue.
675  */
676 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
677                 bool (*func)(struct rpc_task *, void *), void *data)
678 {
679         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
680 }
681 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
682
683 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
684 {
685         return true;
686 }
687
688 /*
689  * Wake up the next task on the wait queue.
690 */
691 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
692 {
693         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
694 }
695 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
696
697 /**
698  * rpc_wake_up_locked - wake up all rpc_tasks
699  * @queue: rpc_wait_queue on which the tasks are sleeping
700  *
701  */
702 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
703 {
704         struct rpc_task *task;
705
706         for (;;) {
707                 task = __rpc_find_next_queued(queue);
708                 if (task == NULL)
709                         break;
710                 rpc_wake_up_task_queue_locked(queue, task);
711         }
712 }
713
714 /**
715  * rpc_wake_up - wake up all rpc_tasks
716  * @queue: rpc_wait_queue on which the tasks are sleeping
717  *
718  * Grabs queue->lock
719  */
720 void rpc_wake_up(struct rpc_wait_queue *queue)
721 {
722         spin_lock(&queue->lock);
723         rpc_wake_up_locked(queue);
724         spin_unlock(&queue->lock);
725 }
726 EXPORT_SYMBOL_GPL(rpc_wake_up);
727
728 /**
729  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
730  * @queue: rpc_wait_queue on which the tasks are sleeping
731  * @status: status value to set
732  */
733 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
734 {
735         struct rpc_task *task;
736
737         for (;;) {
738                 task = __rpc_find_next_queued(queue);
739                 if (task == NULL)
740                         break;
741                 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
742         }
743 }
744
745 /**
746  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
747  * @queue: rpc_wait_queue on which the tasks are sleeping
748  * @status: status value to set
749  *
750  * Grabs queue->lock
751  */
752 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
753 {
754         spin_lock(&queue->lock);
755         rpc_wake_up_status_locked(queue, status);
756         spin_unlock(&queue->lock);
757 }
758 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
759
760 static void __rpc_queue_timer_fn(struct work_struct *work)
761 {
762         struct rpc_wait_queue *queue = container_of(work,
763                         struct rpc_wait_queue,
764                         timer_list.dwork.work);
765         struct rpc_task *task, *n;
766         unsigned long expires, now, timeo;
767
768         spin_lock(&queue->lock);
769         expires = now = jiffies;
770         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
771                 timeo = task->tk_timeout;
772                 if (time_after_eq(now, timeo)) {
773                         trace_rpc_task_timeout(task, task->tk_action);
774                         task->tk_status = -ETIMEDOUT;
775                         rpc_wake_up_task_queue_locked(queue, task);
776                         continue;
777                 }
778                 if (expires == now || time_after(expires, timeo))
779                         expires = timeo;
780         }
781         if (!list_empty(&queue->timer_list.list))
782                 rpc_set_queue_timer(queue, expires);
783         spin_unlock(&queue->lock);
784 }
785
786 static void __rpc_atrun(struct rpc_task *task)
787 {
788         if (task->tk_status == -ETIMEDOUT)
789                 task->tk_status = 0;
790 }
791
792 /*
793  * Run a task at a later time
794  */
795 void rpc_delay(struct rpc_task *task, unsigned long delay)
796 {
797         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
798 }
799 EXPORT_SYMBOL_GPL(rpc_delay);
800
801 /*
802  * Helper to call task->tk_ops->rpc_call_prepare
803  */
804 void rpc_prepare_task(struct rpc_task *task)
805 {
806         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
807 }
808
809 static void
810 rpc_init_task_statistics(struct rpc_task *task)
811 {
812         /* Initialize retry counters */
813         task->tk_garb_retry = 2;
814         task->tk_cred_retry = 2;
815         task->tk_rebind_retry = 2;
816
817         /* starting timestamp */
818         task->tk_start = ktime_get();
819 }
820
821 static void
822 rpc_reset_task_statistics(struct rpc_task *task)
823 {
824         task->tk_timeouts = 0;
825         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
