1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
35 static kmem_zone_t *xfs_buf_zone;
37 #define xb_to_gfp(flags) \
38 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
45 * b_sema (caller holds)
49 * b_sema (caller holds)
58 * xfs_buftarg_wait_rele
60 * b_lock (trylock due to inversion)
64 * b_lock (trylock due to inversion)
72 * Return true if the buffer is vmapped.
74 * b_addr is null if the buffer is not mapped, but the code is clever
75 * enough to know it doesn't have to map a single page, so the check has
76 * to be both for b_addr and bp->b_page_count > 1.
78 return bp->b_addr && bp->b_page_count > 1;
85 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
89 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90 * this buffer. The count is incremented once per buffer (per hold cycle)
91 * because the corresponding decrement is deferred to buffer release. Buffers
92 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93 * tracking adds unnecessary overhead. This is used for sychronization purposes
94 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
97 * Buffers that are never released (e.g., superblock, iclog buffers) must set
98 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99 * never reaches zero and unmount hangs indefinitely.
105 if (bp->b_flags & XBF_NO_IOACCT)
108 ASSERT(bp->b_flags & XBF_ASYNC);
109 spin_lock(&bp->b_lock);
110 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 percpu_counter_inc(&bp->b_target->bt_io_count);
114 spin_unlock(&bp->b_lock);
118 * Clear the in-flight state on a buffer about to be released to the LRU or
119 * freed and unaccount from the buftarg.
122 __xfs_buf_ioacct_dec(
125 lockdep_assert_held(&bp->b_lock);
127 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 percpu_counter_dec(&bp->b_target->bt_io_count);
137 spin_lock(&bp->b_lock);
138 __xfs_buf_ioacct_dec(bp);
139 spin_unlock(&bp->b_lock);
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
148 * This prevents build-up of stale buffers on the LRU.
154 ASSERT(xfs_buf_islocked(bp));
156 bp->b_flags |= XBF_STALE;
159 * Clear the delwri status so that a delwri queue walker will not
160 * flush this buffer to disk now that it is stale. The delwri queue has
161 * a reference to the buffer, so this is safe to do.
163 bp->b_flags &= ~_XBF_DELWRI_Q;
166 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 * could reset b_flags. There is no guarantee that the buffer is
168 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 * status now to preserve accounting consistency.
171 spin_lock(&bp->b_lock);
172 __xfs_buf_ioacct_dec(bp);
174 atomic_set(&bp->b_lru_ref, 0);
175 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
176 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 atomic_dec(&bp->b_hold);
179 ASSERT(atomic_read(&bp->b_hold) >= 1);
180 spin_unlock(&bp->b_lock);
188 ASSERT(bp->b_maps == NULL);
189 bp->b_map_count = map_count;
191 if (map_count == 1) {
192 bp->b_maps = &bp->__b_map;
196 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
204 * Frees b_pages if it was allocated.
210 if (bp->b_maps != &bp->__b_map) {
211 kmem_free(bp->b_maps);
218 struct xfs_buftarg *target,
219 struct xfs_buf_map *map,
221 xfs_buf_flags_t flags)
227 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
232 * We don't want certain flags to appear in b_flags unless they are
233 * specifically set by later operations on the buffer.
235 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
237 atomic_set(&bp->b_hold, 1);
238 atomic_set(&bp->b_lru_ref, 1);
239 init_completion(&bp->b_iowait);
240 INIT_LIST_HEAD(&bp->b_lru);
241 INIT_LIST_HEAD(&bp->b_list);
242 INIT_LIST_HEAD(&bp->b_li_list);
243 sema_init(&bp->b_sema, 0); /* held, no waiters */
244 spin_lock_init(&bp->b_lock);
245 bp->b_target = target;
249 * Set length and io_length to the same value initially.
250 * I/O routines should use io_length, which will be the same in
251 * most cases but may be reset (e.g. XFS recovery).
253 error = xfs_buf_get_maps(bp, nmaps);
255 kmem_zone_free(xfs_buf_zone, bp);
259 bp->b_bn = map[0].bm_bn;
261 for (i = 0; i < nmaps; i++) {
262 bp->b_maps[i].bm_bn = map[i].bm_bn;
263 bp->b_maps[i].bm_len = map[i].bm_len;
264 bp->b_length += map[i].bm_len;
266 bp->b_io_length = bp->b_length;
268 atomic_set(&bp->b_pin_count, 0);
269 init_waitqueue_head(&bp->b_waiters);
271 XFS_STATS_INC(target->bt_mount, xb_create);
272 trace_xfs_buf_init(bp, _RET_IP_);
278 * Allocate a page array capable of holding a specified number
279 * of pages, and point the page buf at it.
286 /* Make sure that we have a page list */
287 if (bp->b_pages == NULL) {
288 bp->b_page_count = page_count;
289 if (page_count <= XB_PAGES) {
290 bp->b_pages = bp->b_page_array;
292 bp->b_pages = kmem_alloc(sizeof(struct page *) *
293 page_count, KM_NOFS);
294 if (bp->b_pages == NULL)
297 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
303 * Frees b_pages if it was allocated.
309 if (bp->b_pages != bp->b_page_array) {
310 kmem_free(bp->b_pages);
316 * Releases the specified buffer.
318 * The modification state of any associated pages is left unchanged.
