2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
33 #define DM_MSG_PREFIX "core"
36 * Cookies are numeric values sent with CHANGE and REMOVE
37 * uevents while resuming, removing or renaming the device.
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
42 static const char *_name = DM_NAME;
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
47 static DEFINE_IDR(_minor_idr);
49 static DEFINE_SPINLOCK(_minor_lock);
51 static void do_deferred_remove(struct work_struct *w);
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55 static struct workqueue_struct *deferred_remove_workqueue;
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60 void dm_issue_global_event(void)
62 atomic_inc(&dm_global_event_nr);
63 wake_up(&dm_global_eventq);
67 * One of these is allocated (on-stack) per original bio.
74 unsigned sector_count;
78 * One of these is allocated per clone bio.
80 #define DM_TIO_MAGIC 7282014
85 unsigned target_bio_nr;
92 * One of these is allocated per original bio.
93 * It contains the first clone used for that original.
95 #define DM_IO_MAGIC 5191977
98 struct mapped_device *md;
101 struct bio *orig_bio;
102 unsigned long start_time;
103 spinlock_t endio_lock;
104 struct dm_stats_aux stats_aux;
105 /* last member of dm_target_io is 'struct bio' */
106 struct dm_target_io tio;
109 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
110 #define DM_IO_BIO_OFFSET \
111 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
113 void *dm_per_bio_data(struct bio *bio, size_t data_size)
115 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
116 if (!tio->inside_dm_io)
117 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
118 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
120 EXPORT_SYMBOL_GPL(dm_per_bio_data);
122 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
124 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
125 if (io->magic == DM_IO_MAGIC)
126 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
127 BUG_ON(io->magic != DM_TIO_MAGIC);
128 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
130 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
132 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
134 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
136 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
138 #define MINOR_ALLOCED ((void *)-1)
141 * Bits for the md->flags field.
143 #define DMF_BLOCK_IO_FOR_SUSPEND 0
144 #define DMF_SUSPENDED 1
146 #define DMF_FREEING 3
147 #define DMF_DELETING 4
148 #define DMF_NOFLUSH_SUSPENDING 5
149 #define DMF_DEFERRED_REMOVE 6
150 #define DMF_SUSPENDED_INTERNALLY 7
151 #define DMF_POST_SUSPENDING 8
153 #define DM_NUMA_NODE NUMA_NO_NODE
154 static int dm_numa_node = DM_NUMA_NODE;
156 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
157 static int swap_bios = DEFAULT_SWAP_BIOS;
158 static int get_swap_bios(void)
160 int latch = READ_ONCE(swap_bios);
161 if (unlikely(latch <= 0))
162 latch = DEFAULT_SWAP_BIOS;
167 * For mempools pre-allocation at the table loading time.
169 struct dm_md_mempools {
171 struct bio_set io_bs;
174 struct table_device {
175 struct list_head list;
177 struct dm_dev dm_dev;
181 * Bio-based DM's mempools' reserved IOs set by the user.
183 #define RESERVED_BIO_BASED_IOS 16
184 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
186 static int __dm_get_module_param_int(int *module_param, int min, int max)
188 int param = READ_ONCE(*module_param);
189 int modified_param = 0;
190 bool modified = true;
193 modified_param = min;
194 else if (param > max)
195 modified_param = max;
200 (void)cmpxchg(module_param, param, modified_param);
201 param = modified_param;
207 unsigned __dm_get_module_param(unsigned *module_param,
208 unsigned def, unsigned max)
210 unsigned param = READ_ONCE(*module_param);
211 unsigned modified_param = 0;
214 modified_param = def;
215 else if (param > max)
216 modified_param = max;
218 if (modified_param) {
219 (void)cmpxchg(module_param, param, modified_param);
220 param = modified_param;
226 unsigned dm_get_reserved_bio_based_ios(void)
228 return __dm_get_module_param(&reserved_bio_based_ios,
229 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
231 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
233 static unsigned dm_get_numa_node(void)
235 return __dm_get_module_param_int(&dm_numa_node,
236 DM_NUMA_NODE, num_online_nodes() - 1);
239 static int __init local_init(void)
243 r = dm_uevent_init();
247 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
248 if (!deferred_remove_workqueue) {
250 goto out_uevent_exit;
254 r = register_blkdev(_major, _name);
256 goto out_free_workqueue;
264 destroy_workqueue(deferred_remove_workqueue);
271 static void local_exit(void)
273 flush_scheduled_work();
274 destroy_workqueue(deferred_remove_workqueue);
276 unregister_blkdev(_major, _name);
281 DMINFO("cleaned up");
284 static int (*_inits[])(void) __initdata = {
295 static void (*_exits[])(void) = {
306 static int __init dm_init(void)
308 const int count = ARRAY_SIZE(_inits);
312 for (i = 0; i < count; i++) {
327 static void __exit dm_exit(void)
329 int i = ARRAY_SIZE(_exits);
335 * Should be empty by this point.
337 idr_destroy(&_minor_idr);
341 * Block device functions
343 int dm_deleting_md(struct mapped_device *md)
345 return test_bit(DMF_DELETING, &md->flags);
348 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
350 struct mapped_device *md;
352 spin_lock(&_minor_lock);
354 md = bdev->bd_disk->private_data;
358 if (test_bit(DMF_FREEING, &md->flags) ||
359 dm_deleting_md(md)) {
365 atomic_inc(&md->open_count);
367 spin_unlock(&_minor_lock);
369 return md ? 0 : -ENXIO;
372 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
374 struct mapped_device *md;
376 spin_lock(&_minor_lock);
378 md = disk->private_data;
382 if (atomic_dec_and_test(&md->open_count) &&
383 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
384 queue_work(deferred_remove_workqueue, &deferred_remove_work);
388 spin_unlock(&_minor_lock);
391 int dm_open_count(struct mapped_device *md)
393 return atomic_read(&md->open_count);
397 * Guarantees nothing is using the device before it's deleted.
399 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
403 spin_lock(&_minor_lock);
405 if (dm_open_count(md)) {
408 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
409 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
412 set_bit(DMF_DELETING, &md->flags);
414 spin_unlock(&_minor_lock);
419 int dm_cancel_deferred_remove(struct mapped_device *md)
423 spin_lock(&_minor_lock);
425 if (test_bit(DMF_DELETING, &md->flags))
428 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
430 spin_unlock(&_minor_lock);
435 static void do_deferred_remove(struct work_struct *w)
437 dm_deferred_remove();
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
442 struct mapped_device *md = bdev->bd_disk->private_data;
444 return dm_get_geometry(md, geo);
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
450 struct dm_report_zones_args *args = data;
451 sector_t sector_diff = args->tgt->begin - args->start;
454 * Ignore zones beyond the target range.
456 if (zone->start >= args->start + args->tgt->len)
460 * Remap the start sector and write pointer position of the zone
461 * to match its position in the target range.
