2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
32 #include "rt2x00lib.h"
35 * Radio control handlers.
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
42 * Don't enable the radio twice.
43 * And check if the hardware button has been disabled.
45 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
49 * Initialize all data queues.
51 rt2x00queue_init_queues(rt2x00dev);
57 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
61 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
63 rt2x00leds_led_radio(rt2x00dev, true);
64 rt2x00led_led_activity(rt2x00dev, true);
66 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
71 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_RX_ON);
72 rt2x00link_start_tuner(rt2x00dev);
75 * Start watchdog monitoring.
77 rt2x00link_start_watchdog(rt2x00dev);
80 * Start the TX queues.
82 ieee80211_wake_queues(rt2x00dev->hw);
87 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
89 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
93 * Stop the TX queues in mac80211.
95 ieee80211_stop_queues(rt2x00dev->hw);
96 rt2x00queue_stop_queues(rt2x00dev);
99 * Stop watchdog monitoring.
101 rt2x00link_stop_watchdog(rt2x00dev);
106 rt2x00link_stop_tuner(rt2x00dev);
107 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_RX_OFF);
112 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
113 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
114 rt2x00led_led_activity(rt2x00dev, false);
115 rt2x00leds_led_radio(rt2x00dev, false);
118 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
119 struct ieee80211_vif *vif)
121 struct rt2x00_dev *rt2x00dev = data;
122 struct rt2x00_intf *intf = vif_to_intf(vif);
126 * Copy all data we need during this action under the protection
127 * of a spinlock. Otherwise race conditions might occur which results
128 * into an invalid configuration.
130 spin_lock(&intf->lock);
132 delayed_flags = intf->delayed_flags;
133 intf->delayed_flags = 0;
135 spin_unlock(&intf->lock);
138 * It is possible the radio was disabled while the work had been
139 * scheduled. If that happens we should return here immediately,
140 * note that in the spinlock protected area above the delayed_flags
141 * have been cleared correctly.
143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
146 if (delayed_flags & DELAYED_UPDATE_BEACON)
147 rt2x00queue_update_beacon(rt2x00dev, vif, true);
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
152 struct rt2x00_dev *rt2x00dev =
153 container_of(work, struct rt2x00_dev, intf_work);
156 * Iterate over each interface and perform the
157 * requested configurations.
159 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160 rt2x00lib_intf_scheduled_iter,
165 * Interrupt context handlers.
167 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
168 struct ieee80211_vif *vif)
170 struct rt2x00_dev *rt2x00dev = data;
174 * Only AP mode interfaces do broad- and multicast buffering
176 if (vif->type != NL80211_IFTYPE_AP)
180 * Send out buffered broad- and multicast frames
182 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
184 rt2x00mac_tx(rt2x00dev->hw, skb);
185 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
189 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
190 struct ieee80211_vif *vif)
192 struct rt2x00_dev *rt2x00dev = data;
194 if (vif->type != NL80211_IFTYPE_AP &&
195 vif->type != NL80211_IFTYPE_ADHOC &&
196 vif->type != NL80211_IFTYPE_MESH_POINT &&
197 vif->type != NL80211_IFTYPE_WDS)
200 rt2x00queue_update_beacon(rt2x00dev, vif, true);
203 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
205 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
208 /* send buffered bc/mc frames out for every bssid */
209 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
210 rt2x00lib_bc_buffer_iter,
213 * Devices with pre tbtt interrupt don't need to update the beacon
214 * here as they will fetch the next beacon directly prior to
217 if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
220 /* fetch next beacon */
221 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
222 rt2x00lib_beaconupdate_iter,
225 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
227 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
229 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
232 /* fetch next beacon */
233 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
234 rt2x00lib_beaconupdate_iter,
237 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
239 void rt2x00lib_dmadone(struct queue_entry *entry)
241 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
242 rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
244 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
246 void rt2x00lib_txdone(struct queue_entry *entry,
247 struct txdone_entry_desc *txdesc)
249 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
250 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
251 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
252 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
253 unsigned int header_length, i;
254 u8 rate_idx, rate_flags, retry_rates;
255 u8 skbdesc_flags = skbdesc->flags;
261 rt2x00queue_unmap_skb(entry);
264 * Remove the extra tx headroom from the skb.