319 * The buffer must not be on any hash - use xfs_buf_rele instead for
320 * hashed and refcounted buffers
326 trace_xfs_buf_free(bp, _RET_IP_);
328 ASSERT(list_empty(&bp->b_lru));
330 if (bp->b_flags & _XBF_PAGES) {
333 if (xfs_buf_is_vmapped(bp))
334 vm_unmap_ram(bp->b_addr - bp->b_offset,
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page = bp->b_pages[i];
342 } else if (bp->b_flags & _XBF_KMEM)
343 kmem_free(bp->b_addr);
344 _xfs_buf_free_pages(bp);
345 xfs_buf_free_maps(bp);
346 kmem_zone_free(xfs_buf_zone, bp);
350 * Allocates all the pages for buffer in question and builds it's page list.
353 xfs_buf_allocate_memory(
358 size_t nbytes, offset;
359 gfp_t gfp_mask = xb_to_gfp(flags);
360 unsigned short page_count, i;
361 xfs_off_t start, end;
365 * for buffers that are contained within a single page, just allocate
366 * the memory from the heap - there's no need for the complexity of
367 * page arrays to keep allocation down to order 0.
369 size = BBTOB(bp->b_length);
370 if (size < PAGE_SIZE) {
371 bp->b_addr = kmem_alloc(size, KM_NOFS);
373 /* low memory - use alloc_page loop instead */
377 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
378 ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 /* b_addr spans two pages - use alloc_page instead */
380 kmem_free(bp->b_addr);
384 bp->b_offset = offset_in_page(bp->b_addr);
385 bp->b_pages = bp->b_page_array;
386 bp->b_pages[0] = virt_to_page(bp->b_addr);
387 bp->b_page_count = 1;
388 bp->b_flags |= _XBF_KMEM;
393 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
396 page_count = end - start;
397 error = _xfs_buf_get_pages(bp, page_count);
401 offset = bp->b_offset;
402 bp->b_flags |= _XBF_PAGES;
404 for (i = 0; i < bp->b_page_count; i++) {
408 page = alloc_page(gfp_mask);
409 if (unlikely(page == NULL)) {
410 if (flags & XBF_READ_AHEAD) {
411 bp->b_page_count = i;
417 * This could deadlock.
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
422 if (!(++retries % 100))
424 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 current->comm, current->pid,
428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
429 congestion_wait(BLK_RW_ASYNC, HZ/50);
433 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
435 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
437 bp->b_pages[i] = page;
443 for (i = 0; i < bp->b_page_count; i++)
444 __free_page(bp->b_pages[i]);
445 bp->b_flags &= ~_XBF_PAGES;
450 * Map buffer into kernel address-space if necessary.
457 ASSERT(bp->b_flags & _XBF_PAGES);
458 if (bp->b_page_count == 1) {
459 /* A single page buffer is always mappable */
460 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
461 } else if (flags & XBF_UNMAPPED) {
468 * vm_map_ram() will allocate auxillary structures (e.g.
469 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 * memory reclaim re-entering the filesystem here and
473 * potentially deadlocking.
475 nofs_flag = memalloc_nofs_save();
477 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
482 } while (retried++ <= 1);
483 memalloc_nofs_restore(nofs_flag);
487 bp->b_addr += bp->b_offset;
494 * Finding and Reading Buffers
498 struct rhashtable_compare_arg *arg,
501 const struct xfs_buf_map *map = arg->key;
502 const struct xfs_buf *bp = obj;
505 * The key hashing in the lookup path depends on the key being the
506 * first element of the compare_arg, make sure to assert this.
508 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
510 if (bp->b_bn != map->bm_bn)
513 if (unlikely(bp->b_length != map->bm_len)) {
515 * found a block number match. If the range doesn't
516 * match, the only way this is allowed is if the buffer
517 * in the cache is stale and the transaction that made
518 * it stale has not yet committed. i.e. we are
519 * reallocating a busy extent. Skip this buffer and
520 * continue searching for an exact match.
522 ASSERT(bp->b_flags & XBF_STALE);
528 static const struct rhashtable_params xfs_buf_hash_params = {
529 .min_size = 32, /* empty AGs have minimal footprint */
531 .key_len = sizeof(xfs_daddr_t),
532 .key_offset = offsetof(struct xfs_buf, b_bn),
533 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
534 .automatic_shrinking = true,
535 .obj_cmpfn = _xfs_buf_obj_cmp,
540 struct xfs_perag *pag)
542 spin_lock_init(&pag->pag_buf_lock);
543 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
547 xfs_buf_hash_destroy(
548 struct xfs_perag *pag)
550 rhashtable_destroy(&pag->pag_buf_hash);
554 * Look up a buffer in the buffer cache and return it referenced and locked
557 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
560 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561 * -EAGAIN if we fail to lock it.
564 * -EFSCORRUPTED if have been supplied with an invalid address
565 * -EAGAIN on trylock failure
566 * -ENOENT if we fail to find a match and @new_bp was NULL
568 * - @new_bp if we inserted it into the cache
569 * - the buffer we found and locked.
573 struct xfs_buftarg *btp,
574 struct xfs_buf_map *map,
576 xfs_buf_flags_t flags,
577 struct xfs_buf *new_bp,
578 struct xfs_buf **found_bp)
580 struct xfs_perag *pag;
582 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
588 for (i = 0; i < nmaps; i++)
589 cmap.bm_len += map[i].bm_len;
591 /* Check for IOs smaller than the sector size / not sector aligned */
592 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
596 * Corrupted block numbers can get through to here, unfortunately, so we
597 * have to check that the buffer falls within the filesystem bounds.