463 zone->start += sector_diff;
464 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 if (zone->cond == BLK_ZONE_COND_FULL)
466 zone->wp = zone->start + zone->len;
467 else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 zone->wp = zone->start;
470 zone->wp += sector_diff;
473 args->next_sector = zone->start + zone->len;
474 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 unsigned int nr_zones, report_zones_cb cb, void *data)
481 struct mapped_device *md = disk->private_data;
482 struct dm_table *map;
484 struct dm_report_zones_args args = {
485 .next_sector = sector,
490 if (dm_suspended_md(md))
493 map = dm_get_live_table(md, &srcu_idx);
500 struct dm_target *tgt;
502 tgt = dm_table_find_target(map, args.next_sector);
503 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
509 ret = tgt->type->report_zones(tgt, &args,
510 nr_zones - args.zone_idx);
513 } while (args.zone_idx < nr_zones &&
514 args.next_sector < get_capacity(disk));
518 dm_put_live_table(md, srcu_idx);
522 #define dm_blk_report_zones NULL
523 #endif /* CONFIG_BLK_DEV_ZONED */
525 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
526 struct block_device **bdev)
528 struct dm_target *tgt;
529 struct dm_table *map;
534 map = dm_get_live_table(md, srcu_idx);
535 if (!map || !dm_table_get_size(map))
538 /* We only support devices that have a single target */
539 if (dm_table_get_num_targets(map) != 1)
542 tgt = dm_table_get_target(map, 0);
543 if (!tgt->type->prepare_ioctl)
546 if (dm_suspended_md(md))
549 r = tgt->type->prepare_ioctl(tgt, bdev);
550 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
551 dm_put_live_table(md, *srcu_idx);
559 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
561 dm_put_live_table(md, srcu_idx);
564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 unsigned int cmd, unsigned long arg)
567 struct mapped_device *md = bdev->bd_disk->private_data;
570 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
576 * Target determined this ioctl is being issued against a
577 * subset of the parent bdev; require extra privileges.
579 if (!capable(CAP_SYS_RAWIO)) {
581 "%s: sending ioctl %x to DM device without required privilege.",
588 if (!bdev->bd_disk->fops->ioctl)
591 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
593 dm_unprepare_ioctl(md, srcu_idx);
597 u64 dm_start_time_ns_from_clone(struct bio *bio)
599 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
600 struct dm_io *io = tio->io;
602 return jiffies_to_nsecs(io->start_time);
604 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
606 static void start_io_acct(struct dm_io *io)
608 struct mapped_device *md = io->md;
609 struct bio *bio = io->orig_bio;
611 io->start_time = bio_start_io_acct(bio);
612 if (unlikely(dm_stats_used(&md->stats)))
613 dm_stats_account_io(&md->stats, bio_data_dir(bio),
614 bio->bi_iter.bi_sector, bio_sectors(bio),
615 false, 0, &io->stats_aux);
618 static void end_io_acct(struct dm_io *io)
620 struct mapped_device *md = io->md;
621 struct bio *bio = io->orig_bio;
622 unsigned long duration = jiffies - io->start_time;
624 bio_end_io_acct(bio, io->start_time);
626 if (unlikely(dm_stats_used(&md->stats)))
627 dm_stats_account_io(&md->stats, bio_data_dir(bio),
628 bio->bi_iter.bi_sector, bio_sectors(bio),
629 true, duration, &io->stats_aux);
631 /* nudge anyone waiting on suspend queue */
632 if (unlikely(wq_has_sleeper(&md->wait)))
636 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
639 struct dm_target_io *tio;
642 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
646 tio = container_of(clone, struct dm_target_io, clone);
647 tio->inside_dm_io = true;
650 io = container_of(tio, struct dm_io, tio);
651 io->magic = DM_IO_MAGIC;
653 atomic_set(&io->io_count, 1);
656 spin_lock_init(&io->endio_lock);
663 static void free_io(struct mapped_device *md, struct dm_io *io)
665 bio_put(&io->tio.clone);
668 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
669 unsigned target_bio_nr, gfp_t gfp_mask)
671 struct dm_target_io *tio;
673 if (!ci->io->tio.io) {
674 /* the dm_target_io embedded in ci->io is available */
677 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
681 tio = container_of(clone, struct dm_target_io, clone);
682 tio->inside_dm_io = false;
685 tio->magic = DM_TIO_MAGIC;
688 tio->target_bio_nr = target_bio_nr;
693 static void free_tio(struct dm_target_io *tio)
695 if (tio->inside_dm_io)
697 bio_put(&tio->clone);
701 * Add the bio to the list of deferred io.
703 static void queue_io(struct mapped_device *md, struct bio *bio)
707 spin_lock_irqsave(&md->deferred_lock, flags);
708 bio_list_add(&md->deferred, bio);
709 spin_unlock_irqrestore(&md->deferred_lock, flags);
710 queue_work(md->wq, &md->work);
714 * Everyone (including functions in this file), should use this
715 * function to access the md->map field, and make sure they call
716 * dm_put_live_table() when finished.
718 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
720 *srcu_idx = srcu_read_lock(&md->io_barrier);
722 return srcu_dereference(md->map, &md->io_barrier);
725 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
727 srcu_read_unlock(&md->io_barrier, srcu_idx);
730 void dm_sync_table(struct mapped_device *md)
732 synchronize_srcu(&md->io_barrier);
733 synchronize_rcu_expedited();
737 * A fast alternative to dm_get_live_table/dm_put_live_table.
738 * The caller must not block between these two functions.
740 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
743 return rcu_dereference(md->map);
746 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
751 static char *_dm_claim_ptr = "I belong to device-mapper";
754 * Open a table device so we can use it as a map destination.
756 static int open_table_device(struct table_device *td, dev_t dev,
757 struct mapped_device *md)
759 struct block_device *bdev;
763 BUG_ON(td->dm_dev.bdev);
765 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
767 return PTR_ERR(bdev);
769 r = bd_link_disk_holder(bdev, dm_disk(md));
771 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
775 td->dm_dev.bdev = bdev;
776 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
781 * Close a table device that we've been using.
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
785 if (!td->dm_dev.bdev)
788 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
789 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
790 put_dax(td->dm_dev.dax_dev);
791 td->dm_dev.bdev = NULL;
792 td->dm_dev.dax_dev = NULL;
795 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
798 struct table_device *td;
800 list_for_each_entry(td, l, list)
801 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
807 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
808 struct dm_dev **result)
811 struct table_device *td;
813 mutex_lock(&md->table_devices_lock);
814 td = find_table_device(&md->table_devices, dev, mode);
816 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
818 mutex_unlock(&md->table_devices_lock);
822 td->dm_dev.mode = mode;
823 td->dm_dev.bdev = NULL;
825 if ((r = open_table_device(td, dev, md))) {
826 mutex_unlock(&md->table_devices_lock);
831 format_dev_t(td->dm_dev.name, dev);
833 refcount_set(&td->count, 1);
834 list_add(&td->list, &md->table_devices);
836 refcount_inc(&td->count);
838 mutex_unlock(&md->table_devices_lock);
840 *result = &td->dm_dev;
843 EXPORT_SYMBOL_GPL(dm_get_table_device);
845 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
847 struct table_device *td = container_of(d, struct table_device, dm_dev);
849 mutex_lock(&md->table_devices_lock);
850 if (refcount_dec_and_test(&td->count)) {
851 close_table_device(td, md);
855 mutex_unlock(&md->table_devices_lock);
857 EXPORT_SYMBOL(dm_put_table_device);
859 static void free_table_devices(struct list_head *devices)
861 struct list_head *tmp, *next;
863 list_for_each_safe(tmp, next, devices) {
864 struct table_device *td = list_entry(tmp, struct table_device, list);
866 DMWARN("dm_destroy: %s still exists with %d references",
867 td->dm_dev.name, refcount_read(&td->count));
873 * Get the geometry associated with a dm device
875 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
883 * Set the geometry of a device.
885 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
887 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
889 if (geo->start > sz) {
890 DMWARN("Start sector is beyond the geometry limits.");
899 static int __noflush_suspending(struct mapped_device *md)
901 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
905 * Decrements the number of outstanding ios that a bio has been
906 * cloned into, completing the original io if necc.
908 static void dec_pending(struct dm_io *io, blk_status_t error)
911 blk_status_t io_error;
913 struct mapped_device *md = io->md;
915 /* Push-back supersedes any I/O errors */
916 if (unlikely(error)) {
917 spin_lock_irqsave(&io->endio_lock, flags);
918 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
920 spin_unlock_irqrestore(&io->endio_lock, flags);
923 if (atomic_dec_and_test(&io->io_count)) {
924 if (io->status == BLK_STS_DM_REQUEUE) {
926 * Target requested pushing back the I/O.