266 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
269 * Signal that the TX descriptor is no longer in the skb.
271 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
274 * Determine the length of 802.11 header.
276 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
279 * Remove L2 padding which was added during
281 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
282 rt2x00queue_remove_l2pad(entry->skb, header_length);
285 * If the IV/EIV data was stripped from the frame before it was
286 * passed to the hardware, we should now reinsert it again because
287 * mac80211 will expect the same data to be present it the
288 * frame as it was passed to us.
290 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
291 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
294 * Send frame to debugfs immediately, after this call is completed
295 * we are going to overwrite the skb->cb array.
297 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
300 * Determine if the frame has been successfully transmitted.
303 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
304 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
307 * Update TX statistics.
309 rt2x00dev->link.qual.tx_success += success;
310 rt2x00dev->link.qual.tx_failed += !success;
312 rate_idx = skbdesc->tx_rate_idx;
313 rate_flags = skbdesc->tx_rate_flags;
314 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
315 (txdesc->retry + 1) : 1;
318 * Initialize TX status
320 memset(&tx_info->status, 0, sizeof(tx_info->status));
321 tx_info->status.ack_signal = 0;
324 * Frame was send with retries, hardware tried
325 * different rates to send out the frame, at each
326 * retry it lowered the rate 1 step except when the
327 * lowest rate was used.
329 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
330 tx_info->status.rates[i].idx = rate_idx - i;
331 tx_info->status.rates[i].flags = rate_flags;
333 if (rate_idx - i == 0) {
335 * The lowest rate (index 0) was used until the
336 * number of max retries was reached.
338 tx_info->status.rates[i].count = retry_rates - i;
342 tx_info->status.rates[i].count = 1;
344 if (i < (IEEE80211_TX_MAX_RATES - 1))
345 tx_info->status.rates[i].idx = -1; /* terminate */
347 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
349 tx_info->flags |= IEEE80211_TX_STAT_ACK;
351 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
355 * Every single frame has it's own tx status, hence report
356 * every frame as ampdu of size 1.
358 * TODO: if we can find out how many frames were aggregated
359 * by the hw we could provide the real ampdu_len to mac80211
360 * which would allow the rc algorithm to better decide on
361 * which rates are suitable.
363 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
364 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
365 tx_info->status.ampdu_len = 1;
366 tx_info->status.ampdu_ack_len = success ? 1 : 0;
369 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
371 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
373 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
377 * Only send the status report to mac80211 when it's a frame
378 * that originated in mac80211. If this was a extra frame coming
379 * through a mac80211 library call (RTS/CTS) then we should not
380 * send the status report back.
382 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
383 if (test_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags))
384 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
386 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
388 dev_kfree_skb_any(entry->skb);
391 * Make this entry available for reuse.
396 rt2x00dev->ops->lib->clear_entry(entry);
398 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
401 * If the data queue was below the threshold before the txdone
402 * handler we must make sure the packet queue in the mac80211 stack
403 * is reenabled when the txdone handler has finished.
405 if (!rt2x00queue_threshold(entry->queue))
406 ieee80211_wake_queue(rt2x00dev->hw, qid);
408 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
410 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
412 struct txdone_entry_desc txdesc;
415 __set_bit(status, &txdesc.flags);
418 rt2x00lib_txdone(entry, &txdesc);
420 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
422 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
423 struct rxdone_entry_desc *rxdesc)
425 struct ieee80211_supported_band *sband;
426 const struct rt2x00_rate *rate;
428 int signal = rxdesc->signal;
429 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
431 switch (rxdesc->rate_mode) {
435 * For non-HT rates the MCS value needs to contain the
436 * actually used rate modulation (CCK or OFDM).