599 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
600 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
601 xfs_alert(btp->bt_mount,
602 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 __func__, cmap.bm_bn, eofs);
605 return -EFSCORRUPTED;
608 pag = xfs_perag_get(btp->bt_mount,
609 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
611 spin_lock(&pag->pag_buf_lock);
612 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 xfs_buf_hash_params);
615 atomic_inc(&bp->b_hold);
621 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
622 spin_unlock(&pag->pag_buf_lock);
627 /* the buffer keeps the perag reference until it is freed */
629 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 xfs_buf_hash_params);
631 spin_unlock(&pag->pag_buf_lock);
636 spin_unlock(&pag->pag_buf_lock);
639 if (!xfs_buf_trylock(bp)) {
640 if (flags & XBF_TRYLOCK) {
642 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
646 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
650 * if the buffer is stale, clear all the external state associated with
651 * it. We need to keep flags such as how we allocated the buffer memory
654 if (bp->b_flags & XBF_STALE) {
655 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
656 ASSERT(bp->b_iodone == NULL);
657 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
661 trace_xfs_buf_find(bp, flags, _RET_IP_);
662 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
669 struct xfs_buftarg *target,
672 xfs_buf_flags_t flags)
676 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
678 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
685 * Assembles a buffer covering the specified range. The code is optimised for
686 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687 * more hits than misses.
691 struct xfs_buftarg *target,
692 struct xfs_buf_map *map,
694 xfs_buf_flags_t flags)
697 struct xfs_buf *new_bp;
700 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
707 /* cache hit, trylock failure, caller handles failure */
708 ASSERT(flags & XBF_TRYLOCK);
711 /* cache miss, go for insert */
716 * None of the higher layers understand failure types
717 * yet, so return NULL to signal a fatal lookup error.
722 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
723 if (unlikely(!new_bp))
726 error = xfs_buf_allocate_memory(new_bp, flags);
728 xfs_buf_free(new_bp);
732 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
734 xfs_buf_free(new_bp);
739 xfs_buf_free(new_bp);
743 error = _xfs_buf_map_pages(bp, flags);
744 if (unlikely(error)) {
745 xfs_warn(target->bt_mount,
746 "%s: failed to map pagesn", __func__);
753 * Clear b_error if this is a lookup from a caller that doesn't expect
754 * valid data to be found in the buffer.
756 if (!(flags & XBF_READ))
757 xfs_buf_ioerror(bp, 0);
759 XFS_STATS_INC(target->bt_mount, xb_get);
760 trace_xfs_buf_get(bp, flags, _RET_IP_);
767 xfs_buf_flags_t flags)
769 ASSERT(!(flags & XBF_WRITE));
770 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
772 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
773 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
775 return xfs_buf_submit(bp);
779 * Set buffer ops on an unchecked buffer and validate it, if possible.
781 * If the caller passed in an ops structure and the buffer doesn't have ops
782 * assigned, set the ops and use them to verify the contents. If the contents
783 * cannot be verified, we'll clear XBF_DONE. We assume the buffer has no
784 * recorded errors and is already in XBF_DONE state.
786 * Under normal operations, every in-core buffer must have buffer ops assigned
787 * to them when the buffer is read in from disk so that we can validate the
790 * However, there are two scenarios where one can encounter in-core buffers
791 * that don't have buffer ops. The first is during log recovery of buffers on
792 * a V4 filesystem, though these buffers are purged at the end of recovery.
794 * The other is online repair, which tries to match arbitrary metadata blocks
795 * with btree types in order to find the root. If online repair doesn't match
796 * the buffer with /any/ btree type, the buffer remains in memory in DONE state
797 * with no ops, and a subsequent read_buf call from elsewhere will not set the
798 * ops. This function helps us fix this situation.
803 const struct xfs_buf_ops *ops)
805 ASSERT(bp->b_flags & XBF_DONE);
806 ASSERT(bp->b_error == 0);
808 if (!ops || bp->b_ops)
812 bp->b_ops->verify_read(bp);
814 bp->b_flags &= ~XBF_DONE;
820 struct xfs_buftarg *target,
821 struct xfs_buf_map *map,
823 xfs_buf_flags_t flags,
824 const struct xfs_buf_ops *ops)
830 bp = xfs_buf_get_map(target, map, nmaps, flags);
834 trace_xfs_buf_read(bp, flags, _RET_IP_);
836 if (!(bp->b_flags & XBF_DONE)) {
837 XFS_STATS_INC(target->bt_mount, xb_get_read);
839 _xfs_buf_read(bp, flags);
843 xfs_buf_ensure_ops(bp, ops);
845 if (flags & XBF_ASYNC) {
847 * Read ahead call which is already satisfied,
854 /* We do not want read in the flags */
855 bp->b_flags &= ~XBF_READ;
856 ASSERT(bp->b_ops != NULL || ops == NULL);
861 * If we are not low on memory then do the readahead in a deadlock
865 xfs_buf_readahead_map(
866 struct xfs_buftarg *target,
867 struct xfs_buf_map *map,
869 const struct xfs_buf_ops *ops)
871 if (bdi_read_congested(target->bt_bdev->bd_bdi))
874 xfs_buf_read_map(target, map, nmaps,
875 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
879 * Read an uncached buffer from disk. Allocates and returns a locked
880 * buffer containing the disk contents or nothing.