928 spin_lock_irqsave(&md->deferred_lock, flags);
929 if (__noflush_suspending(md))
930 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
931 bio_list_add_head(&md->deferred, io->orig_bio);
933 /* noflush suspend was interrupted. */
934 io->status = BLK_STS_IOERR;
935 spin_unlock_irqrestore(&md->deferred_lock, flags);
938 io_error = io->status;
943 if (io_error == BLK_STS_DM_REQUEUE)
946 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
948 * Preflush done for flush with data, reissue
949 * without REQ_PREFLUSH.
951 bio->bi_opf &= ~REQ_PREFLUSH;
954 /* done with normal IO or empty flush */
956 bio->bi_status = io_error;
962 void disable_discard(struct mapped_device *md)
964 struct queue_limits *limits = dm_get_queue_limits(md);
966 /* device doesn't really support DISCARD, disable it */
967 limits->max_discard_sectors = 0;
968 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
971 void disable_write_same(struct mapped_device *md)
973 struct queue_limits *limits = dm_get_queue_limits(md);
975 /* device doesn't really support WRITE SAME, disable it */
976 limits->max_write_same_sectors = 0;
979 void disable_write_zeroes(struct mapped_device *md)
981 struct queue_limits *limits = dm_get_queue_limits(md);
983 /* device doesn't really support WRITE ZEROES, disable it */
984 limits->max_write_zeroes_sectors = 0;
987 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
989 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
992 static void clone_endio(struct bio *bio)
994 blk_status_t error = bio->bi_status;
995 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
996 struct dm_io *io = tio->io;
997 struct mapped_device *md = tio->io->md;
998 dm_endio_fn endio = tio->ti->type->end_io;
999 struct bio *orig_bio = io->orig_bio;
1000 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1002 if (unlikely(error == BLK_STS_TARGET)) {
1003 if (bio_op(bio) == REQ_OP_DISCARD &&
1004 !q->limits.max_discard_sectors)
1005 disable_discard(md);
1006 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1007 !q->limits.max_write_same_sectors)
1008 disable_write_same(md);
1009 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1010 !q->limits.max_write_zeroes_sectors)
1011 disable_write_zeroes(md);
1015 * For zone-append bios get offset in zone of the written
1016 * sector and add that to the original bio sector pos.
1018 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1019 sector_t written_sector = bio->bi_iter.bi_sector;
1020 struct request_queue *q = orig_bio->bi_bdev->bd_disk->queue;
1021 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1023 orig_bio->bi_iter.bi_sector += written_sector & mask;
1027 int r = endio(tio->ti, bio, &error);
1029 case DM_ENDIO_REQUEUE:
1030 error = BLK_STS_DM_REQUEUE;
1034 case DM_ENDIO_INCOMPLETE:
1035 /* The target will handle the io */
1038 DMWARN("unimplemented target endio return value: %d", r);
1043 if (unlikely(swap_bios_limit(tio->ti, bio))) {
1044 struct mapped_device *md = io->md;
1045 up(&md->swap_bios_semaphore);
1049 dec_pending(io, error);
1053 * Return maximum size of I/O possible at the supplied sector up to the current
1056 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1057 sector_t target_offset)
1059 return ti->len - target_offset;
1062 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1064 sector_t target_offset = dm_target_offset(ti, sector);
1065 sector_t len = max_io_len_target_boundary(ti, target_offset);
1069 * Does the target need to split IO even further?
1070 * - varied (per target) IO splitting is a tenet of DM; this
1071 * explains why stacked chunk_sectors based splitting via
1072 * blk_max_size_offset() isn't possible here. So pass in
1073 * ti->max_io_len to override stacked chunk_sectors.
1075 if (ti->max_io_len) {
1076 max_len = blk_max_size_offset(ti->table->md->queue,
1077 target_offset, ti->max_io_len);
1085 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1087 if (len > UINT_MAX) {
1088 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1089 (unsigned long long)len, UINT_MAX);
1090 ti->error = "Maximum size of target IO is too large";
1094 ti->max_io_len = (uint32_t) len;
1098 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1100 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1101 sector_t sector, int *srcu_idx)
1102 __acquires(md->io_barrier)
1104 struct dm_table *map;
1105 struct dm_target *ti;
1107 map = dm_get_live_table(md, srcu_idx);
1111 ti = dm_table_find_target(map, sector);
1118 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1119 long nr_pages, void **kaddr, pfn_t *pfn)
1121 struct mapped_device *md = dax_get_private(dax_dev);
1122 sector_t sector = pgoff * PAGE_SECTORS;
1123 struct dm_target *ti;
1124 long len, ret = -EIO;
1127 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1131 if (!ti->type->direct_access)
1133 len = max_io_len(ti, sector) / PAGE_SECTORS;
1136 nr_pages = min(len, nr_pages);
1137 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1140 dm_put_live_table(md, srcu_idx);
1145 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1146 int blocksize, sector_t start, sector_t len)
1148 struct mapped_device *md = dax_get_private(dax_dev);
1149 struct dm_table *map;
1153 map = dm_get_live_table(md, &srcu_idx);
1157 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1160 dm_put_live_table(md, srcu_idx);
1165 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1166 void *addr, size_t bytes, struct iov_iter *i)
1168 struct mapped_device *md = dax_get_private(dax_dev);
1169 sector_t sector = pgoff * PAGE_SECTORS;
1170 struct dm_target *ti;
1174 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1178 if (!ti->type->dax_copy_from_iter) {
1179 ret = copy_from_iter(addr, bytes, i);
1182 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1184 dm_put_live_table(md, srcu_idx);
1189 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1190 void *addr, size_t bytes, struct iov_iter *i)
1192 struct mapped_device *md = dax_get_private(dax_dev);
1193 sector_t sector = pgoff * PAGE_SECTORS;
1194 struct dm_target *ti;
1198 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1202 if (!ti->type->dax_copy_to_iter) {
1203 ret = copy_to_iter(addr, bytes, i);
1206 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1208 dm_put_live_table(md, srcu_idx);
1213 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1216 struct mapped_device *md = dax_get_private(dax_dev);
1217 sector_t sector = pgoff * PAGE_SECTORS;
1218 struct dm_target *ti;
1222 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1226 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1228 * ->zero_page_range() is mandatory dax operation. If we are
1229 * here, something is wrong.
1233 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1235 dm_put_live_table(md, srcu_idx);
1241 * A target may call dm_accept_partial_bio only from the map routine. It is
1242 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1243 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1245 * dm_accept_partial_bio informs the dm that the target only wants to process
1246 * additional n_sectors sectors of the bio and the rest of the data should be
1247 * sent in a next bio.
1249 * A diagram that explains the arithmetics:
1250 * +--------------------+---------------+-------+
1252 * +--------------------+---------------+-------+
1254 * <-------------- *tio->len_ptr --------------->
1255 * <------- bi_size ------->
1258 * Region 1 was already iterated over with bio_advance or similar function.
1259 * (it may be empty if the target doesn't use bio_advance)
1260 * Region 2 is the remaining bio size that the target wants to process.
1261 * (it may be empty if region 1 is non-empty, although there is no reason
1263 * The target requires that region 3 is to be sent in the next bio.
1265 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1266 * the partially processed part (the sum of regions 1+2) must be the same for all
1267 * copies of the bio.