826         rpc_init_task_statistics(task);
827 }
828
829 /*
830  * Helper that calls task->tk_ops->rpc_call_done if it exists
831  */
832 void rpc_exit_task(struct rpc_task *task)
833 {
834         trace_rpc_task_end(task, task->tk_action);
835         task->tk_action = NULL;
836         if (task->tk_ops->rpc_count_stats)
837                 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
838         else if (task->tk_client)
839                 rpc_count_iostats(task, task->tk_client->cl_metrics);
840         if (task->tk_ops->rpc_call_done != NULL) {
841                 trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
842                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
843                 if (task->tk_action != NULL) {
844                         /* Always release the RPC slot and buffer memory */
845                         xprt_release(task);
846                         rpc_reset_task_statistics(task);
847                 }
848         }
849 }
850
851 void rpc_signal_task(struct rpc_task *task)
852 {
853         struct rpc_wait_queue *queue;
854
855         if (!RPC_IS_ACTIVATED(task))
856                 return;
857
858         trace_rpc_task_signalled(task, task->tk_action);
859         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
860         smp_mb__after_atomic();
861         queue = READ_ONCE(task->tk_waitqueue);
862         if (queue)
863                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
864 }
865
866 void rpc_exit(struct rpc_task *task, int status)
867 {
868         task->tk_status = status;
869         task->tk_action = rpc_exit_task;
870         rpc_wake_up_queued_task(task->tk_waitqueue, task);
871 }
872 EXPORT_SYMBOL_GPL(rpc_exit);
873
874 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
875 {
876         if (ops->rpc_release != NULL)
877                 ops->rpc_release(calldata);
878 }
879
880 static bool xprt_needs_memalloc(struct rpc_xprt *xprt, struct rpc_task *tk)
881 {
882         if (!xprt)
883                 return false;
884         if (!atomic_read(&xprt->swapper))
885                 return false;
886         return test_bit(XPRT_LOCKED, &xprt->state) && xprt->snd_task == tk;
887 }
888
889 /*
890  * This is the RPC `scheduler' (or rather, the finite state machine).
891  */
892 static void __rpc_execute(struct rpc_task *task)
893 {
894         struct rpc_wait_queue *queue;
895         int task_is_async = RPC_IS_ASYNC(task);
896         int status = 0;
897         unsigned long pflags = current->flags;
898
899         WARN_ON_ONCE(RPC_IS_QUEUED(task));
900         if (RPC_IS_QUEUED(task))
901                 return;
902
903         for (;;) {
904                 void (*do_action)(struct rpc_task *);
905
906                 /*
907                  * Perform the next FSM step or a pending callback.
908                  *
909                  * tk_action may be NULL if the task has been killed.
910                  * In particular, note that rpc_killall_tasks may
911                  * do this at any time, so beware when dereferencing.
912                  */
913                 do_action = task->tk_action;
914                 if (task->tk_callback) {
915                         do_action = task->tk_callback;
916                         task->tk_callback = NULL;
917                 }
918                 if (!do_action)
919                         break;
920                 if (RPC_IS_SWAPPER(task) ||
921                     xprt_needs_memalloc(task->tk_xprt, task))
922                         current->flags |= PF_MEMALLOC;
923
924                 trace_rpc_task_run_action(task, do_action);
925                 do_action(task);
926
927                 /*
928                  * Lockless check for whether task is sleeping or not.
929                  */
930                 if (!RPC_IS_QUEUED(task)) {
931                         cond_resched();
932                         continue;
933                 }
934
935                 /*
936                  * Signalled tasks should exit rather than sleep.
937                  */
938                 if (RPC_SIGNALLED(task)) {
939                         task->tk_rpc_status = -ERESTARTSYS;
940                         rpc_exit(task, -ERESTARTSYS);
941                 }
942
943                 /*
944                  * The queue->lock protects against races with
945                  * rpc_make_runnable().
946                  *
947                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
948                  * rpc_task, rpc_make_runnable() can assign it to a
949                  * different workqueue. We therefore cannot assume that the
950                  * rpc_task pointer may still be dereferenced.