883 xfs_buf_read_uncached(
884 struct xfs_buftarg *target,
888 struct xfs_buf **bpp,
889 const struct xfs_buf_ops *ops)
895 bp = xfs_buf_get_uncached(target, numblks, flags);
899 /* set up the buffer for a read IO */
900 ASSERT(bp->b_map_count == 1);
901 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
902 bp->b_maps[0].bm_bn = daddr;
903 bp->b_flags |= XBF_READ;
908 int error = bp->b_error;
918 * Return a buffer allocated as an empty buffer and associated to external
919 * memory via xfs_buf_associate_memory() back to it's empty state.
927 _xfs_buf_free_pages(bp);
930 bp->b_page_count = 0;
932 bp->b_length = numblks;
933 bp->b_io_length = numblks;
935 ASSERT(bp->b_map_count == 1);
936 bp->b_bn = XFS_BUF_DADDR_NULL;
937 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
938 bp->b_maps[0].bm_len = bp->b_length;
941 static inline struct page *
945 if ((!is_vmalloc_addr(addr))) {
946 return virt_to_page(addr);
948 return vmalloc_to_page(addr);
953 xfs_buf_associate_memory(
960 unsigned long pageaddr;
961 unsigned long offset;
965 pageaddr = (unsigned long)mem & PAGE_MASK;
966 offset = (unsigned long)mem - pageaddr;
967 buflen = PAGE_ALIGN(len + offset);
968 page_count = buflen >> PAGE_SHIFT;
970 /* Free any previous set of page pointers */
972 _xfs_buf_free_pages(bp);
977 rval = _xfs_buf_get_pages(bp, page_count);
981 bp->b_offset = offset;
983 for (i = 0; i < bp->b_page_count; i++) {
984 bp->b_pages[i] = mem_to_page((void *)pageaddr);
985 pageaddr += PAGE_SIZE;
988 bp->b_io_length = BTOBB(len);
989 bp->b_length = BTOBB(buflen);
995 xfs_buf_get_uncached(
996 struct xfs_buftarg *target,
1000 unsigned long page_count;
1003 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1005 /* flags might contain irrelevant bits, pass only what we care about */
1006 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1007 if (unlikely(bp == NULL))
1010 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1011 error = _xfs_buf_get_pages(bp, page_count);
1015 for (i = 0; i < page_count; i++) {
1016 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1017 if (!bp->b_pages[i])
1020 bp->b_flags |= _XBF_PAGES;
1022 error = _xfs_buf_map_pages(bp, 0);
1023 if (unlikely(error)) {
1024 xfs_warn(target->bt_mount,
1025 "%s: failed to map pages", __func__);
1029 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1034 __free_page(bp->b_pages[i]);
1035 _xfs_buf_free_pages(bp);
1037 xfs_buf_free_maps(bp);
1038 kmem_zone_free(xfs_buf_zone, bp);
1044 * Increment reference count on buffer, to hold the buffer concurrently
1045 * with another thread which may release (free) the buffer asynchronously.
1046 * Must hold the buffer already to call this function.
1052 trace_xfs_buf_hold(bp, _RET_IP_);
1053 atomic_inc(&bp->b_hold);
1057 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1058 * placed on LRU or freed (depending on b_lru_ref).
1064 struct xfs_perag *pag = bp->b_pag;
1066 bool freebuf = false;
1068 trace_xfs_buf_rele(bp, _RET_IP_);
1071 ASSERT(list_empty(&bp->b_lru));
1072 if (atomic_dec_and_test(&bp->b_hold)) {
1073 xfs_buf_ioacct_dec(bp);
1079 ASSERT(atomic_read(&bp->b_hold) > 0);
1082 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1083 * calls. The pag_buf_lock being taken on the last reference only
1084 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1085 * to last reference we drop here is not serialised against the last
1086 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1087 * first, the last "release" reference can win the race to the lock and
1088 * free the buffer before the second-to-last reference is processed,
1089 * leading to a use-after-free scenario.
1091 spin_lock(&bp->b_lock);
1092 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1095 * Drop the in-flight state if the buffer is already on the LRU
1096 * and it holds the only reference. This is racy because we
1097 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1098 * ensures the decrement occurs only once per-buf.
1100 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1101 __xfs_buf_ioacct_dec(bp);
1105 /* the last reference has been dropped ... */
1106 __xfs_buf_ioacct_dec(bp);
1107 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1109 * If the buffer is added to the LRU take a new reference to the
1110 * buffer for the LRU and clear the (now stale) dispose list
1113 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1114 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1115 atomic_inc(&bp->b_hold);
1117 spin_unlock(&pag->pag_buf_lock);
1120 * most of the time buffers will already be removed from the
1121 * LRU, so optimise that case by checking for the
1122 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1123 * was on was the disposal list
1125 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1126 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1128 ASSERT(list_empty(&bp->b_lru));
1131 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1132 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1133 xfs_buf_hash_params);
1134 spin_unlock(&pag->pag_buf_lock);
1140 spin_unlock(&bp->b_lock);
1148 * Lock a buffer object, if it is not already locked.
1150 * If we come across a stale, pinned, locked buffer, we know that we are
1151 * being asked to lock a buffer that has been reallocated. Because it is
1152 * pinned, we know that the log has not been pushed to disk and hence it
1153 * will still be locked. Rather than continuing to have trylock attempts
1154 * fail until someone else pushes the log, push it ourselves before
1155 * returning. This means that the xfsaild will not get stuck trying
1156 * to push on stale inode buffers.
1164 locked = down_trylock(&bp->b_sema) == 0;
1166 trace_xfs_buf_trylock(bp, _RET_IP_);
1168 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1173 * Lock a buffer object.