1269 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1271 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1272 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1273 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1274 BUG_ON(bi_size > *tio->len_ptr);
1275 BUG_ON(n_sectors > bi_size);
1276 *tio->len_ptr -= bi_size - n_sectors;
1277 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1279 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1281 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1283 mutex_lock(&md->swap_bios_lock);
1284 while (latch < md->swap_bios) {
1286 down(&md->swap_bios_semaphore);
1289 while (latch > md->swap_bios) {
1291 up(&md->swap_bios_semaphore);
1294 mutex_unlock(&md->swap_bios_lock);
1297 static blk_qc_t __map_bio(struct dm_target_io *tio)
1301 struct bio *clone = &tio->clone;
1302 struct dm_io *io = tio->io;
1303 struct dm_target *ti = tio->ti;
1304 blk_qc_t ret = BLK_QC_T_NONE;
1306 clone->bi_end_io = clone_endio;
1309 * Map the clone. If r == 0 we don't need to do
1310 * anything, the target has assumed ownership of
1313 atomic_inc(&io->io_count);
1314 sector = clone->bi_iter.bi_sector;
1316 if (unlikely(swap_bios_limit(ti, clone))) {
1317 struct mapped_device *md = io->md;
1318 int latch = get_swap_bios();
1319 if (unlikely(latch != md->swap_bios))
1320 __set_swap_bios_limit(md, latch);
1321 down(&md->swap_bios_semaphore);
1324 r = ti->type->map(ti, clone);
1326 case DM_MAPIO_SUBMITTED:
1328 case DM_MAPIO_REMAPPED:
1329 /* the bio has been remapped so dispatch it */
1330 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1331 ret = submit_bio_noacct(clone);
1334 if (unlikely(swap_bios_limit(ti, clone))) {
1335 struct mapped_device *md = io->md;
1336 up(&md->swap_bios_semaphore);
1339 dec_pending(io, BLK_STS_IOERR);
1341 case DM_MAPIO_REQUEUE:
1342 if (unlikely(swap_bios_limit(ti, clone))) {
1343 struct mapped_device *md = io->md;
1344 up(&md->swap_bios_semaphore);
1347 dec_pending(io, BLK_STS_DM_REQUEUE);
1350 DMWARN("unimplemented target map return value: %d", r);
1357 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1359 bio->bi_iter.bi_sector = sector;
1360 bio->bi_iter.bi_size = to_bytes(len);
1364 * Creates a bio that consists of range of complete bvecs.
1366 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1367 sector_t sector, unsigned len)
1369 struct bio *clone = &tio->clone;
1372 __bio_clone_fast(clone, bio);
1374 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1378 if (bio_integrity(bio)) {
1379 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1380 !dm_target_passes_integrity(tio->ti->type))) {
1381 DMWARN("%s: the target %s doesn't support integrity data.",
1382 dm_device_name(tio->io->md),
1383 tio->ti->type->name);
1387 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1392 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1393 clone->bi_iter.bi_size = to_bytes(len);
1395 if (bio_integrity(bio))
1396 bio_integrity_trim(clone);
1401 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1402 struct dm_target *ti, unsigned num_bios)
1404 struct dm_target_io *tio;
1410 if (num_bios == 1) {
1411 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1412 bio_list_add(blist, &tio->clone);
1416 for (try = 0; try < 2; try++) {
1421 mutex_lock(&ci->io->md->table_devices_lock);
1422 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1423 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1427 bio_list_add(blist, &tio->clone);
1430 mutex_unlock(&ci->io->md->table_devices_lock);
1431 if (bio_nr == num_bios)
1434 while ((bio = bio_list_pop(blist))) {
1435 tio = container_of(bio, struct dm_target_io, clone);
1441 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1442 struct dm_target_io *tio, unsigned *len)
1444 struct bio *clone = &tio->clone;
1448 __bio_clone_fast(clone, ci->bio);
1450 bio_setup_sector(clone, ci->sector, *len);
1452 return __map_bio(tio);
1455 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1456 unsigned num_bios, unsigned *len)
1458 struct bio_list blist = BIO_EMPTY_LIST;
1460 struct dm_target_io *tio;
1462 alloc_multiple_bios(&blist, ci, ti, num_bios);
1464 while ((bio = bio_list_pop(&blist))) {
1465 tio = container_of(bio, struct dm_target_io, clone);
1466 (void) __clone_and_map_simple_bio(ci, tio, len);
1470 static int __send_empty_flush(struct clone_info *ci)
1472 unsigned target_nr = 0;
1473 struct dm_target *ti;
1474 struct bio flush_bio;
1477 * Use an on-stack bio for this, it's safe since we don't
1478 * need to reference it after submit. It's just used as
1479 * the basis for the clone(s).
1481 bio_init(&flush_bio, NULL, 0);
1482 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1483 bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1485 ci->bio = &flush_bio;
1486 ci->sector_count = 0;
1488 BUG_ON(bio_has_data(ci->bio));
1489 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1490 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1492 bio_uninit(ci->bio);
1496 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1497 sector_t sector, unsigned *len)
1499 struct bio *bio = ci->bio;
1500 struct dm_target_io *tio;
1503 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1505 r = clone_bio(tio, bio, sector, *len);
1510 (void) __map_bio(tio);
1515 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1521 * Even though the device advertised support for this type of
1522 * request, that does not mean every target supports it, and
1523 * reconfiguration might also have changed that since the
1524 * check was performed.
1529 len = min_t(sector_t, ci->sector_count,
1530 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1532 __send_duplicate_bios(ci, ti, num_bios, &len);
1535 ci->sector_count -= len;
1540 static bool is_abnormal_io(struct bio *bio)
1544 switch (bio_op(bio)) {
1545 case REQ_OP_DISCARD:
1546 case REQ_OP_SECURE_ERASE:
1547 case REQ_OP_WRITE_SAME:
1548 case REQ_OP_WRITE_ZEROES:
1556 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1559 struct bio *bio = ci->bio;
1560 unsigned num_bios = 0;
1562 switch (bio_op(bio)) {
1563 case REQ_OP_DISCARD:
1564 num_bios = ti->num_discard_bios;
1566 case REQ_OP_SECURE_ERASE:
1567 num_bios = ti->num_secure_erase_bios;
1569 case REQ_OP_WRITE_SAME:
1570 num_bios = ti->num_write_same_bios;
1572 case REQ_OP_WRITE_ZEROES:
1573 num_bios = ti->num_write_zeroes_bios;
1579 *result = __send_changing_extent_only(ci, ti, num_bios);
1584 * Select the correct strategy for processing a non-flush bio.
1586 static int __split_and_process_non_flush(struct clone_info *ci)
1588 struct dm_target *ti;
1592 ti = dm_table_find_target(ci->map, ci->sector);
1596 if (__process_abnormal_io(ci, ti, &r))
1599 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1601 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1606 ci->sector_count -= len;
1611 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1612 struct dm_table *map, struct bio *bio)
1615 ci->io = alloc_io(md, bio);
1616 ci->sector = bio->bi_iter.bi_sector;
1619 #define __dm_part_stat_sub(part, field, subnd) \
1620 (part_stat_get(part, field) -= (subnd))
1623 * Entry point to split a bio into clones and submit them to the targets.
1625 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1626 struct dm_table *map, struct bio *bio)
1628 struct clone_info ci;
1629 blk_qc_t ret = BLK_QC_T_NONE;
1632 init_clone_info(&ci, md, map, bio);
1634 if (bio->bi_opf & REQ_PREFLUSH) {
1635 error = __send_empty_flush(&ci);
1636 /* dec_pending submits any data associated with flush */
1637 } else if (op_is_zone_mgmt(bio_op(bio))) {
1639 ci.sector_count = 0;
1640 error = __split_and_process_non_flush(&ci);
1643 ci.sector_count = bio_sectors(bio);
1644 while (ci.sector_count && !error) {
1645 error = __split_and_process_non_flush(&ci);
1646 if (ci.sector_count && !error) {
1648 * Remainder must be passed to submit_bio_noacct()
1649 * so that it gets handled *after* bios already submitted
1650 * have been completely processed.
