1 #include "blk-rq-qos.h"
4 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
5 * false if 'v' + 1 would be bigger than 'below'.
7 static bool atomic_inc_below(atomic_t *v, unsigned int below)
9 unsigned int cur = atomic_read(v);
16 old = atomic_cmpxchg(v, cur, cur + 1);
25 bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
27 return atomic_inc_below(&rq_wait->inflight, limit);
30 void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
33 if (rqos->ops->cleanup)
34 rqos->ops->cleanup(rqos, bio);
39 void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
43 rqos->ops->done(rqos, rq);
48 void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
52 rqos->ops->issue(rqos, rq);
57 void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
60 if (rqos->ops->requeue)
61 rqos->ops->requeue(rqos, rq);
66 void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
69 if (rqos->ops->throttle)
70 rqos->ops->throttle(rqos, bio);
75 void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
79 rqos->ops->track(rqos, rq, bio);
84 void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
87 if (rqos->ops->done_bio)
88 rqos->ops->done_bio(rqos, bio);
94 * Return true, if we can't increase the depth further by scaling
96 bool rq_depth_calc_max_depth(struct rq_depth *rqd)
102 * For QD=1 devices, this is a special case. It's important for those
103 * to have one request ready when one completes, so force a depth of
104 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
105 * since the device can't have more than that in flight. If we're
106 * scaling down, then keep a setting of 1/1/1.
108 if (rqd->queue_depth == 1) {
109 if (rqd->scale_step > 0)
117 * scale_step == 0 is our default state. If we have suffered
118 * latency spikes, step will be > 0, and we shrink the
119 * allowed write depths. If step is < 0, we're only doing
120 * writes, and we allow a temporarily higher depth to
121 * increase performance.
123 depth = min_t(unsigned int, rqd->default_depth,
125 if (rqd->scale_step > 0)
126 depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
127 else if (rqd->scale_step < 0) {
128 unsigned int maxd = 3 * rqd->queue_depth / 4;
130 depth = 1 + ((depth - 1) << -rqd->scale_step);
137 rqd->max_depth = depth;
143 void rq_depth_scale_up(struct rq_depth *rqd)
146 * Hit max in previous round, stop here
153 rqd->scaled_max = rq_depth_calc_max_depth(rqd);
157 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
158 * had a latency violation.
160 void rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
163 * Stop scaling down when we've hit the limit. This also prevents
164 * ->scale_step from going to crazy values, if the device can't
167 if (rqd->max_depth == 1)
170 if (rqd->scale_step < 0 && hard_throttle)
175 rqd->scaled_max = false;
176 rq_depth_calc_max_depth(rqd);
179 struct rq_qos_wait_data {
180 struct wait_queue_entry wq;
181 struct task_struct *task;
183 acquire_inflight_cb_t *cb;
188 static int rq_qos_wake_function(struct wait_queue_entry *curr,
189 unsigned int mode, int wake_flags, void *key)
191 struct rq_qos_wait_data *data = container_of(curr,
192 struct rq_qos_wait_data,
196 * If we fail to get a budget, return -1 to interrupt the wake up loop
197 * in __wake_up_common.
199 if (!data->cb(data->rqw, data->private_data))
202 data->got_token = true;
203 list_del_init(&curr->entry);
204 wake_up_process(data->task);
209 * rq_qos_wait - throttle on a rqw if we need to
210 * @private_data - caller provided specific data
211 * @acquire_inflight_cb - inc the rqw->inflight counter if we can
212 * @cleanup_cb - the callback to cleanup in case we race with a waker
214 * This provides a uniform place for the rq_qos users to do their throttling.
215 * Since you can end up with a lot of things sleeping at once, this manages the
216 * waking up based on the resources available. The acquire_inflight_cb should
217 * inc the rqw->inflight if we have the ability to do so, or return false if not
218 * and then we will sleep until the room becomes available.
220 * cleanup_cb is in case that we race with a waker and need to cleanup the
221 * inflight count accordingly.
223 void rq_qos_wait(struct rq_wait *rqw, void *private_data,
224 acquire_inflight_cb_t *acquire_inflight_cb,
225 cleanup_cb_t *cleanup_cb)
227 struct rq_qos_wait_data data = {
229 .func = rq_qos_wake_function,
230 .entry = LIST_HEAD_INIT(data.wq.entry),
234 .cb = acquire_inflight_cb,
235 .private_data = private_data,
239 has_sleeper = wq_has_sleeper(&rqw->wait);
240 if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
243 prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE);
247 if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
248 finish_wait(&rqw->wait, &data.wq);
251 * We raced with wbt_wake_function() getting a token,
252 * which means we now have two. Put our local token
253 * and wake anyone else potentially waiting for one.
256 cleanup_cb(rqw, private_data);
262 finish_wait(&rqw->wait, &data.wq);
265 void rq_qos_exit(struct request_queue *q)
267 blk_mq_debugfs_unregister_queue_rqos(q);
270 struct rq_qos *rqos = q->rq_qos;
271 q->rq_qos = rqos->next;
272 rqos->ops->exit(rqos);