1175 * If we come across a stale, pinned, locked buffer, we know that we
1176 * are being asked to lock a buffer that has been reallocated. Because
1177 * it is pinned, we know that the log has not been pushed to disk and
1178 * hence it will still be locked. Rather than sleeping until someone
1179 * else pushes the log, push it ourselves before trying to get the lock.
1185 trace_xfs_buf_lock(bp, _RET_IP_);
1187 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1188 xfs_log_force(bp->b_target->bt_mount, 0);
1191 trace_xfs_buf_lock_done(bp, _RET_IP_);
1198 ASSERT(xfs_buf_islocked(bp));
1201 trace_xfs_buf_unlock(bp, _RET_IP_);
1208 DECLARE_WAITQUEUE (wait, current);
1210 if (atomic_read(&bp->b_pin_count) == 0)
1213 add_wait_queue(&bp->b_waiters, &wait);
1215 set_current_state(TASK_UNINTERRUPTIBLE);
1216 if (atomic_read(&bp->b_pin_count) == 0)
1220 remove_wait_queue(&bp->b_waiters, &wait);
1221 set_current_state(TASK_RUNNING);
1225 * Buffer Utility Routines
1232 bool read = bp->b_flags & XBF_READ;
1234 trace_xfs_buf_iodone(bp, _RET_IP_);
1236 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1239 * Pull in IO completion errors now. We are guaranteed to be running
1240 * single threaded, so we don't need the lock to read b_io_error.
1242 if (!bp->b_error && bp->b_io_error)
1243 xfs_buf_ioerror(bp, bp->b_io_error);
1245 /* Only validate buffers that were read without errors */
1246 if (read && !bp->b_error && bp->b_ops) {
1247 ASSERT(!bp->b_iodone);
1248 bp->b_ops->verify_read(bp);
1252 bp->b_flags |= XBF_DONE;
1255 (*(bp->b_iodone))(bp);
1256 else if (bp->b_flags & XBF_ASYNC)
1259 complete(&bp->b_iowait);
1264 struct work_struct *work)
1266 struct xfs_buf *bp =
1267 container_of(work, xfs_buf_t, b_ioend_work);
1273 xfs_buf_ioend_async(
1276 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1277 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1284 xfs_failaddr_t failaddr)
1286 ASSERT(error <= 0 && error >= -1000);
1287 bp->b_error = error;
1288 trace_xfs_buf_ioerror(bp, error, failaddr);
1292 xfs_buf_ioerror_alert(
1296 xfs_alert(bp->b_target->bt_mount,
1297 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1298 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1308 ASSERT(xfs_buf_islocked(bp));
1310 bp->b_flags |= XBF_WRITE;
1311 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1312 XBF_WRITE_FAIL | XBF_DONE);
1314 error = xfs_buf_submit(bp);
1316 xfs_force_shutdown(bp->b_target->bt_mount,
1317 SHUTDOWN_META_IO_ERROR);
1326 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1329 * don't overwrite existing errors - otherwise we can lose errors on
1330 * buffers that require multiple bios to complete.
1332 if (bio->bi_status) {
1333 int error = blk_status_to_errno(bio->bi_status);
1335 cmpxchg(&bp->b_io_error, 0, error);
1338 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1339 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1341 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1342 xfs_buf_ioend_async(bp);
1347 xfs_buf_ioapply_map(
1356 int total_nr_pages = bp->b_page_count;
1359 sector_t sector = bp->b_maps[map].bm_bn;
1363 /* skip the pages in the buffer before the start offset */
1365 offset = *buf_offset;
1366 while (offset >= PAGE_SIZE) {
1368 offset -= PAGE_SIZE;
1372 * Limit the IO size to the length of the current vector, and update the
1373 * remaining IO count for the next time around.
1375 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1377 *buf_offset += size;
1380 atomic_inc(&bp->b_io_remaining);
1381 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1383 bio = bio_alloc(GFP_NOIO, nr_pages);
1384 bio_set_dev(bio, bp->b_target->bt_bdev);
1385 bio->bi_iter.bi_sector = sector;
1386 bio->bi_end_io = xfs_buf_bio_end_io;
1387 bio->bi_private = bp;
1388 bio_set_op_attrs(bio, op, op_flags);
1390 for (; size && nr_pages; nr_pages--, page_index++) {
1391 int rbytes, nbytes = PAGE_SIZE - offset;
1396 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1398 if (rbytes < nbytes)
1402 sector += BTOBB(nbytes);
1407 if (likely(bio->bi_iter.bi_size)) {
1408 if (xfs_buf_is_vmapped(bp)) {
1409 flush_kernel_vmap_range(bp->b_addr,
1410 xfs_buf_vmap_len(bp));
1417 * This is guaranteed not to be the last io reference count
1418 * because the caller (xfs_buf_submit) holds a count itself.
1420 atomic_dec(&bp->b_io_remaining);
1421 xfs_buf_ioerror(bp, -EIO);
1431 struct blk_plug plug;
1439 * Make sure we capture only current IO errors rather than stale errors
1440 * left over from previous use of the buffer (e.g. failed readahead).
1445 * Initialize the I/O completion workqueue if we haven't yet or the
1446 * submitter has not opted to specify a custom one.
1448 if (!bp->b_ioend_wq)
1449 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1451 if (bp->b_flags & XBF_WRITE) {
1453 if (bp->b_flags & XBF_SYNCIO)
1454 op_flags = REQ_SYNC;
1455 if (bp->b_flags & XBF_FUA)
1456 op_flags |= REQ_FUA;
1457 if (bp->b_flags & XBF_FLUSH)
1458 op_flags |= REQ_PREFLUSH;
1461 * Run the write verifier callback function if it exists. If
1462 * this function fails it will mark the buffer with an error and
1463 * the IO should not be dispatched.