1651 * We take a clone of the original to store in
1652 * ci.io->orig_bio to be used by end_io_acct() and
1653 * for dec_pending to use for completion handling.
1655 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1656 GFP_NOIO, &md->queue->bio_split);
1657 ci.io->orig_bio = b;
1660 * Adjust IO stats for each split, otherwise upon queue
1661 * reentry there will be redundant IO accounting.
1662 * NOTE: this is a stop-gap fix, a proper fix involves
1663 * significant refactoring of DM core's bio splitting
1664 * (by eliminating DM's splitting and just using bio_split)
1667 __dm_part_stat_sub(dm_disk(md)->part0,
1668 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1672 trace_block_split(b, bio->bi_iter.bi_sector);
1673 ret = submit_bio_noacct(bio);
1679 /* drop the extra reference count */
1680 dec_pending(ci.io, errno_to_blk_status(error));
1684 static blk_qc_t dm_submit_bio(struct bio *bio)
1686 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1687 blk_qc_t ret = BLK_QC_T_NONE;
1689 struct dm_table *map;
1691 map = dm_get_live_table(md, &srcu_idx);
1692 if (unlikely(!map)) {
1693 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1694 dm_device_name(md));
1699 /* If suspended, queue this IO for later */
1700 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1701 if (bio->bi_opf & REQ_NOWAIT)
1702 bio_wouldblock_error(bio);
1703 else if (bio->bi_opf & REQ_RAHEAD)
1711 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1712 * otherwise associated queue_limits won't be imposed.
1714 if (is_abnormal_io(bio))
1715 blk_queue_split(&bio);
1717 ret = __split_and_process_bio(md, map, bio);
1719 dm_put_live_table(md, srcu_idx);
1723 /*-----------------------------------------------------------------
1724 * An IDR is used to keep track of allocated minor numbers.
1725 *---------------------------------------------------------------*/
1726 static void free_minor(int minor)
1728 spin_lock(&_minor_lock);
1729 idr_remove(&_minor_idr, minor);
1730 spin_unlock(&_minor_lock);
1734 * See if the device with a specific minor # is free.
1736 static int specific_minor(int minor)
1740 if (minor >= (1 << MINORBITS))
1743 idr_preload(GFP_KERNEL);
1744 spin_lock(&_minor_lock);
1746 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1748 spin_unlock(&_minor_lock);
1751 return r == -ENOSPC ? -EBUSY : r;
1755 static int next_free_minor(int *minor)
1759 idr_preload(GFP_KERNEL);
1760 spin_lock(&_minor_lock);
1762 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1764 spin_unlock(&_minor_lock);
1772 static const struct block_device_operations dm_blk_dops;
1773 static const struct block_device_operations dm_rq_blk_dops;
1774 static const struct dax_operations dm_dax_ops;
1776 static void dm_wq_work(struct work_struct *work);
1778 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1779 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1781 dm_destroy_keyslot_manager(q->ksm);
1784 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1786 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1789 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1791 static void cleanup_mapped_device(struct mapped_device *md)
1794 destroy_workqueue(md->wq);
1795 bioset_exit(&md->bs);
1796 bioset_exit(&md->io_bs);
1799 kill_dax(md->dax_dev);
1800 put_dax(md->dax_dev);
1805 spin_lock(&_minor_lock);
1806 md->disk->private_data = NULL;
1807 spin_unlock(&_minor_lock);
1808 del_gendisk(md->disk);
1813 dm_queue_destroy_keyslot_manager(md->queue);
1814 blk_cleanup_queue(md->queue);
1817 cleanup_srcu_struct(&md->io_barrier);
1819 mutex_destroy(&md->suspend_lock);
1820 mutex_destroy(&md->type_lock);
1821 mutex_destroy(&md->table_devices_lock);
1822 mutex_destroy(&md->swap_bios_lock);
1824 dm_mq_cleanup_mapped_device(md);
1828 * Allocate and initialise a blank device with a given minor.
1830 static struct mapped_device *alloc_dev(int minor)
1832 int r, numa_node_id = dm_get_numa_node();
1833 struct mapped_device *md;
1836 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1838 DMWARN("unable to allocate device, out of memory.");
1842 if (!try_module_get(THIS_MODULE))
1843 goto bad_module_get;
1845 /* get a minor number for the dev */
1846 if (minor == DM_ANY_MINOR)
1847 r = next_free_minor(&minor);
1849 r = specific_minor(minor);
1853 r = init_srcu_struct(&md->io_barrier);
1855 goto bad_io_barrier;
1857 md->numa_node_id = numa_node_id;
1858 md->init_tio_pdu = false;
1859 md->type = DM_TYPE_NONE;
1860 mutex_init(&md->suspend_lock);
1861 mutex_init(&md->type_lock);
1862 mutex_init(&md->table_devices_lock);
1863 spin_lock_init(&md->deferred_lock);
1864 atomic_set(&md->holders, 1);
1865 atomic_set(&md->open_count, 0);
1866 atomic_set(&md->event_nr, 0);
1867 atomic_set(&md->uevent_seq, 0);
1868 INIT_LIST_HEAD(&md->uevent_list);
1869 INIT_LIST_HEAD(&md->table_devices);
1870 spin_lock_init(&md->uevent_lock);
1873 * default to bio-based until DM table is loaded and md->type
1874 * established. If request-based table is loaded: blk-mq will
1875 * override accordingly.
1877 md->queue = blk_alloc_queue(numa_node_id);
1881 md->disk = alloc_disk_node(1, md->numa_node_id);
1885 init_waitqueue_head(&md->wait);
1886 INIT_WORK(&md->work, dm_wq_work);
1887 init_waitqueue_head(&md->eventq);
1888 init_completion(&md->kobj_holder.completion);
1890 md->swap_bios = get_swap_bios();
1891 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1892 mutex_init(&md->swap_bios_lock);
1894 md->disk->major = _major;
1895 md->disk->first_minor = minor;
1896 md->disk->fops = &dm_blk_dops;
1897 md->disk->queue = md->queue;
1898 md->disk->private_data = md;
1899 sprintf(md->disk->disk_name, "dm-%d", minor);
1901 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1902 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1904 if (IS_ERR(md->dax_dev))
1908 add_disk_no_queue_reg(md->disk);
1909 format_dev_t(md->name, MKDEV(_major, minor));
1911 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1915 dm_stats_init(&md->stats);
1917 /* Populate the mapping, nobody knows we exist yet */
1918 spin_lock(&_minor_lock);
1919 old_md = idr_replace(&_minor_idr, md, minor);
1920 spin_unlock(&_minor_lock);
1922 BUG_ON(old_md != MINOR_ALLOCED);
1927 cleanup_mapped_device(md);
1931 module_put(THIS_MODULE);
1937 static void unlock_fs(struct mapped_device *md);
1939 static void free_dev(struct mapped_device *md)
1941 int minor = MINOR(disk_devt(md->disk));
1945 cleanup_mapped_device(md);
1947 free_table_devices(&md->table_devices);
1948 dm_stats_cleanup(&md->stats);
1951 module_put(THIS_MODULE);
1955 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1957 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1960 if (dm_table_bio_based(t)) {
1962 * The md may already have mempools that need changing.
1963 * If so, reload bioset because front_pad may have changed
1964 * because a different table was loaded.
1966 bioset_exit(&md->bs);
1967 bioset_exit(&md->io_bs);
1969 } else if (bioset_initialized(&md->bs)) {
1971 * There's no need to reload with request-based dm
1972 * because the size of front_pad doesn't change.
1973 * Note for future: If you are to reload bioset,
1974 * prep-ed requests in the queue may refer
1975 * to bio from the old bioset, so you must walk
1976 * through the queue to unprep.