951                  */
952                 queue = task->tk_waitqueue;
953                 spin_lock(&queue->lock);
954                 if (!RPC_IS_QUEUED(task)) {
955                         spin_unlock(&queue->lock);
956                         continue;
957                 }
958                 rpc_clear_running(task);
959                 spin_unlock(&queue->lock);
960                 if (task_is_async)
961                         goto out;
962
963                 /* sync task: sleep here */
964                 trace_rpc_task_sync_sleep(task, task->tk_action);
965                 status = out_of_line_wait_on_bit(&task->tk_runstate,
966                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
967                                 TASK_KILLABLE);
968                 if (status < 0) {
969                         /*
970                          * When a sync task receives a signal, it exits with
971                          * -ERESTARTSYS. In order to catch any callbacks that
972                          * clean up after sleeping on some queue, we don't
973                          * break the loop here, but go around once more.
974                          */
975                         trace_rpc_task_signalled(task, task->tk_action);
976                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
977                         task->tk_rpc_status = -ERESTARTSYS;
978                         rpc_exit(task, -ERESTARTSYS);
979                 }
980                 trace_rpc_task_sync_wake(task, task->tk_action);
981         }
982
983         /* Release all resources associated with the task */
984         rpc_release_task(task);
985 out:
986         current_restore_flags(pflags, PF_MEMALLOC);
987 }
988
989 /*
990  * User-visible entry point to the scheduler.
991  *
992  * This may be called recursively if e.g. an async NFS task updates
993  * the attributes and finds that dirty pages must be flushed.
994  * NOTE: Upon exit of this function the task is guaranteed to be
995  *       released. In particular note that tk_release() will have
996  *       been called, so your task memory may have been freed.
997  */
998 void rpc_execute(struct rpc_task *task)
999 {
1000         bool is_async = RPC_IS_ASYNC(task);
1001
1002         rpc_set_active(task);
1003         rpc_make_runnable(rpciod_workqueue, task);
1004         if (!is_async) {
1005                 unsigned int pflags = memalloc_nofs_save();
1006                 __rpc_execute(task);
1007                 memalloc_nofs_restore(pflags);
1008         }
1009 }
1010
1011 static void rpc_async_schedule(struct work_struct *work)
1012 {
1013         unsigned int pflags = memalloc_nofs_save();
1014
1015         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1016         memalloc_nofs_restore(pflags);
1017 }
1018
1019 /**
1020  * rpc_malloc - allocate RPC buffer resources
1021  * @task: RPC task
1022  *
1023  * A single memory region is allocated, which is split between the
1024  * RPC call and RPC reply that this task is being used for. When
1025  * this RPC is retired, the memory is released by calling rpc_free.
1026  *
1027  * To prevent rpciod from hanging, this allocator never sleeps,
1028  * returning -ENOMEM and suppressing warning if the request cannot
1029  * be serviced immediately. The caller can arrange to sleep in a
1030  * way that is safe for rpciod.
1031  *
1032  * Most requests are 'small' (under 2KiB) and can be serviced from a
1033  * mempool, ensuring that NFS reads and writes can always proceed,
1034  * and that there is good locality of reference for these buffers.
1035  */
1036 int rpc_malloc(struct rpc_task *task)
1037 {
1038         struct rpc_rqst *rqst = task->tk_rqstp;
1039         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1040         struct rpc_buffer *buf;
1041         gfp_t gfp = rpc_task_gfp_mask();
1042
1043         size += sizeof(struct rpc_buffer);
1044         if (size <= RPC_BUFFER_MAXSIZE) {
1045                 buf = kmem_cache_alloc(rpc_buffer_slabp, gfp);
1046                 /* Reach for the mempool if dynamic allocation fails */
1047                 if (!buf && RPC_IS_ASYNC(task))
1048                         buf = mempool_alloc(rpc_buffer_mempool, GFP_NOWAIT);
1049         } else
1050                 buf = kmalloc(size, gfp);
1051
1052         if (!buf)
1053                 return -ENOMEM;
1054
1055         buf->len = size;
1056         rqst->rq_buffer = buf->data;
1057         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1058         return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(rpc_malloc);
1061
1062 /**
1063  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1064  * @task: RPC task
1065  *
1066  */
1067 void rpc_free(struct rpc_task *task)
1068 {
1069         void *buffer = task->tk_rqstp->rq_buffer;
1070         size_t size;
1071         struct rpc_buffer *buf;
1072
1073         buf = container_of(buffer, struct rpc_buffer, data);
1074         size = buf->len;
1075
1076         if (size <= RPC_BUFFER_MAXSIZE)
1077                 mempool_free(buf, rpc_buffer_mempool);
1078         else
1079                 kfree(buf);
1080 }
1081 EXPORT_SYMBOL_GPL(rpc_free);
1082
1083 /*
1084  * Creation and deletion of RPC task structures
1085  */