1466 bp->b_ops->verify_write(bp);
1468 xfs_force_shutdown(bp->b_target->bt_mount,
1469 SHUTDOWN_CORRUPT_INCORE);
1472 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1473 struct xfs_mount *mp = bp->b_target->bt_mount;
1476 * non-crc filesystems don't attach verifiers during
1477 * log recovery, so don't warn for such filesystems.
1479 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1481 "%s: no buf ops on daddr 0x%llx len %d",
1482 __func__, bp->b_bn, bp->b_length);
1483 xfs_hex_dump(bp->b_addr,
1484 XFS_CORRUPTION_DUMP_LEN);
1488 } else if (bp->b_flags & XBF_READ_AHEAD) {
1490 op_flags = REQ_RAHEAD;
1495 /* we only use the buffer cache for meta-data */
1496 op_flags |= REQ_META;
1499 * Walk all the vectors issuing IO on them. Set up the initial offset
1500 * into the buffer and the desired IO size before we start -
1501 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1504 offset = bp->b_offset;
1505 size = BBTOB(bp->b_io_length);
1506 blk_start_plug(&plug);
1507 for (i = 0; i < bp->b_map_count; i++) {
1508 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1512 break; /* all done */
1514 blk_finish_plug(&plug);
1518 * Wait for I/O completion of a sync buffer and return the I/O error code.
1524 ASSERT(!(bp->b_flags & XBF_ASYNC));
1526 trace_xfs_buf_iowait(bp, _RET_IP_);
1527 wait_for_completion(&bp->b_iowait);
1528 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1534 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1535 * the buffer lock ownership and the current reference to the IO. It is not
1536 * safe to reference the buffer after a call to this function unless the caller
1537 * holds an additional reference itself.
1546 trace_xfs_buf_submit(bp, _RET_IP_);
1548 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1550 /* on shutdown we stale and complete the buffer immediately */
1551 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1552 xfs_buf_ioerror(bp, -EIO);
1553 bp->b_flags &= ~XBF_DONE;
1560 * Grab a reference so the buffer does not go away underneath us. For
1561 * async buffers, I/O completion drops the callers reference, which
1562 * could occur before submission returns.
1566 if (bp->b_flags & XBF_WRITE)
1567 xfs_buf_wait_unpin(bp);
1569 /* clear the internal error state to avoid spurious errors */
1573 * Set the count to 1 initially, this will stop an I/O completion
1574 * callout which happens before we have started all the I/O from calling
1575 * xfs_buf_ioend too early.
1577 atomic_set(&bp->b_io_remaining, 1);
1578 if (bp->b_flags & XBF_ASYNC)
1579 xfs_buf_ioacct_inc(bp);
1580 _xfs_buf_ioapply(bp);
1583 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1584 * reference we took above. If we drop it to zero, run completion so
1585 * that we don't return to the caller with completion still pending.
1587 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1588 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1591 xfs_buf_ioend_async(bp);
1595 error = xfs_buf_iowait(bp);
1598 * Release the hold that keeps the buffer referenced for the entire
1599 * I/O. Note that if the buffer is async, it is not safe to reference
1600 * after this release.
1614 return bp->b_addr + offset;
1616 offset += bp->b_offset;
1617 page = bp->b_pages[offset >> PAGE_SHIFT];
1618 return page_address(page) + (offset & (PAGE_SIZE-1));
1622 * Move data into or out of a buffer.
1626 xfs_buf_t *bp, /* buffer to process */
1627 size_t boff, /* starting buffer offset */
1628 size_t bsize, /* length to copy */
1629 void *data, /* data address */
1630 xfs_buf_rw_t mode) /* read/write/zero flag */
1634 bend = boff + bsize;
1635 while (boff < bend) {
1637 int page_index, page_offset, csize;
1639 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1640 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1641 page = bp->b_pages[page_index];
1642 csize = min_t(size_t, PAGE_SIZE - page_offset,
1643 BBTOB(bp->b_io_length) - boff);
1645 ASSERT((csize + page_offset) <= PAGE_SIZE);
1649 memset(page_address(page) + page_offset, 0, csize);
1652 memcpy(data, page_address(page) + page_offset, csize);
1655 memcpy(page_address(page) + page_offset, data, csize);
1664 * Handling of buffer targets (buftargs).
1668 * Wait for any bufs with callbacks that have been submitted but have not yet
1669 * returned. These buffers will have an elevated hold count, so wait on those
1670 * while freeing all the buffers only held by the LRU.
1672 static enum lru_status
1673 xfs_buftarg_wait_rele(
1674 struct list_head *item,
1675 struct list_lru_one *lru,
1676 spinlock_t *lru_lock,
1680 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1681 struct list_head *dispose = arg;
1683 if (atomic_read(&bp->b_hold) > 1) {
1684 /* need to wait, so skip it this pass */
1685 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1688 if (!spin_trylock(&bp->b_lock))
1692 * clear the LRU reference count so the buffer doesn't get
1693 * ignored in xfs_buf_rele().
1695 atomic_set(&bp->b_lru_ref, 0);
1696 bp->b_state |= XFS_BSTATE_DISPOSE;
1697 list_lru_isolate_move(lru, item, dispose);
1698 spin_unlock(&bp->b_lock);
1704 struct xfs_buftarg *btp)
1710 * First wait on the buftarg I/O count for all in-flight buffers to be
1711 * released. This is critical as new buffers do not make the LRU until
1712 * they are released.