1982 bioset_initialized(&md->bs) ||
1983 bioset_initialized(&md->io_bs));
1985 ret = bioset_init_from_src(&md->bs, &p->bs);
1988 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1990 bioset_exit(&md->bs);
1992 /* mempool bind completed, no longer need any mempools in the table */
1993 dm_table_free_md_mempools(t);
1998 * Bind a table to the device.
2000 static void event_callback(void *context)
2002 unsigned long flags;
2004 struct mapped_device *md = (struct mapped_device *) context;
2006 spin_lock_irqsave(&md->uevent_lock, flags);
2007 list_splice_init(&md->uevent_list, &uevents);
2008 spin_unlock_irqrestore(&md->uevent_lock, flags);
2010 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2012 atomic_inc(&md->event_nr);
2013 wake_up(&md->eventq);
2014 dm_issue_global_event();
2018 * Returns old map, which caller must destroy.
2020 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2021 struct queue_limits *limits)
2023 struct dm_table *old_map;
2024 struct request_queue *q = md->queue;
2025 bool request_based = dm_table_request_based(t);
2029 lockdep_assert_held(&md->suspend_lock);
2031 size = dm_table_get_size(t);
2034 * Wipe any geometry if the size of the table changed.
2036 if (size != dm_get_size(md))
2037 memset(&md->geometry, 0, sizeof(md->geometry));
2039 set_capacity_and_notify(md->disk, size);
2041 dm_table_event_callback(t, event_callback, md);
2044 * The queue hasn't been stopped yet, if the old table type wasn't
2045 * for request-based during suspension. So stop it to prevent
2046 * I/O mapping before resume.
2047 * This must be done before setting the queue restrictions,
2048 * because request-based dm may be run just after the setting.
2053 if (request_based) {
2055 * Leverage the fact that request-based DM targets are
2056 * immutable singletons - used to optimize dm_mq_queue_rq.
2058 md->immutable_target = dm_table_get_immutable_target(t);
2061 ret = __bind_mempools(md, t);
2063 old_map = ERR_PTR(ret);
2067 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2068 rcu_assign_pointer(md->map, (void *)t);
2069 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2071 dm_table_set_restrictions(t, q, limits);
2080 * Returns unbound table for the caller to free.
2082 static struct dm_table *__unbind(struct mapped_device *md)
2084 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2089 dm_table_event_callback(map, NULL, NULL);
2090 RCU_INIT_POINTER(md->map, NULL);
2097 * Constructor for a new device.
2099 int dm_create(int minor, struct mapped_device **result)
2102 struct mapped_device *md;
2104 md = alloc_dev(minor);
2108 r = dm_sysfs_init(md);
2119 * Functions to manage md->type.
2120 * All are required to hold md->type_lock.
2122 void dm_lock_md_type(struct mapped_device *md)
2124 mutex_lock(&md->type_lock);
2127 void dm_unlock_md_type(struct mapped_device *md)
2129 mutex_unlock(&md->type_lock);
2132 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2134 BUG_ON(!mutex_is_locked(&md->type_lock));
2138 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2143 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2145 return md->immutable_target_type;
2149 * The queue_limits are only valid as long as you have a reference
2152 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2154 BUG_ON(!atomic_read(&md->holders));
2155 return &md->queue->limits;
2157 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2160 * Setup the DM device's queue based on md's type
2162 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2165 struct queue_limits limits;
2166 enum dm_queue_mode type = dm_get_md_type(md);
2169 case DM_TYPE_REQUEST_BASED:
2170 md->disk->fops = &dm_rq_blk_dops;
2171 r = dm_mq_init_request_queue(md, t);
2173 DMERR("Cannot initialize queue for request-based dm mapped device");
2177 case DM_TYPE_BIO_BASED:
2178 case DM_TYPE_DAX_BIO_BASED:
2185 r = dm_calculate_queue_limits(t, &limits);
2187 DMERR("Cannot calculate initial queue limits");
2190 dm_table_set_restrictions(t, md->queue, &limits);
2191 blk_register_queue(md->disk);
2196 struct mapped_device *dm_get_md(dev_t dev)
2198 struct mapped_device *md;
2199 unsigned minor = MINOR(dev);
2201 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2204 spin_lock(&_minor_lock);
2206 md = idr_find(&_minor_idr, minor);
2207 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2208 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2214 spin_unlock(&_minor_lock);
2218 EXPORT_SYMBOL_GPL(dm_get_md);
2220 void *dm_get_mdptr(struct mapped_device *md)
2222 return md->interface_ptr;
2225 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2227 md->interface_ptr = ptr;
2230 void dm_get(struct mapped_device *md)
2232 atomic_inc(&md->holders);
2233 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2236 int dm_hold(struct mapped_device *md)
2238 spin_lock(&_minor_lock);
2239 if (test_bit(DMF_FREEING, &md->flags)) {
2240 spin_unlock(&_minor_lock);
2244 spin_unlock(&_minor_lock);
2247 EXPORT_SYMBOL_GPL(dm_hold);
2249 const char *dm_device_name(struct mapped_device *md)
2253 EXPORT_SYMBOL_GPL(dm_device_name);
2255 static void __dm_destroy(struct mapped_device *md, bool wait)
2257 struct dm_table *map;
2262 spin_lock(&_minor_lock);
2263 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2264 set_bit(DMF_FREEING, &md->flags);
2265 spin_unlock(&_minor_lock);
2267 blk_set_queue_dying(md->queue);
2270 * Take suspend_lock so that presuspend and postsuspend methods
2271 * do not race with internal suspend.
2273 mutex_lock(&md->suspend_lock);
2274 map = dm_get_live_table(md, &srcu_idx);
2275 if (!dm_suspended_md(md)) {
2276 dm_table_presuspend_targets(map);
2277 set_bit(DMF_SUSPENDED, &md->flags);
2278 set_bit(DMF_POST_SUSPENDING, &md->flags);
2279 dm_table_postsuspend_targets(map);
2281 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2282 dm_put_live_table(md, srcu_idx);
2283 mutex_unlock(&md->suspend_lock);
2286 * Rare, but there may be I/O requests still going to complete,
2287 * for example. Wait for all references to disappear.
2288 * No one should increment the reference count of the mapped_device,
2289 * after the mapped_device state becomes DMF_FREEING.
2292 while (atomic_read(&md->holders))
2294 else if (atomic_read(&md->holders))
2295 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2296 dm_device_name(md), atomic_read(&md->holders));
2299 dm_table_destroy(__unbind(md));
2303 void dm_destroy(struct mapped_device *md)
2305 __dm_destroy(md, true);
2308 void dm_destroy_immediate(struct mapped_device *md)
2310 __dm_destroy(md, false);
2313 void dm_put(struct mapped_device *md)
2315 atomic_dec(&md->holders);
2317 EXPORT_SYMBOL_GPL(dm_put);
2319 static bool md_in_flight_bios(struct mapped_device *md)
2322 struct block_device *part = dm_disk(md)->part0;
2325 for_each_possible_cpu(cpu) {
2326 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2327 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2333 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2339 prepare_to_wait(&md->wait, &wait, task_state);
2341 if (!md_in_flight_bios(md))
2344 if (signal_pending_state(task_state, current)) {
2351 finish_wait(&md->wait, &wait);
2356 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2360 if (!queue_is_mq(md->queue))
2361 return dm_wait_for_bios_completion(md, task_state);
2364 if (!blk_mq_queue_inflight(md->queue))
2367 if (signal_pending_state(task_state, current)) {
2379 * Process the deferred bios
2381 static void dm_wq_work(struct work_struct *work)
2383 struct mapped_device *md = container_of(work, struct mapped_device, work);
2386 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2387 spin_lock_irq(&md->deferred_lock);
2388 bio = bio_list_pop(&md->deferred);
2389 spin_unlock_irq(&md->deferred_lock);
2394 submit_bio_noacct(bio);
2398 static void dm_queue_flush(struct mapped_device *md)
2400 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2401 smp_mb__after_atomic();
2402 queue_work(md->wq, &md->work);
2406 * Swap in a new table, returning the old one for the caller to destroy.