438 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
439 signal = RATE_MCS(rxdesc->rate_mode, signal);
441 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
442 for (i = 0; i < sband->n_bitrates; i++) {
443 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
444 if (((type == RXDONE_SIGNAL_PLCP) &&
445 (rate->plcp == signal)) ||
446 ((type == RXDONE_SIGNAL_BITRATE) &&
447 (rate->bitrate == signal)) ||
448 ((type == RXDONE_SIGNAL_MCS) &&
449 (rate->mcs == signal))) {
454 case RATE_MODE_HT_MIX:
455 case RATE_MODE_HT_GREENFIELD:
456 if (signal >= 0 && signal <= 76)
463 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
464 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
465 rxdesc->rate_mode, signal, type);
469 void rt2x00lib_rxdone(struct queue_entry *entry)
471 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
472 struct rxdone_entry_desc rxdesc;
474 struct ieee80211_rx_status *rx_status;
475 unsigned int header_length;
478 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
479 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
482 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
486 * Allocate a new sk_buffer. If no new buffer available, drop the
487 * received frame and reuse the existing buffer.
489 skb = rt2x00queue_alloc_rxskb(entry);
496 rt2x00queue_unmap_skb(entry);
499 * Extract the RXD details.
501 memset(&rxdesc, 0, sizeof(rxdesc));
502 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
505 * The data behind the ieee80211 header must be
506 * aligned on a 4 byte boundary.
508 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
511 * Hardware might have stripped the IV/EIV/ICV data,
512 * in that case it is possible that the data was
513 * provided separately (through hardware descriptor)
514 * in which case we should reinsert the data into the frame.
516 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
517 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
518 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
520 else if (header_length &&
521 (rxdesc.size > header_length) &&
522 (rxdesc.dev_flags & RXDONE_L2PAD))
523 rt2x00queue_remove_l2pad(entry->skb, header_length);
525 rt2x00queue_align_payload(entry->skb, header_length);
527 /* Trim buffer to correct size */
528 skb_trim(entry->skb, rxdesc.size);
531 * Translate the signal to the correct bitrate index.
533 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
534 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
535 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
536 rxdesc.flags |= RX_FLAG_HT;
539 * Update extra components
541 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
542 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
543 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
546 * Initialize RX status information, and send frame
549 rx_status = IEEE80211_SKB_RXCB(entry->skb);
550 rx_status->mactime = rxdesc.timestamp;
551 rx_status->band = rt2x00dev->curr_band;
552 rx_status->freq = rt2x00dev->curr_freq;
553 rx_status->rate_idx = rate_idx;
554 rx_status->signal = rxdesc.rssi;
555 rx_status->flag = rxdesc.flags;
556 rx_status->antenna = rt2x00dev->link.ant.active.rx;
558 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
561 * Replace the skb with the freshly allocated one.
567 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
568 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
569 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
570 rt2x00dev->ops->lib->clear_entry(entry);
571 rt2x00queue_index_inc(entry->queue, Q_INDEX);
574 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
577 * Driver initialization handlers.
579 const struct rt2x00_rate rt2x00_supported_rates[12] = {
581 .flags = DEV_RATE_CCK,
585 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
588 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
592 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
595 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
599 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
602 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
606 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
609 .flags = DEV_RATE_OFDM,
613 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
616 .flags = DEV_RATE_OFDM,
620 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
623 .flags = DEV_RATE_OFDM,
627 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
630 .flags = DEV_RATE_OFDM,
634 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
637 .flags = DEV_RATE_OFDM,
641 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
644 .flags = DEV_RATE_OFDM,
648 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
651 .flags = DEV_RATE_OFDM,
655 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
658 .flags = DEV_RATE_OFDM,
662 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
666 static void rt2x00lib_channel(struct ieee80211_channel *entry,
667 const int channel, const int tx_power,
670 entry->center_freq = ieee80211_channel_to_frequency(channel);
671 entry->hw_value = value;
672 entry->max_power = tx_power;
673 entry->max_antenna_gain = 0xff;
676 static void rt2x00lib_rate(struct ieee80211_rate *entry,
677 const u16 index, const struct rt2x00_rate *rate)
680 entry->bitrate = rate->bitrate;
681 entry->hw_value = index;
682 entry->hw_value_short = index;
684 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
685 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
688 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
689 struct hw_mode_spec *spec)
691 struct ieee80211_hw *hw = rt2x00dev->hw;
692 struct ieee80211_channel *channels;
693 struct ieee80211_rate *rates;
694 unsigned int num_rates;
698 if (spec->supported_rates & SUPPORT_RATE_CCK)
700 if (spec->supported_rates & SUPPORT_RATE_OFDM)
703 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
707 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
709 goto exit_free_channels;
712 * Initialize Rate list.