1086 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1087 {
1088         memset(task, 0, sizeof(*task));
1089         atomic_set(&task->tk_count, 1);
1090         task->tk_flags  = task_setup_data->flags;
1091         task->tk_ops = task_setup_data->callback_ops;
1092         task->tk_calldata = task_setup_data->callback_data;
1093         INIT_LIST_HEAD(&task->tk_task);
1094
1095         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1096         task->tk_owner = current->tgid;
1097
1098         /* Initialize workqueue for async tasks */
1099         task->tk_workqueue = task_setup_data->workqueue;
1100
1101         task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1102                         xprt_get(task_setup_data->rpc_xprt));
1103
1104         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1105
1106         if (task->tk_ops->rpc_call_prepare != NULL)
1107                 task->tk_action = rpc_prepare_task;
1108
1109         rpc_init_task_statistics(task);
1110 }
1111
1112 static struct rpc_task *rpc_alloc_task(void)
1113 {
1114         struct rpc_task *task;
1115
1116         task = kmem_cache_alloc(rpc_task_slabp, rpc_task_gfp_mask());
1117         if (task)
1118                 return task;
1119         return mempool_alloc(rpc_task_mempool, GFP_NOWAIT);
1120 }
1121
1122 /*
1123  * Create a new task for the specified client.
1124  */
1125 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1126 {
1127         struct rpc_task *task = setup_data->task;
1128         unsigned short flags = 0;
1129
1130         if (task == NULL) {
1131                 task = rpc_alloc_task();
1132                 if (task == NULL) {
1133                         rpc_release_calldata(setup_data->callback_ops,
1134                                              setup_data->callback_data);
1135                         return ERR_PTR(-ENOMEM);
1136                 }
1137                 flags = RPC_TASK_DYNAMIC;
1138         }
1139
1140         rpc_init_task(task, setup_data);
1141         task->tk_flags |= flags;
1142         return task;
1143 }
1144
1145 /*
1146  * rpc_free_task - release rpc task and perform cleanups
1147  *
1148  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1149  * in order to work around a workqueue dependency issue.
1150  *
1151  * Tejun Heo states:
1152  * "Workqueue currently considers two work items to be the same if they're
1153  * on the same address and won't execute them concurrently - ie. it
1154  * makes a work item which is queued again while being executed wait
1155  * for the previous execution to complete.
1156  *
1157  * If a work function frees the work item, and then waits for an event
1158  * which should be performed by another work item and *that* work item
1159  * recycles the freed work item, it can create a false dependency loop.
1160  * There really is no reliable way to detect this short of verifying
1161  * every memory free."
1162  *
1163  */
1164 static void rpc_free_task(struct rpc_task *task)
1165 {
1166         unsigned short tk_flags = task->tk_flags;
1167
1168         put_rpccred(task->tk_op_cred);
1169         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1170
1171         if (tk_flags & RPC_TASK_DYNAMIC)
1172                 mempool_free(task, rpc_task_mempool);
1173 }
1174
1175 static void rpc_async_release(struct work_struct *work)
1176 {
1177         unsigned int pflags = memalloc_nofs_save();
1178
1179         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1180         memalloc_nofs_restore(pflags);
1181 }
1182
1183 static void rpc_release_resources_task(struct rpc_task *task)
1184 {
1185         xprt_release(task);
1186         if (task->tk_msg.rpc_cred) {
1187                 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1188                         put_cred(task->tk_msg.rpc_cred);
1189                 task->tk_msg.rpc_cred = NULL;
1190         }
1191         rpc_task_release_client(task);
1192 }
1193
1194 static void rpc_final_put_task(struct rpc_task *task,
1195                 struct workqueue_struct *q)
1196 {
1197         if (q != NULL) {
1198                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1199                 queue_work(q, &task->u.tk_work);
1200         } else
1201                 rpc_free_task(task);
1202 }
1203
1204 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1205 {
1206         if (atomic_dec_and_test(&task->tk_count)) {
1207                 rpc_release_resources_task(task);
1208                 rpc_final_put_task(task, q);
1209         }
1210 }
1211
1212 void rpc_put_task(struct rpc_task *task)
1213 {
1214         rpc_do_put_task(task, NULL);
1215 }
1216 EXPORT_SYMBOL_GPL(rpc_put_task);
1217
1218 void rpc_put_task_async(struct rpc_task *task)
1219 {
1220         rpc_do_put_task(task, task->tk_workqueue);
1221 }
1222 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1223
1224 static void rpc_release_task(struct rpc_task *task)
1225 {
1226         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1227
1228         rpc_release_resources_task(task);
1229
1230         /*
1231          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1232          * so it should be safe to use task->tk_count as a test for whether
1233          * or not any other processes still hold references to our rpc_task.