2408 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2410 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2411 struct queue_limits limits;
2414 mutex_lock(&md->suspend_lock);
2416 /* device must be suspended */
2417 if (!dm_suspended_md(md))
2421 * If the new table has no data devices, retain the existing limits.
2422 * This helps multipath with queue_if_no_path if all paths disappear,
2423 * then new I/O is queued based on these limits, and then some paths
2426 if (dm_table_has_no_data_devices(table)) {
2427 live_map = dm_get_live_table_fast(md);
2429 limits = md->queue->limits;
2430 dm_put_live_table_fast(md);
2434 r = dm_calculate_queue_limits(table, &limits);
2441 map = __bind(md, table, &limits);
2442 dm_issue_global_event();
2445 mutex_unlock(&md->suspend_lock);
2450 * Functions to lock and unlock any filesystem running on the
2453 static int lock_fs(struct mapped_device *md)
2457 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2459 r = freeze_bdev(md->disk->part0);
2461 set_bit(DMF_FROZEN, &md->flags);
2465 static void unlock_fs(struct mapped_device *md)
2467 if (!test_bit(DMF_FROZEN, &md->flags))
2469 thaw_bdev(md->disk->part0);
2470 clear_bit(DMF_FROZEN, &md->flags);
2474 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2475 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2476 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2478 * If __dm_suspend returns 0, the device is completely quiescent
2479 * now. There is no request-processing activity. All new requests
2480 * are being added to md->deferred list.
2482 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2483 unsigned suspend_flags, long task_state,
2484 int dmf_suspended_flag)
2486 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2487 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2490 lockdep_assert_held(&md->suspend_lock);
2493 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2494 * This flag is cleared before dm_suspend returns.
2497 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2499 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2502 * This gets reverted if there's an error later and the targets
2503 * provide the .presuspend_undo hook.
2505 dm_table_presuspend_targets(map);
2508 * Flush I/O to the device.
2509 * Any I/O submitted after lock_fs() may not be flushed.
2510 * noflush takes precedence over do_lockfs.
2511 * (lock_fs() flushes I/Os and waits for them to complete.)
2513 if (!noflush && do_lockfs) {
2516 dm_table_presuspend_undo_targets(map);
2522 * Here we must make sure that no processes are submitting requests
2523 * to target drivers i.e. no one may be executing
2524 * __split_and_process_bio from dm_submit_bio.
2526 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2527 * we take the write lock. To prevent any process from reentering
2528 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2529 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2530 * flush_workqueue(md->wq).
2532 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2534 synchronize_srcu(&md->io_barrier);
2537 * Stop md->queue before flushing md->wq in case request-based
2538 * dm defers requests to md->wq from md->queue.
2540 if (dm_request_based(md))
2541 dm_stop_queue(md->queue);
2543 flush_workqueue(md->wq);
2546 * At this point no more requests are entering target request routines.
2547 * We call dm_wait_for_completion to wait for all existing requests
2550 r = dm_wait_for_completion(md, task_state);
2552 set_bit(dmf_suspended_flag, &md->flags);
2555 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2557 synchronize_srcu(&md->io_barrier);
2559 /* were we interrupted ? */
2563 if (dm_request_based(md))
2564 dm_start_queue(md->queue);
2567 dm_table_presuspend_undo_targets(map);
2568 /* pushback list is already flushed, so skip flush */
2575 * We need to be able to change a mapping table under a mounted
2576 * filesystem. For example we might want to move some data in
2577 * the background. Before the table can be swapped with
2578 * dm_bind_table, dm_suspend must be called to flush any in
2579 * flight bios and ensure that any further io gets deferred.
2582 * Suspend mechanism in request-based dm.
2584 * 1. Flush all I/Os by lock_fs() if needed.
2585 * 2. Stop dispatching any I/O by stopping the request_queue.
2586 * 3. Wait for all in-flight I/Os to be completed or requeued.
2588 * To abort suspend, start the request_queue.
2590 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2592 struct dm_table *map = NULL;
2596 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2598 if (dm_suspended_md(md)) {
2603 if (dm_suspended_internally_md(md)) {
2604 /* already internally suspended, wait for internal resume */
2605 mutex_unlock(&md->suspend_lock);
2606 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2612 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2614 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2618 set_bit(DMF_POST_SUSPENDING, &md->flags);
2619 dm_table_postsuspend_targets(map);
2620 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2623 mutex_unlock(&md->suspend_lock);
2627 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2630 int r = dm_table_resume_targets(map);
2638 * Flushing deferred I/Os must be done after targets are resumed
2639 * so that mapping of targets can work correctly.
2640 * Request-based dm is queueing the deferred I/Os in its request_queue.
2642 if (dm_request_based(md))
2643 dm_start_queue(md->queue);
2650 int dm_resume(struct mapped_device *md)
2653 struct dm_table *map = NULL;
2657 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2659 if (!dm_suspended_md(md))
2662 if (dm_suspended_internally_md(md)) {
2663 /* already internally suspended, wait for internal resume */
2664 mutex_unlock(&md->suspend_lock);
2665 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2671 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2672 if (!map || !dm_table_get_size(map))
2675 r = __dm_resume(md, map);
2679 clear_bit(DMF_SUSPENDED, &md->flags);
2681 mutex_unlock(&md->suspend_lock);
2687 * Internal suspend/resume works like userspace-driven suspend. It waits
2688 * until all bios finish and prevents issuing new bios to the target drivers.
2689 * It may be used only from the kernel.
2692 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2694 struct dm_table *map = NULL;
2696 lockdep_assert_held(&md->suspend_lock);
2698 if (md->internal_suspend_count++)
2699 return; /* nested internal suspend */
2701 if (dm_suspended_md(md)) {
2702 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2703 return; /* nest suspend */
2706 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2709 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2710 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2711 * would require changing .presuspend to return an error -- avoid this
2712 * until there is a need for more elaborate variants of internal suspend.
2714 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2715 DMF_SUSPENDED_INTERNALLY);
2717 set_bit(DMF_POST_SUSPENDING, &md->flags);
2718 dm_table_postsuspend_targets(map);
2719 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2722 static void __dm_internal_resume(struct mapped_device *md)
2724 BUG_ON(!md->internal_suspend_count);
2726 if (--md->internal_suspend_count)
2727 return; /* resume from nested internal suspend */
2729 if (dm_suspended_md(md))
2730 goto done; /* resume from nested suspend */
2733 * NOTE: existing callers don't need to call dm_table_resume_targets
2734 * (which may fail -- so best to avoid it for now by passing NULL map)
2736 (void) __dm_resume(md, NULL);
2739 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2740 smp_mb__after_atomic();
2741 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2744 void dm_internal_suspend_noflush(struct mapped_device *md)
2746 mutex_lock(&md->suspend_lock);
2747 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2748 mutex_unlock(&md->suspend_lock);
2750 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2752 void dm_internal_resume(struct mapped_device *md)
2754 mutex_lock(&md->suspend_lock);
2755 __dm_internal_resume(md);
2756 mutex_unlock(&md->suspend_lock);
2758 EXPORT_SYMBOL_GPL(dm_internal_resume);
2761 * Fast variants of internal suspend/resume hold md->suspend_lock,
2762 * which prevents interaction with userspace-driven suspend.