714 for (i = 0; i < num_rates; i++)
715 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
718 * Initialize Channel list.
720 for (i = 0; i < spec->num_channels; i++) {
721 rt2x00lib_channel(&channels[i],
722 spec->channels[i].channel,
723 spec->channels_info[i].max_power, i);
727 * Intitialize 802.11b, 802.11g
731 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
732 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
733 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
734 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
735 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
736 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
737 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
738 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
739 &spec->ht, sizeof(spec->ht));
743 * Intitialize 802.11a
745 * Channels: OFDM, UNII, HiperLAN2.
747 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
748 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
749 spec->num_channels - 14;
750 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
752 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
753 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
754 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
755 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
756 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
757 &spec->ht, sizeof(spec->ht));
764 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
768 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
770 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
771 ieee80211_unregister_hw(rt2x00dev->hw);
773 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
774 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
775 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
776 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
777 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
780 kfree(rt2x00dev->spec.channels_info);
783 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
785 struct hw_mode_spec *spec = &rt2x00dev->spec;
788 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
792 * Initialize HW modes.
794 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
799 * Initialize HW fields.
801 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
804 * Initialize extra TX headroom required.
806 rt2x00dev->hw->extra_tx_headroom =
807 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
808 rt2x00dev->ops->extra_tx_headroom);
811 * Take TX headroom required for alignment into account.
813 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
814 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
815 else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
816 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
819 * Allocate tx status FIFO for driver use.
821 if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags) &&
822 rt2x00dev->ops->lib->txstatus_tasklet) {
824 * Allocate txstatus fifo and tasklet, we use a size of 512
825 * for the kfifo which is big enough to store 512/4=128 tx
826 * status reports. In the worst case (tx status for all tx
827 * queues gets reported before we've got a chance to handle
828 * them) 24*4=384 tx status reports need to be cached.
830 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
835 /* tasklet for processing the tx status reports. */
836 tasklet_init(&rt2x00dev->txstatus_tasklet,
837 rt2x00dev->ops->lib->txstatus_tasklet,
838 (unsigned long)rt2x00dev);
845 status = ieee80211_register_hw(rt2x00dev->hw);
849 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
855 * Initialization/uninitialization handlers.
857 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
859 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
863 * Unregister extra components.
865 rt2x00rfkill_unregister(rt2x00dev);
868 * Allow the HW to uninitialize.
870 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
873 * Free allocated queue entries.
875 rt2x00queue_uninitialize(rt2x00dev);
878 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
882 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
886 * Allocate all queue entries.
888 status = rt2x00queue_initialize(rt2x00dev);
893 * Initialize the device.
895 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
897 rt2x00queue_uninitialize(rt2x00dev);
901 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
904 * Register the extra components.
906 rt2x00rfkill_register(rt2x00dev);
911 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
915 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
919 * If this is the first interface which is added,
920 * we should load the firmware now.
922 retval = rt2x00lib_load_firmware(rt2x00dev);
927 * Initialize the device.
929 retval = rt2x00lib_initialize(rt2x00dev);
933 rt2x00dev->intf_ap_count = 0;
934 rt2x00dev->intf_sta_count = 0;
935 rt2x00dev->intf_associated = 0;
937 /* Enable the radio */
938 retval = rt2x00lib_enable_radio(rt2x00dev);
942 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
947 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
949 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
953 * Perhaps we can add something smarter here,
954 * but for now just disabling the radio should do.
956 rt2x00lib_disable_radio(rt2x00dev);
958 rt2x00dev->intf_ap_count = 0;
959 rt2x00dev->intf_sta_count = 0;
960 rt2x00dev->intf_associated = 0;
964 * driver allocation handlers.