1714 * Next, flush the buffer workqueue to ensure all completion processing
1715 * has finished. Just waiting on buffer locks is not sufficient for
1716 * async IO as the reference count held over IO is not released until
1717 * after the buffer lock is dropped. Hence we need to ensure here that
1718 * all reference counts have been dropped before we start walking the
1721 while (percpu_counter_sum(&btp->bt_io_count))
1723 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1725 /* loop until there is nothing left on the lru list. */
1726 while (list_lru_count(&btp->bt_lru)) {
1727 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1728 &dispose, LONG_MAX);
1730 while (!list_empty(&dispose)) {
1732 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1733 list_del_init(&bp->b_lru);
1734 if (bp->b_flags & XBF_WRITE_FAIL) {
1735 xfs_alert(btp->bt_mount,
1736 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1737 (long long)bp->b_bn);
1738 xfs_alert(btp->bt_mount,
1739 "Please run xfs_repair to determine the extent of the problem.");
1748 static enum lru_status
1749 xfs_buftarg_isolate(
1750 struct list_head *item,
1751 struct list_lru_one *lru,
1752 spinlock_t *lru_lock,
1755 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1756 struct list_head *dispose = arg;
1759 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1760 * If we fail to get the lock, just skip it.
1762 if (!spin_trylock(&bp->b_lock))
1765 * Decrement the b_lru_ref count unless the value is already
1766 * zero. If the value is already zero, we need to reclaim the
1767 * buffer, otherwise it gets another trip through the LRU.
1769 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1770 spin_unlock(&bp->b_lock);
1774 bp->b_state |= XFS_BSTATE_DISPOSE;
1775 list_lru_isolate_move(lru, item, dispose);
1776 spin_unlock(&bp->b_lock);
1780 static unsigned long
1781 xfs_buftarg_shrink_scan(
1782 struct shrinker *shrink,
1783 struct shrink_control *sc)
1785 struct xfs_buftarg *btp = container_of(shrink,
1786 struct xfs_buftarg, bt_shrinker);
1788 unsigned long freed;
1790 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1791 xfs_buftarg_isolate, &dispose);
1793 while (!list_empty(&dispose)) {
1795 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1796 list_del_init(&bp->b_lru);
1803 static unsigned long
1804 xfs_buftarg_shrink_count(
1805 struct shrinker *shrink,
1806 struct shrink_control *sc)
1808 struct xfs_buftarg *btp = container_of(shrink,
1809 struct xfs_buftarg, bt_shrinker);
1810 return list_lru_shrink_count(&btp->bt_lru, sc);
1815 struct xfs_buftarg *btp)
1817 unregister_shrinker(&btp->bt_shrinker);
1818 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1819 percpu_counter_destroy(&btp->bt_io_count);
1820 list_lru_destroy(&btp->bt_lru);
1822 xfs_blkdev_issue_flush(btp);
1828 xfs_setsize_buftarg(
1830 unsigned int sectorsize)
1832 /* Set up metadata sector size info */
1833 btp->bt_meta_sectorsize = sectorsize;
1834 btp->bt_meta_sectormask = sectorsize - 1;
1836 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1837 xfs_warn(btp->bt_mount,
1838 "Cannot set_blocksize to %u on device %pg",
1839 sectorsize, btp->bt_bdev);
1843 /* Set up device logical sector size mask */
1844 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1845 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1851 * When allocating the initial buffer target we have not yet
1852 * read in the superblock, so don't know what sized sectors
1853 * are being used at this early stage. Play safe.
1856 xfs_setsize_buftarg_early(
1858 struct block_device *bdev)
1860 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1865 struct xfs_mount *mp,
1866 struct block_device *bdev,
1867 struct dax_device *dax_dev)
1871 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1874 btp->bt_dev = bdev->bd_dev;
1875 btp->bt_bdev = bdev;
1876 btp->bt_daxdev = dax_dev;
1878 if (xfs_setsize_buftarg_early(btp, bdev))
1881 if (list_lru_init(&btp->bt_lru))
1884 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1887 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1888 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1889 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1890 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1891 if (register_shrinker(&btp->bt_shrinker))
1896 percpu_counter_destroy(&btp->bt_io_count);
1898 list_lru_destroy(&btp->bt_lru);
1905 * Cancel a delayed write list.
1907 * Remove each buffer from the list, clear the delwri queue flag and drop the
1908 * associated buffer reference.
1911 xfs_buf_delwri_cancel(
1912 struct list_head *list)
1916 while (!list_empty(list)) {
1917 bp = list_first_entry(list, struct xfs_buf, b_list);
1920 bp->b_flags &= ~_XBF_DELWRI_Q;
1921 list_del_init(&bp->b_list);
1927 * Add a buffer to the delayed write list.
1929 * This queues a buffer for writeout if it hasn't already been. Note that
1930 * neither this routine nor the buffer list submission functions perform
1931 * any internal synchronization. It is expected that the lists are thread-local
1934 * Returns true if we queued up the buffer, or false if it already had
1935 * been on the buffer list.