2765 void dm_internal_suspend_fast(struct mapped_device *md)
2767 mutex_lock(&md->suspend_lock);
2768 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2771 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2772 synchronize_srcu(&md->io_barrier);
2773 flush_workqueue(md->wq);
2774 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2776 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2778 void dm_internal_resume_fast(struct mapped_device *md)
2780 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2786 mutex_unlock(&md->suspend_lock);
2788 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2790 /*-----------------------------------------------------------------
2791 * Event notification.
2792 *---------------------------------------------------------------*/
2793 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2798 char udev_cookie[DM_COOKIE_LENGTH];
2799 char *envp[] = { udev_cookie, NULL };
2801 noio_flag = memalloc_noio_save();
2804 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2806 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2807 DM_COOKIE_ENV_VAR_NAME, cookie);
2808 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2812 memalloc_noio_restore(noio_flag);
2817 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2819 return atomic_add_return(1, &md->uevent_seq);
2822 uint32_t dm_get_event_nr(struct mapped_device *md)
2824 return atomic_read(&md->event_nr);
2827 int dm_wait_event(struct mapped_device *md, int event_nr)
2829 return wait_event_interruptible(md->eventq,
2830 (event_nr != atomic_read(&md->event_nr)));
2833 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2835 unsigned long flags;
2837 spin_lock_irqsave(&md->uevent_lock, flags);
2838 list_add(elist, &md->uevent_list);
2839 spin_unlock_irqrestore(&md->uevent_lock, flags);
2843 * The gendisk is only valid as long as you have a reference
2846 struct gendisk *dm_disk(struct mapped_device *md)
2850 EXPORT_SYMBOL_GPL(dm_disk);
2852 struct kobject *dm_kobject(struct mapped_device *md)
2854 return &md->kobj_holder.kobj;
2857 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2859 struct mapped_device *md;
2861 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2863 spin_lock(&_minor_lock);
2864 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2870 spin_unlock(&_minor_lock);
2875 int dm_suspended_md(struct mapped_device *md)
2877 return test_bit(DMF_SUSPENDED, &md->flags);
2880 static int dm_post_suspending_md(struct mapped_device *md)
2882 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2885 int dm_suspended_internally_md(struct mapped_device *md)
2887 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2890 int dm_test_deferred_remove_flag(struct mapped_device *md)
2892 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2895 int dm_suspended(struct dm_target *ti)
2897 return dm_suspended_md(ti->table->md);
2899 EXPORT_SYMBOL_GPL(dm_suspended);
2901 int dm_post_suspending(struct dm_target *ti)
2903 return dm_post_suspending_md(ti->table->md);
2905 EXPORT_SYMBOL_GPL(dm_post_suspending);
2907 int dm_noflush_suspending(struct dm_target *ti)
2909 return __noflush_suspending(ti->table->md);
2911 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2913 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2914 unsigned integrity, unsigned per_io_data_size,
2915 unsigned min_pool_size)
2917 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2918 unsigned int pool_size = 0;
2919 unsigned int front_pad, io_front_pad;
2926 case DM_TYPE_BIO_BASED:
2927 case DM_TYPE_DAX_BIO_BASED:
2928 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2929 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2930 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2931 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2934 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2937 case DM_TYPE_REQUEST_BASED:
2938 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2939 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2940 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2946 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2950 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2956 dm_free_md_mempools(pools);
2961 void dm_free_md_mempools(struct dm_md_mempools *pools)
2966 bioset_exit(&pools->bs);
2967 bioset_exit(&pools->io_bs);
2979 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2982 struct mapped_device *md = bdev->bd_disk->private_data;
2983 struct dm_table *table;
2984 struct dm_target *ti;
2985 int ret = -ENOTTY, srcu_idx;
2987 table = dm_get_live_table(md, &srcu_idx);
2988 if (!table || !dm_table_get_size(table))
2991 /* We only support devices that have a single target */
2992 if (dm_table_get_num_targets(table) != 1)
2994 ti = dm_table_get_target(table, 0);
2997 if (!ti->type->iterate_devices)
3000 ret = ti->type->iterate_devices(ti, fn, data);
3002 dm_put_live_table(md, srcu_idx);
3007 * For register / unregister we need to manually call out to every path.
3009 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3010 sector_t start, sector_t len, void *data)
3012 struct dm_pr *pr = data;
3013 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3015 if (!ops || !ops->pr_register)
3017 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3020 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3031 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3032 if (ret && new_key) {
3033 /* unregister all paths if we failed to register any path */
3034 pr.old_key = new_key;
3037 pr.fail_early = false;
3038 dm_call_pr(bdev, __dm_pr_register, &pr);
3044 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3047 struct mapped_device *md = bdev->bd_disk->private_data;
3048 const struct pr_ops *ops;
3051 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3055 ops = bdev->bd_disk->fops->pr_ops;
3056 if (ops && ops->pr_reserve)
3057 r = ops->pr_reserve(bdev, key, type, flags);
3061 dm_unprepare_ioctl(md, srcu_idx);
3065 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3067 struct mapped_device *md = bdev->bd_disk->private_data;
3068 const struct pr_ops *ops;
3071 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3075 ops = bdev->bd_disk->fops->pr_ops;
3076 if (ops && ops->pr_release)
3077 r = ops->pr_release(bdev, key, type);
3081 dm_unprepare_ioctl(md, srcu_idx);
3085 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3086 enum pr_type type, bool abort)
3088 struct mapped_device *md = bdev->bd_disk->private_data;
3089 const struct pr_ops *ops;
3092 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3096 ops = bdev->bd_disk->fops->pr_ops;
3097 if (ops && ops->pr_preempt)
3098 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3102 dm_unprepare_ioctl(md, srcu_idx);
3106 static int dm_pr_clear(struct block_device *bdev, u64 key)
3108 struct mapped_device *md = bdev->bd_disk->private_data;
3109 const struct pr_ops *ops;
3112 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3116 ops = bdev->bd_disk->fops->pr_ops;
3117 if (ops && ops->pr_clear)
3118 r = ops->pr_clear(bdev, key);
3122 dm_unprepare_ioctl(md, srcu_idx);
3126 static const struct pr_ops dm_pr_ops = {
3127 .pr_register = dm_pr_register,
3128 .pr_reserve = dm_pr_reserve,
3129 .pr_release = dm_pr_release,
3130 .pr_preempt = dm_pr_preempt,
3131 .pr_clear = dm_pr_clear,
3134 static const struct block_device_operations dm_blk_dops = {
3135 .submit_bio = dm_submit_bio,
3136 .open = dm_blk_open,
3137 .release = dm_blk_close,
3138 .ioctl = dm_blk_ioctl,
3139 .getgeo = dm_blk_getgeo,
3140 .report_zones = dm_blk_report_zones,
3141 .pr_ops = &dm_pr_ops,
3142 .owner = THIS_MODULE
3145 static const struct block_device_operations dm_rq_blk_dops = {
3146 .open = dm_blk_open,
3147 .release = dm_blk_close,
3148 .ioctl = dm_blk_ioctl,
3149 .getgeo = dm_blk_getgeo,
3150 .pr_ops = &dm_pr_ops,
3151 .owner = THIS_MODULE
3154 static const struct dax_operations dm_dax_ops = {
3155 .direct_access = dm_dax_direct_access,
3156 .dax_supported = dm_dax_supported,
3157 .copy_from_iter = dm_dax_copy_from_iter,
3158 .copy_to_iter = dm_dax_copy_to_iter,
3159 .zero_page_range = dm_dax_zero_page_range,
3165 module_init(dm_init);
3166 module_exit(dm_exit);
3168 module_param(major, uint, 0);
3169 MODULE_PARM_DESC(major, "The major number of the device mapper");
3171 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3172 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3174 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3175 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3177 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3178 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3180 MODULE_DESCRIPTION(DM_NAME " driver");
3182 MODULE_LICENSE("GPL");