966 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
968 int retval = -ENOMEM;
970 mutex_init(&rt2x00dev->csr_mutex);
972 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
975 * Make room for rt2x00_intf inside the per-interface
976 * structure ieee80211_vif.
978 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
981 * Determine which operating modes are supported, all modes
982 * which require beaconing, depend on the availability of
985 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
986 if (rt2x00dev->ops->bcn->entry_num > 0)
987 rt2x00dev->hw->wiphy->interface_modes |=
988 BIT(NL80211_IFTYPE_ADHOC) |
989 BIT(NL80211_IFTYPE_AP) |
990 BIT(NL80211_IFTYPE_MESH_POINT) |
991 BIT(NL80211_IFTYPE_WDS);
994 * Initialize configuration work.
996 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
999 * Let the driver probe the device to detect the capabilities.
1001 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1003 ERROR(rt2x00dev, "Failed to allocate device.\n");
1008 * Allocate queue array.
1010 retval = rt2x00queue_allocate(rt2x00dev);
1015 * Initialize ieee80211 structure.
1017 retval = rt2x00lib_probe_hw(rt2x00dev);
1019 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1024 * Register extra components.
1026 rt2x00link_register(rt2x00dev);
1027 rt2x00leds_register(rt2x00dev);
1028 rt2x00debug_register(rt2x00dev);
1033 rt2x00lib_remove_dev(rt2x00dev);
1037 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1039 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1041 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1046 rt2x00lib_disable_radio(rt2x00dev);
1051 cancel_work_sync(&rt2x00dev->intf_work);
1052 cancel_work_sync(&rt2x00dev->rxdone_work);
1053 cancel_work_sync(&rt2x00dev->txdone_work);
1056 * Free the tx status fifo.
1058 kfifo_free(&rt2x00dev->txstatus_fifo);
1061 * Kill the tx status tasklet.
1063 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1066 * Uninitialize device.
1068 rt2x00lib_uninitialize(rt2x00dev);
1071 * Free extra components
1073 rt2x00debug_deregister(rt2x00dev);
1074 rt2x00leds_unregister(rt2x00dev);
1077 * Free ieee80211_hw memory.
1079 rt2x00lib_remove_hw(rt2x00dev);
1082 * Free firmware image.
1084 rt2x00lib_free_firmware(rt2x00dev);
1087 * Free queue structures.
1089 rt2x00queue_free(rt2x00dev);
1091 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1094 * Device state handlers
1097 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1099 NOTICE(rt2x00dev, "Going to sleep.\n");
1102 * Prevent mac80211 from accessing driver while suspended.
1104 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1108 * Cleanup as much as possible.
1110 rt2x00lib_uninitialize(rt2x00dev);
1113 * Suspend/disable extra components.
1115 rt2x00leds_suspend(rt2x00dev);
1116 rt2x00debug_deregister(rt2x00dev);
1119 * Set device mode to sleep for power management,
1120 * on some hardware this call seems to consistently fail.
1121 * From the specifications it is hard to tell why it fails,
1122 * and if this is a "bad thing".
1123 * Overall it is safe to just ignore the failure and
1124 * continue suspending. The only downside is that the
1125 * device will not be in optimal power save mode, but with
1126 * the radio and the other components already disabled the
1127 * device is as good as disabled.
1129 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1130 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1131 "continue suspending.\n");
1135 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1137 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1139 NOTICE(rt2x00dev, "Waking up.\n");
1142 * Restore/enable extra components.
1144 rt2x00debug_register(rt2x00dev);
1145 rt2x00leds_resume(rt2x00dev);
1148 * We are ready again to receive requests from mac80211.
1150 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1154 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1155 #endif /* CONFIG_PM */
1158 * rt2x00lib module information.
1160 MODULE_AUTHOR(DRV_PROJECT);
1161 MODULE_VERSION(DRV_VERSION);
1162 MODULE_DESCRIPTION("rt2x00 library");
1163 MODULE_LICENSE("GPL");