1938 xfs_buf_delwri_queue(
1940 struct list_head *list)
1942 ASSERT(xfs_buf_islocked(bp));
1943 ASSERT(!(bp->b_flags & XBF_READ));
1946 * If the buffer is already marked delwri it already is queued up
1947 * by someone else for imediate writeout. Just ignore it in that
1950 if (bp->b_flags & _XBF_DELWRI_Q) {
1951 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1955 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1958 * If a buffer gets written out synchronously or marked stale while it
1959 * is on a delwri list we lazily remove it. To do this, the other party
1960 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1961 * It remains referenced and on the list. In a rare corner case it
1962 * might get readded to a delwri list after the synchronous writeout, in
1963 * which case we need just need to re-add the flag here.
1965 bp->b_flags |= _XBF_DELWRI_Q;
1966 if (list_empty(&bp->b_list)) {
1967 atomic_inc(&bp->b_hold);
1968 list_add_tail(&bp->b_list, list);
1975 * Compare function is more complex than it needs to be because
1976 * the return value is only 32 bits and we are doing comparisons
1982 struct list_head *a,
1983 struct list_head *b)
1985 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1986 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1989 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1998 * Submit buffers for write. If wait_list is specified, the buffers are
1999 * submitted using sync I/O and placed on the wait list such that the caller can
2000 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2001 * at I/O completion time. In either case, buffers remain locked until I/O
2002 * completes and the buffer is released from the queue.
2005 xfs_buf_delwri_submit_buffers(
2006 struct list_head *buffer_list,
2007 struct list_head *wait_list)
2009 struct xfs_buf *bp, *n;
2011 struct blk_plug plug;
2013 list_sort(NULL, buffer_list, xfs_buf_cmp);
2015 blk_start_plug(&plug);
2016 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2018 if (xfs_buf_ispinned(bp)) {
2022 if (!xfs_buf_trylock(bp))
2029 * Someone else might have written the buffer synchronously or
2030 * marked it stale in the meantime. In that case only the
2031 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2032 * reference and remove it from the list here.
2034 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2035 list_del_init(&bp->b_list);
2040 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2043 * If we have a wait list, each buffer (and associated delwri
2044 * queue reference) transfers to it and is submitted
2045 * synchronously. Otherwise, drop the buffer from the delwri
2046 * queue and submit async.
2048 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2049 bp->b_flags |= XBF_WRITE;
2051 bp->b_flags &= ~XBF_ASYNC;
2052 list_move_tail(&bp->b_list, wait_list);
2054 bp->b_flags |= XBF_ASYNC;
2055 list_del_init(&bp->b_list);
2057 __xfs_buf_submit(bp, false);
2059 blk_finish_plug(&plug);
2065 * Write out a buffer list asynchronously.
2067 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2068 * out and not wait for I/O completion on any of the buffers. This interface
2069 * is only safely useable for callers that can track I/O completion by higher
2070 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2073 * Note: this function will skip buffers it would block on, and in doing so
2074 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2075 * it is up to the caller to ensure that the buffer list is fully submitted or
2076 * cancelled appropriately when they are finished with the list. Failure to
2077 * cancel or resubmit the list until it is empty will result in leaked buffers
2081 xfs_buf_delwri_submit_nowait(
2082 struct list_head *buffer_list)
2084 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2088 * Write out a buffer list synchronously.
2090 * This will take the @buffer_list, write all buffers out and wait for I/O
2091 * completion on all of the buffers. @buffer_list is consumed by the function,
2092 * so callers must have some other way of tracking buffers if they require such
2096 xfs_buf_delwri_submit(
2097 struct list_head *buffer_list)
2099 LIST_HEAD (wait_list);
2100 int error = 0, error2;
2103 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2105 /* Wait for IO to complete. */
2106 while (!list_empty(&wait_list)) {
2107 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2109 list_del_init(&bp->b_list);
2112 * Wait on the locked buffer, check for errors and unlock and
2113 * release the delwri queue reference.
2115 error2 = xfs_buf_iowait(bp);
2125 * Push a single buffer on a delwri queue.
2127 * The purpose of this function is to submit a single buffer of a delwri queue
2128 * and return with the buffer still on the original queue. The waiting delwri
2129 * buffer submission infrastructure guarantees transfer of the delwri queue
2130 * buffer reference to a temporary wait list. We reuse this infrastructure to
2131 * transfer the buffer back to the original queue.
2133 * Note the buffer transitions from the queued state, to the submitted and wait
2134 * listed state and back to the queued state during this call. The buffer
2135 * locking and queue management logic between _delwri_pushbuf() and
2136 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2140 xfs_buf_delwri_pushbuf(
2142 struct list_head *buffer_list)
2144 LIST_HEAD (submit_list);
2147 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2149 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2152 * Isolate the buffer to a new local list so we can submit it for I/O
2153 * independently from the rest of the original list.
2156 list_move(&bp->b_list, &submit_list);
2160 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2161 * the buffer on the wait list with the original reference. Rather than
2162 * bounce the buffer from a local wait list back to the original list
2163 * after I/O completion, reuse the original list as the wait list.
2165 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2168 * The buffer is now locked, under I/O and wait listed on the original
2169 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2170 * return with the buffer unlocked and on the original queue.
2172 error = xfs_buf_iowait(bp);
2173 bp->b_flags |= _XBF_DELWRI_Q;
2182 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2183 KM_ZONE_HWALIGN, NULL);
2194 xfs_buf_terminate(void)
2196 kmem_zone_destroy(xfs_buf_zone);
2199 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2202 * Set the lru reference count to 0 based on the error injection tag.
2203 * This allows userspace to disrupt buffer caching for debug/testing
2206 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2207 XFS_ERRTAG_BUF_LRU_REF))
2210 atomic_set(&bp->b_lru_ref, lru_ref);