1234          */
1235         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1236                 /* Wake up anyone who may be waiting for task completion */
1237                 if (!rpc_complete_task(task))
1238                         return;
1239         } else {
1240                 if (!atomic_dec_and_test(&task->tk_count))
1241                         return;
1242         }
1243         rpc_final_put_task(task, task->tk_workqueue);
1244 }
1245
1246 int rpciod_up(void)
1247 {
1248         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1249 }
1250
1251 void rpciod_down(void)
1252 {
1253         module_put(THIS_MODULE);
1254 }
1255
1256 /*
1257  * Start up the rpciod workqueue.
1258  */
1259 static int rpciod_start(void)
1260 {
1261         struct workqueue_struct *wq;
1262
1263         /*
1264          * Create the rpciod thread and wait for it to start.
1265          */
1266         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1267         if (!wq)
1268                 goto out_failed;
1269         rpciod_workqueue = wq;
1270         wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1271         if (!wq)
1272                 goto free_rpciod;
1273         xprtiod_workqueue = wq;
1274         return 1;
1275 free_rpciod:
1276         wq = rpciod_workqueue;
1277         rpciod_workqueue = NULL;
1278         destroy_workqueue(wq);
1279 out_failed:
1280         return 0;
1281 }
1282
1283 static void rpciod_stop(void)
1284 {
1285         struct workqueue_struct *wq = NULL;
1286
1287         if (rpciod_workqueue == NULL)
1288                 return;
1289
1290         wq = rpciod_workqueue;
1291         rpciod_workqueue = NULL;
1292         destroy_workqueue(wq);
1293         wq = xprtiod_workqueue;
1294         xprtiod_workqueue = NULL;
1295         destroy_workqueue(wq);
1296 }
1297
1298 void
1299 rpc_destroy_mempool(void)
1300 {
1301         rpciod_stop();
1302         mempool_destroy(rpc_buffer_mempool);
1303         mempool_destroy(rpc_task_mempool);
1304         kmem_cache_destroy(rpc_task_slabp);
1305         kmem_cache_destroy(rpc_buffer_slabp);
1306         rpc_destroy_wait_queue(&delay_queue);
1307 }
1308
1309 int
1310 rpc_init_mempool(void)
1311 {
1312         /*
1313          * The following is not strictly a mempool initialisation,
1314          * but there is no harm in doing it here
1315          */
1316         rpc_init_wait_queue(&delay_queue, "delayq");
1317         if (!rpciod_start())
1318                 goto err_nomem;
1319
1320         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1321                                              sizeof(struct rpc_task),
1322                                              0, SLAB_HWCACHE_ALIGN,
1323                                              NULL);
1324         if (!rpc_task_slabp)
1325                 goto err_nomem;
1326         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1327                                              RPC_BUFFER_MAXSIZE,
1328                                              0, SLAB_HWCACHE_ALIGN,
1329                                              NULL);
1330         if (!rpc_buffer_slabp)
1331                 goto err_nomem;
1332         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1333                                                     rpc_task_slabp);
1334         if (!rpc_task_mempool)
1335                 goto err_nomem;
1336         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1337                                                       rpc_buffer_slabp);
1338         if (!rpc_buffer_mempool)
1339                 goto err_nomem;
1340         return 0;
1341 err_nomem:
1342         rpc_destroy_mempool();
1343         return -ENOMEM;
1344 }
This page took 0.10048 seconds and 4 git commands to generate.